1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 7 #include "sched.h" 8 9 #include <linux/slab.h> 10 #include <linux/irq_work.h> 11 12 int sched_rr_timeslice = RR_TIMESLICE; 13 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE; 14 15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 16 17 struct rt_bandwidth def_rt_bandwidth; 18 19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 20 { 21 struct rt_bandwidth *rt_b = 22 container_of(timer, struct rt_bandwidth, rt_period_timer); 23 int idle = 0; 24 int overrun; 25 26 raw_spin_lock(&rt_b->rt_runtime_lock); 27 for (;;) { 28 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 29 if (!overrun) 30 break; 31 32 raw_spin_unlock(&rt_b->rt_runtime_lock); 33 idle = do_sched_rt_period_timer(rt_b, overrun); 34 raw_spin_lock(&rt_b->rt_runtime_lock); 35 } 36 if (idle) 37 rt_b->rt_period_active = 0; 38 raw_spin_unlock(&rt_b->rt_runtime_lock); 39 40 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 41 } 42 43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 44 { 45 rt_b->rt_period = ns_to_ktime(period); 46 rt_b->rt_runtime = runtime; 47 48 raw_spin_lock_init(&rt_b->rt_runtime_lock); 49 50 hrtimer_init(&rt_b->rt_period_timer, 51 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 52 rt_b->rt_period_timer.function = sched_rt_period_timer; 53 } 54 55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 56 { 57 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 58 return; 59 60 raw_spin_lock(&rt_b->rt_runtime_lock); 61 if (!rt_b->rt_period_active) { 62 rt_b->rt_period_active = 1; 63 /* 64 * SCHED_DEADLINE updates the bandwidth, as a run away 65 * RT task with a DL task could hog a CPU. But DL does 66 * not reset the period. If a deadline task was running 67 * without an RT task running, it can cause RT tasks to 68 * throttle when they start up. Kick the timer right away 69 * to update the period. 70 */ 71 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 72 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED); 73 } 74 raw_spin_unlock(&rt_b->rt_runtime_lock); 75 } 76 77 void init_rt_rq(struct rt_rq *rt_rq) 78 { 79 struct rt_prio_array *array; 80 int i; 81 82 array = &rt_rq->active; 83 for (i = 0; i < MAX_RT_PRIO; i++) { 84 INIT_LIST_HEAD(array->queue + i); 85 __clear_bit(i, array->bitmap); 86 } 87 /* delimiter for bitsearch: */ 88 __set_bit(MAX_RT_PRIO, array->bitmap); 89 90 #if defined CONFIG_SMP 91 rt_rq->highest_prio.curr = MAX_RT_PRIO; 92 rt_rq->highest_prio.next = MAX_RT_PRIO; 93 rt_rq->rt_nr_migratory = 0; 94 rt_rq->overloaded = 0; 95 plist_head_init(&rt_rq->pushable_tasks); 96 #endif /* CONFIG_SMP */ 97 /* We start is dequeued state, because no RT tasks are queued */ 98 rt_rq->rt_queued = 0; 99 100 rt_rq->rt_time = 0; 101 rt_rq->rt_throttled = 0; 102 rt_rq->rt_runtime = 0; 103 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 104 } 105 106 #ifdef CONFIG_RT_GROUP_SCHED 107 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 108 { 109 hrtimer_cancel(&rt_b->rt_period_timer); 110 } 111 112 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 113 114 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 115 { 116 #ifdef CONFIG_SCHED_DEBUG 117 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 118 #endif 119 return container_of(rt_se, struct task_struct, rt); 120 } 121 122 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 123 { 124 return rt_rq->rq; 125 } 126 127 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 128 { 129 return rt_se->rt_rq; 130 } 131 132 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 133 { 134 struct rt_rq *rt_rq = rt_se->rt_rq; 135 136 return rt_rq->rq; 137 } 138 139 void free_rt_sched_group(struct task_group *tg) 140 { 141 int i; 142 143 if (tg->rt_se) 144 destroy_rt_bandwidth(&tg->rt_bandwidth); 145 146 for_each_possible_cpu(i) { 147 if (tg->rt_rq) 148 kfree(tg->rt_rq[i]); 149 if (tg->rt_se) 150 kfree(tg->rt_se[i]); 151 } 152 153 kfree(tg->rt_rq); 154 kfree(tg->rt_se); 155 } 156 157 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 158 struct sched_rt_entity *rt_se, int cpu, 159 struct sched_rt_entity *parent) 160 { 161 struct rq *rq = cpu_rq(cpu); 162 163 rt_rq->highest_prio.curr = MAX_RT_PRIO; 164 rt_rq->rt_nr_boosted = 0; 165 rt_rq->rq = rq; 166 rt_rq->tg = tg; 167 168 tg->rt_rq[cpu] = rt_rq; 169 tg->rt_se[cpu] = rt_se; 170 171 if (!rt_se) 172 return; 173 174 if (!parent) 175 rt_se->rt_rq = &rq->rt; 176 else 177 rt_se->rt_rq = parent->my_q; 178 179 rt_se->my_q = rt_rq; 180 rt_se->parent = parent; 181 INIT_LIST_HEAD(&rt_se->run_list); 182 } 183 184 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 185 { 186 struct rt_rq *rt_rq; 187 struct sched_rt_entity *rt_se; 188 int i; 189 190 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); 191 if (!tg->rt_rq) 192 goto err; 193 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); 194 if (!tg->rt_se) 195 goto err; 196 197 init_rt_bandwidth(&tg->rt_bandwidth, 198 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 199 200 for_each_possible_cpu(i) { 201 rt_rq = kzalloc_node(sizeof(struct rt_rq), 202 GFP_KERNEL, cpu_to_node(i)); 203 if (!rt_rq) 204 goto err; 205 206 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 207 GFP_KERNEL, cpu_to_node(i)); 208 if (!rt_se) 209 goto err_free_rq; 210 211 init_rt_rq(rt_rq); 212 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 213 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 214 } 215 216 return 1; 217 218 err_free_rq: 219 kfree(rt_rq); 220 err: 221 return 0; 222 } 223 224 #else /* CONFIG_RT_GROUP_SCHED */ 225 226 #define rt_entity_is_task(rt_se) (1) 227 228 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 229 { 230 return container_of(rt_se, struct task_struct, rt); 231 } 232 233 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 234 { 235 return container_of(rt_rq, struct rq, rt); 236 } 237 238 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 239 { 240 struct task_struct *p = rt_task_of(rt_se); 241 242 return task_rq(p); 243 } 244 245 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 246 { 247 struct rq *rq = rq_of_rt_se(rt_se); 248 249 return &rq->rt; 250 } 251 252 void free_rt_sched_group(struct task_group *tg) { } 253 254 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 255 { 256 return 1; 257 } 258 #endif /* CONFIG_RT_GROUP_SCHED */ 259 260 #ifdef CONFIG_SMP 261 262 static void pull_rt_task(struct rq *this_rq); 263 264 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 265 { 266 /* Try to pull RT tasks here if we lower this rq's prio */ 267 return rq->rt.highest_prio.curr > prev->prio; 268 } 269 270 static inline int rt_overloaded(struct rq *rq) 271 { 272 return atomic_read(&rq->rd->rto_count); 273 } 274 275 static inline void rt_set_overload(struct rq *rq) 276 { 277 if (!rq->online) 278 return; 279 280 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 281 /* 282 * Make sure the mask is visible before we set 283 * the overload count. That is checked to determine 284 * if we should look at the mask. It would be a shame 285 * if we looked at the mask, but the mask was not 286 * updated yet. 287 * 288 * Matched by the barrier in pull_rt_task(). 289 */ 290 smp_wmb(); 291 atomic_inc(&rq->rd->rto_count); 292 } 293 294 static inline void rt_clear_overload(struct rq *rq) 295 { 296 if (!rq->online) 297 return; 298 299 /* the order here really doesn't matter */ 300 atomic_dec(&rq->rd->rto_count); 301 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 302 } 303 304 static void update_rt_migration(struct rt_rq *rt_rq) 305 { 306 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 307 if (!rt_rq->overloaded) { 308 rt_set_overload(rq_of_rt_rq(rt_rq)); 309 rt_rq->overloaded = 1; 310 } 311 } else if (rt_rq->overloaded) { 312 rt_clear_overload(rq_of_rt_rq(rt_rq)); 313 rt_rq->overloaded = 0; 314 } 315 } 316 317 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 318 { 319 struct task_struct *p; 320 321 if (!rt_entity_is_task(rt_se)) 322 return; 323 324 p = rt_task_of(rt_se); 325 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 326 327 rt_rq->rt_nr_total++; 328 if (p->nr_cpus_allowed > 1) 329 rt_rq->rt_nr_migratory++; 330 331 update_rt_migration(rt_rq); 332 } 333 334 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 335 { 336 struct task_struct *p; 337 338 if (!rt_entity_is_task(rt_se)) 339 return; 340 341 p = rt_task_of(rt_se); 342 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 343 344 rt_rq->rt_nr_total--; 345 if (p->nr_cpus_allowed > 1) 346 rt_rq->rt_nr_migratory--; 347 348 update_rt_migration(rt_rq); 349 } 350 351 static inline int has_pushable_tasks(struct rq *rq) 352 { 353 return !plist_head_empty(&rq->rt.pushable_tasks); 354 } 355 356 static DEFINE_PER_CPU(struct callback_head, rt_push_head); 357 static DEFINE_PER_CPU(struct callback_head, rt_pull_head); 358 359 static void push_rt_tasks(struct rq *); 360 static void pull_rt_task(struct rq *); 361 362 static inline void queue_push_tasks(struct rq *rq) 363 { 364 if (!has_pushable_tasks(rq)) 365 return; 366 367 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 368 } 369 370 static inline void queue_pull_task(struct rq *rq) 371 { 372 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 373 } 374 375 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 376 { 377 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 378 plist_node_init(&p->pushable_tasks, p->prio); 379 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 380 381 /* Update the highest prio pushable task */ 382 if (p->prio < rq->rt.highest_prio.next) 383 rq->rt.highest_prio.next = p->prio; 384 } 385 386 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 387 { 388 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 389 390 /* Update the new highest prio pushable task */ 391 if (has_pushable_tasks(rq)) { 392 p = plist_first_entry(&rq->rt.pushable_tasks, 393 struct task_struct, pushable_tasks); 394 rq->rt.highest_prio.next = p->prio; 395 } else 396 rq->rt.highest_prio.next = MAX_RT_PRIO; 397 } 398 399 #else 400 401 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 402 { 403 } 404 405 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 406 { 407 } 408 409 static inline 410 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 411 { 412 } 413 414 static inline 415 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 416 { 417 } 418 419 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 420 { 421 return false; 422 } 423 424 static inline void pull_rt_task(struct rq *this_rq) 425 { 426 } 427 428 static inline void queue_push_tasks(struct rq *rq) 429 { 430 } 431 #endif /* CONFIG_SMP */ 432 433 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 434 static void dequeue_top_rt_rq(struct rt_rq *rt_rq); 435 436 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 437 { 438 return rt_se->on_rq; 439 } 440 441 #ifdef CONFIG_RT_GROUP_SCHED 442 443 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 444 { 445 if (!rt_rq->tg) 446 return RUNTIME_INF; 447 448 return rt_rq->rt_runtime; 449 } 450 451 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 452 { 453 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 454 } 455 456 typedef struct task_group *rt_rq_iter_t; 457 458 static inline struct task_group *next_task_group(struct task_group *tg) 459 { 460 do { 461 tg = list_entry_rcu(tg->list.next, 462 typeof(struct task_group), list); 463 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 464 465 if (&tg->list == &task_groups) 466 tg = NULL; 467 468 return tg; 469 } 470 471 #define for_each_rt_rq(rt_rq, iter, rq) \ 472 for (iter = container_of(&task_groups, typeof(*iter), list); \ 473 (iter = next_task_group(iter)) && \ 474 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 475 476 #define for_each_sched_rt_entity(rt_se) \ 477 for (; rt_se; rt_se = rt_se->parent) 478 479 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 480 { 481 return rt_se->my_q; 482 } 483 484 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 485 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 486 487 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 488 { 489 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 490 struct rq *rq = rq_of_rt_rq(rt_rq); 491 struct sched_rt_entity *rt_se; 492 493 int cpu = cpu_of(rq); 494 495 rt_se = rt_rq->tg->rt_se[cpu]; 496 497 if (rt_rq->rt_nr_running) { 498 if (!rt_se) 499 enqueue_top_rt_rq(rt_rq); 500 else if (!on_rt_rq(rt_se)) 501 enqueue_rt_entity(rt_se, 0); 502 503 if (rt_rq->highest_prio.curr < curr->prio) 504 resched_curr(rq); 505 } 506 } 507 508 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 509 { 510 struct sched_rt_entity *rt_se; 511 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 512 513 rt_se = rt_rq->tg->rt_se[cpu]; 514 515 if (!rt_se) 516 dequeue_top_rt_rq(rt_rq); 517 else if (on_rt_rq(rt_se)) 518 dequeue_rt_entity(rt_se, 0); 519 } 520 521 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 522 { 523 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 524 } 525 526 static int rt_se_boosted(struct sched_rt_entity *rt_se) 527 { 528 struct rt_rq *rt_rq = group_rt_rq(rt_se); 529 struct task_struct *p; 530 531 if (rt_rq) 532 return !!rt_rq->rt_nr_boosted; 533 534 p = rt_task_of(rt_se); 535 return p->prio != p->normal_prio; 536 } 537 538 #ifdef CONFIG_SMP 539 static inline const struct cpumask *sched_rt_period_mask(void) 540 { 541 return this_rq()->rd->span; 542 } 543 #else 544 static inline const struct cpumask *sched_rt_period_mask(void) 545 { 546 return cpu_online_mask; 547 } 548 #endif 549 550 static inline 551 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 552 { 553 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 554 } 555 556 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 557 { 558 return &rt_rq->tg->rt_bandwidth; 559 } 560 561 #else /* !CONFIG_RT_GROUP_SCHED */ 562 563 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 564 { 565 return rt_rq->rt_runtime; 566 } 567 568 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 569 { 570 return ktime_to_ns(def_rt_bandwidth.rt_period); 571 } 572 573 typedef struct rt_rq *rt_rq_iter_t; 574 575 #define for_each_rt_rq(rt_rq, iter, rq) \ 576 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 577 578 #define for_each_sched_rt_entity(rt_se) \ 579 for (; rt_se; rt_se = NULL) 580 581 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 582 { 583 return NULL; 584 } 585 586 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 587 { 588 struct rq *rq = rq_of_rt_rq(rt_rq); 589 590 if (!rt_rq->rt_nr_running) 591 return; 592 593 enqueue_top_rt_rq(rt_rq); 594 resched_curr(rq); 595 } 596 597 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 598 { 599 dequeue_top_rt_rq(rt_rq); 600 } 601 602 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 603 { 604 return rt_rq->rt_throttled; 605 } 606 607 static inline const struct cpumask *sched_rt_period_mask(void) 608 { 609 return cpu_online_mask; 610 } 611 612 static inline 613 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 614 { 615 return &cpu_rq(cpu)->rt; 616 } 617 618 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 619 { 620 return &def_rt_bandwidth; 621 } 622 623 #endif /* CONFIG_RT_GROUP_SCHED */ 624 625 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 626 { 627 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 628 629 return (hrtimer_active(&rt_b->rt_period_timer) || 630 rt_rq->rt_time < rt_b->rt_runtime); 631 } 632 633 #ifdef CONFIG_SMP 634 /* 635 * We ran out of runtime, see if we can borrow some from our neighbours. 636 */ 637 static void do_balance_runtime(struct rt_rq *rt_rq) 638 { 639 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 640 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 641 int i, weight; 642 u64 rt_period; 643 644 weight = cpumask_weight(rd->span); 645 646 raw_spin_lock(&rt_b->rt_runtime_lock); 647 rt_period = ktime_to_ns(rt_b->rt_period); 648 for_each_cpu(i, rd->span) { 649 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 650 s64 diff; 651 652 if (iter == rt_rq) 653 continue; 654 655 raw_spin_lock(&iter->rt_runtime_lock); 656 /* 657 * Either all rqs have inf runtime and there's nothing to steal 658 * or __disable_runtime() below sets a specific rq to inf to 659 * indicate its been disabled and disalow stealing. 660 */ 661 if (iter->rt_runtime == RUNTIME_INF) 662 goto next; 663 664 /* 665 * From runqueues with spare time, take 1/n part of their 666 * spare time, but no more than our period. 667 */ 668 diff = iter->rt_runtime - iter->rt_time; 669 if (diff > 0) { 670 diff = div_u64((u64)diff, weight); 671 if (rt_rq->rt_runtime + diff > rt_period) 672 diff = rt_period - rt_rq->rt_runtime; 673 iter->rt_runtime -= diff; 674 rt_rq->rt_runtime += diff; 675 if (rt_rq->rt_runtime == rt_period) { 676 raw_spin_unlock(&iter->rt_runtime_lock); 677 break; 678 } 679 } 680 next: 681 raw_spin_unlock(&iter->rt_runtime_lock); 682 } 683 raw_spin_unlock(&rt_b->rt_runtime_lock); 684 } 685 686 /* 687 * Ensure this RQ takes back all the runtime it lend to its neighbours. 688 */ 689 static void __disable_runtime(struct rq *rq) 690 { 691 struct root_domain *rd = rq->rd; 692 rt_rq_iter_t iter; 693 struct rt_rq *rt_rq; 694 695 if (unlikely(!scheduler_running)) 696 return; 697 698 for_each_rt_rq(rt_rq, iter, rq) { 699 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 700 s64 want; 701 int i; 702 703 raw_spin_lock(&rt_b->rt_runtime_lock); 704 raw_spin_lock(&rt_rq->rt_runtime_lock); 705 /* 706 * Either we're all inf and nobody needs to borrow, or we're 707 * already disabled and thus have nothing to do, or we have 708 * exactly the right amount of runtime to take out. 709 */ 710 if (rt_rq->rt_runtime == RUNTIME_INF || 711 rt_rq->rt_runtime == rt_b->rt_runtime) 712 goto balanced; 713 raw_spin_unlock(&rt_rq->rt_runtime_lock); 714 715 /* 716 * Calculate the difference between what we started out with 717 * and what we current have, that's the amount of runtime 718 * we lend and now have to reclaim. 719 */ 720 want = rt_b->rt_runtime - rt_rq->rt_runtime; 721 722 /* 723 * Greedy reclaim, take back as much as we can. 724 */ 725 for_each_cpu(i, rd->span) { 726 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 727 s64 diff; 728 729 /* 730 * Can't reclaim from ourselves or disabled runqueues. 731 */ 732 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 733 continue; 734 735 raw_spin_lock(&iter->rt_runtime_lock); 736 if (want > 0) { 737 diff = min_t(s64, iter->rt_runtime, want); 738 iter->rt_runtime -= diff; 739 want -= diff; 740 } else { 741 iter->rt_runtime -= want; 742 want -= want; 743 } 744 raw_spin_unlock(&iter->rt_runtime_lock); 745 746 if (!want) 747 break; 748 } 749 750 raw_spin_lock(&rt_rq->rt_runtime_lock); 751 /* 752 * We cannot be left wanting - that would mean some runtime 753 * leaked out of the system. 754 */ 755 BUG_ON(want); 756 balanced: 757 /* 758 * Disable all the borrow logic by pretending we have inf 759 * runtime - in which case borrowing doesn't make sense. 760 */ 761 rt_rq->rt_runtime = RUNTIME_INF; 762 rt_rq->rt_throttled = 0; 763 raw_spin_unlock(&rt_rq->rt_runtime_lock); 764 raw_spin_unlock(&rt_b->rt_runtime_lock); 765 766 /* Make rt_rq available for pick_next_task() */ 767 sched_rt_rq_enqueue(rt_rq); 768 } 769 } 770 771 static void __enable_runtime(struct rq *rq) 772 { 773 rt_rq_iter_t iter; 774 struct rt_rq *rt_rq; 775 776 if (unlikely(!scheduler_running)) 777 return; 778 779 /* 780 * Reset each runqueue's bandwidth settings 781 */ 782 for_each_rt_rq(rt_rq, iter, rq) { 783 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 784 785 raw_spin_lock(&rt_b->rt_runtime_lock); 786 raw_spin_lock(&rt_rq->rt_runtime_lock); 787 rt_rq->rt_runtime = rt_b->rt_runtime; 788 rt_rq->rt_time = 0; 789 rt_rq->rt_throttled = 0; 790 raw_spin_unlock(&rt_rq->rt_runtime_lock); 791 raw_spin_unlock(&rt_b->rt_runtime_lock); 792 } 793 } 794 795 static void balance_runtime(struct rt_rq *rt_rq) 796 { 797 if (!sched_feat(RT_RUNTIME_SHARE)) 798 return; 799 800 if (rt_rq->rt_time > rt_rq->rt_runtime) { 801 raw_spin_unlock(&rt_rq->rt_runtime_lock); 802 do_balance_runtime(rt_rq); 803 raw_spin_lock(&rt_rq->rt_runtime_lock); 804 } 805 } 806 #else /* !CONFIG_SMP */ 807 static inline void balance_runtime(struct rt_rq *rt_rq) {} 808 #endif /* CONFIG_SMP */ 809 810 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 811 { 812 int i, idle = 1, throttled = 0; 813 const struct cpumask *span; 814 815 span = sched_rt_period_mask(); 816 #ifdef CONFIG_RT_GROUP_SCHED 817 /* 818 * FIXME: isolated CPUs should really leave the root task group, 819 * whether they are isolcpus or were isolated via cpusets, lest 820 * the timer run on a CPU which does not service all runqueues, 821 * potentially leaving other CPUs indefinitely throttled. If 822 * isolation is really required, the user will turn the throttle 823 * off to kill the perturbations it causes anyway. Meanwhile, 824 * this maintains functionality for boot and/or troubleshooting. 825 */ 826 if (rt_b == &root_task_group.rt_bandwidth) 827 span = cpu_online_mask; 828 #endif 829 for_each_cpu(i, span) { 830 int enqueue = 0; 831 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 832 struct rq *rq = rq_of_rt_rq(rt_rq); 833 int skip; 834 835 /* 836 * When span == cpu_online_mask, taking each rq->lock 837 * can be time-consuming. Try to avoid it when possible. 838 */ 839 raw_spin_lock(&rt_rq->rt_runtime_lock); 840 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 841 raw_spin_unlock(&rt_rq->rt_runtime_lock); 842 if (skip) 843 continue; 844 845 raw_spin_lock(&rq->lock); 846 if (rt_rq->rt_time) { 847 u64 runtime; 848 849 raw_spin_lock(&rt_rq->rt_runtime_lock); 850 if (rt_rq->rt_throttled) 851 balance_runtime(rt_rq); 852 runtime = rt_rq->rt_runtime; 853 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 854 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 855 rt_rq->rt_throttled = 0; 856 enqueue = 1; 857 858 /* 859 * When we're idle and a woken (rt) task is 860 * throttled check_preempt_curr() will set 861 * skip_update and the time between the wakeup 862 * and this unthrottle will get accounted as 863 * 'runtime'. 864 */ 865 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 866 rq_clock_skip_update(rq, false); 867 } 868 if (rt_rq->rt_time || rt_rq->rt_nr_running) 869 idle = 0; 870 raw_spin_unlock(&rt_rq->rt_runtime_lock); 871 } else if (rt_rq->rt_nr_running) { 872 idle = 0; 873 if (!rt_rq_throttled(rt_rq)) 874 enqueue = 1; 875 } 876 if (rt_rq->rt_throttled) 877 throttled = 1; 878 879 if (enqueue) 880 sched_rt_rq_enqueue(rt_rq); 881 raw_spin_unlock(&rq->lock); 882 } 883 884 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 885 return 1; 886 887 return idle; 888 } 889 890 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 891 { 892 #ifdef CONFIG_RT_GROUP_SCHED 893 struct rt_rq *rt_rq = group_rt_rq(rt_se); 894 895 if (rt_rq) 896 return rt_rq->highest_prio.curr; 897 #endif 898 899 return rt_task_of(rt_se)->prio; 900 } 901 902 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 903 { 904 u64 runtime = sched_rt_runtime(rt_rq); 905 906 if (rt_rq->rt_throttled) 907 return rt_rq_throttled(rt_rq); 908 909 if (runtime >= sched_rt_period(rt_rq)) 910 return 0; 911 912 balance_runtime(rt_rq); 913 runtime = sched_rt_runtime(rt_rq); 914 if (runtime == RUNTIME_INF) 915 return 0; 916 917 if (rt_rq->rt_time > runtime) { 918 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 919 920 /* 921 * Don't actually throttle groups that have no runtime assigned 922 * but accrue some time due to boosting. 923 */ 924 if (likely(rt_b->rt_runtime)) { 925 rt_rq->rt_throttled = 1; 926 printk_deferred_once("sched: RT throttling activated\n"); 927 } else { 928 /* 929 * In case we did anyway, make it go away, 930 * replenishment is a joke, since it will replenish us 931 * with exactly 0 ns. 932 */ 933 rt_rq->rt_time = 0; 934 } 935 936 if (rt_rq_throttled(rt_rq)) { 937 sched_rt_rq_dequeue(rt_rq); 938 return 1; 939 } 940 } 941 942 return 0; 943 } 944 945 /* 946 * Update the current task's runtime statistics. Skip current tasks that 947 * are not in our scheduling class. 948 */ 949 static void update_curr_rt(struct rq *rq) 950 { 951 struct task_struct *curr = rq->curr; 952 struct sched_rt_entity *rt_se = &curr->rt; 953 u64 delta_exec; 954 u64 now; 955 956 if (curr->sched_class != &rt_sched_class) 957 return; 958 959 now = rq_clock_task(rq); 960 delta_exec = now - curr->se.exec_start; 961 if (unlikely((s64)delta_exec <= 0)) 962 return; 963 964 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 965 cpufreq_update_util(rq, SCHED_CPUFREQ_RT); 966 967 schedstat_set(curr->se.statistics.exec_max, 968 max(curr->se.statistics.exec_max, delta_exec)); 969 970 curr->se.sum_exec_runtime += delta_exec; 971 account_group_exec_runtime(curr, delta_exec); 972 973 curr->se.exec_start = now; 974 cgroup_account_cputime(curr, delta_exec); 975 976 sched_rt_avg_update(rq, delta_exec); 977 978 if (!rt_bandwidth_enabled()) 979 return; 980 981 for_each_sched_rt_entity(rt_se) { 982 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 983 984 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 985 raw_spin_lock(&rt_rq->rt_runtime_lock); 986 rt_rq->rt_time += delta_exec; 987 if (sched_rt_runtime_exceeded(rt_rq)) 988 resched_curr(rq); 989 raw_spin_unlock(&rt_rq->rt_runtime_lock); 990 } 991 } 992 } 993 994 static void 995 dequeue_top_rt_rq(struct rt_rq *rt_rq) 996 { 997 struct rq *rq = rq_of_rt_rq(rt_rq); 998 999 BUG_ON(&rq->rt != rt_rq); 1000 1001 if (!rt_rq->rt_queued) 1002 return; 1003 1004 BUG_ON(!rq->nr_running); 1005 1006 sub_nr_running(rq, rt_rq->rt_nr_running); 1007 rt_rq->rt_queued = 0; 1008 } 1009 1010 static void 1011 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1012 { 1013 struct rq *rq = rq_of_rt_rq(rt_rq); 1014 1015 BUG_ON(&rq->rt != rt_rq); 1016 1017 if (rt_rq->rt_queued) 1018 return; 1019 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running) 1020 return; 1021 1022 add_nr_running(rq, rt_rq->rt_nr_running); 1023 rt_rq->rt_queued = 1; 1024 } 1025 1026 #if defined CONFIG_SMP 1027 1028 static void 1029 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1030 { 1031 struct rq *rq = rq_of_rt_rq(rt_rq); 1032 1033 #ifdef CONFIG_RT_GROUP_SCHED 1034 /* 1035 * Change rq's cpupri only if rt_rq is the top queue. 1036 */ 1037 if (&rq->rt != rt_rq) 1038 return; 1039 #endif 1040 if (rq->online && prio < prev_prio) 1041 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1042 } 1043 1044 static void 1045 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1046 { 1047 struct rq *rq = rq_of_rt_rq(rt_rq); 1048 1049 #ifdef CONFIG_RT_GROUP_SCHED 1050 /* 1051 * Change rq's cpupri only if rt_rq is the top queue. 1052 */ 1053 if (&rq->rt != rt_rq) 1054 return; 1055 #endif 1056 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1057 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1058 } 1059 1060 #else /* CONFIG_SMP */ 1061 1062 static inline 1063 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1064 static inline 1065 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1066 1067 #endif /* CONFIG_SMP */ 1068 1069 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1070 static void 1071 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1072 { 1073 int prev_prio = rt_rq->highest_prio.curr; 1074 1075 if (prio < prev_prio) 1076 rt_rq->highest_prio.curr = prio; 1077 1078 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1079 } 1080 1081 static void 1082 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1083 { 1084 int prev_prio = rt_rq->highest_prio.curr; 1085 1086 if (rt_rq->rt_nr_running) { 1087 1088 WARN_ON(prio < prev_prio); 1089 1090 /* 1091 * This may have been our highest task, and therefore 1092 * we may have some recomputation to do 1093 */ 1094 if (prio == prev_prio) { 1095 struct rt_prio_array *array = &rt_rq->active; 1096 1097 rt_rq->highest_prio.curr = 1098 sched_find_first_bit(array->bitmap); 1099 } 1100 1101 } else 1102 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1103 1104 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1105 } 1106 1107 #else 1108 1109 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1110 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1111 1112 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1113 1114 #ifdef CONFIG_RT_GROUP_SCHED 1115 1116 static void 1117 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1118 { 1119 if (rt_se_boosted(rt_se)) 1120 rt_rq->rt_nr_boosted++; 1121 1122 if (rt_rq->tg) 1123 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1124 } 1125 1126 static void 1127 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1128 { 1129 if (rt_se_boosted(rt_se)) 1130 rt_rq->rt_nr_boosted--; 1131 1132 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1133 } 1134 1135 #else /* CONFIG_RT_GROUP_SCHED */ 1136 1137 static void 1138 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1139 { 1140 start_rt_bandwidth(&def_rt_bandwidth); 1141 } 1142 1143 static inline 1144 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1145 1146 #endif /* CONFIG_RT_GROUP_SCHED */ 1147 1148 static inline 1149 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1150 { 1151 struct rt_rq *group_rq = group_rt_rq(rt_se); 1152 1153 if (group_rq) 1154 return group_rq->rt_nr_running; 1155 else 1156 return 1; 1157 } 1158 1159 static inline 1160 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1161 { 1162 struct rt_rq *group_rq = group_rt_rq(rt_se); 1163 struct task_struct *tsk; 1164 1165 if (group_rq) 1166 return group_rq->rr_nr_running; 1167 1168 tsk = rt_task_of(rt_se); 1169 1170 return (tsk->policy == SCHED_RR) ? 1 : 0; 1171 } 1172 1173 static inline 1174 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1175 { 1176 int prio = rt_se_prio(rt_se); 1177 1178 WARN_ON(!rt_prio(prio)); 1179 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1180 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1181 1182 inc_rt_prio(rt_rq, prio); 1183 inc_rt_migration(rt_se, rt_rq); 1184 inc_rt_group(rt_se, rt_rq); 1185 } 1186 1187 static inline 1188 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1189 { 1190 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1191 WARN_ON(!rt_rq->rt_nr_running); 1192 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1193 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1194 1195 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1196 dec_rt_migration(rt_se, rt_rq); 1197 dec_rt_group(rt_se, rt_rq); 1198 } 1199 1200 /* 1201 * Change rt_se->run_list location unless SAVE && !MOVE 1202 * 1203 * assumes ENQUEUE/DEQUEUE flags match 1204 */ 1205 static inline bool move_entity(unsigned int flags) 1206 { 1207 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1208 return false; 1209 1210 return true; 1211 } 1212 1213 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1214 { 1215 list_del_init(&rt_se->run_list); 1216 1217 if (list_empty(array->queue + rt_se_prio(rt_se))) 1218 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1219 1220 rt_se->on_list = 0; 1221 } 1222 1223 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1224 { 1225 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1226 struct rt_prio_array *array = &rt_rq->active; 1227 struct rt_rq *group_rq = group_rt_rq(rt_se); 1228 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1229 1230 /* 1231 * Don't enqueue the group if its throttled, or when empty. 1232 * The latter is a consequence of the former when a child group 1233 * get throttled and the current group doesn't have any other 1234 * active members. 1235 */ 1236 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1237 if (rt_se->on_list) 1238 __delist_rt_entity(rt_se, array); 1239 return; 1240 } 1241 1242 if (move_entity(flags)) { 1243 WARN_ON_ONCE(rt_se->on_list); 1244 if (flags & ENQUEUE_HEAD) 1245 list_add(&rt_se->run_list, queue); 1246 else 1247 list_add_tail(&rt_se->run_list, queue); 1248 1249 __set_bit(rt_se_prio(rt_se), array->bitmap); 1250 rt_se->on_list = 1; 1251 } 1252 rt_se->on_rq = 1; 1253 1254 inc_rt_tasks(rt_se, rt_rq); 1255 } 1256 1257 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1258 { 1259 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1260 struct rt_prio_array *array = &rt_rq->active; 1261 1262 if (move_entity(flags)) { 1263 WARN_ON_ONCE(!rt_se->on_list); 1264 __delist_rt_entity(rt_se, array); 1265 } 1266 rt_se->on_rq = 0; 1267 1268 dec_rt_tasks(rt_se, rt_rq); 1269 } 1270 1271 /* 1272 * Because the prio of an upper entry depends on the lower 1273 * entries, we must remove entries top - down. 1274 */ 1275 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1276 { 1277 struct sched_rt_entity *back = NULL; 1278 1279 for_each_sched_rt_entity(rt_se) { 1280 rt_se->back = back; 1281 back = rt_se; 1282 } 1283 1284 dequeue_top_rt_rq(rt_rq_of_se(back)); 1285 1286 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1287 if (on_rt_rq(rt_se)) 1288 __dequeue_rt_entity(rt_se, flags); 1289 } 1290 } 1291 1292 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1293 { 1294 struct rq *rq = rq_of_rt_se(rt_se); 1295 1296 dequeue_rt_stack(rt_se, flags); 1297 for_each_sched_rt_entity(rt_se) 1298 __enqueue_rt_entity(rt_se, flags); 1299 enqueue_top_rt_rq(&rq->rt); 1300 } 1301 1302 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1303 { 1304 struct rq *rq = rq_of_rt_se(rt_se); 1305 1306 dequeue_rt_stack(rt_se, flags); 1307 1308 for_each_sched_rt_entity(rt_se) { 1309 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1310 1311 if (rt_rq && rt_rq->rt_nr_running) 1312 __enqueue_rt_entity(rt_se, flags); 1313 } 1314 enqueue_top_rt_rq(&rq->rt); 1315 } 1316 1317 /* 1318 * Adding/removing a task to/from a priority array: 1319 */ 1320 static void 1321 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1322 { 1323 struct sched_rt_entity *rt_se = &p->rt; 1324 1325 if (flags & ENQUEUE_WAKEUP) 1326 rt_se->timeout = 0; 1327 1328 enqueue_rt_entity(rt_se, flags); 1329 1330 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1331 enqueue_pushable_task(rq, p); 1332 } 1333 1334 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1335 { 1336 struct sched_rt_entity *rt_se = &p->rt; 1337 1338 update_curr_rt(rq); 1339 dequeue_rt_entity(rt_se, flags); 1340 1341 dequeue_pushable_task(rq, p); 1342 } 1343 1344 /* 1345 * Put task to the head or the end of the run list without the overhead of 1346 * dequeue followed by enqueue. 1347 */ 1348 static void 1349 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1350 { 1351 if (on_rt_rq(rt_se)) { 1352 struct rt_prio_array *array = &rt_rq->active; 1353 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1354 1355 if (head) 1356 list_move(&rt_se->run_list, queue); 1357 else 1358 list_move_tail(&rt_se->run_list, queue); 1359 } 1360 } 1361 1362 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1363 { 1364 struct sched_rt_entity *rt_se = &p->rt; 1365 struct rt_rq *rt_rq; 1366 1367 for_each_sched_rt_entity(rt_se) { 1368 rt_rq = rt_rq_of_se(rt_se); 1369 requeue_rt_entity(rt_rq, rt_se, head); 1370 } 1371 } 1372 1373 static void yield_task_rt(struct rq *rq) 1374 { 1375 requeue_task_rt(rq, rq->curr, 0); 1376 } 1377 1378 #ifdef CONFIG_SMP 1379 static int find_lowest_rq(struct task_struct *task); 1380 1381 static int 1382 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1383 { 1384 struct task_struct *curr; 1385 struct rq *rq; 1386 1387 /* For anything but wake ups, just return the task_cpu */ 1388 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1389 goto out; 1390 1391 rq = cpu_rq(cpu); 1392 1393 rcu_read_lock(); 1394 curr = READ_ONCE(rq->curr); /* unlocked access */ 1395 1396 /* 1397 * If the current task on @p's runqueue is an RT task, then 1398 * try to see if we can wake this RT task up on another 1399 * runqueue. Otherwise simply start this RT task 1400 * on its current runqueue. 1401 * 1402 * We want to avoid overloading runqueues. If the woken 1403 * task is a higher priority, then it will stay on this CPU 1404 * and the lower prio task should be moved to another CPU. 1405 * Even though this will probably make the lower prio task 1406 * lose its cache, we do not want to bounce a higher task 1407 * around just because it gave up its CPU, perhaps for a 1408 * lock? 1409 * 1410 * For equal prio tasks, we just let the scheduler sort it out. 1411 * 1412 * Otherwise, just let it ride on the affined RQ and the 1413 * post-schedule router will push the preempted task away 1414 * 1415 * This test is optimistic, if we get it wrong the load-balancer 1416 * will have to sort it out. 1417 */ 1418 if (curr && unlikely(rt_task(curr)) && 1419 (curr->nr_cpus_allowed < 2 || 1420 curr->prio <= p->prio)) { 1421 int target = find_lowest_rq(p); 1422 1423 /* 1424 * Don't bother moving it if the destination CPU is 1425 * not running a lower priority task. 1426 */ 1427 if (target != -1 && 1428 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1429 cpu = target; 1430 } 1431 rcu_read_unlock(); 1432 1433 out: 1434 return cpu; 1435 } 1436 1437 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1438 { 1439 /* 1440 * Current can't be migrated, useless to reschedule, 1441 * let's hope p can move out. 1442 */ 1443 if (rq->curr->nr_cpus_allowed == 1 || 1444 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1445 return; 1446 1447 /* 1448 * p is migratable, so let's not schedule it and 1449 * see if it is pushed or pulled somewhere else. 1450 */ 1451 if (p->nr_cpus_allowed != 1 1452 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1453 return; 1454 1455 /* 1456 * There appears to be other cpus that can accept 1457 * current and none to run 'p', so lets reschedule 1458 * to try and push current away: 1459 */ 1460 requeue_task_rt(rq, p, 1); 1461 resched_curr(rq); 1462 } 1463 1464 #endif /* CONFIG_SMP */ 1465 1466 /* 1467 * Preempt the current task with a newly woken task if needed: 1468 */ 1469 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1470 { 1471 if (p->prio < rq->curr->prio) { 1472 resched_curr(rq); 1473 return; 1474 } 1475 1476 #ifdef CONFIG_SMP 1477 /* 1478 * If: 1479 * 1480 * - the newly woken task is of equal priority to the current task 1481 * - the newly woken task is non-migratable while current is migratable 1482 * - current will be preempted on the next reschedule 1483 * 1484 * we should check to see if current can readily move to a different 1485 * cpu. If so, we will reschedule to allow the push logic to try 1486 * to move current somewhere else, making room for our non-migratable 1487 * task. 1488 */ 1489 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1490 check_preempt_equal_prio(rq, p); 1491 #endif 1492 } 1493 1494 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1495 struct rt_rq *rt_rq) 1496 { 1497 struct rt_prio_array *array = &rt_rq->active; 1498 struct sched_rt_entity *next = NULL; 1499 struct list_head *queue; 1500 int idx; 1501 1502 idx = sched_find_first_bit(array->bitmap); 1503 BUG_ON(idx >= MAX_RT_PRIO); 1504 1505 queue = array->queue + idx; 1506 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1507 1508 return next; 1509 } 1510 1511 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1512 { 1513 struct sched_rt_entity *rt_se; 1514 struct task_struct *p; 1515 struct rt_rq *rt_rq = &rq->rt; 1516 1517 do { 1518 rt_se = pick_next_rt_entity(rq, rt_rq); 1519 BUG_ON(!rt_se); 1520 rt_rq = group_rt_rq(rt_se); 1521 } while (rt_rq); 1522 1523 p = rt_task_of(rt_se); 1524 p->se.exec_start = rq_clock_task(rq); 1525 1526 return p; 1527 } 1528 1529 static struct task_struct * 1530 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 1531 { 1532 struct task_struct *p; 1533 struct rt_rq *rt_rq = &rq->rt; 1534 1535 if (need_pull_rt_task(rq, prev)) { 1536 /* 1537 * This is OK, because current is on_cpu, which avoids it being 1538 * picked for load-balance and preemption/IRQs are still 1539 * disabled avoiding further scheduler activity on it and we're 1540 * being very careful to re-start the picking loop. 1541 */ 1542 rq_unpin_lock(rq, rf); 1543 pull_rt_task(rq); 1544 rq_repin_lock(rq, rf); 1545 /* 1546 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1547 * means a dl or stop task can slip in, in which case we need 1548 * to re-start task selection. 1549 */ 1550 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) || 1551 rq->dl.dl_nr_running)) 1552 return RETRY_TASK; 1553 } 1554 1555 /* 1556 * We may dequeue prev's rt_rq in put_prev_task(). 1557 * So, we update time before rt_nr_running check. 1558 */ 1559 if (prev->sched_class == &rt_sched_class) 1560 update_curr_rt(rq); 1561 1562 if (!rt_rq->rt_queued) 1563 return NULL; 1564 1565 put_prev_task(rq, prev); 1566 1567 p = _pick_next_task_rt(rq); 1568 1569 /* The running task is never eligible for pushing */ 1570 dequeue_pushable_task(rq, p); 1571 1572 queue_push_tasks(rq); 1573 1574 return p; 1575 } 1576 1577 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1578 { 1579 update_curr_rt(rq); 1580 1581 /* 1582 * The previous task needs to be made eligible for pushing 1583 * if it is still active 1584 */ 1585 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1586 enqueue_pushable_task(rq, p); 1587 } 1588 1589 #ifdef CONFIG_SMP 1590 1591 /* Only try algorithms three times */ 1592 #define RT_MAX_TRIES 3 1593 1594 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1595 { 1596 if (!task_running(rq, p) && 1597 cpumask_test_cpu(cpu, &p->cpus_allowed)) 1598 return 1; 1599 return 0; 1600 } 1601 1602 /* 1603 * Return the highest pushable rq's task, which is suitable to be executed 1604 * on the cpu, NULL otherwise 1605 */ 1606 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1607 { 1608 struct plist_head *head = &rq->rt.pushable_tasks; 1609 struct task_struct *p; 1610 1611 if (!has_pushable_tasks(rq)) 1612 return NULL; 1613 1614 plist_for_each_entry(p, head, pushable_tasks) { 1615 if (pick_rt_task(rq, p, cpu)) 1616 return p; 1617 } 1618 1619 return NULL; 1620 } 1621 1622 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1623 1624 static int find_lowest_rq(struct task_struct *task) 1625 { 1626 struct sched_domain *sd; 1627 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1628 int this_cpu = smp_processor_id(); 1629 int cpu = task_cpu(task); 1630 1631 /* Make sure the mask is initialized first */ 1632 if (unlikely(!lowest_mask)) 1633 return -1; 1634 1635 if (task->nr_cpus_allowed == 1) 1636 return -1; /* No other targets possible */ 1637 1638 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1639 return -1; /* No targets found */ 1640 1641 /* 1642 * At this point we have built a mask of cpus representing the 1643 * lowest priority tasks in the system. Now we want to elect 1644 * the best one based on our affinity and topology. 1645 * 1646 * We prioritize the last cpu that the task executed on since 1647 * it is most likely cache-hot in that location. 1648 */ 1649 if (cpumask_test_cpu(cpu, lowest_mask)) 1650 return cpu; 1651 1652 /* 1653 * Otherwise, we consult the sched_domains span maps to figure 1654 * out which cpu is logically closest to our hot cache data. 1655 */ 1656 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1657 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1658 1659 rcu_read_lock(); 1660 for_each_domain(cpu, sd) { 1661 if (sd->flags & SD_WAKE_AFFINE) { 1662 int best_cpu; 1663 1664 /* 1665 * "this_cpu" is cheaper to preempt than a 1666 * remote processor. 1667 */ 1668 if (this_cpu != -1 && 1669 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1670 rcu_read_unlock(); 1671 return this_cpu; 1672 } 1673 1674 best_cpu = cpumask_first_and(lowest_mask, 1675 sched_domain_span(sd)); 1676 if (best_cpu < nr_cpu_ids) { 1677 rcu_read_unlock(); 1678 return best_cpu; 1679 } 1680 } 1681 } 1682 rcu_read_unlock(); 1683 1684 /* 1685 * And finally, if there were no matches within the domains 1686 * just give the caller *something* to work with from the compatible 1687 * locations. 1688 */ 1689 if (this_cpu != -1) 1690 return this_cpu; 1691 1692 cpu = cpumask_any(lowest_mask); 1693 if (cpu < nr_cpu_ids) 1694 return cpu; 1695 return -1; 1696 } 1697 1698 /* Will lock the rq it finds */ 1699 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1700 { 1701 struct rq *lowest_rq = NULL; 1702 int tries; 1703 int cpu; 1704 1705 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1706 cpu = find_lowest_rq(task); 1707 1708 if ((cpu == -1) || (cpu == rq->cpu)) 1709 break; 1710 1711 lowest_rq = cpu_rq(cpu); 1712 1713 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1714 /* 1715 * Target rq has tasks of equal or higher priority, 1716 * retrying does not release any lock and is unlikely 1717 * to yield a different result. 1718 */ 1719 lowest_rq = NULL; 1720 break; 1721 } 1722 1723 /* if the prio of this runqueue changed, try again */ 1724 if (double_lock_balance(rq, lowest_rq)) { 1725 /* 1726 * We had to unlock the run queue. In 1727 * the mean time, task could have 1728 * migrated already or had its affinity changed. 1729 * Also make sure that it wasn't scheduled on its rq. 1730 */ 1731 if (unlikely(task_rq(task) != rq || 1732 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) || 1733 task_running(rq, task) || 1734 !rt_task(task) || 1735 !task_on_rq_queued(task))) { 1736 1737 double_unlock_balance(rq, lowest_rq); 1738 lowest_rq = NULL; 1739 break; 1740 } 1741 } 1742 1743 /* If this rq is still suitable use it. */ 1744 if (lowest_rq->rt.highest_prio.curr > task->prio) 1745 break; 1746 1747 /* try again */ 1748 double_unlock_balance(rq, lowest_rq); 1749 lowest_rq = NULL; 1750 } 1751 1752 return lowest_rq; 1753 } 1754 1755 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1756 { 1757 struct task_struct *p; 1758 1759 if (!has_pushable_tasks(rq)) 1760 return NULL; 1761 1762 p = plist_first_entry(&rq->rt.pushable_tasks, 1763 struct task_struct, pushable_tasks); 1764 1765 BUG_ON(rq->cpu != task_cpu(p)); 1766 BUG_ON(task_current(rq, p)); 1767 BUG_ON(p->nr_cpus_allowed <= 1); 1768 1769 BUG_ON(!task_on_rq_queued(p)); 1770 BUG_ON(!rt_task(p)); 1771 1772 return p; 1773 } 1774 1775 /* 1776 * If the current CPU has more than one RT task, see if the non 1777 * running task can migrate over to a CPU that is running a task 1778 * of lesser priority. 1779 */ 1780 static int push_rt_task(struct rq *rq) 1781 { 1782 struct task_struct *next_task; 1783 struct rq *lowest_rq; 1784 int ret = 0; 1785 1786 if (!rq->rt.overloaded) 1787 return 0; 1788 1789 next_task = pick_next_pushable_task(rq); 1790 if (!next_task) 1791 return 0; 1792 1793 retry: 1794 if (unlikely(next_task == rq->curr)) { 1795 WARN_ON(1); 1796 return 0; 1797 } 1798 1799 /* 1800 * It's possible that the next_task slipped in of 1801 * higher priority than current. If that's the case 1802 * just reschedule current. 1803 */ 1804 if (unlikely(next_task->prio < rq->curr->prio)) { 1805 resched_curr(rq); 1806 return 0; 1807 } 1808 1809 /* We might release rq lock */ 1810 get_task_struct(next_task); 1811 1812 /* find_lock_lowest_rq locks the rq if found */ 1813 lowest_rq = find_lock_lowest_rq(next_task, rq); 1814 if (!lowest_rq) { 1815 struct task_struct *task; 1816 /* 1817 * find_lock_lowest_rq releases rq->lock 1818 * so it is possible that next_task has migrated. 1819 * 1820 * We need to make sure that the task is still on the same 1821 * run-queue and is also still the next task eligible for 1822 * pushing. 1823 */ 1824 task = pick_next_pushable_task(rq); 1825 if (task == next_task) { 1826 /* 1827 * The task hasn't migrated, and is still the next 1828 * eligible task, but we failed to find a run-queue 1829 * to push it to. Do not retry in this case, since 1830 * other cpus will pull from us when ready. 1831 */ 1832 goto out; 1833 } 1834 1835 if (!task) 1836 /* No more tasks, just exit */ 1837 goto out; 1838 1839 /* 1840 * Something has shifted, try again. 1841 */ 1842 put_task_struct(next_task); 1843 next_task = task; 1844 goto retry; 1845 } 1846 1847 deactivate_task(rq, next_task, 0); 1848 set_task_cpu(next_task, lowest_rq->cpu); 1849 activate_task(lowest_rq, next_task, 0); 1850 ret = 1; 1851 1852 resched_curr(lowest_rq); 1853 1854 double_unlock_balance(rq, lowest_rq); 1855 1856 out: 1857 put_task_struct(next_task); 1858 1859 return ret; 1860 } 1861 1862 static void push_rt_tasks(struct rq *rq) 1863 { 1864 /* push_rt_task will return true if it moved an RT */ 1865 while (push_rt_task(rq)) 1866 ; 1867 } 1868 1869 #ifdef HAVE_RT_PUSH_IPI 1870 1871 /* 1872 * When a high priority task schedules out from a CPU and a lower priority 1873 * task is scheduled in, a check is made to see if there's any RT tasks 1874 * on other CPUs that are waiting to run because a higher priority RT task 1875 * is currently running on its CPU. In this case, the CPU with multiple RT 1876 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 1877 * up that may be able to run one of its non-running queued RT tasks. 1878 * 1879 * All CPUs with overloaded RT tasks need to be notified as there is currently 1880 * no way to know which of these CPUs have the highest priority task waiting 1881 * to run. Instead of trying to take a spinlock on each of these CPUs, 1882 * which has shown to cause large latency when done on machines with many 1883 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 1884 * RT tasks waiting to run. 1885 * 1886 * Just sending an IPI to each of the CPUs is also an issue, as on large 1887 * count CPU machines, this can cause an IPI storm on a CPU, especially 1888 * if its the only CPU with multiple RT tasks queued, and a large number 1889 * of CPUs scheduling a lower priority task at the same time. 1890 * 1891 * Each root domain has its own irq work function that can iterate over 1892 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 1893 * tassk must be checked if there's one or many CPUs that are lowering 1894 * their priority, there's a single irq work iterator that will try to 1895 * push off RT tasks that are waiting to run. 1896 * 1897 * When a CPU schedules a lower priority task, it will kick off the 1898 * irq work iterator that will jump to each CPU with overloaded RT tasks. 1899 * As it only takes the first CPU that schedules a lower priority task 1900 * to start the process, the rto_start variable is incremented and if 1901 * the atomic result is one, then that CPU will try to take the rto_lock. 1902 * This prevents high contention on the lock as the process handles all 1903 * CPUs scheduling lower priority tasks. 1904 * 1905 * All CPUs that are scheduling a lower priority task will increment the 1906 * rt_loop_next variable. This will make sure that the irq work iterator 1907 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 1908 * priority task, even if the iterator is in the middle of a scan. Incrementing 1909 * the rt_loop_next will cause the iterator to perform another scan. 1910 * 1911 */ 1912 static int rto_next_cpu(struct root_domain *rd) 1913 { 1914 int next; 1915 int cpu; 1916 1917 /* 1918 * When starting the IPI RT pushing, the rto_cpu is set to -1, 1919 * rt_next_cpu() will simply return the first CPU found in 1920 * the rto_mask. 1921 * 1922 * If rto_next_cpu() is called with rto_cpu is a valid cpu, it 1923 * will return the next CPU found in the rto_mask. 1924 * 1925 * If there are no more CPUs left in the rto_mask, then a check is made 1926 * against rto_loop and rto_loop_next. rto_loop is only updated with 1927 * the rto_lock held, but any CPU may increment the rto_loop_next 1928 * without any locking. 1929 */ 1930 for (;;) { 1931 1932 /* When rto_cpu is -1 this acts like cpumask_first() */ 1933 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 1934 1935 rd->rto_cpu = cpu; 1936 1937 if (cpu < nr_cpu_ids) 1938 return cpu; 1939 1940 rd->rto_cpu = -1; 1941 1942 /* 1943 * ACQUIRE ensures we see the @rto_mask changes 1944 * made prior to the @next value observed. 1945 * 1946 * Matches WMB in rt_set_overload(). 1947 */ 1948 next = atomic_read_acquire(&rd->rto_loop_next); 1949 1950 if (rd->rto_loop == next) 1951 break; 1952 1953 rd->rto_loop = next; 1954 } 1955 1956 return -1; 1957 } 1958 1959 static inline bool rto_start_trylock(atomic_t *v) 1960 { 1961 return !atomic_cmpxchg_acquire(v, 0, 1); 1962 } 1963 1964 static inline void rto_start_unlock(atomic_t *v) 1965 { 1966 atomic_set_release(v, 0); 1967 } 1968 1969 static void tell_cpu_to_push(struct rq *rq) 1970 { 1971 int cpu = -1; 1972 1973 /* Keep the loop going if the IPI is currently active */ 1974 atomic_inc(&rq->rd->rto_loop_next); 1975 1976 /* Only one CPU can initiate a loop at a time */ 1977 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 1978 return; 1979 1980 raw_spin_lock(&rq->rd->rto_lock); 1981 1982 /* 1983 * The rto_cpu is updated under the lock, if it has a valid cpu 1984 * then the IPI is still running and will continue due to the 1985 * update to loop_next, and nothing needs to be done here. 1986 * Otherwise it is finishing up and an ipi needs to be sent. 1987 */ 1988 if (rq->rd->rto_cpu < 0) 1989 cpu = rto_next_cpu(rq->rd); 1990 1991 raw_spin_unlock(&rq->rd->rto_lock); 1992 1993 rto_start_unlock(&rq->rd->rto_loop_start); 1994 1995 if (cpu >= 0) { 1996 /* Make sure the rd does not get freed while pushing */ 1997 sched_get_rd(rq->rd); 1998 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 1999 } 2000 } 2001 2002 /* Called from hardirq context */ 2003 void rto_push_irq_work_func(struct irq_work *work) 2004 { 2005 struct root_domain *rd = 2006 container_of(work, struct root_domain, rto_push_work); 2007 struct rq *rq; 2008 int cpu; 2009 2010 rq = this_rq(); 2011 2012 /* 2013 * We do not need to grab the lock to check for has_pushable_tasks. 2014 * When it gets updated, a check is made if a push is possible. 2015 */ 2016 if (has_pushable_tasks(rq)) { 2017 raw_spin_lock(&rq->lock); 2018 push_rt_tasks(rq); 2019 raw_spin_unlock(&rq->lock); 2020 } 2021 2022 raw_spin_lock(&rd->rto_lock); 2023 2024 /* Pass the IPI to the next rt overloaded queue */ 2025 cpu = rto_next_cpu(rd); 2026 2027 raw_spin_unlock(&rd->rto_lock); 2028 2029 if (cpu < 0) { 2030 sched_put_rd(rd); 2031 return; 2032 } 2033 2034 /* Try the next RT overloaded CPU */ 2035 irq_work_queue_on(&rd->rto_push_work, cpu); 2036 } 2037 #endif /* HAVE_RT_PUSH_IPI */ 2038 2039 static void pull_rt_task(struct rq *this_rq) 2040 { 2041 int this_cpu = this_rq->cpu, cpu; 2042 bool resched = false; 2043 struct task_struct *p; 2044 struct rq *src_rq; 2045 int rt_overload_count = rt_overloaded(this_rq); 2046 2047 if (likely(!rt_overload_count)) 2048 return; 2049 2050 /* 2051 * Match the barrier from rt_set_overloaded; this guarantees that if we 2052 * see overloaded we must also see the rto_mask bit. 2053 */ 2054 smp_rmb(); 2055 2056 /* If we are the only overloaded CPU do nothing */ 2057 if (rt_overload_count == 1 && 2058 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2059 return; 2060 2061 #ifdef HAVE_RT_PUSH_IPI 2062 if (sched_feat(RT_PUSH_IPI)) { 2063 tell_cpu_to_push(this_rq); 2064 return; 2065 } 2066 #endif 2067 2068 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2069 if (this_cpu == cpu) 2070 continue; 2071 2072 src_rq = cpu_rq(cpu); 2073 2074 /* 2075 * Don't bother taking the src_rq->lock if the next highest 2076 * task is known to be lower-priority than our current task. 2077 * This may look racy, but if this value is about to go 2078 * logically higher, the src_rq will push this task away. 2079 * And if its going logically lower, we do not care 2080 */ 2081 if (src_rq->rt.highest_prio.next >= 2082 this_rq->rt.highest_prio.curr) 2083 continue; 2084 2085 /* 2086 * We can potentially drop this_rq's lock in 2087 * double_lock_balance, and another CPU could 2088 * alter this_rq 2089 */ 2090 double_lock_balance(this_rq, src_rq); 2091 2092 /* 2093 * We can pull only a task, which is pushable 2094 * on its rq, and no others. 2095 */ 2096 p = pick_highest_pushable_task(src_rq, this_cpu); 2097 2098 /* 2099 * Do we have an RT task that preempts 2100 * the to-be-scheduled task? 2101 */ 2102 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2103 WARN_ON(p == src_rq->curr); 2104 WARN_ON(!task_on_rq_queued(p)); 2105 2106 /* 2107 * There's a chance that p is higher in priority 2108 * than what's currently running on its cpu. 2109 * This is just that p is wakeing up and hasn't 2110 * had a chance to schedule. We only pull 2111 * p if it is lower in priority than the 2112 * current task on the run queue 2113 */ 2114 if (p->prio < src_rq->curr->prio) 2115 goto skip; 2116 2117 resched = true; 2118 2119 deactivate_task(src_rq, p, 0); 2120 set_task_cpu(p, this_cpu); 2121 activate_task(this_rq, p, 0); 2122 /* 2123 * We continue with the search, just in 2124 * case there's an even higher prio task 2125 * in another runqueue. (low likelihood 2126 * but possible) 2127 */ 2128 } 2129 skip: 2130 double_unlock_balance(this_rq, src_rq); 2131 } 2132 2133 if (resched) 2134 resched_curr(this_rq); 2135 } 2136 2137 /* 2138 * If we are not running and we are not going to reschedule soon, we should 2139 * try to push tasks away now 2140 */ 2141 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2142 { 2143 if (!task_running(rq, p) && 2144 !test_tsk_need_resched(rq->curr) && 2145 p->nr_cpus_allowed > 1 && 2146 (dl_task(rq->curr) || rt_task(rq->curr)) && 2147 (rq->curr->nr_cpus_allowed < 2 || 2148 rq->curr->prio <= p->prio)) 2149 push_rt_tasks(rq); 2150 } 2151 2152 /* Assumes rq->lock is held */ 2153 static void rq_online_rt(struct rq *rq) 2154 { 2155 if (rq->rt.overloaded) 2156 rt_set_overload(rq); 2157 2158 __enable_runtime(rq); 2159 2160 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2161 } 2162 2163 /* Assumes rq->lock is held */ 2164 static void rq_offline_rt(struct rq *rq) 2165 { 2166 if (rq->rt.overloaded) 2167 rt_clear_overload(rq); 2168 2169 __disable_runtime(rq); 2170 2171 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2172 } 2173 2174 /* 2175 * When switch from the rt queue, we bring ourselves to a position 2176 * that we might want to pull RT tasks from other runqueues. 2177 */ 2178 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2179 { 2180 /* 2181 * If there are other RT tasks then we will reschedule 2182 * and the scheduling of the other RT tasks will handle 2183 * the balancing. But if we are the last RT task 2184 * we may need to handle the pulling of RT tasks 2185 * now. 2186 */ 2187 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2188 return; 2189 2190 queue_pull_task(rq); 2191 } 2192 2193 void __init init_sched_rt_class(void) 2194 { 2195 unsigned int i; 2196 2197 for_each_possible_cpu(i) { 2198 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2199 GFP_KERNEL, cpu_to_node(i)); 2200 } 2201 } 2202 #endif /* CONFIG_SMP */ 2203 2204 /* 2205 * When switching a task to RT, we may overload the runqueue 2206 * with RT tasks. In this case we try to push them off to 2207 * other runqueues. 2208 */ 2209 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2210 { 2211 /* 2212 * If we are already running, then there's nothing 2213 * that needs to be done. But if we are not running 2214 * we may need to preempt the current running task. 2215 * If that current running task is also an RT task 2216 * then see if we can move to another run queue. 2217 */ 2218 if (task_on_rq_queued(p) && rq->curr != p) { 2219 #ifdef CONFIG_SMP 2220 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2221 queue_push_tasks(rq); 2222 #endif /* CONFIG_SMP */ 2223 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) 2224 resched_curr(rq); 2225 } 2226 } 2227 2228 /* 2229 * Priority of the task has changed. This may cause 2230 * us to initiate a push or pull. 2231 */ 2232 static void 2233 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2234 { 2235 if (!task_on_rq_queued(p)) 2236 return; 2237 2238 if (rq->curr == p) { 2239 #ifdef CONFIG_SMP 2240 /* 2241 * If our priority decreases while running, we 2242 * may need to pull tasks to this runqueue. 2243 */ 2244 if (oldprio < p->prio) 2245 queue_pull_task(rq); 2246 2247 /* 2248 * If there's a higher priority task waiting to run 2249 * then reschedule. 2250 */ 2251 if (p->prio > rq->rt.highest_prio.curr) 2252 resched_curr(rq); 2253 #else 2254 /* For UP simply resched on drop of prio */ 2255 if (oldprio < p->prio) 2256 resched_curr(rq); 2257 #endif /* CONFIG_SMP */ 2258 } else { 2259 /* 2260 * This task is not running, but if it is 2261 * greater than the current running task 2262 * then reschedule. 2263 */ 2264 if (p->prio < rq->curr->prio) 2265 resched_curr(rq); 2266 } 2267 } 2268 2269 #ifdef CONFIG_POSIX_TIMERS 2270 static void watchdog(struct rq *rq, struct task_struct *p) 2271 { 2272 unsigned long soft, hard; 2273 2274 /* max may change after cur was read, this will be fixed next tick */ 2275 soft = task_rlimit(p, RLIMIT_RTTIME); 2276 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2277 2278 if (soft != RLIM_INFINITY) { 2279 unsigned long next; 2280 2281 if (p->rt.watchdog_stamp != jiffies) { 2282 p->rt.timeout++; 2283 p->rt.watchdog_stamp = jiffies; 2284 } 2285 2286 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2287 if (p->rt.timeout > next) 2288 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 2289 } 2290 } 2291 #else 2292 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2293 #endif 2294 2295 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2296 { 2297 struct sched_rt_entity *rt_se = &p->rt; 2298 2299 update_curr_rt(rq); 2300 2301 watchdog(rq, p); 2302 2303 /* 2304 * RR tasks need a special form of timeslice management. 2305 * FIFO tasks have no timeslices. 2306 */ 2307 if (p->policy != SCHED_RR) 2308 return; 2309 2310 if (--p->rt.time_slice) 2311 return; 2312 2313 p->rt.time_slice = sched_rr_timeslice; 2314 2315 /* 2316 * Requeue to the end of queue if we (and all of our ancestors) are not 2317 * the only element on the queue 2318 */ 2319 for_each_sched_rt_entity(rt_se) { 2320 if (rt_se->run_list.prev != rt_se->run_list.next) { 2321 requeue_task_rt(rq, p, 0); 2322 resched_curr(rq); 2323 return; 2324 } 2325 } 2326 } 2327 2328 static void set_curr_task_rt(struct rq *rq) 2329 { 2330 struct task_struct *p = rq->curr; 2331 2332 p->se.exec_start = rq_clock_task(rq); 2333 2334 /* The running task is never eligible for pushing */ 2335 dequeue_pushable_task(rq, p); 2336 } 2337 2338 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2339 { 2340 /* 2341 * Time slice is 0 for SCHED_FIFO tasks 2342 */ 2343 if (task->policy == SCHED_RR) 2344 return sched_rr_timeslice; 2345 else 2346 return 0; 2347 } 2348 2349 const struct sched_class rt_sched_class = { 2350 .next = &fair_sched_class, 2351 .enqueue_task = enqueue_task_rt, 2352 .dequeue_task = dequeue_task_rt, 2353 .yield_task = yield_task_rt, 2354 2355 .check_preempt_curr = check_preempt_curr_rt, 2356 2357 .pick_next_task = pick_next_task_rt, 2358 .put_prev_task = put_prev_task_rt, 2359 2360 #ifdef CONFIG_SMP 2361 .select_task_rq = select_task_rq_rt, 2362 2363 .set_cpus_allowed = set_cpus_allowed_common, 2364 .rq_online = rq_online_rt, 2365 .rq_offline = rq_offline_rt, 2366 .task_woken = task_woken_rt, 2367 .switched_from = switched_from_rt, 2368 #endif 2369 2370 .set_curr_task = set_curr_task_rt, 2371 .task_tick = task_tick_rt, 2372 2373 .get_rr_interval = get_rr_interval_rt, 2374 2375 .prio_changed = prio_changed_rt, 2376 .switched_to = switched_to_rt, 2377 2378 .update_curr = update_curr_rt, 2379 }; 2380 2381 #ifdef CONFIG_RT_GROUP_SCHED 2382 /* 2383 * Ensure that the real time constraints are schedulable. 2384 */ 2385 static DEFINE_MUTEX(rt_constraints_mutex); 2386 2387 /* Must be called with tasklist_lock held */ 2388 static inline int tg_has_rt_tasks(struct task_group *tg) 2389 { 2390 struct task_struct *g, *p; 2391 2392 /* 2393 * Autogroups do not have RT tasks; see autogroup_create(). 2394 */ 2395 if (task_group_is_autogroup(tg)) 2396 return 0; 2397 2398 for_each_process_thread(g, p) { 2399 if (rt_task(p) && task_group(p) == tg) 2400 return 1; 2401 } 2402 2403 return 0; 2404 } 2405 2406 struct rt_schedulable_data { 2407 struct task_group *tg; 2408 u64 rt_period; 2409 u64 rt_runtime; 2410 }; 2411 2412 static int tg_rt_schedulable(struct task_group *tg, void *data) 2413 { 2414 struct rt_schedulable_data *d = data; 2415 struct task_group *child; 2416 unsigned long total, sum = 0; 2417 u64 period, runtime; 2418 2419 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2420 runtime = tg->rt_bandwidth.rt_runtime; 2421 2422 if (tg == d->tg) { 2423 period = d->rt_period; 2424 runtime = d->rt_runtime; 2425 } 2426 2427 /* 2428 * Cannot have more runtime than the period. 2429 */ 2430 if (runtime > period && runtime != RUNTIME_INF) 2431 return -EINVAL; 2432 2433 /* 2434 * Ensure we don't starve existing RT tasks. 2435 */ 2436 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 2437 return -EBUSY; 2438 2439 total = to_ratio(period, runtime); 2440 2441 /* 2442 * Nobody can have more than the global setting allows. 2443 */ 2444 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2445 return -EINVAL; 2446 2447 /* 2448 * The sum of our children's runtime should not exceed our own. 2449 */ 2450 list_for_each_entry_rcu(child, &tg->children, siblings) { 2451 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2452 runtime = child->rt_bandwidth.rt_runtime; 2453 2454 if (child == d->tg) { 2455 period = d->rt_period; 2456 runtime = d->rt_runtime; 2457 } 2458 2459 sum += to_ratio(period, runtime); 2460 } 2461 2462 if (sum > total) 2463 return -EINVAL; 2464 2465 return 0; 2466 } 2467 2468 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2469 { 2470 int ret; 2471 2472 struct rt_schedulable_data data = { 2473 .tg = tg, 2474 .rt_period = period, 2475 .rt_runtime = runtime, 2476 }; 2477 2478 rcu_read_lock(); 2479 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2480 rcu_read_unlock(); 2481 2482 return ret; 2483 } 2484 2485 static int tg_set_rt_bandwidth(struct task_group *tg, 2486 u64 rt_period, u64 rt_runtime) 2487 { 2488 int i, err = 0; 2489 2490 /* 2491 * Disallowing the root group RT runtime is BAD, it would disallow the 2492 * kernel creating (and or operating) RT threads. 2493 */ 2494 if (tg == &root_task_group && rt_runtime == 0) 2495 return -EINVAL; 2496 2497 /* No period doesn't make any sense. */ 2498 if (rt_period == 0) 2499 return -EINVAL; 2500 2501 mutex_lock(&rt_constraints_mutex); 2502 read_lock(&tasklist_lock); 2503 err = __rt_schedulable(tg, rt_period, rt_runtime); 2504 if (err) 2505 goto unlock; 2506 2507 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2508 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2509 tg->rt_bandwidth.rt_runtime = rt_runtime; 2510 2511 for_each_possible_cpu(i) { 2512 struct rt_rq *rt_rq = tg->rt_rq[i]; 2513 2514 raw_spin_lock(&rt_rq->rt_runtime_lock); 2515 rt_rq->rt_runtime = rt_runtime; 2516 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2517 } 2518 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2519 unlock: 2520 read_unlock(&tasklist_lock); 2521 mutex_unlock(&rt_constraints_mutex); 2522 2523 return err; 2524 } 2525 2526 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2527 { 2528 u64 rt_runtime, rt_period; 2529 2530 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2531 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2532 if (rt_runtime_us < 0) 2533 rt_runtime = RUNTIME_INF; 2534 2535 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2536 } 2537 2538 long sched_group_rt_runtime(struct task_group *tg) 2539 { 2540 u64 rt_runtime_us; 2541 2542 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2543 return -1; 2544 2545 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2546 do_div(rt_runtime_us, NSEC_PER_USEC); 2547 return rt_runtime_us; 2548 } 2549 2550 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2551 { 2552 u64 rt_runtime, rt_period; 2553 2554 rt_period = rt_period_us * NSEC_PER_USEC; 2555 rt_runtime = tg->rt_bandwidth.rt_runtime; 2556 2557 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2558 } 2559 2560 long sched_group_rt_period(struct task_group *tg) 2561 { 2562 u64 rt_period_us; 2563 2564 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2565 do_div(rt_period_us, NSEC_PER_USEC); 2566 return rt_period_us; 2567 } 2568 2569 static int sched_rt_global_constraints(void) 2570 { 2571 int ret = 0; 2572 2573 mutex_lock(&rt_constraints_mutex); 2574 read_lock(&tasklist_lock); 2575 ret = __rt_schedulable(NULL, 0, 0); 2576 read_unlock(&tasklist_lock); 2577 mutex_unlock(&rt_constraints_mutex); 2578 2579 return ret; 2580 } 2581 2582 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2583 { 2584 /* Don't accept realtime tasks when there is no way for them to run */ 2585 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2586 return 0; 2587 2588 return 1; 2589 } 2590 2591 #else /* !CONFIG_RT_GROUP_SCHED */ 2592 static int sched_rt_global_constraints(void) 2593 { 2594 unsigned long flags; 2595 int i; 2596 2597 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2598 for_each_possible_cpu(i) { 2599 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2600 2601 raw_spin_lock(&rt_rq->rt_runtime_lock); 2602 rt_rq->rt_runtime = global_rt_runtime(); 2603 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2604 } 2605 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2606 2607 return 0; 2608 } 2609 #endif /* CONFIG_RT_GROUP_SCHED */ 2610 2611 static int sched_rt_global_validate(void) 2612 { 2613 if (sysctl_sched_rt_period <= 0) 2614 return -EINVAL; 2615 2616 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2617 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 2618 return -EINVAL; 2619 2620 return 0; 2621 } 2622 2623 static void sched_rt_do_global(void) 2624 { 2625 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 2626 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 2627 } 2628 2629 int sched_rt_handler(struct ctl_table *table, int write, 2630 void __user *buffer, size_t *lenp, 2631 loff_t *ppos) 2632 { 2633 int old_period, old_runtime; 2634 static DEFINE_MUTEX(mutex); 2635 int ret; 2636 2637 mutex_lock(&mutex); 2638 old_period = sysctl_sched_rt_period; 2639 old_runtime = sysctl_sched_rt_runtime; 2640 2641 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2642 2643 if (!ret && write) { 2644 ret = sched_rt_global_validate(); 2645 if (ret) 2646 goto undo; 2647 2648 ret = sched_dl_global_validate(); 2649 if (ret) 2650 goto undo; 2651 2652 ret = sched_rt_global_constraints(); 2653 if (ret) 2654 goto undo; 2655 2656 sched_rt_do_global(); 2657 sched_dl_do_global(); 2658 } 2659 if (0) { 2660 undo: 2661 sysctl_sched_rt_period = old_period; 2662 sysctl_sched_rt_runtime = old_runtime; 2663 } 2664 mutex_unlock(&mutex); 2665 2666 return ret; 2667 } 2668 2669 int sched_rr_handler(struct ctl_table *table, int write, 2670 void __user *buffer, size_t *lenp, 2671 loff_t *ppos) 2672 { 2673 int ret; 2674 static DEFINE_MUTEX(mutex); 2675 2676 mutex_lock(&mutex); 2677 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2678 /* 2679 * Make sure that internally we keep jiffies. 2680 * Also, writing zero resets the timeslice to default: 2681 */ 2682 if (!ret && write) { 2683 sched_rr_timeslice = 2684 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 2685 msecs_to_jiffies(sysctl_sched_rr_timeslice); 2686 } 2687 mutex_unlock(&mutex); 2688 return ret; 2689 } 2690 2691 #ifdef CONFIG_SCHED_DEBUG 2692 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2693 2694 void print_rt_stats(struct seq_file *m, int cpu) 2695 { 2696 rt_rq_iter_t iter; 2697 struct rt_rq *rt_rq; 2698 2699 rcu_read_lock(); 2700 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2701 print_rt_rq(m, cpu, rt_rq); 2702 rcu_read_unlock(); 2703 } 2704 #endif /* CONFIG_SCHED_DEBUG */ 2705