xref: /openbmc/linux/kernel/sched/rt.c (revision b34e08d5)
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5 
6 #include "sched.h"
7 
8 #include <linux/slab.h>
9 
10 int sched_rr_timeslice = RR_TIMESLICE;
11 
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13 
14 struct rt_bandwidth def_rt_bandwidth;
15 
16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17 {
18 	struct rt_bandwidth *rt_b =
19 		container_of(timer, struct rt_bandwidth, rt_period_timer);
20 	ktime_t now;
21 	int overrun;
22 	int idle = 0;
23 
24 	for (;;) {
25 		now = hrtimer_cb_get_time(timer);
26 		overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27 
28 		if (!overrun)
29 			break;
30 
31 		idle = do_sched_rt_period_timer(rt_b, overrun);
32 	}
33 
34 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35 }
36 
37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38 {
39 	rt_b->rt_period = ns_to_ktime(period);
40 	rt_b->rt_runtime = runtime;
41 
42 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
43 
44 	hrtimer_init(&rt_b->rt_period_timer,
45 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 	rt_b->rt_period_timer.function = sched_rt_period_timer;
47 }
48 
49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50 {
51 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 		return;
53 
54 	if (hrtimer_active(&rt_b->rt_period_timer))
55 		return;
56 
57 	raw_spin_lock(&rt_b->rt_runtime_lock);
58 	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 	raw_spin_unlock(&rt_b->rt_runtime_lock);
60 }
61 
62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63 {
64 	struct rt_prio_array *array;
65 	int i;
66 
67 	array = &rt_rq->active;
68 	for (i = 0; i < MAX_RT_PRIO; i++) {
69 		INIT_LIST_HEAD(array->queue + i);
70 		__clear_bit(i, array->bitmap);
71 	}
72 	/* delimiter for bitsearch: */
73 	__set_bit(MAX_RT_PRIO, array->bitmap);
74 
75 #if defined CONFIG_SMP
76 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 	rt_rq->highest_prio.next = MAX_RT_PRIO;
78 	rt_rq->rt_nr_migratory = 0;
79 	rt_rq->overloaded = 0;
80 	plist_head_init(&rt_rq->pushable_tasks);
81 #endif
82 
83 	rt_rq->rt_time = 0;
84 	rt_rq->rt_throttled = 0;
85 	rt_rq->rt_runtime = 0;
86 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
87 }
88 
89 #ifdef CONFIG_RT_GROUP_SCHED
90 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
91 {
92 	hrtimer_cancel(&rt_b->rt_period_timer);
93 }
94 
95 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
96 
97 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
98 {
99 #ifdef CONFIG_SCHED_DEBUG
100 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
101 #endif
102 	return container_of(rt_se, struct task_struct, rt);
103 }
104 
105 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
106 {
107 	return rt_rq->rq;
108 }
109 
110 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
111 {
112 	return rt_se->rt_rq;
113 }
114 
115 void free_rt_sched_group(struct task_group *tg)
116 {
117 	int i;
118 
119 	if (tg->rt_se)
120 		destroy_rt_bandwidth(&tg->rt_bandwidth);
121 
122 	for_each_possible_cpu(i) {
123 		if (tg->rt_rq)
124 			kfree(tg->rt_rq[i]);
125 		if (tg->rt_se)
126 			kfree(tg->rt_se[i]);
127 	}
128 
129 	kfree(tg->rt_rq);
130 	kfree(tg->rt_se);
131 }
132 
133 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
134 		struct sched_rt_entity *rt_se, int cpu,
135 		struct sched_rt_entity *parent)
136 {
137 	struct rq *rq = cpu_rq(cpu);
138 
139 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
140 	rt_rq->rt_nr_boosted = 0;
141 	rt_rq->rq = rq;
142 	rt_rq->tg = tg;
143 
144 	tg->rt_rq[cpu] = rt_rq;
145 	tg->rt_se[cpu] = rt_se;
146 
147 	if (!rt_se)
148 		return;
149 
150 	if (!parent)
151 		rt_se->rt_rq = &rq->rt;
152 	else
153 		rt_se->rt_rq = parent->my_q;
154 
155 	rt_se->my_q = rt_rq;
156 	rt_se->parent = parent;
157 	INIT_LIST_HEAD(&rt_se->run_list);
158 }
159 
160 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
161 {
162 	struct rt_rq *rt_rq;
163 	struct sched_rt_entity *rt_se;
164 	int i;
165 
166 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
167 	if (!tg->rt_rq)
168 		goto err;
169 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
170 	if (!tg->rt_se)
171 		goto err;
172 
173 	init_rt_bandwidth(&tg->rt_bandwidth,
174 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
175 
176 	for_each_possible_cpu(i) {
177 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
178 				     GFP_KERNEL, cpu_to_node(i));
179 		if (!rt_rq)
180 			goto err;
181 
182 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
183 				     GFP_KERNEL, cpu_to_node(i));
184 		if (!rt_se)
185 			goto err_free_rq;
186 
187 		init_rt_rq(rt_rq, cpu_rq(i));
188 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
189 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
190 	}
191 
192 	return 1;
193 
194 err_free_rq:
195 	kfree(rt_rq);
196 err:
197 	return 0;
198 }
199 
200 #else /* CONFIG_RT_GROUP_SCHED */
201 
202 #define rt_entity_is_task(rt_se) (1)
203 
204 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
205 {
206 	return container_of(rt_se, struct task_struct, rt);
207 }
208 
209 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
210 {
211 	return container_of(rt_rq, struct rq, rt);
212 }
213 
214 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
215 {
216 	struct task_struct *p = rt_task_of(rt_se);
217 	struct rq *rq = task_rq(p);
218 
219 	return &rq->rt;
220 }
221 
222 void free_rt_sched_group(struct task_group *tg) { }
223 
224 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
225 {
226 	return 1;
227 }
228 #endif /* CONFIG_RT_GROUP_SCHED */
229 
230 #ifdef CONFIG_SMP
231 
232 static int pull_rt_task(struct rq *this_rq);
233 
234 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
235 {
236 	/* Try to pull RT tasks here if we lower this rq's prio */
237 	return rq->rt.highest_prio.curr > prev->prio;
238 }
239 
240 static inline int rt_overloaded(struct rq *rq)
241 {
242 	return atomic_read(&rq->rd->rto_count);
243 }
244 
245 static inline void rt_set_overload(struct rq *rq)
246 {
247 	if (!rq->online)
248 		return;
249 
250 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
251 	/*
252 	 * Make sure the mask is visible before we set
253 	 * the overload count. That is checked to determine
254 	 * if we should look at the mask. It would be a shame
255 	 * if we looked at the mask, but the mask was not
256 	 * updated yet.
257 	 *
258 	 * Matched by the barrier in pull_rt_task().
259 	 */
260 	smp_wmb();
261 	atomic_inc(&rq->rd->rto_count);
262 }
263 
264 static inline void rt_clear_overload(struct rq *rq)
265 {
266 	if (!rq->online)
267 		return;
268 
269 	/* the order here really doesn't matter */
270 	atomic_dec(&rq->rd->rto_count);
271 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
272 }
273 
274 static void update_rt_migration(struct rt_rq *rt_rq)
275 {
276 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
277 		if (!rt_rq->overloaded) {
278 			rt_set_overload(rq_of_rt_rq(rt_rq));
279 			rt_rq->overloaded = 1;
280 		}
281 	} else if (rt_rq->overloaded) {
282 		rt_clear_overload(rq_of_rt_rq(rt_rq));
283 		rt_rq->overloaded = 0;
284 	}
285 }
286 
287 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
288 {
289 	struct task_struct *p;
290 
291 	if (!rt_entity_is_task(rt_se))
292 		return;
293 
294 	p = rt_task_of(rt_se);
295 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
296 
297 	rt_rq->rt_nr_total++;
298 	if (p->nr_cpus_allowed > 1)
299 		rt_rq->rt_nr_migratory++;
300 
301 	update_rt_migration(rt_rq);
302 }
303 
304 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
305 {
306 	struct task_struct *p;
307 
308 	if (!rt_entity_is_task(rt_se))
309 		return;
310 
311 	p = rt_task_of(rt_se);
312 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
313 
314 	rt_rq->rt_nr_total--;
315 	if (p->nr_cpus_allowed > 1)
316 		rt_rq->rt_nr_migratory--;
317 
318 	update_rt_migration(rt_rq);
319 }
320 
321 static inline int has_pushable_tasks(struct rq *rq)
322 {
323 	return !plist_head_empty(&rq->rt.pushable_tasks);
324 }
325 
326 static inline void set_post_schedule(struct rq *rq)
327 {
328 	/*
329 	 * We detect this state here so that we can avoid taking the RQ
330 	 * lock again later if there is no need to push
331 	 */
332 	rq->post_schedule = has_pushable_tasks(rq);
333 }
334 
335 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
336 {
337 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
338 	plist_node_init(&p->pushable_tasks, p->prio);
339 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
340 
341 	/* Update the highest prio pushable task */
342 	if (p->prio < rq->rt.highest_prio.next)
343 		rq->rt.highest_prio.next = p->prio;
344 }
345 
346 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
347 {
348 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
349 
350 	/* Update the new highest prio pushable task */
351 	if (has_pushable_tasks(rq)) {
352 		p = plist_first_entry(&rq->rt.pushable_tasks,
353 				      struct task_struct, pushable_tasks);
354 		rq->rt.highest_prio.next = p->prio;
355 	} else
356 		rq->rt.highest_prio.next = MAX_RT_PRIO;
357 }
358 
359 #else
360 
361 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
362 {
363 }
364 
365 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
366 {
367 }
368 
369 static inline
370 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
371 {
372 }
373 
374 static inline
375 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
376 {
377 }
378 
379 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
380 {
381 	return false;
382 }
383 
384 static inline int pull_rt_task(struct rq *this_rq)
385 {
386 	return 0;
387 }
388 
389 static inline void set_post_schedule(struct rq *rq)
390 {
391 }
392 #endif /* CONFIG_SMP */
393 
394 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
395 {
396 	return !list_empty(&rt_se->run_list);
397 }
398 
399 #ifdef CONFIG_RT_GROUP_SCHED
400 
401 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
402 {
403 	if (!rt_rq->tg)
404 		return RUNTIME_INF;
405 
406 	return rt_rq->rt_runtime;
407 }
408 
409 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
410 {
411 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
412 }
413 
414 typedef struct task_group *rt_rq_iter_t;
415 
416 static inline struct task_group *next_task_group(struct task_group *tg)
417 {
418 	do {
419 		tg = list_entry_rcu(tg->list.next,
420 			typeof(struct task_group), list);
421 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
422 
423 	if (&tg->list == &task_groups)
424 		tg = NULL;
425 
426 	return tg;
427 }
428 
429 #define for_each_rt_rq(rt_rq, iter, rq)					\
430 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
431 		(iter = next_task_group(iter)) &&			\
432 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
433 
434 #define for_each_sched_rt_entity(rt_se) \
435 	for (; rt_se; rt_se = rt_se->parent)
436 
437 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
438 {
439 	return rt_se->my_q;
440 }
441 
442 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
443 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
444 
445 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
446 {
447 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
448 	struct sched_rt_entity *rt_se;
449 
450 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
451 
452 	rt_se = rt_rq->tg->rt_se[cpu];
453 
454 	if (rt_rq->rt_nr_running) {
455 		if (rt_se && !on_rt_rq(rt_se))
456 			enqueue_rt_entity(rt_se, false);
457 		if (rt_rq->highest_prio.curr < curr->prio)
458 			resched_task(curr);
459 	}
460 }
461 
462 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
463 {
464 	struct sched_rt_entity *rt_se;
465 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
466 
467 	rt_se = rt_rq->tg->rt_se[cpu];
468 
469 	if (rt_se && on_rt_rq(rt_se))
470 		dequeue_rt_entity(rt_se);
471 }
472 
473 static int rt_se_boosted(struct sched_rt_entity *rt_se)
474 {
475 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
476 	struct task_struct *p;
477 
478 	if (rt_rq)
479 		return !!rt_rq->rt_nr_boosted;
480 
481 	p = rt_task_of(rt_se);
482 	return p->prio != p->normal_prio;
483 }
484 
485 #ifdef CONFIG_SMP
486 static inline const struct cpumask *sched_rt_period_mask(void)
487 {
488 	return this_rq()->rd->span;
489 }
490 #else
491 static inline const struct cpumask *sched_rt_period_mask(void)
492 {
493 	return cpu_online_mask;
494 }
495 #endif
496 
497 static inline
498 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
499 {
500 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
501 }
502 
503 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
504 {
505 	return &rt_rq->tg->rt_bandwidth;
506 }
507 
508 #else /* !CONFIG_RT_GROUP_SCHED */
509 
510 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
511 {
512 	return rt_rq->rt_runtime;
513 }
514 
515 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
516 {
517 	return ktime_to_ns(def_rt_bandwidth.rt_period);
518 }
519 
520 typedef struct rt_rq *rt_rq_iter_t;
521 
522 #define for_each_rt_rq(rt_rq, iter, rq) \
523 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
524 
525 #define for_each_sched_rt_entity(rt_se) \
526 	for (; rt_se; rt_se = NULL)
527 
528 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
529 {
530 	return NULL;
531 }
532 
533 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
534 {
535 	if (rt_rq->rt_nr_running)
536 		resched_task(rq_of_rt_rq(rt_rq)->curr);
537 }
538 
539 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
540 {
541 }
542 
543 static inline const struct cpumask *sched_rt_period_mask(void)
544 {
545 	return cpu_online_mask;
546 }
547 
548 static inline
549 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
550 {
551 	return &cpu_rq(cpu)->rt;
552 }
553 
554 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
555 {
556 	return &def_rt_bandwidth;
557 }
558 
559 #endif /* CONFIG_RT_GROUP_SCHED */
560 
561 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
562 {
563 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
564 
565 	return (hrtimer_active(&rt_b->rt_period_timer) ||
566 		rt_rq->rt_time < rt_b->rt_runtime);
567 }
568 
569 #ifdef CONFIG_SMP
570 /*
571  * We ran out of runtime, see if we can borrow some from our neighbours.
572  */
573 static int do_balance_runtime(struct rt_rq *rt_rq)
574 {
575 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
576 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
577 	int i, weight, more = 0;
578 	u64 rt_period;
579 
580 	weight = cpumask_weight(rd->span);
581 
582 	raw_spin_lock(&rt_b->rt_runtime_lock);
583 	rt_period = ktime_to_ns(rt_b->rt_period);
584 	for_each_cpu(i, rd->span) {
585 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
586 		s64 diff;
587 
588 		if (iter == rt_rq)
589 			continue;
590 
591 		raw_spin_lock(&iter->rt_runtime_lock);
592 		/*
593 		 * Either all rqs have inf runtime and there's nothing to steal
594 		 * or __disable_runtime() below sets a specific rq to inf to
595 		 * indicate its been disabled and disalow stealing.
596 		 */
597 		if (iter->rt_runtime == RUNTIME_INF)
598 			goto next;
599 
600 		/*
601 		 * From runqueues with spare time, take 1/n part of their
602 		 * spare time, but no more than our period.
603 		 */
604 		diff = iter->rt_runtime - iter->rt_time;
605 		if (diff > 0) {
606 			diff = div_u64((u64)diff, weight);
607 			if (rt_rq->rt_runtime + diff > rt_period)
608 				diff = rt_period - rt_rq->rt_runtime;
609 			iter->rt_runtime -= diff;
610 			rt_rq->rt_runtime += diff;
611 			more = 1;
612 			if (rt_rq->rt_runtime == rt_period) {
613 				raw_spin_unlock(&iter->rt_runtime_lock);
614 				break;
615 			}
616 		}
617 next:
618 		raw_spin_unlock(&iter->rt_runtime_lock);
619 	}
620 	raw_spin_unlock(&rt_b->rt_runtime_lock);
621 
622 	return more;
623 }
624 
625 /*
626  * Ensure this RQ takes back all the runtime it lend to its neighbours.
627  */
628 static void __disable_runtime(struct rq *rq)
629 {
630 	struct root_domain *rd = rq->rd;
631 	rt_rq_iter_t iter;
632 	struct rt_rq *rt_rq;
633 
634 	if (unlikely(!scheduler_running))
635 		return;
636 
637 	for_each_rt_rq(rt_rq, iter, rq) {
638 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
639 		s64 want;
640 		int i;
641 
642 		raw_spin_lock(&rt_b->rt_runtime_lock);
643 		raw_spin_lock(&rt_rq->rt_runtime_lock);
644 		/*
645 		 * Either we're all inf and nobody needs to borrow, or we're
646 		 * already disabled and thus have nothing to do, or we have
647 		 * exactly the right amount of runtime to take out.
648 		 */
649 		if (rt_rq->rt_runtime == RUNTIME_INF ||
650 				rt_rq->rt_runtime == rt_b->rt_runtime)
651 			goto balanced;
652 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
653 
654 		/*
655 		 * Calculate the difference between what we started out with
656 		 * and what we current have, that's the amount of runtime
657 		 * we lend and now have to reclaim.
658 		 */
659 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
660 
661 		/*
662 		 * Greedy reclaim, take back as much as we can.
663 		 */
664 		for_each_cpu(i, rd->span) {
665 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
666 			s64 diff;
667 
668 			/*
669 			 * Can't reclaim from ourselves or disabled runqueues.
670 			 */
671 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
672 				continue;
673 
674 			raw_spin_lock(&iter->rt_runtime_lock);
675 			if (want > 0) {
676 				diff = min_t(s64, iter->rt_runtime, want);
677 				iter->rt_runtime -= diff;
678 				want -= diff;
679 			} else {
680 				iter->rt_runtime -= want;
681 				want -= want;
682 			}
683 			raw_spin_unlock(&iter->rt_runtime_lock);
684 
685 			if (!want)
686 				break;
687 		}
688 
689 		raw_spin_lock(&rt_rq->rt_runtime_lock);
690 		/*
691 		 * We cannot be left wanting - that would mean some runtime
692 		 * leaked out of the system.
693 		 */
694 		BUG_ON(want);
695 balanced:
696 		/*
697 		 * Disable all the borrow logic by pretending we have inf
698 		 * runtime - in which case borrowing doesn't make sense.
699 		 */
700 		rt_rq->rt_runtime = RUNTIME_INF;
701 		rt_rq->rt_throttled = 0;
702 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
703 		raw_spin_unlock(&rt_b->rt_runtime_lock);
704 	}
705 }
706 
707 static void __enable_runtime(struct rq *rq)
708 {
709 	rt_rq_iter_t iter;
710 	struct rt_rq *rt_rq;
711 
712 	if (unlikely(!scheduler_running))
713 		return;
714 
715 	/*
716 	 * Reset each runqueue's bandwidth settings
717 	 */
718 	for_each_rt_rq(rt_rq, iter, rq) {
719 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
720 
721 		raw_spin_lock(&rt_b->rt_runtime_lock);
722 		raw_spin_lock(&rt_rq->rt_runtime_lock);
723 		rt_rq->rt_runtime = rt_b->rt_runtime;
724 		rt_rq->rt_time = 0;
725 		rt_rq->rt_throttled = 0;
726 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
727 		raw_spin_unlock(&rt_b->rt_runtime_lock);
728 	}
729 }
730 
731 static int balance_runtime(struct rt_rq *rt_rq)
732 {
733 	int more = 0;
734 
735 	if (!sched_feat(RT_RUNTIME_SHARE))
736 		return more;
737 
738 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
739 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
740 		more = do_balance_runtime(rt_rq);
741 		raw_spin_lock(&rt_rq->rt_runtime_lock);
742 	}
743 
744 	return more;
745 }
746 #else /* !CONFIG_SMP */
747 static inline int balance_runtime(struct rt_rq *rt_rq)
748 {
749 	return 0;
750 }
751 #endif /* CONFIG_SMP */
752 
753 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
754 {
755 	int i, idle = 1, throttled = 0;
756 	const struct cpumask *span;
757 
758 	span = sched_rt_period_mask();
759 #ifdef CONFIG_RT_GROUP_SCHED
760 	/*
761 	 * FIXME: isolated CPUs should really leave the root task group,
762 	 * whether they are isolcpus or were isolated via cpusets, lest
763 	 * the timer run on a CPU which does not service all runqueues,
764 	 * potentially leaving other CPUs indefinitely throttled.  If
765 	 * isolation is really required, the user will turn the throttle
766 	 * off to kill the perturbations it causes anyway.  Meanwhile,
767 	 * this maintains functionality for boot and/or troubleshooting.
768 	 */
769 	if (rt_b == &root_task_group.rt_bandwidth)
770 		span = cpu_online_mask;
771 #endif
772 	for_each_cpu(i, span) {
773 		int enqueue = 0;
774 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
775 		struct rq *rq = rq_of_rt_rq(rt_rq);
776 
777 		raw_spin_lock(&rq->lock);
778 		if (rt_rq->rt_time) {
779 			u64 runtime;
780 
781 			raw_spin_lock(&rt_rq->rt_runtime_lock);
782 			if (rt_rq->rt_throttled)
783 				balance_runtime(rt_rq);
784 			runtime = rt_rq->rt_runtime;
785 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
786 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
787 				rt_rq->rt_throttled = 0;
788 				enqueue = 1;
789 
790 				/*
791 				 * Force a clock update if the CPU was idle,
792 				 * lest wakeup -> unthrottle time accumulate.
793 				 */
794 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
795 					rq->skip_clock_update = -1;
796 			}
797 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
798 				idle = 0;
799 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
800 		} else if (rt_rq->rt_nr_running) {
801 			idle = 0;
802 			if (!rt_rq_throttled(rt_rq))
803 				enqueue = 1;
804 		}
805 		if (rt_rq->rt_throttled)
806 			throttled = 1;
807 
808 		if (enqueue)
809 			sched_rt_rq_enqueue(rt_rq);
810 		raw_spin_unlock(&rq->lock);
811 	}
812 
813 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
814 		return 1;
815 
816 	return idle;
817 }
818 
819 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
820 {
821 #ifdef CONFIG_RT_GROUP_SCHED
822 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
823 
824 	if (rt_rq)
825 		return rt_rq->highest_prio.curr;
826 #endif
827 
828 	return rt_task_of(rt_se)->prio;
829 }
830 
831 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
832 {
833 	u64 runtime = sched_rt_runtime(rt_rq);
834 
835 	if (rt_rq->rt_throttled)
836 		return rt_rq_throttled(rt_rq);
837 
838 	if (runtime >= sched_rt_period(rt_rq))
839 		return 0;
840 
841 	balance_runtime(rt_rq);
842 	runtime = sched_rt_runtime(rt_rq);
843 	if (runtime == RUNTIME_INF)
844 		return 0;
845 
846 	if (rt_rq->rt_time > runtime) {
847 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
848 
849 		/*
850 		 * Don't actually throttle groups that have no runtime assigned
851 		 * but accrue some time due to boosting.
852 		 */
853 		if (likely(rt_b->rt_runtime)) {
854 			static bool once = false;
855 
856 			rt_rq->rt_throttled = 1;
857 
858 			if (!once) {
859 				once = true;
860 				printk_sched("sched: RT throttling activated\n");
861 			}
862 		} else {
863 			/*
864 			 * In case we did anyway, make it go away,
865 			 * replenishment is a joke, since it will replenish us
866 			 * with exactly 0 ns.
867 			 */
868 			rt_rq->rt_time = 0;
869 		}
870 
871 		if (rt_rq_throttled(rt_rq)) {
872 			sched_rt_rq_dequeue(rt_rq);
873 			return 1;
874 		}
875 	}
876 
877 	return 0;
878 }
879 
880 /*
881  * Update the current task's runtime statistics. Skip current tasks that
882  * are not in our scheduling class.
883  */
884 static void update_curr_rt(struct rq *rq)
885 {
886 	struct task_struct *curr = rq->curr;
887 	struct sched_rt_entity *rt_se = &curr->rt;
888 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
889 	u64 delta_exec;
890 
891 	if (curr->sched_class != &rt_sched_class)
892 		return;
893 
894 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
895 	if (unlikely((s64)delta_exec <= 0))
896 		return;
897 
898 	schedstat_set(curr->se.statistics.exec_max,
899 		      max(curr->se.statistics.exec_max, delta_exec));
900 
901 	curr->se.sum_exec_runtime += delta_exec;
902 	account_group_exec_runtime(curr, delta_exec);
903 
904 	curr->se.exec_start = rq_clock_task(rq);
905 	cpuacct_charge(curr, delta_exec);
906 
907 	sched_rt_avg_update(rq, delta_exec);
908 
909 	if (!rt_bandwidth_enabled())
910 		return;
911 
912 	for_each_sched_rt_entity(rt_se) {
913 		rt_rq = rt_rq_of_se(rt_se);
914 
915 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
916 			raw_spin_lock(&rt_rq->rt_runtime_lock);
917 			rt_rq->rt_time += delta_exec;
918 			if (sched_rt_runtime_exceeded(rt_rq))
919 				resched_task(curr);
920 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
921 		}
922 	}
923 }
924 
925 #if defined CONFIG_SMP
926 
927 static void
928 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
929 {
930 	struct rq *rq = rq_of_rt_rq(rt_rq);
931 
932 #ifdef CONFIG_RT_GROUP_SCHED
933 	/*
934 	 * Change rq's cpupri only if rt_rq is the top queue.
935 	 */
936 	if (&rq->rt != rt_rq)
937 		return;
938 #endif
939 	if (rq->online && prio < prev_prio)
940 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
941 }
942 
943 static void
944 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
945 {
946 	struct rq *rq = rq_of_rt_rq(rt_rq);
947 
948 #ifdef CONFIG_RT_GROUP_SCHED
949 	/*
950 	 * Change rq's cpupri only if rt_rq is the top queue.
951 	 */
952 	if (&rq->rt != rt_rq)
953 		return;
954 #endif
955 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
956 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
957 }
958 
959 #else /* CONFIG_SMP */
960 
961 static inline
962 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
963 static inline
964 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
965 
966 #endif /* CONFIG_SMP */
967 
968 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
969 static void
970 inc_rt_prio(struct rt_rq *rt_rq, int prio)
971 {
972 	int prev_prio = rt_rq->highest_prio.curr;
973 
974 	if (prio < prev_prio)
975 		rt_rq->highest_prio.curr = prio;
976 
977 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
978 }
979 
980 static void
981 dec_rt_prio(struct rt_rq *rt_rq, int prio)
982 {
983 	int prev_prio = rt_rq->highest_prio.curr;
984 
985 	if (rt_rq->rt_nr_running) {
986 
987 		WARN_ON(prio < prev_prio);
988 
989 		/*
990 		 * This may have been our highest task, and therefore
991 		 * we may have some recomputation to do
992 		 */
993 		if (prio == prev_prio) {
994 			struct rt_prio_array *array = &rt_rq->active;
995 
996 			rt_rq->highest_prio.curr =
997 				sched_find_first_bit(array->bitmap);
998 		}
999 
1000 	} else
1001 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1002 
1003 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1004 }
1005 
1006 #else
1007 
1008 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1009 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1010 
1011 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1012 
1013 #ifdef CONFIG_RT_GROUP_SCHED
1014 
1015 static void
1016 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1017 {
1018 	if (rt_se_boosted(rt_se))
1019 		rt_rq->rt_nr_boosted++;
1020 
1021 	if (rt_rq->tg)
1022 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1023 }
1024 
1025 static void
1026 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1027 {
1028 	if (rt_se_boosted(rt_se))
1029 		rt_rq->rt_nr_boosted--;
1030 
1031 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1032 }
1033 
1034 #else /* CONFIG_RT_GROUP_SCHED */
1035 
1036 static void
1037 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1038 {
1039 	start_rt_bandwidth(&def_rt_bandwidth);
1040 }
1041 
1042 static inline
1043 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1044 
1045 #endif /* CONFIG_RT_GROUP_SCHED */
1046 
1047 static inline
1048 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1049 {
1050 	int prio = rt_se_prio(rt_se);
1051 
1052 	WARN_ON(!rt_prio(prio));
1053 	rt_rq->rt_nr_running++;
1054 
1055 	inc_rt_prio(rt_rq, prio);
1056 	inc_rt_migration(rt_se, rt_rq);
1057 	inc_rt_group(rt_se, rt_rq);
1058 }
1059 
1060 static inline
1061 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1062 {
1063 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1064 	WARN_ON(!rt_rq->rt_nr_running);
1065 	rt_rq->rt_nr_running--;
1066 
1067 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1068 	dec_rt_migration(rt_se, rt_rq);
1069 	dec_rt_group(rt_se, rt_rq);
1070 }
1071 
1072 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1073 {
1074 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1075 	struct rt_prio_array *array = &rt_rq->active;
1076 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1077 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1078 
1079 	/*
1080 	 * Don't enqueue the group if its throttled, or when empty.
1081 	 * The latter is a consequence of the former when a child group
1082 	 * get throttled and the current group doesn't have any other
1083 	 * active members.
1084 	 */
1085 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1086 		return;
1087 
1088 	if (head)
1089 		list_add(&rt_se->run_list, queue);
1090 	else
1091 		list_add_tail(&rt_se->run_list, queue);
1092 	__set_bit(rt_se_prio(rt_se), array->bitmap);
1093 
1094 	inc_rt_tasks(rt_se, rt_rq);
1095 }
1096 
1097 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1098 {
1099 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1100 	struct rt_prio_array *array = &rt_rq->active;
1101 
1102 	list_del_init(&rt_se->run_list);
1103 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1104 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1105 
1106 	dec_rt_tasks(rt_se, rt_rq);
1107 }
1108 
1109 /*
1110  * Because the prio of an upper entry depends on the lower
1111  * entries, we must remove entries top - down.
1112  */
1113 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1114 {
1115 	struct sched_rt_entity *back = NULL;
1116 
1117 	for_each_sched_rt_entity(rt_se) {
1118 		rt_se->back = back;
1119 		back = rt_se;
1120 	}
1121 
1122 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1123 		if (on_rt_rq(rt_se))
1124 			__dequeue_rt_entity(rt_se);
1125 	}
1126 }
1127 
1128 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1129 {
1130 	dequeue_rt_stack(rt_se);
1131 	for_each_sched_rt_entity(rt_se)
1132 		__enqueue_rt_entity(rt_se, head);
1133 }
1134 
1135 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1136 {
1137 	dequeue_rt_stack(rt_se);
1138 
1139 	for_each_sched_rt_entity(rt_se) {
1140 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1141 
1142 		if (rt_rq && rt_rq->rt_nr_running)
1143 			__enqueue_rt_entity(rt_se, false);
1144 	}
1145 }
1146 
1147 /*
1148  * Adding/removing a task to/from a priority array:
1149  */
1150 static void
1151 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1152 {
1153 	struct sched_rt_entity *rt_se = &p->rt;
1154 
1155 	if (flags & ENQUEUE_WAKEUP)
1156 		rt_se->timeout = 0;
1157 
1158 	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1159 
1160 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1161 		enqueue_pushable_task(rq, p);
1162 
1163 	inc_nr_running(rq);
1164 }
1165 
1166 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1167 {
1168 	struct sched_rt_entity *rt_se = &p->rt;
1169 
1170 	update_curr_rt(rq);
1171 	dequeue_rt_entity(rt_se);
1172 
1173 	dequeue_pushable_task(rq, p);
1174 
1175 	dec_nr_running(rq);
1176 }
1177 
1178 /*
1179  * Put task to the head or the end of the run list without the overhead of
1180  * dequeue followed by enqueue.
1181  */
1182 static void
1183 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1184 {
1185 	if (on_rt_rq(rt_se)) {
1186 		struct rt_prio_array *array = &rt_rq->active;
1187 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1188 
1189 		if (head)
1190 			list_move(&rt_se->run_list, queue);
1191 		else
1192 			list_move_tail(&rt_se->run_list, queue);
1193 	}
1194 }
1195 
1196 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1197 {
1198 	struct sched_rt_entity *rt_se = &p->rt;
1199 	struct rt_rq *rt_rq;
1200 
1201 	for_each_sched_rt_entity(rt_se) {
1202 		rt_rq = rt_rq_of_se(rt_se);
1203 		requeue_rt_entity(rt_rq, rt_se, head);
1204 	}
1205 }
1206 
1207 static void yield_task_rt(struct rq *rq)
1208 {
1209 	requeue_task_rt(rq, rq->curr, 0);
1210 }
1211 
1212 #ifdef CONFIG_SMP
1213 static int find_lowest_rq(struct task_struct *task);
1214 
1215 static int
1216 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1217 {
1218 	struct task_struct *curr;
1219 	struct rq *rq;
1220 
1221 	if (p->nr_cpus_allowed == 1)
1222 		goto out;
1223 
1224 	/* For anything but wake ups, just return the task_cpu */
1225 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1226 		goto out;
1227 
1228 	rq = cpu_rq(cpu);
1229 
1230 	rcu_read_lock();
1231 	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1232 
1233 	/*
1234 	 * If the current task on @p's runqueue is an RT task, then
1235 	 * try to see if we can wake this RT task up on another
1236 	 * runqueue. Otherwise simply start this RT task
1237 	 * on its current runqueue.
1238 	 *
1239 	 * We want to avoid overloading runqueues. If the woken
1240 	 * task is a higher priority, then it will stay on this CPU
1241 	 * and the lower prio task should be moved to another CPU.
1242 	 * Even though this will probably make the lower prio task
1243 	 * lose its cache, we do not want to bounce a higher task
1244 	 * around just because it gave up its CPU, perhaps for a
1245 	 * lock?
1246 	 *
1247 	 * For equal prio tasks, we just let the scheduler sort it out.
1248 	 *
1249 	 * Otherwise, just let it ride on the affined RQ and the
1250 	 * post-schedule router will push the preempted task away
1251 	 *
1252 	 * This test is optimistic, if we get it wrong the load-balancer
1253 	 * will have to sort it out.
1254 	 */
1255 	if (curr && unlikely(rt_task(curr)) &&
1256 	    (curr->nr_cpus_allowed < 2 ||
1257 	     curr->prio <= p->prio)) {
1258 		int target = find_lowest_rq(p);
1259 
1260 		if (target != -1)
1261 			cpu = target;
1262 	}
1263 	rcu_read_unlock();
1264 
1265 out:
1266 	return cpu;
1267 }
1268 
1269 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1270 {
1271 	if (rq->curr->nr_cpus_allowed == 1)
1272 		return;
1273 
1274 	if (p->nr_cpus_allowed != 1
1275 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1276 		return;
1277 
1278 	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1279 		return;
1280 
1281 	/*
1282 	 * There appears to be other cpus that can accept
1283 	 * current and none to run 'p', so lets reschedule
1284 	 * to try and push current away:
1285 	 */
1286 	requeue_task_rt(rq, p, 1);
1287 	resched_task(rq->curr);
1288 }
1289 
1290 #endif /* CONFIG_SMP */
1291 
1292 /*
1293  * Preempt the current task with a newly woken task if needed:
1294  */
1295 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1296 {
1297 	if (p->prio < rq->curr->prio) {
1298 		resched_task(rq->curr);
1299 		return;
1300 	}
1301 
1302 #ifdef CONFIG_SMP
1303 	/*
1304 	 * If:
1305 	 *
1306 	 * - the newly woken task is of equal priority to the current task
1307 	 * - the newly woken task is non-migratable while current is migratable
1308 	 * - current will be preempted on the next reschedule
1309 	 *
1310 	 * we should check to see if current can readily move to a different
1311 	 * cpu.  If so, we will reschedule to allow the push logic to try
1312 	 * to move current somewhere else, making room for our non-migratable
1313 	 * task.
1314 	 */
1315 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1316 		check_preempt_equal_prio(rq, p);
1317 #endif
1318 }
1319 
1320 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1321 						   struct rt_rq *rt_rq)
1322 {
1323 	struct rt_prio_array *array = &rt_rq->active;
1324 	struct sched_rt_entity *next = NULL;
1325 	struct list_head *queue;
1326 	int idx;
1327 
1328 	idx = sched_find_first_bit(array->bitmap);
1329 	BUG_ON(idx >= MAX_RT_PRIO);
1330 
1331 	queue = array->queue + idx;
1332 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1333 
1334 	return next;
1335 }
1336 
1337 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1338 {
1339 	struct sched_rt_entity *rt_se;
1340 	struct task_struct *p;
1341 	struct rt_rq *rt_rq  = &rq->rt;
1342 
1343 	do {
1344 		rt_se = pick_next_rt_entity(rq, rt_rq);
1345 		BUG_ON(!rt_se);
1346 		rt_rq = group_rt_rq(rt_se);
1347 	} while (rt_rq);
1348 
1349 	p = rt_task_of(rt_se);
1350 	p->se.exec_start = rq_clock_task(rq);
1351 
1352 	return p;
1353 }
1354 
1355 static struct task_struct *
1356 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1357 {
1358 	struct task_struct *p;
1359 	struct rt_rq *rt_rq = &rq->rt;
1360 
1361 	if (need_pull_rt_task(rq, prev)) {
1362 		pull_rt_task(rq);
1363 		/*
1364 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1365 		 * means a dl task can slip in, in which case we need to
1366 		 * re-start task selection.
1367 		 */
1368 		if (unlikely(rq->dl.dl_nr_running))
1369 			return RETRY_TASK;
1370 	}
1371 
1372 	/*
1373 	 * We may dequeue prev's rt_rq in put_prev_task().
1374 	 * So, we update time before rt_nr_running check.
1375 	 */
1376 	if (prev->sched_class == &rt_sched_class)
1377 		update_curr_rt(rq);
1378 
1379 	if (!rt_rq->rt_nr_running)
1380 		return NULL;
1381 
1382 	if (rt_rq_throttled(rt_rq))
1383 		return NULL;
1384 
1385 	put_prev_task(rq, prev);
1386 
1387 	p = _pick_next_task_rt(rq);
1388 
1389 	/* The running task is never eligible for pushing */
1390 	if (p)
1391 		dequeue_pushable_task(rq, p);
1392 
1393 	set_post_schedule(rq);
1394 
1395 	return p;
1396 }
1397 
1398 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1399 {
1400 	update_curr_rt(rq);
1401 
1402 	/*
1403 	 * The previous task needs to be made eligible for pushing
1404 	 * if it is still active
1405 	 */
1406 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1407 		enqueue_pushable_task(rq, p);
1408 }
1409 
1410 #ifdef CONFIG_SMP
1411 
1412 /* Only try algorithms three times */
1413 #define RT_MAX_TRIES 3
1414 
1415 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1416 {
1417 	if (!task_running(rq, p) &&
1418 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1419 		return 1;
1420 	return 0;
1421 }
1422 
1423 /*
1424  * Return the highest pushable rq's task, which is suitable to be executed
1425  * on the cpu, NULL otherwise
1426  */
1427 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1428 {
1429 	struct plist_head *head = &rq->rt.pushable_tasks;
1430 	struct task_struct *p;
1431 
1432 	if (!has_pushable_tasks(rq))
1433 		return NULL;
1434 
1435 	plist_for_each_entry(p, head, pushable_tasks) {
1436 		if (pick_rt_task(rq, p, cpu))
1437 			return p;
1438 	}
1439 
1440 	return NULL;
1441 }
1442 
1443 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1444 
1445 static int find_lowest_rq(struct task_struct *task)
1446 {
1447 	struct sched_domain *sd;
1448 	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1449 	int this_cpu = smp_processor_id();
1450 	int cpu      = task_cpu(task);
1451 
1452 	/* Make sure the mask is initialized first */
1453 	if (unlikely(!lowest_mask))
1454 		return -1;
1455 
1456 	if (task->nr_cpus_allowed == 1)
1457 		return -1; /* No other targets possible */
1458 
1459 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1460 		return -1; /* No targets found */
1461 
1462 	/*
1463 	 * At this point we have built a mask of cpus representing the
1464 	 * lowest priority tasks in the system.  Now we want to elect
1465 	 * the best one based on our affinity and topology.
1466 	 *
1467 	 * We prioritize the last cpu that the task executed on since
1468 	 * it is most likely cache-hot in that location.
1469 	 */
1470 	if (cpumask_test_cpu(cpu, lowest_mask))
1471 		return cpu;
1472 
1473 	/*
1474 	 * Otherwise, we consult the sched_domains span maps to figure
1475 	 * out which cpu is logically closest to our hot cache data.
1476 	 */
1477 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1478 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1479 
1480 	rcu_read_lock();
1481 	for_each_domain(cpu, sd) {
1482 		if (sd->flags & SD_WAKE_AFFINE) {
1483 			int best_cpu;
1484 
1485 			/*
1486 			 * "this_cpu" is cheaper to preempt than a
1487 			 * remote processor.
1488 			 */
1489 			if (this_cpu != -1 &&
1490 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1491 				rcu_read_unlock();
1492 				return this_cpu;
1493 			}
1494 
1495 			best_cpu = cpumask_first_and(lowest_mask,
1496 						     sched_domain_span(sd));
1497 			if (best_cpu < nr_cpu_ids) {
1498 				rcu_read_unlock();
1499 				return best_cpu;
1500 			}
1501 		}
1502 	}
1503 	rcu_read_unlock();
1504 
1505 	/*
1506 	 * And finally, if there were no matches within the domains
1507 	 * just give the caller *something* to work with from the compatible
1508 	 * locations.
1509 	 */
1510 	if (this_cpu != -1)
1511 		return this_cpu;
1512 
1513 	cpu = cpumask_any(lowest_mask);
1514 	if (cpu < nr_cpu_ids)
1515 		return cpu;
1516 	return -1;
1517 }
1518 
1519 /* Will lock the rq it finds */
1520 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1521 {
1522 	struct rq *lowest_rq = NULL;
1523 	int tries;
1524 	int cpu;
1525 
1526 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1527 		cpu = find_lowest_rq(task);
1528 
1529 		if ((cpu == -1) || (cpu == rq->cpu))
1530 			break;
1531 
1532 		lowest_rq = cpu_rq(cpu);
1533 
1534 		/* if the prio of this runqueue changed, try again */
1535 		if (double_lock_balance(rq, lowest_rq)) {
1536 			/*
1537 			 * We had to unlock the run queue. In
1538 			 * the mean time, task could have
1539 			 * migrated already or had its affinity changed.
1540 			 * Also make sure that it wasn't scheduled on its rq.
1541 			 */
1542 			if (unlikely(task_rq(task) != rq ||
1543 				     !cpumask_test_cpu(lowest_rq->cpu,
1544 						       tsk_cpus_allowed(task)) ||
1545 				     task_running(rq, task) ||
1546 				     !task->on_rq)) {
1547 
1548 				double_unlock_balance(rq, lowest_rq);
1549 				lowest_rq = NULL;
1550 				break;
1551 			}
1552 		}
1553 
1554 		/* If this rq is still suitable use it. */
1555 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1556 			break;
1557 
1558 		/* try again */
1559 		double_unlock_balance(rq, lowest_rq);
1560 		lowest_rq = NULL;
1561 	}
1562 
1563 	return lowest_rq;
1564 }
1565 
1566 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1567 {
1568 	struct task_struct *p;
1569 
1570 	if (!has_pushable_tasks(rq))
1571 		return NULL;
1572 
1573 	p = plist_first_entry(&rq->rt.pushable_tasks,
1574 			      struct task_struct, pushable_tasks);
1575 
1576 	BUG_ON(rq->cpu != task_cpu(p));
1577 	BUG_ON(task_current(rq, p));
1578 	BUG_ON(p->nr_cpus_allowed <= 1);
1579 
1580 	BUG_ON(!p->on_rq);
1581 	BUG_ON(!rt_task(p));
1582 
1583 	return p;
1584 }
1585 
1586 /*
1587  * If the current CPU has more than one RT task, see if the non
1588  * running task can migrate over to a CPU that is running a task
1589  * of lesser priority.
1590  */
1591 static int push_rt_task(struct rq *rq)
1592 {
1593 	struct task_struct *next_task;
1594 	struct rq *lowest_rq;
1595 	int ret = 0;
1596 
1597 	if (!rq->rt.overloaded)
1598 		return 0;
1599 
1600 	next_task = pick_next_pushable_task(rq);
1601 	if (!next_task)
1602 		return 0;
1603 
1604 retry:
1605 	if (unlikely(next_task == rq->curr)) {
1606 		WARN_ON(1);
1607 		return 0;
1608 	}
1609 
1610 	/*
1611 	 * It's possible that the next_task slipped in of
1612 	 * higher priority than current. If that's the case
1613 	 * just reschedule current.
1614 	 */
1615 	if (unlikely(next_task->prio < rq->curr->prio)) {
1616 		resched_task(rq->curr);
1617 		return 0;
1618 	}
1619 
1620 	/* We might release rq lock */
1621 	get_task_struct(next_task);
1622 
1623 	/* find_lock_lowest_rq locks the rq if found */
1624 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1625 	if (!lowest_rq) {
1626 		struct task_struct *task;
1627 		/*
1628 		 * find_lock_lowest_rq releases rq->lock
1629 		 * so it is possible that next_task has migrated.
1630 		 *
1631 		 * We need to make sure that the task is still on the same
1632 		 * run-queue and is also still the next task eligible for
1633 		 * pushing.
1634 		 */
1635 		task = pick_next_pushable_task(rq);
1636 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1637 			/*
1638 			 * The task hasn't migrated, and is still the next
1639 			 * eligible task, but we failed to find a run-queue
1640 			 * to push it to.  Do not retry in this case, since
1641 			 * other cpus will pull from us when ready.
1642 			 */
1643 			goto out;
1644 		}
1645 
1646 		if (!task)
1647 			/* No more tasks, just exit */
1648 			goto out;
1649 
1650 		/*
1651 		 * Something has shifted, try again.
1652 		 */
1653 		put_task_struct(next_task);
1654 		next_task = task;
1655 		goto retry;
1656 	}
1657 
1658 	deactivate_task(rq, next_task, 0);
1659 	set_task_cpu(next_task, lowest_rq->cpu);
1660 	activate_task(lowest_rq, next_task, 0);
1661 	ret = 1;
1662 
1663 	resched_task(lowest_rq->curr);
1664 
1665 	double_unlock_balance(rq, lowest_rq);
1666 
1667 out:
1668 	put_task_struct(next_task);
1669 
1670 	return ret;
1671 }
1672 
1673 static void push_rt_tasks(struct rq *rq)
1674 {
1675 	/* push_rt_task will return true if it moved an RT */
1676 	while (push_rt_task(rq))
1677 		;
1678 }
1679 
1680 static int pull_rt_task(struct rq *this_rq)
1681 {
1682 	int this_cpu = this_rq->cpu, ret = 0, cpu;
1683 	struct task_struct *p;
1684 	struct rq *src_rq;
1685 
1686 	if (likely(!rt_overloaded(this_rq)))
1687 		return 0;
1688 
1689 	/*
1690 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
1691 	 * see overloaded we must also see the rto_mask bit.
1692 	 */
1693 	smp_rmb();
1694 
1695 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1696 		if (this_cpu == cpu)
1697 			continue;
1698 
1699 		src_rq = cpu_rq(cpu);
1700 
1701 		/*
1702 		 * Don't bother taking the src_rq->lock if the next highest
1703 		 * task is known to be lower-priority than our current task.
1704 		 * This may look racy, but if this value is about to go
1705 		 * logically higher, the src_rq will push this task away.
1706 		 * And if its going logically lower, we do not care
1707 		 */
1708 		if (src_rq->rt.highest_prio.next >=
1709 		    this_rq->rt.highest_prio.curr)
1710 			continue;
1711 
1712 		/*
1713 		 * We can potentially drop this_rq's lock in
1714 		 * double_lock_balance, and another CPU could
1715 		 * alter this_rq
1716 		 */
1717 		double_lock_balance(this_rq, src_rq);
1718 
1719 		/*
1720 		 * We can pull only a task, which is pushable
1721 		 * on its rq, and no others.
1722 		 */
1723 		p = pick_highest_pushable_task(src_rq, this_cpu);
1724 
1725 		/*
1726 		 * Do we have an RT task that preempts
1727 		 * the to-be-scheduled task?
1728 		 */
1729 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1730 			WARN_ON(p == src_rq->curr);
1731 			WARN_ON(!p->on_rq);
1732 
1733 			/*
1734 			 * There's a chance that p is higher in priority
1735 			 * than what's currently running on its cpu.
1736 			 * This is just that p is wakeing up and hasn't
1737 			 * had a chance to schedule. We only pull
1738 			 * p if it is lower in priority than the
1739 			 * current task on the run queue
1740 			 */
1741 			if (p->prio < src_rq->curr->prio)
1742 				goto skip;
1743 
1744 			ret = 1;
1745 
1746 			deactivate_task(src_rq, p, 0);
1747 			set_task_cpu(p, this_cpu);
1748 			activate_task(this_rq, p, 0);
1749 			/*
1750 			 * We continue with the search, just in
1751 			 * case there's an even higher prio task
1752 			 * in another runqueue. (low likelihood
1753 			 * but possible)
1754 			 */
1755 		}
1756 skip:
1757 		double_unlock_balance(this_rq, src_rq);
1758 	}
1759 
1760 	return ret;
1761 }
1762 
1763 static void post_schedule_rt(struct rq *rq)
1764 {
1765 	push_rt_tasks(rq);
1766 }
1767 
1768 /*
1769  * If we are not running and we are not going to reschedule soon, we should
1770  * try to push tasks away now
1771  */
1772 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1773 {
1774 	if (!task_running(rq, p) &&
1775 	    !test_tsk_need_resched(rq->curr) &&
1776 	    has_pushable_tasks(rq) &&
1777 	    p->nr_cpus_allowed > 1 &&
1778 	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
1779 	    (rq->curr->nr_cpus_allowed < 2 ||
1780 	     rq->curr->prio <= p->prio))
1781 		push_rt_tasks(rq);
1782 }
1783 
1784 static void set_cpus_allowed_rt(struct task_struct *p,
1785 				const struct cpumask *new_mask)
1786 {
1787 	struct rq *rq;
1788 	int weight;
1789 
1790 	BUG_ON(!rt_task(p));
1791 
1792 	if (!p->on_rq)
1793 		return;
1794 
1795 	weight = cpumask_weight(new_mask);
1796 
1797 	/*
1798 	 * Only update if the process changes its state from whether it
1799 	 * can migrate or not.
1800 	 */
1801 	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1802 		return;
1803 
1804 	rq = task_rq(p);
1805 
1806 	/*
1807 	 * The process used to be able to migrate OR it can now migrate
1808 	 */
1809 	if (weight <= 1) {
1810 		if (!task_current(rq, p))
1811 			dequeue_pushable_task(rq, p);
1812 		BUG_ON(!rq->rt.rt_nr_migratory);
1813 		rq->rt.rt_nr_migratory--;
1814 	} else {
1815 		if (!task_current(rq, p))
1816 			enqueue_pushable_task(rq, p);
1817 		rq->rt.rt_nr_migratory++;
1818 	}
1819 
1820 	update_rt_migration(&rq->rt);
1821 }
1822 
1823 /* Assumes rq->lock is held */
1824 static void rq_online_rt(struct rq *rq)
1825 {
1826 	if (rq->rt.overloaded)
1827 		rt_set_overload(rq);
1828 
1829 	__enable_runtime(rq);
1830 
1831 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1832 }
1833 
1834 /* Assumes rq->lock is held */
1835 static void rq_offline_rt(struct rq *rq)
1836 {
1837 	if (rq->rt.overloaded)
1838 		rt_clear_overload(rq);
1839 
1840 	__disable_runtime(rq);
1841 
1842 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1843 }
1844 
1845 /*
1846  * When switch from the rt queue, we bring ourselves to a position
1847  * that we might want to pull RT tasks from other runqueues.
1848  */
1849 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1850 {
1851 	/*
1852 	 * If there are other RT tasks then we will reschedule
1853 	 * and the scheduling of the other RT tasks will handle
1854 	 * the balancing. But if we are the last RT task
1855 	 * we may need to handle the pulling of RT tasks
1856 	 * now.
1857 	 */
1858 	if (!p->on_rq || rq->rt.rt_nr_running)
1859 		return;
1860 
1861 	if (pull_rt_task(rq))
1862 		resched_task(rq->curr);
1863 }
1864 
1865 void __init init_sched_rt_class(void)
1866 {
1867 	unsigned int i;
1868 
1869 	for_each_possible_cpu(i) {
1870 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1871 					GFP_KERNEL, cpu_to_node(i));
1872 	}
1873 }
1874 #endif /* CONFIG_SMP */
1875 
1876 /*
1877  * When switching a task to RT, we may overload the runqueue
1878  * with RT tasks. In this case we try to push them off to
1879  * other runqueues.
1880  */
1881 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1882 {
1883 	int check_resched = 1;
1884 
1885 	/*
1886 	 * If we are already running, then there's nothing
1887 	 * that needs to be done. But if we are not running
1888 	 * we may need to preempt the current running task.
1889 	 * If that current running task is also an RT task
1890 	 * then see if we can move to another run queue.
1891 	 */
1892 	if (p->on_rq && rq->curr != p) {
1893 #ifdef CONFIG_SMP
1894 		if (rq->rt.overloaded && push_rt_task(rq) &&
1895 		    /* Don't resched if we changed runqueues */
1896 		    rq != task_rq(p))
1897 			check_resched = 0;
1898 #endif /* CONFIG_SMP */
1899 		if (check_resched && p->prio < rq->curr->prio)
1900 			resched_task(rq->curr);
1901 	}
1902 }
1903 
1904 /*
1905  * Priority of the task has changed. This may cause
1906  * us to initiate a push or pull.
1907  */
1908 static void
1909 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1910 {
1911 	if (!p->on_rq)
1912 		return;
1913 
1914 	if (rq->curr == p) {
1915 #ifdef CONFIG_SMP
1916 		/*
1917 		 * If our priority decreases while running, we
1918 		 * may need to pull tasks to this runqueue.
1919 		 */
1920 		if (oldprio < p->prio)
1921 			pull_rt_task(rq);
1922 		/*
1923 		 * If there's a higher priority task waiting to run
1924 		 * then reschedule. Note, the above pull_rt_task
1925 		 * can release the rq lock and p could migrate.
1926 		 * Only reschedule if p is still on the same runqueue.
1927 		 */
1928 		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1929 			resched_task(p);
1930 #else
1931 		/* For UP simply resched on drop of prio */
1932 		if (oldprio < p->prio)
1933 			resched_task(p);
1934 #endif /* CONFIG_SMP */
1935 	} else {
1936 		/*
1937 		 * This task is not running, but if it is
1938 		 * greater than the current running task
1939 		 * then reschedule.
1940 		 */
1941 		if (p->prio < rq->curr->prio)
1942 			resched_task(rq->curr);
1943 	}
1944 }
1945 
1946 static void watchdog(struct rq *rq, struct task_struct *p)
1947 {
1948 	unsigned long soft, hard;
1949 
1950 	/* max may change after cur was read, this will be fixed next tick */
1951 	soft = task_rlimit(p, RLIMIT_RTTIME);
1952 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1953 
1954 	if (soft != RLIM_INFINITY) {
1955 		unsigned long next;
1956 
1957 		if (p->rt.watchdog_stamp != jiffies) {
1958 			p->rt.timeout++;
1959 			p->rt.watchdog_stamp = jiffies;
1960 		}
1961 
1962 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1963 		if (p->rt.timeout > next)
1964 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1965 	}
1966 }
1967 
1968 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1969 {
1970 	struct sched_rt_entity *rt_se = &p->rt;
1971 
1972 	update_curr_rt(rq);
1973 
1974 	watchdog(rq, p);
1975 
1976 	/*
1977 	 * RR tasks need a special form of timeslice management.
1978 	 * FIFO tasks have no timeslices.
1979 	 */
1980 	if (p->policy != SCHED_RR)
1981 		return;
1982 
1983 	if (--p->rt.time_slice)
1984 		return;
1985 
1986 	p->rt.time_slice = sched_rr_timeslice;
1987 
1988 	/*
1989 	 * Requeue to the end of queue if we (and all of our ancestors) are not
1990 	 * the only element on the queue
1991 	 */
1992 	for_each_sched_rt_entity(rt_se) {
1993 		if (rt_se->run_list.prev != rt_se->run_list.next) {
1994 			requeue_task_rt(rq, p, 0);
1995 			set_tsk_need_resched(p);
1996 			return;
1997 		}
1998 	}
1999 }
2000 
2001 static void set_curr_task_rt(struct rq *rq)
2002 {
2003 	struct task_struct *p = rq->curr;
2004 
2005 	p->se.exec_start = rq_clock_task(rq);
2006 
2007 	/* The running task is never eligible for pushing */
2008 	dequeue_pushable_task(rq, p);
2009 }
2010 
2011 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2012 {
2013 	/*
2014 	 * Time slice is 0 for SCHED_FIFO tasks
2015 	 */
2016 	if (task->policy == SCHED_RR)
2017 		return sched_rr_timeslice;
2018 	else
2019 		return 0;
2020 }
2021 
2022 const struct sched_class rt_sched_class = {
2023 	.next			= &fair_sched_class,
2024 	.enqueue_task		= enqueue_task_rt,
2025 	.dequeue_task		= dequeue_task_rt,
2026 	.yield_task		= yield_task_rt,
2027 
2028 	.check_preempt_curr	= check_preempt_curr_rt,
2029 
2030 	.pick_next_task		= pick_next_task_rt,
2031 	.put_prev_task		= put_prev_task_rt,
2032 
2033 #ifdef CONFIG_SMP
2034 	.select_task_rq		= select_task_rq_rt,
2035 
2036 	.set_cpus_allowed       = set_cpus_allowed_rt,
2037 	.rq_online              = rq_online_rt,
2038 	.rq_offline             = rq_offline_rt,
2039 	.post_schedule		= post_schedule_rt,
2040 	.task_woken		= task_woken_rt,
2041 	.switched_from		= switched_from_rt,
2042 #endif
2043 
2044 	.set_curr_task          = set_curr_task_rt,
2045 	.task_tick		= task_tick_rt,
2046 
2047 	.get_rr_interval	= get_rr_interval_rt,
2048 
2049 	.prio_changed		= prio_changed_rt,
2050 	.switched_to		= switched_to_rt,
2051 };
2052 
2053 #ifdef CONFIG_SCHED_DEBUG
2054 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2055 
2056 void print_rt_stats(struct seq_file *m, int cpu)
2057 {
2058 	rt_rq_iter_t iter;
2059 	struct rt_rq *rt_rq;
2060 
2061 	rcu_read_lock();
2062 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2063 		print_rt_rq(m, cpu, rt_rq);
2064 	rcu_read_unlock();
2065 }
2066 #endif /* CONFIG_SCHED_DEBUG */
2067