1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 7 int sched_rr_timeslice = RR_TIMESLICE; 8 /* More than 4 hours if BW_SHIFT equals 20. */ 9 static const u64 max_rt_runtime = MAX_BW; 10 11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 12 13 struct rt_bandwidth def_rt_bandwidth; 14 15 /* 16 * period over which we measure -rt task CPU usage in us. 17 * default: 1s 18 */ 19 unsigned int sysctl_sched_rt_period = 1000000; 20 21 /* 22 * part of the period that we allow rt tasks to run in us. 23 * default: 0.95s 24 */ 25 int sysctl_sched_rt_runtime = 950000; 26 27 #ifdef CONFIG_SYSCTL 28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ; 29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer, 30 size_t *lenp, loff_t *ppos); 31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer, 32 size_t *lenp, loff_t *ppos); 33 static struct ctl_table sched_rt_sysctls[] = { 34 { 35 .procname = "sched_rt_period_us", 36 .data = &sysctl_sched_rt_period, 37 .maxlen = sizeof(unsigned int), 38 .mode = 0644, 39 .proc_handler = sched_rt_handler, 40 .extra1 = SYSCTL_ONE, 41 .extra2 = SYSCTL_INT_MAX, 42 }, 43 { 44 .procname = "sched_rt_runtime_us", 45 .data = &sysctl_sched_rt_runtime, 46 .maxlen = sizeof(int), 47 .mode = 0644, 48 .proc_handler = sched_rt_handler, 49 .extra1 = SYSCTL_NEG_ONE, 50 .extra2 = SYSCTL_INT_MAX, 51 }, 52 { 53 .procname = "sched_rr_timeslice_ms", 54 .data = &sysctl_sched_rr_timeslice, 55 .maxlen = sizeof(int), 56 .mode = 0644, 57 .proc_handler = sched_rr_handler, 58 }, 59 {} 60 }; 61 62 static int __init sched_rt_sysctl_init(void) 63 { 64 register_sysctl_init("kernel", sched_rt_sysctls); 65 return 0; 66 } 67 late_initcall(sched_rt_sysctl_init); 68 #endif 69 70 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 71 { 72 struct rt_bandwidth *rt_b = 73 container_of(timer, struct rt_bandwidth, rt_period_timer); 74 int idle = 0; 75 int overrun; 76 77 raw_spin_lock(&rt_b->rt_runtime_lock); 78 for (;;) { 79 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 80 if (!overrun) 81 break; 82 83 raw_spin_unlock(&rt_b->rt_runtime_lock); 84 idle = do_sched_rt_period_timer(rt_b, overrun); 85 raw_spin_lock(&rt_b->rt_runtime_lock); 86 } 87 if (idle) 88 rt_b->rt_period_active = 0; 89 raw_spin_unlock(&rt_b->rt_runtime_lock); 90 91 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 92 } 93 94 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 95 { 96 rt_b->rt_period = ns_to_ktime(period); 97 rt_b->rt_runtime = runtime; 98 99 raw_spin_lock_init(&rt_b->rt_runtime_lock); 100 101 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC, 102 HRTIMER_MODE_REL_HARD); 103 rt_b->rt_period_timer.function = sched_rt_period_timer; 104 } 105 106 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b) 107 { 108 raw_spin_lock(&rt_b->rt_runtime_lock); 109 if (!rt_b->rt_period_active) { 110 rt_b->rt_period_active = 1; 111 /* 112 * SCHED_DEADLINE updates the bandwidth, as a run away 113 * RT task with a DL task could hog a CPU. But DL does 114 * not reset the period. If a deadline task was running 115 * without an RT task running, it can cause RT tasks to 116 * throttle when they start up. Kick the timer right away 117 * to update the period. 118 */ 119 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 120 hrtimer_start_expires(&rt_b->rt_period_timer, 121 HRTIMER_MODE_ABS_PINNED_HARD); 122 } 123 raw_spin_unlock(&rt_b->rt_runtime_lock); 124 } 125 126 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 127 { 128 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 129 return; 130 131 do_start_rt_bandwidth(rt_b); 132 } 133 134 void init_rt_rq(struct rt_rq *rt_rq) 135 { 136 struct rt_prio_array *array; 137 int i; 138 139 array = &rt_rq->active; 140 for (i = 0; i < MAX_RT_PRIO; i++) { 141 INIT_LIST_HEAD(array->queue + i); 142 __clear_bit(i, array->bitmap); 143 } 144 /* delimiter for bitsearch: */ 145 __set_bit(MAX_RT_PRIO, array->bitmap); 146 147 #if defined CONFIG_SMP 148 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 149 rt_rq->highest_prio.next = MAX_RT_PRIO-1; 150 rt_rq->rt_nr_migratory = 0; 151 rt_rq->overloaded = 0; 152 plist_head_init(&rt_rq->pushable_tasks); 153 #endif /* CONFIG_SMP */ 154 /* We start is dequeued state, because no RT tasks are queued */ 155 rt_rq->rt_queued = 0; 156 157 rt_rq->rt_time = 0; 158 rt_rq->rt_throttled = 0; 159 rt_rq->rt_runtime = 0; 160 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 161 } 162 163 #ifdef CONFIG_RT_GROUP_SCHED 164 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 165 { 166 hrtimer_cancel(&rt_b->rt_period_timer); 167 } 168 169 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 170 171 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 172 { 173 #ifdef CONFIG_SCHED_DEBUG 174 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 175 #endif 176 return container_of(rt_se, struct task_struct, rt); 177 } 178 179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 180 { 181 return rt_rq->rq; 182 } 183 184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 185 { 186 return rt_se->rt_rq; 187 } 188 189 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 190 { 191 struct rt_rq *rt_rq = rt_se->rt_rq; 192 193 return rt_rq->rq; 194 } 195 196 void unregister_rt_sched_group(struct task_group *tg) 197 { 198 if (tg->rt_se) 199 destroy_rt_bandwidth(&tg->rt_bandwidth); 200 201 } 202 203 void free_rt_sched_group(struct task_group *tg) 204 { 205 int i; 206 207 for_each_possible_cpu(i) { 208 if (tg->rt_rq) 209 kfree(tg->rt_rq[i]); 210 if (tg->rt_se) 211 kfree(tg->rt_se[i]); 212 } 213 214 kfree(tg->rt_rq); 215 kfree(tg->rt_se); 216 } 217 218 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 219 struct sched_rt_entity *rt_se, int cpu, 220 struct sched_rt_entity *parent) 221 { 222 struct rq *rq = cpu_rq(cpu); 223 224 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 225 rt_rq->rt_nr_boosted = 0; 226 rt_rq->rq = rq; 227 rt_rq->tg = tg; 228 229 tg->rt_rq[cpu] = rt_rq; 230 tg->rt_se[cpu] = rt_se; 231 232 if (!rt_se) 233 return; 234 235 if (!parent) 236 rt_se->rt_rq = &rq->rt; 237 else 238 rt_se->rt_rq = parent->my_q; 239 240 rt_se->my_q = rt_rq; 241 rt_se->parent = parent; 242 INIT_LIST_HEAD(&rt_se->run_list); 243 } 244 245 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 246 { 247 struct rt_rq *rt_rq; 248 struct sched_rt_entity *rt_se; 249 int i; 250 251 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); 252 if (!tg->rt_rq) 253 goto err; 254 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); 255 if (!tg->rt_se) 256 goto err; 257 258 init_rt_bandwidth(&tg->rt_bandwidth, 259 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 260 261 for_each_possible_cpu(i) { 262 rt_rq = kzalloc_node(sizeof(struct rt_rq), 263 GFP_KERNEL, cpu_to_node(i)); 264 if (!rt_rq) 265 goto err; 266 267 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 268 GFP_KERNEL, cpu_to_node(i)); 269 if (!rt_se) 270 goto err_free_rq; 271 272 init_rt_rq(rt_rq); 273 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 274 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 275 } 276 277 return 1; 278 279 err_free_rq: 280 kfree(rt_rq); 281 err: 282 return 0; 283 } 284 285 #else /* CONFIG_RT_GROUP_SCHED */ 286 287 #define rt_entity_is_task(rt_se) (1) 288 289 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 290 { 291 return container_of(rt_se, struct task_struct, rt); 292 } 293 294 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 295 { 296 return container_of(rt_rq, struct rq, rt); 297 } 298 299 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 300 { 301 struct task_struct *p = rt_task_of(rt_se); 302 303 return task_rq(p); 304 } 305 306 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 307 { 308 struct rq *rq = rq_of_rt_se(rt_se); 309 310 return &rq->rt; 311 } 312 313 void unregister_rt_sched_group(struct task_group *tg) { } 314 315 void free_rt_sched_group(struct task_group *tg) { } 316 317 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 318 { 319 return 1; 320 } 321 #endif /* CONFIG_RT_GROUP_SCHED */ 322 323 #ifdef CONFIG_SMP 324 325 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 326 { 327 /* Try to pull RT tasks here if we lower this rq's prio */ 328 return rq->online && rq->rt.highest_prio.curr > prev->prio; 329 } 330 331 static inline int rt_overloaded(struct rq *rq) 332 { 333 return atomic_read(&rq->rd->rto_count); 334 } 335 336 static inline void rt_set_overload(struct rq *rq) 337 { 338 if (!rq->online) 339 return; 340 341 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 342 /* 343 * Make sure the mask is visible before we set 344 * the overload count. That is checked to determine 345 * if we should look at the mask. It would be a shame 346 * if we looked at the mask, but the mask was not 347 * updated yet. 348 * 349 * Matched by the barrier in pull_rt_task(). 350 */ 351 smp_wmb(); 352 atomic_inc(&rq->rd->rto_count); 353 } 354 355 static inline void rt_clear_overload(struct rq *rq) 356 { 357 if (!rq->online) 358 return; 359 360 /* the order here really doesn't matter */ 361 atomic_dec(&rq->rd->rto_count); 362 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 363 } 364 365 static void update_rt_migration(struct rt_rq *rt_rq) 366 { 367 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 368 if (!rt_rq->overloaded) { 369 rt_set_overload(rq_of_rt_rq(rt_rq)); 370 rt_rq->overloaded = 1; 371 } 372 } else if (rt_rq->overloaded) { 373 rt_clear_overload(rq_of_rt_rq(rt_rq)); 374 rt_rq->overloaded = 0; 375 } 376 } 377 378 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 379 { 380 struct task_struct *p; 381 382 if (!rt_entity_is_task(rt_se)) 383 return; 384 385 p = rt_task_of(rt_se); 386 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 387 388 rt_rq->rt_nr_total++; 389 if (p->nr_cpus_allowed > 1) 390 rt_rq->rt_nr_migratory++; 391 392 update_rt_migration(rt_rq); 393 } 394 395 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 396 { 397 struct task_struct *p; 398 399 if (!rt_entity_is_task(rt_se)) 400 return; 401 402 p = rt_task_of(rt_se); 403 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 404 405 rt_rq->rt_nr_total--; 406 if (p->nr_cpus_allowed > 1) 407 rt_rq->rt_nr_migratory--; 408 409 update_rt_migration(rt_rq); 410 } 411 412 static inline int has_pushable_tasks(struct rq *rq) 413 { 414 return !plist_head_empty(&rq->rt.pushable_tasks); 415 } 416 417 static DEFINE_PER_CPU(struct balance_callback, rt_push_head); 418 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head); 419 420 static void push_rt_tasks(struct rq *); 421 static void pull_rt_task(struct rq *); 422 423 static inline void rt_queue_push_tasks(struct rq *rq) 424 { 425 if (!has_pushable_tasks(rq)) 426 return; 427 428 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 429 } 430 431 static inline void rt_queue_pull_task(struct rq *rq) 432 { 433 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 434 } 435 436 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 437 { 438 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 439 plist_node_init(&p->pushable_tasks, p->prio); 440 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 441 442 /* Update the highest prio pushable task */ 443 if (p->prio < rq->rt.highest_prio.next) 444 rq->rt.highest_prio.next = p->prio; 445 } 446 447 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 448 { 449 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 450 451 /* Update the new highest prio pushable task */ 452 if (has_pushable_tasks(rq)) { 453 p = plist_first_entry(&rq->rt.pushable_tasks, 454 struct task_struct, pushable_tasks); 455 rq->rt.highest_prio.next = p->prio; 456 } else { 457 rq->rt.highest_prio.next = MAX_RT_PRIO-1; 458 } 459 } 460 461 #else 462 463 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 464 { 465 } 466 467 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 468 { 469 } 470 471 static inline 472 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 473 { 474 } 475 476 static inline 477 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 478 { 479 } 480 481 static inline void rt_queue_push_tasks(struct rq *rq) 482 { 483 } 484 #endif /* CONFIG_SMP */ 485 486 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 487 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count); 488 489 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 490 { 491 return rt_se->on_rq; 492 } 493 494 #ifdef CONFIG_UCLAMP_TASK 495 /* 496 * Verify the fitness of task @p to run on @cpu taking into account the uclamp 497 * settings. 498 * 499 * This check is only important for heterogeneous systems where uclamp_min value 500 * is higher than the capacity of a @cpu. For non-heterogeneous system this 501 * function will always return true. 502 * 503 * The function will return true if the capacity of the @cpu is >= the 504 * uclamp_min and false otherwise. 505 * 506 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min 507 * > uclamp_max. 508 */ 509 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 510 { 511 unsigned int min_cap; 512 unsigned int max_cap; 513 unsigned int cpu_cap; 514 515 /* Only heterogeneous systems can benefit from this check */ 516 if (!sched_asym_cpucap_active()) 517 return true; 518 519 min_cap = uclamp_eff_value(p, UCLAMP_MIN); 520 max_cap = uclamp_eff_value(p, UCLAMP_MAX); 521 522 cpu_cap = capacity_orig_of(cpu); 523 524 return cpu_cap >= min(min_cap, max_cap); 525 } 526 #else 527 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 528 { 529 return true; 530 } 531 #endif 532 533 #ifdef CONFIG_RT_GROUP_SCHED 534 535 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 536 { 537 if (!rt_rq->tg) 538 return RUNTIME_INF; 539 540 return rt_rq->rt_runtime; 541 } 542 543 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 544 { 545 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 546 } 547 548 typedef struct task_group *rt_rq_iter_t; 549 550 static inline struct task_group *next_task_group(struct task_group *tg) 551 { 552 do { 553 tg = list_entry_rcu(tg->list.next, 554 typeof(struct task_group), list); 555 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 556 557 if (&tg->list == &task_groups) 558 tg = NULL; 559 560 return tg; 561 } 562 563 #define for_each_rt_rq(rt_rq, iter, rq) \ 564 for (iter = container_of(&task_groups, typeof(*iter), list); \ 565 (iter = next_task_group(iter)) && \ 566 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 567 568 #define for_each_sched_rt_entity(rt_se) \ 569 for (; rt_se; rt_se = rt_se->parent) 570 571 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 572 { 573 return rt_se->my_q; 574 } 575 576 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 577 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 578 579 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 580 { 581 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 582 struct rq *rq = rq_of_rt_rq(rt_rq); 583 struct sched_rt_entity *rt_se; 584 585 int cpu = cpu_of(rq); 586 587 rt_se = rt_rq->tg->rt_se[cpu]; 588 589 if (rt_rq->rt_nr_running) { 590 if (!rt_se) 591 enqueue_top_rt_rq(rt_rq); 592 else if (!on_rt_rq(rt_se)) 593 enqueue_rt_entity(rt_se, 0); 594 595 if (rt_rq->highest_prio.curr < curr->prio) 596 resched_curr(rq); 597 } 598 } 599 600 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 601 { 602 struct sched_rt_entity *rt_se; 603 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 604 605 rt_se = rt_rq->tg->rt_se[cpu]; 606 607 if (!rt_se) { 608 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); 609 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 610 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); 611 } 612 else if (on_rt_rq(rt_se)) 613 dequeue_rt_entity(rt_se, 0); 614 } 615 616 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 617 { 618 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 619 } 620 621 static int rt_se_boosted(struct sched_rt_entity *rt_se) 622 { 623 struct rt_rq *rt_rq = group_rt_rq(rt_se); 624 struct task_struct *p; 625 626 if (rt_rq) 627 return !!rt_rq->rt_nr_boosted; 628 629 p = rt_task_of(rt_se); 630 return p->prio != p->normal_prio; 631 } 632 633 #ifdef CONFIG_SMP 634 static inline const struct cpumask *sched_rt_period_mask(void) 635 { 636 return this_rq()->rd->span; 637 } 638 #else 639 static inline const struct cpumask *sched_rt_period_mask(void) 640 { 641 return cpu_online_mask; 642 } 643 #endif 644 645 static inline 646 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 647 { 648 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 649 } 650 651 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 652 { 653 return &rt_rq->tg->rt_bandwidth; 654 } 655 656 #else /* !CONFIG_RT_GROUP_SCHED */ 657 658 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 659 { 660 return rt_rq->rt_runtime; 661 } 662 663 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 664 { 665 return ktime_to_ns(def_rt_bandwidth.rt_period); 666 } 667 668 typedef struct rt_rq *rt_rq_iter_t; 669 670 #define for_each_rt_rq(rt_rq, iter, rq) \ 671 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 672 673 #define for_each_sched_rt_entity(rt_se) \ 674 for (; rt_se; rt_se = NULL) 675 676 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 677 { 678 return NULL; 679 } 680 681 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 682 { 683 struct rq *rq = rq_of_rt_rq(rt_rq); 684 685 if (!rt_rq->rt_nr_running) 686 return; 687 688 enqueue_top_rt_rq(rt_rq); 689 resched_curr(rq); 690 } 691 692 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 693 { 694 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); 695 } 696 697 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 698 { 699 return rt_rq->rt_throttled; 700 } 701 702 static inline const struct cpumask *sched_rt_period_mask(void) 703 { 704 return cpu_online_mask; 705 } 706 707 static inline 708 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 709 { 710 return &cpu_rq(cpu)->rt; 711 } 712 713 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 714 { 715 return &def_rt_bandwidth; 716 } 717 718 #endif /* CONFIG_RT_GROUP_SCHED */ 719 720 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 721 { 722 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 723 724 return (hrtimer_active(&rt_b->rt_period_timer) || 725 rt_rq->rt_time < rt_b->rt_runtime); 726 } 727 728 #ifdef CONFIG_SMP 729 /* 730 * We ran out of runtime, see if we can borrow some from our neighbours. 731 */ 732 static void do_balance_runtime(struct rt_rq *rt_rq) 733 { 734 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 735 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 736 int i, weight; 737 u64 rt_period; 738 739 weight = cpumask_weight(rd->span); 740 741 raw_spin_lock(&rt_b->rt_runtime_lock); 742 rt_period = ktime_to_ns(rt_b->rt_period); 743 for_each_cpu(i, rd->span) { 744 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 745 s64 diff; 746 747 if (iter == rt_rq) 748 continue; 749 750 raw_spin_lock(&iter->rt_runtime_lock); 751 /* 752 * Either all rqs have inf runtime and there's nothing to steal 753 * or __disable_runtime() below sets a specific rq to inf to 754 * indicate its been disabled and disallow stealing. 755 */ 756 if (iter->rt_runtime == RUNTIME_INF) 757 goto next; 758 759 /* 760 * From runqueues with spare time, take 1/n part of their 761 * spare time, but no more than our period. 762 */ 763 diff = iter->rt_runtime - iter->rt_time; 764 if (diff > 0) { 765 diff = div_u64((u64)diff, weight); 766 if (rt_rq->rt_runtime + diff > rt_period) 767 diff = rt_period - rt_rq->rt_runtime; 768 iter->rt_runtime -= diff; 769 rt_rq->rt_runtime += diff; 770 if (rt_rq->rt_runtime == rt_period) { 771 raw_spin_unlock(&iter->rt_runtime_lock); 772 break; 773 } 774 } 775 next: 776 raw_spin_unlock(&iter->rt_runtime_lock); 777 } 778 raw_spin_unlock(&rt_b->rt_runtime_lock); 779 } 780 781 /* 782 * Ensure this RQ takes back all the runtime it lend to its neighbours. 783 */ 784 static void __disable_runtime(struct rq *rq) 785 { 786 struct root_domain *rd = rq->rd; 787 rt_rq_iter_t iter; 788 struct rt_rq *rt_rq; 789 790 if (unlikely(!scheduler_running)) 791 return; 792 793 for_each_rt_rq(rt_rq, iter, rq) { 794 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 795 s64 want; 796 int i; 797 798 raw_spin_lock(&rt_b->rt_runtime_lock); 799 raw_spin_lock(&rt_rq->rt_runtime_lock); 800 /* 801 * Either we're all inf and nobody needs to borrow, or we're 802 * already disabled and thus have nothing to do, or we have 803 * exactly the right amount of runtime to take out. 804 */ 805 if (rt_rq->rt_runtime == RUNTIME_INF || 806 rt_rq->rt_runtime == rt_b->rt_runtime) 807 goto balanced; 808 raw_spin_unlock(&rt_rq->rt_runtime_lock); 809 810 /* 811 * Calculate the difference between what we started out with 812 * and what we current have, that's the amount of runtime 813 * we lend and now have to reclaim. 814 */ 815 want = rt_b->rt_runtime - rt_rq->rt_runtime; 816 817 /* 818 * Greedy reclaim, take back as much as we can. 819 */ 820 for_each_cpu(i, rd->span) { 821 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 822 s64 diff; 823 824 /* 825 * Can't reclaim from ourselves or disabled runqueues. 826 */ 827 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 828 continue; 829 830 raw_spin_lock(&iter->rt_runtime_lock); 831 if (want > 0) { 832 diff = min_t(s64, iter->rt_runtime, want); 833 iter->rt_runtime -= diff; 834 want -= diff; 835 } else { 836 iter->rt_runtime -= want; 837 want -= want; 838 } 839 raw_spin_unlock(&iter->rt_runtime_lock); 840 841 if (!want) 842 break; 843 } 844 845 raw_spin_lock(&rt_rq->rt_runtime_lock); 846 /* 847 * We cannot be left wanting - that would mean some runtime 848 * leaked out of the system. 849 */ 850 WARN_ON_ONCE(want); 851 balanced: 852 /* 853 * Disable all the borrow logic by pretending we have inf 854 * runtime - in which case borrowing doesn't make sense. 855 */ 856 rt_rq->rt_runtime = RUNTIME_INF; 857 rt_rq->rt_throttled = 0; 858 raw_spin_unlock(&rt_rq->rt_runtime_lock); 859 raw_spin_unlock(&rt_b->rt_runtime_lock); 860 861 /* Make rt_rq available for pick_next_task() */ 862 sched_rt_rq_enqueue(rt_rq); 863 } 864 } 865 866 static void __enable_runtime(struct rq *rq) 867 { 868 rt_rq_iter_t iter; 869 struct rt_rq *rt_rq; 870 871 if (unlikely(!scheduler_running)) 872 return; 873 874 /* 875 * Reset each runqueue's bandwidth settings 876 */ 877 for_each_rt_rq(rt_rq, iter, rq) { 878 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 879 880 raw_spin_lock(&rt_b->rt_runtime_lock); 881 raw_spin_lock(&rt_rq->rt_runtime_lock); 882 rt_rq->rt_runtime = rt_b->rt_runtime; 883 rt_rq->rt_time = 0; 884 rt_rq->rt_throttled = 0; 885 raw_spin_unlock(&rt_rq->rt_runtime_lock); 886 raw_spin_unlock(&rt_b->rt_runtime_lock); 887 } 888 } 889 890 static void balance_runtime(struct rt_rq *rt_rq) 891 { 892 if (!sched_feat(RT_RUNTIME_SHARE)) 893 return; 894 895 if (rt_rq->rt_time > rt_rq->rt_runtime) { 896 raw_spin_unlock(&rt_rq->rt_runtime_lock); 897 do_balance_runtime(rt_rq); 898 raw_spin_lock(&rt_rq->rt_runtime_lock); 899 } 900 } 901 #else /* !CONFIG_SMP */ 902 static inline void balance_runtime(struct rt_rq *rt_rq) {} 903 #endif /* CONFIG_SMP */ 904 905 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 906 { 907 int i, idle = 1, throttled = 0; 908 const struct cpumask *span; 909 910 span = sched_rt_period_mask(); 911 #ifdef CONFIG_RT_GROUP_SCHED 912 /* 913 * FIXME: isolated CPUs should really leave the root task group, 914 * whether they are isolcpus or were isolated via cpusets, lest 915 * the timer run on a CPU which does not service all runqueues, 916 * potentially leaving other CPUs indefinitely throttled. If 917 * isolation is really required, the user will turn the throttle 918 * off to kill the perturbations it causes anyway. Meanwhile, 919 * this maintains functionality for boot and/or troubleshooting. 920 */ 921 if (rt_b == &root_task_group.rt_bandwidth) 922 span = cpu_online_mask; 923 #endif 924 for_each_cpu(i, span) { 925 int enqueue = 0; 926 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 927 struct rq *rq = rq_of_rt_rq(rt_rq); 928 struct rq_flags rf; 929 int skip; 930 931 /* 932 * When span == cpu_online_mask, taking each rq->lock 933 * can be time-consuming. Try to avoid it when possible. 934 */ 935 raw_spin_lock(&rt_rq->rt_runtime_lock); 936 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) 937 rt_rq->rt_runtime = rt_b->rt_runtime; 938 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 939 raw_spin_unlock(&rt_rq->rt_runtime_lock); 940 if (skip) 941 continue; 942 943 rq_lock(rq, &rf); 944 update_rq_clock(rq); 945 946 if (rt_rq->rt_time) { 947 u64 runtime; 948 949 raw_spin_lock(&rt_rq->rt_runtime_lock); 950 if (rt_rq->rt_throttled) 951 balance_runtime(rt_rq); 952 runtime = rt_rq->rt_runtime; 953 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 954 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 955 rt_rq->rt_throttled = 0; 956 enqueue = 1; 957 958 /* 959 * When we're idle and a woken (rt) task is 960 * throttled check_preempt_curr() will set 961 * skip_update and the time between the wakeup 962 * and this unthrottle will get accounted as 963 * 'runtime'. 964 */ 965 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 966 rq_clock_cancel_skipupdate(rq); 967 } 968 if (rt_rq->rt_time || rt_rq->rt_nr_running) 969 idle = 0; 970 raw_spin_unlock(&rt_rq->rt_runtime_lock); 971 } else if (rt_rq->rt_nr_running) { 972 idle = 0; 973 if (!rt_rq_throttled(rt_rq)) 974 enqueue = 1; 975 } 976 if (rt_rq->rt_throttled) 977 throttled = 1; 978 979 if (enqueue) 980 sched_rt_rq_enqueue(rt_rq); 981 rq_unlock(rq, &rf); 982 } 983 984 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 985 return 1; 986 987 return idle; 988 } 989 990 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 991 { 992 #ifdef CONFIG_RT_GROUP_SCHED 993 struct rt_rq *rt_rq = group_rt_rq(rt_se); 994 995 if (rt_rq) 996 return rt_rq->highest_prio.curr; 997 #endif 998 999 return rt_task_of(rt_se)->prio; 1000 } 1001 1002 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 1003 { 1004 u64 runtime = sched_rt_runtime(rt_rq); 1005 1006 if (rt_rq->rt_throttled) 1007 return rt_rq_throttled(rt_rq); 1008 1009 if (runtime >= sched_rt_period(rt_rq)) 1010 return 0; 1011 1012 balance_runtime(rt_rq); 1013 runtime = sched_rt_runtime(rt_rq); 1014 if (runtime == RUNTIME_INF) 1015 return 0; 1016 1017 if (rt_rq->rt_time > runtime) { 1018 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 1019 1020 /* 1021 * Don't actually throttle groups that have no runtime assigned 1022 * but accrue some time due to boosting. 1023 */ 1024 if (likely(rt_b->rt_runtime)) { 1025 rt_rq->rt_throttled = 1; 1026 printk_deferred_once("sched: RT throttling activated\n"); 1027 } else { 1028 /* 1029 * In case we did anyway, make it go away, 1030 * replenishment is a joke, since it will replenish us 1031 * with exactly 0 ns. 1032 */ 1033 rt_rq->rt_time = 0; 1034 } 1035 1036 if (rt_rq_throttled(rt_rq)) { 1037 sched_rt_rq_dequeue(rt_rq); 1038 return 1; 1039 } 1040 } 1041 1042 return 0; 1043 } 1044 1045 /* 1046 * Update the current task's runtime statistics. Skip current tasks that 1047 * are not in our scheduling class. 1048 */ 1049 static void update_curr_rt(struct rq *rq) 1050 { 1051 struct task_struct *curr = rq->curr; 1052 struct sched_rt_entity *rt_se = &curr->rt; 1053 u64 delta_exec; 1054 u64 now; 1055 1056 if (curr->sched_class != &rt_sched_class) 1057 return; 1058 1059 now = rq_clock_task(rq); 1060 delta_exec = now - curr->se.exec_start; 1061 if (unlikely((s64)delta_exec <= 0)) 1062 return; 1063 1064 schedstat_set(curr->stats.exec_max, 1065 max(curr->stats.exec_max, delta_exec)); 1066 1067 trace_sched_stat_runtime(curr, delta_exec, 0); 1068 1069 update_current_exec_runtime(curr, now, delta_exec); 1070 1071 if (!rt_bandwidth_enabled()) 1072 return; 1073 1074 for_each_sched_rt_entity(rt_se) { 1075 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1076 int exceeded; 1077 1078 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 1079 raw_spin_lock(&rt_rq->rt_runtime_lock); 1080 rt_rq->rt_time += delta_exec; 1081 exceeded = sched_rt_runtime_exceeded(rt_rq); 1082 if (exceeded) 1083 resched_curr(rq); 1084 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1085 if (exceeded) 1086 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq)); 1087 } 1088 } 1089 } 1090 1091 static void 1092 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count) 1093 { 1094 struct rq *rq = rq_of_rt_rq(rt_rq); 1095 1096 BUG_ON(&rq->rt != rt_rq); 1097 1098 if (!rt_rq->rt_queued) 1099 return; 1100 1101 BUG_ON(!rq->nr_running); 1102 1103 sub_nr_running(rq, count); 1104 rt_rq->rt_queued = 0; 1105 1106 } 1107 1108 static void 1109 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1110 { 1111 struct rq *rq = rq_of_rt_rq(rt_rq); 1112 1113 BUG_ON(&rq->rt != rt_rq); 1114 1115 if (rt_rq->rt_queued) 1116 return; 1117 1118 if (rt_rq_throttled(rt_rq)) 1119 return; 1120 1121 if (rt_rq->rt_nr_running) { 1122 add_nr_running(rq, rt_rq->rt_nr_running); 1123 rt_rq->rt_queued = 1; 1124 } 1125 1126 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 1127 cpufreq_update_util(rq, 0); 1128 } 1129 1130 #if defined CONFIG_SMP 1131 1132 static void 1133 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1134 { 1135 struct rq *rq = rq_of_rt_rq(rt_rq); 1136 1137 #ifdef CONFIG_RT_GROUP_SCHED 1138 /* 1139 * Change rq's cpupri only if rt_rq is the top queue. 1140 */ 1141 if (&rq->rt != rt_rq) 1142 return; 1143 #endif 1144 if (rq->online && prio < prev_prio) 1145 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1146 } 1147 1148 static void 1149 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1150 { 1151 struct rq *rq = rq_of_rt_rq(rt_rq); 1152 1153 #ifdef CONFIG_RT_GROUP_SCHED 1154 /* 1155 * Change rq's cpupri only if rt_rq is the top queue. 1156 */ 1157 if (&rq->rt != rt_rq) 1158 return; 1159 #endif 1160 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1161 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1162 } 1163 1164 #else /* CONFIG_SMP */ 1165 1166 static inline 1167 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1168 static inline 1169 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1170 1171 #endif /* CONFIG_SMP */ 1172 1173 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1174 static void 1175 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1176 { 1177 int prev_prio = rt_rq->highest_prio.curr; 1178 1179 if (prio < prev_prio) 1180 rt_rq->highest_prio.curr = prio; 1181 1182 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1183 } 1184 1185 static void 1186 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1187 { 1188 int prev_prio = rt_rq->highest_prio.curr; 1189 1190 if (rt_rq->rt_nr_running) { 1191 1192 WARN_ON(prio < prev_prio); 1193 1194 /* 1195 * This may have been our highest task, and therefore 1196 * we may have some recomputation to do 1197 */ 1198 if (prio == prev_prio) { 1199 struct rt_prio_array *array = &rt_rq->active; 1200 1201 rt_rq->highest_prio.curr = 1202 sched_find_first_bit(array->bitmap); 1203 } 1204 1205 } else { 1206 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 1207 } 1208 1209 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1210 } 1211 1212 #else 1213 1214 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1215 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1216 1217 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1218 1219 #ifdef CONFIG_RT_GROUP_SCHED 1220 1221 static void 1222 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1223 { 1224 if (rt_se_boosted(rt_se)) 1225 rt_rq->rt_nr_boosted++; 1226 1227 if (rt_rq->tg) 1228 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1229 } 1230 1231 static void 1232 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1233 { 1234 if (rt_se_boosted(rt_se)) 1235 rt_rq->rt_nr_boosted--; 1236 1237 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1238 } 1239 1240 #else /* CONFIG_RT_GROUP_SCHED */ 1241 1242 static void 1243 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1244 { 1245 start_rt_bandwidth(&def_rt_bandwidth); 1246 } 1247 1248 static inline 1249 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1250 1251 #endif /* CONFIG_RT_GROUP_SCHED */ 1252 1253 static inline 1254 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1255 { 1256 struct rt_rq *group_rq = group_rt_rq(rt_se); 1257 1258 if (group_rq) 1259 return group_rq->rt_nr_running; 1260 else 1261 return 1; 1262 } 1263 1264 static inline 1265 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1266 { 1267 struct rt_rq *group_rq = group_rt_rq(rt_se); 1268 struct task_struct *tsk; 1269 1270 if (group_rq) 1271 return group_rq->rr_nr_running; 1272 1273 tsk = rt_task_of(rt_se); 1274 1275 return (tsk->policy == SCHED_RR) ? 1 : 0; 1276 } 1277 1278 static inline 1279 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1280 { 1281 int prio = rt_se_prio(rt_se); 1282 1283 WARN_ON(!rt_prio(prio)); 1284 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1285 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1286 1287 inc_rt_prio(rt_rq, prio); 1288 inc_rt_migration(rt_se, rt_rq); 1289 inc_rt_group(rt_se, rt_rq); 1290 } 1291 1292 static inline 1293 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1294 { 1295 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1296 WARN_ON(!rt_rq->rt_nr_running); 1297 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1298 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1299 1300 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1301 dec_rt_migration(rt_se, rt_rq); 1302 dec_rt_group(rt_se, rt_rq); 1303 } 1304 1305 /* 1306 * Change rt_se->run_list location unless SAVE && !MOVE 1307 * 1308 * assumes ENQUEUE/DEQUEUE flags match 1309 */ 1310 static inline bool move_entity(unsigned int flags) 1311 { 1312 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1313 return false; 1314 1315 return true; 1316 } 1317 1318 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1319 { 1320 list_del_init(&rt_se->run_list); 1321 1322 if (list_empty(array->queue + rt_se_prio(rt_se))) 1323 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1324 1325 rt_se->on_list = 0; 1326 } 1327 1328 static inline struct sched_statistics * 1329 __schedstats_from_rt_se(struct sched_rt_entity *rt_se) 1330 { 1331 #ifdef CONFIG_RT_GROUP_SCHED 1332 /* schedstats is not supported for rt group. */ 1333 if (!rt_entity_is_task(rt_se)) 1334 return NULL; 1335 #endif 1336 1337 return &rt_task_of(rt_se)->stats; 1338 } 1339 1340 static inline void 1341 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1342 { 1343 struct sched_statistics *stats; 1344 struct task_struct *p = NULL; 1345 1346 if (!schedstat_enabled()) 1347 return; 1348 1349 if (rt_entity_is_task(rt_se)) 1350 p = rt_task_of(rt_se); 1351 1352 stats = __schedstats_from_rt_se(rt_se); 1353 if (!stats) 1354 return; 1355 1356 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats); 1357 } 1358 1359 static inline void 1360 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1361 { 1362 struct sched_statistics *stats; 1363 struct task_struct *p = NULL; 1364 1365 if (!schedstat_enabled()) 1366 return; 1367 1368 if (rt_entity_is_task(rt_se)) 1369 p = rt_task_of(rt_se); 1370 1371 stats = __schedstats_from_rt_se(rt_se); 1372 if (!stats) 1373 return; 1374 1375 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats); 1376 } 1377 1378 static inline void 1379 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, 1380 int flags) 1381 { 1382 if (!schedstat_enabled()) 1383 return; 1384 1385 if (flags & ENQUEUE_WAKEUP) 1386 update_stats_enqueue_sleeper_rt(rt_rq, rt_se); 1387 } 1388 1389 static inline void 1390 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1391 { 1392 struct sched_statistics *stats; 1393 struct task_struct *p = NULL; 1394 1395 if (!schedstat_enabled()) 1396 return; 1397 1398 if (rt_entity_is_task(rt_se)) 1399 p = rt_task_of(rt_se); 1400 1401 stats = __schedstats_from_rt_se(rt_se); 1402 if (!stats) 1403 return; 1404 1405 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats); 1406 } 1407 1408 static inline void 1409 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, 1410 int flags) 1411 { 1412 struct task_struct *p = NULL; 1413 1414 if (!schedstat_enabled()) 1415 return; 1416 1417 if (rt_entity_is_task(rt_se)) 1418 p = rt_task_of(rt_se); 1419 1420 if ((flags & DEQUEUE_SLEEP) && p) { 1421 unsigned int state; 1422 1423 state = READ_ONCE(p->__state); 1424 if (state & TASK_INTERRUPTIBLE) 1425 __schedstat_set(p->stats.sleep_start, 1426 rq_clock(rq_of_rt_rq(rt_rq))); 1427 1428 if (state & TASK_UNINTERRUPTIBLE) 1429 __schedstat_set(p->stats.block_start, 1430 rq_clock(rq_of_rt_rq(rt_rq))); 1431 } 1432 } 1433 1434 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1435 { 1436 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1437 struct rt_prio_array *array = &rt_rq->active; 1438 struct rt_rq *group_rq = group_rt_rq(rt_se); 1439 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1440 1441 /* 1442 * Don't enqueue the group if its throttled, or when empty. 1443 * The latter is a consequence of the former when a child group 1444 * get throttled and the current group doesn't have any other 1445 * active members. 1446 */ 1447 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1448 if (rt_se->on_list) 1449 __delist_rt_entity(rt_se, array); 1450 return; 1451 } 1452 1453 if (move_entity(flags)) { 1454 WARN_ON_ONCE(rt_se->on_list); 1455 if (flags & ENQUEUE_HEAD) 1456 list_add(&rt_se->run_list, queue); 1457 else 1458 list_add_tail(&rt_se->run_list, queue); 1459 1460 __set_bit(rt_se_prio(rt_se), array->bitmap); 1461 rt_se->on_list = 1; 1462 } 1463 rt_se->on_rq = 1; 1464 1465 inc_rt_tasks(rt_se, rt_rq); 1466 } 1467 1468 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1469 { 1470 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1471 struct rt_prio_array *array = &rt_rq->active; 1472 1473 if (move_entity(flags)) { 1474 WARN_ON_ONCE(!rt_se->on_list); 1475 __delist_rt_entity(rt_se, array); 1476 } 1477 rt_se->on_rq = 0; 1478 1479 dec_rt_tasks(rt_se, rt_rq); 1480 } 1481 1482 /* 1483 * Because the prio of an upper entry depends on the lower 1484 * entries, we must remove entries top - down. 1485 */ 1486 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1487 { 1488 struct sched_rt_entity *back = NULL; 1489 unsigned int rt_nr_running; 1490 1491 for_each_sched_rt_entity(rt_se) { 1492 rt_se->back = back; 1493 back = rt_se; 1494 } 1495 1496 rt_nr_running = rt_rq_of_se(back)->rt_nr_running; 1497 1498 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1499 if (on_rt_rq(rt_se)) 1500 __dequeue_rt_entity(rt_se, flags); 1501 } 1502 1503 dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running); 1504 } 1505 1506 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1507 { 1508 struct rq *rq = rq_of_rt_se(rt_se); 1509 1510 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags); 1511 1512 dequeue_rt_stack(rt_se, flags); 1513 for_each_sched_rt_entity(rt_se) 1514 __enqueue_rt_entity(rt_se, flags); 1515 enqueue_top_rt_rq(&rq->rt); 1516 } 1517 1518 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1519 { 1520 struct rq *rq = rq_of_rt_se(rt_se); 1521 1522 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags); 1523 1524 dequeue_rt_stack(rt_se, flags); 1525 1526 for_each_sched_rt_entity(rt_se) { 1527 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1528 1529 if (rt_rq && rt_rq->rt_nr_running) 1530 __enqueue_rt_entity(rt_se, flags); 1531 } 1532 enqueue_top_rt_rq(&rq->rt); 1533 } 1534 1535 /* 1536 * Adding/removing a task to/from a priority array: 1537 */ 1538 static void 1539 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1540 { 1541 struct sched_rt_entity *rt_se = &p->rt; 1542 1543 if (flags & ENQUEUE_WAKEUP) 1544 rt_se->timeout = 0; 1545 1546 check_schedstat_required(); 1547 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se); 1548 1549 enqueue_rt_entity(rt_se, flags); 1550 1551 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1552 enqueue_pushable_task(rq, p); 1553 } 1554 1555 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1556 { 1557 struct sched_rt_entity *rt_se = &p->rt; 1558 1559 update_curr_rt(rq); 1560 dequeue_rt_entity(rt_se, flags); 1561 1562 dequeue_pushable_task(rq, p); 1563 } 1564 1565 /* 1566 * Put task to the head or the end of the run list without the overhead of 1567 * dequeue followed by enqueue. 1568 */ 1569 static void 1570 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1571 { 1572 if (on_rt_rq(rt_se)) { 1573 struct rt_prio_array *array = &rt_rq->active; 1574 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1575 1576 if (head) 1577 list_move(&rt_se->run_list, queue); 1578 else 1579 list_move_tail(&rt_se->run_list, queue); 1580 } 1581 } 1582 1583 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1584 { 1585 struct sched_rt_entity *rt_se = &p->rt; 1586 struct rt_rq *rt_rq; 1587 1588 for_each_sched_rt_entity(rt_se) { 1589 rt_rq = rt_rq_of_se(rt_se); 1590 requeue_rt_entity(rt_rq, rt_se, head); 1591 } 1592 } 1593 1594 static void yield_task_rt(struct rq *rq) 1595 { 1596 requeue_task_rt(rq, rq->curr, 0); 1597 } 1598 1599 #ifdef CONFIG_SMP 1600 static int find_lowest_rq(struct task_struct *task); 1601 1602 static int 1603 select_task_rq_rt(struct task_struct *p, int cpu, int flags) 1604 { 1605 struct task_struct *curr; 1606 struct rq *rq; 1607 bool test; 1608 1609 /* For anything but wake ups, just return the task_cpu */ 1610 if (!(flags & (WF_TTWU | WF_FORK))) 1611 goto out; 1612 1613 rq = cpu_rq(cpu); 1614 1615 rcu_read_lock(); 1616 curr = READ_ONCE(rq->curr); /* unlocked access */ 1617 1618 /* 1619 * If the current task on @p's runqueue is an RT task, then 1620 * try to see if we can wake this RT task up on another 1621 * runqueue. Otherwise simply start this RT task 1622 * on its current runqueue. 1623 * 1624 * We want to avoid overloading runqueues. If the woken 1625 * task is a higher priority, then it will stay on this CPU 1626 * and the lower prio task should be moved to another CPU. 1627 * Even though this will probably make the lower prio task 1628 * lose its cache, we do not want to bounce a higher task 1629 * around just because it gave up its CPU, perhaps for a 1630 * lock? 1631 * 1632 * For equal prio tasks, we just let the scheduler sort it out. 1633 * 1634 * Otherwise, just let it ride on the affined RQ and the 1635 * post-schedule router will push the preempted task away 1636 * 1637 * This test is optimistic, if we get it wrong the load-balancer 1638 * will have to sort it out. 1639 * 1640 * We take into account the capacity of the CPU to ensure it fits the 1641 * requirement of the task - which is only important on heterogeneous 1642 * systems like big.LITTLE. 1643 */ 1644 test = curr && 1645 unlikely(rt_task(curr)) && 1646 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio); 1647 1648 if (test || !rt_task_fits_capacity(p, cpu)) { 1649 int target = find_lowest_rq(p); 1650 1651 /* 1652 * Bail out if we were forcing a migration to find a better 1653 * fitting CPU but our search failed. 1654 */ 1655 if (!test && target != -1 && !rt_task_fits_capacity(p, target)) 1656 goto out_unlock; 1657 1658 /* 1659 * Don't bother moving it if the destination CPU is 1660 * not running a lower priority task. 1661 */ 1662 if (target != -1 && 1663 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1664 cpu = target; 1665 } 1666 1667 out_unlock: 1668 rcu_read_unlock(); 1669 1670 out: 1671 return cpu; 1672 } 1673 1674 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1675 { 1676 /* 1677 * Current can't be migrated, useless to reschedule, 1678 * let's hope p can move out. 1679 */ 1680 if (rq->curr->nr_cpus_allowed == 1 || 1681 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1682 return; 1683 1684 /* 1685 * p is migratable, so let's not schedule it and 1686 * see if it is pushed or pulled somewhere else. 1687 */ 1688 if (p->nr_cpus_allowed != 1 && 1689 cpupri_find(&rq->rd->cpupri, p, NULL)) 1690 return; 1691 1692 /* 1693 * There appear to be other CPUs that can accept 1694 * the current task but none can run 'p', so lets reschedule 1695 * to try and push the current task away: 1696 */ 1697 requeue_task_rt(rq, p, 1); 1698 resched_curr(rq); 1699 } 1700 1701 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1702 { 1703 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) { 1704 /* 1705 * This is OK, because current is on_cpu, which avoids it being 1706 * picked for load-balance and preemption/IRQs are still 1707 * disabled avoiding further scheduler activity on it and we've 1708 * not yet started the picking loop. 1709 */ 1710 rq_unpin_lock(rq, rf); 1711 pull_rt_task(rq); 1712 rq_repin_lock(rq, rf); 1713 } 1714 1715 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq); 1716 } 1717 #endif /* CONFIG_SMP */ 1718 1719 /* 1720 * Preempt the current task with a newly woken task if needed: 1721 */ 1722 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1723 { 1724 if (p->prio < rq->curr->prio) { 1725 resched_curr(rq); 1726 return; 1727 } 1728 1729 #ifdef CONFIG_SMP 1730 /* 1731 * If: 1732 * 1733 * - the newly woken task is of equal priority to the current task 1734 * - the newly woken task is non-migratable while current is migratable 1735 * - current will be preempted on the next reschedule 1736 * 1737 * we should check to see if current can readily move to a different 1738 * cpu. If so, we will reschedule to allow the push logic to try 1739 * to move current somewhere else, making room for our non-migratable 1740 * task. 1741 */ 1742 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1743 check_preempt_equal_prio(rq, p); 1744 #endif 1745 } 1746 1747 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first) 1748 { 1749 struct sched_rt_entity *rt_se = &p->rt; 1750 struct rt_rq *rt_rq = &rq->rt; 1751 1752 p->se.exec_start = rq_clock_task(rq); 1753 if (on_rt_rq(&p->rt)) 1754 update_stats_wait_end_rt(rt_rq, rt_se); 1755 1756 /* The running task is never eligible for pushing */ 1757 dequeue_pushable_task(rq, p); 1758 1759 if (!first) 1760 return; 1761 1762 /* 1763 * If prev task was rt, put_prev_task() has already updated the 1764 * utilization. We only care of the case where we start to schedule a 1765 * rt task 1766 */ 1767 if (rq->curr->sched_class != &rt_sched_class) 1768 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1769 1770 rt_queue_push_tasks(rq); 1771 } 1772 1773 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq) 1774 { 1775 struct rt_prio_array *array = &rt_rq->active; 1776 struct sched_rt_entity *next = NULL; 1777 struct list_head *queue; 1778 int idx; 1779 1780 idx = sched_find_first_bit(array->bitmap); 1781 BUG_ON(idx >= MAX_RT_PRIO); 1782 1783 queue = array->queue + idx; 1784 if (SCHED_WARN_ON(list_empty(queue))) 1785 return NULL; 1786 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1787 1788 return next; 1789 } 1790 1791 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1792 { 1793 struct sched_rt_entity *rt_se; 1794 struct rt_rq *rt_rq = &rq->rt; 1795 1796 do { 1797 rt_se = pick_next_rt_entity(rt_rq); 1798 if (unlikely(!rt_se)) 1799 return NULL; 1800 rt_rq = group_rt_rq(rt_se); 1801 } while (rt_rq); 1802 1803 return rt_task_of(rt_se); 1804 } 1805 1806 static struct task_struct *pick_task_rt(struct rq *rq) 1807 { 1808 struct task_struct *p; 1809 1810 if (!sched_rt_runnable(rq)) 1811 return NULL; 1812 1813 p = _pick_next_task_rt(rq); 1814 1815 return p; 1816 } 1817 1818 static struct task_struct *pick_next_task_rt(struct rq *rq) 1819 { 1820 struct task_struct *p = pick_task_rt(rq); 1821 1822 if (p) 1823 set_next_task_rt(rq, p, true); 1824 1825 return p; 1826 } 1827 1828 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1829 { 1830 struct sched_rt_entity *rt_se = &p->rt; 1831 struct rt_rq *rt_rq = &rq->rt; 1832 1833 if (on_rt_rq(&p->rt)) 1834 update_stats_wait_start_rt(rt_rq, rt_se); 1835 1836 update_curr_rt(rq); 1837 1838 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1839 1840 /* 1841 * The previous task needs to be made eligible for pushing 1842 * if it is still active 1843 */ 1844 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1845 enqueue_pushable_task(rq, p); 1846 } 1847 1848 #ifdef CONFIG_SMP 1849 1850 /* Only try algorithms three times */ 1851 #define RT_MAX_TRIES 3 1852 1853 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1854 { 1855 if (!task_on_cpu(rq, p) && 1856 cpumask_test_cpu(cpu, &p->cpus_mask)) 1857 return 1; 1858 1859 return 0; 1860 } 1861 1862 /* 1863 * Return the highest pushable rq's task, which is suitable to be executed 1864 * on the CPU, NULL otherwise 1865 */ 1866 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1867 { 1868 struct plist_head *head = &rq->rt.pushable_tasks; 1869 struct task_struct *p; 1870 1871 if (!has_pushable_tasks(rq)) 1872 return NULL; 1873 1874 plist_for_each_entry(p, head, pushable_tasks) { 1875 if (pick_rt_task(rq, p, cpu)) 1876 return p; 1877 } 1878 1879 return NULL; 1880 } 1881 1882 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1883 1884 static int find_lowest_rq(struct task_struct *task) 1885 { 1886 struct sched_domain *sd; 1887 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1888 int this_cpu = smp_processor_id(); 1889 int cpu = task_cpu(task); 1890 int ret; 1891 1892 /* Make sure the mask is initialized first */ 1893 if (unlikely(!lowest_mask)) 1894 return -1; 1895 1896 if (task->nr_cpus_allowed == 1) 1897 return -1; /* No other targets possible */ 1898 1899 /* 1900 * If we're on asym system ensure we consider the different capacities 1901 * of the CPUs when searching for the lowest_mask. 1902 */ 1903 if (sched_asym_cpucap_active()) { 1904 1905 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri, 1906 task, lowest_mask, 1907 rt_task_fits_capacity); 1908 } else { 1909 1910 ret = cpupri_find(&task_rq(task)->rd->cpupri, 1911 task, lowest_mask); 1912 } 1913 1914 if (!ret) 1915 return -1; /* No targets found */ 1916 1917 /* 1918 * At this point we have built a mask of CPUs representing the 1919 * lowest priority tasks in the system. Now we want to elect 1920 * the best one based on our affinity and topology. 1921 * 1922 * We prioritize the last CPU that the task executed on since 1923 * it is most likely cache-hot in that location. 1924 */ 1925 if (cpumask_test_cpu(cpu, lowest_mask)) 1926 return cpu; 1927 1928 /* 1929 * Otherwise, we consult the sched_domains span maps to figure 1930 * out which CPU is logically closest to our hot cache data. 1931 */ 1932 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1933 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1934 1935 rcu_read_lock(); 1936 for_each_domain(cpu, sd) { 1937 if (sd->flags & SD_WAKE_AFFINE) { 1938 int best_cpu; 1939 1940 /* 1941 * "this_cpu" is cheaper to preempt than a 1942 * remote processor. 1943 */ 1944 if (this_cpu != -1 && 1945 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1946 rcu_read_unlock(); 1947 return this_cpu; 1948 } 1949 1950 best_cpu = cpumask_any_and_distribute(lowest_mask, 1951 sched_domain_span(sd)); 1952 if (best_cpu < nr_cpu_ids) { 1953 rcu_read_unlock(); 1954 return best_cpu; 1955 } 1956 } 1957 } 1958 rcu_read_unlock(); 1959 1960 /* 1961 * And finally, if there were no matches within the domains 1962 * just give the caller *something* to work with from the compatible 1963 * locations. 1964 */ 1965 if (this_cpu != -1) 1966 return this_cpu; 1967 1968 cpu = cpumask_any_distribute(lowest_mask); 1969 if (cpu < nr_cpu_ids) 1970 return cpu; 1971 1972 return -1; 1973 } 1974 1975 /* Will lock the rq it finds */ 1976 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1977 { 1978 struct rq *lowest_rq = NULL; 1979 int tries; 1980 int cpu; 1981 1982 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1983 cpu = find_lowest_rq(task); 1984 1985 if ((cpu == -1) || (cpu == rq->cpu)) 1986 break; 1987 1988 lowest_rq = cpu_rq(cpu); 1989 1990 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1991 /* 1992 * Target rq has tasks of equal or higher priority, 1993 * retrying does not release any lock and is unlikely 1994 * to yield a different result. 1995 */ 1996 lowest_rq = NULL; 1997 break; 1998 } 1999 2000 /* if the prio of this runqueue changed, try again */ 2001 if (double_lock_balance(rq, lowest_rq)) { 2002 /* 2003 * We had to unlock the run queue. In 2004 * the mean time, task could have 2005 * migrated already or had its affinity changed. 2006 * Also make sure that it wasn't scheduled on its rq. 2007 * It is possible the task was scheduled, set 2008 * "migrate_disabled" and then got preempted, so we must 2009 * check the task migration disable flag here too. 2010 */ 2011 if (unlikely(task_rq(task) != rq || 2012 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) || 2013 task_on_cpu(rq, task) || 2014 !rt_task(task) || 2015 is_migration_disabled(task) || 2016 !task_on_rq_queued(task))) { 2017 2018 double_unlock_balance(rq, lowest_rq); 2019 lowest_rq = NULL; 2020 break; 2021 } 2022 } 2023 2024 /* If this rq is still suitable use it. */ 2025 if (lowest_rq->rt.highest_prio.curr > task->prio) 2026 break; 2027 2028 /* try again */ 2029 double_unlock_balance(rq, lowest_rq); 2030 lowest_rq = NULL; 2031 } 2032 2033 return lowest_rq; 2034 } 2035 2036 static struct task_struct *pick_next_pushable_task(struct rq *rq) 2037 { 2038 struct task_struct *p; 2039 2040 if (!has_pushable_tasks(rq)) 2041 return NULL; 2042 2043 p = plist_first_entry(&rq->rt.pushable_tasks, 2044 struct task_struct, pushable_tasks); 2045 2046 BUG_ON(rq->cpu != task_cpu(p)); 2047 BUG_ON(task_current(rq, p)); 2048 BUG_ON(p->nr_cpus_allowed <= 1); 2049 2050 BUG_ON(!task_on_rq_queued(p)); 2051 BUG_ON(!rt_task(p)); 2052 2053 return p; 2054 } 2055 2056 /* 2057 * If the current CPU has more than one RT task, see if the non 2058 * running task can migrate over to a CPU that is running a task 2059 * of lesser priority. 2060 */ 2061 static int push_rt_task(struct rq *rq, bool pull) 2062 { 2063 struct task_struct *next_task; 2064 struct rq *lowest_rq; 2065 int ret = 0; 2066 2067 if (!rq->rt.overloaded) 2068 return 0; 2069 2070 next_task = pick_next_pushable_task(rq); 2071 if (!next_task) 2072 return 0; 2073 2074 retry: 2075 /* 2076 * It's possible that the next_task slipped in of 2077 * higher priority than current. If that's the case 2078 * just reschedule current. 2079 */ 2080 if (unlikely(next_task->prio < rq->curr->prio)) { 2081 resched_curr(rq); 2082 return 0; 2083 } 2084 2085 if (is_migration_disabled(next_task)) { 2086 struct task_struct *push_task = NULL; 2087 int cpu; 2088 2089 if (!pull || rq->push_busy) 2090 return 0; 2091 2092 /* 2093 * Invoking find_lowest_rq() on anything but an RT task doesn't 2094 * make sense. Per the above priority check, curr has to 2095 * be of higher priority than next_task, so no need to 2096 * reschedule when bailing out. 2097 * 2098 * Note that the stoppers are masqueraded as SCHED_FIFO 2099 * (cf. sched_set_stop_task()), so we can't rely on rt_task(). 2100 */ 2101 if (rq->curr->sched_class != &rt_sched_class) 2102 return 0; 2103 2104 cpu = find_lowest_rq(rq->curr); 2105 if (cpu == -1 || cpu == rq->cpu) 2106 return 0; 2107 2108 /* 2109 * Given we found a CPU with lower priority than @next_task, 2110 * therefore it should be running. However we cannot migrate it 2111 * to this other CPU, instead attempt to push the current 2112 * running task on this CPU away. 2113 */ 2114 push_task = get_push_task(rq); 2115 if (push_task) { 2116 preempt_disable(); 2117 raw_spin_rq_unlock(rq); 2118 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2119 push_task, &rq->push_work); 2120 preempt_enable(); 2121 raw_spin_rq_lock(rq); 2122 } 2123 2124 return 0; 2125 } 2126 2127 if (WARN_ON(next_task == rq->curr)) 2128 return 0; 2129 2130 /* We might release rq lock */ 2131 get_task_struct(next_task); 2132 2133 /* find_lock_lowest_rq locks the rq if found */ 2134 lowest_rq = find_lock_lowest_rq(next_task, rq); 2135 if (!lowest_rq) { 2136 struct task_struct *task; 2137 /* 2138 * find_lock_lowest_rq releases rq->lock 2139 * so it is possible that next_task has migrated. 2140 * 2141 * We need to make sure that the task is still on the same 2142 * run-queue and is also still the next task eligible for 2143 * pushing. 2144 */ 2145 task = pick_next_pushable_task(rq); 2146 if (task == next_task) { 2147 /* 2148 * The task hasn't migrated, and is still the next 2149 * eligible task, but we failed to find a run-queue 2150 * to push it to. Do not retry in this case, since 2151 * other CPUs will pull from us when ready. 2152 */ 2153 goto out; 2154 } 2155 2156 if (!task) 2157 /* No more tasks, just exit */ 2158 goto out; 2159 2160 /* 2161 * Something has shifted, try again. 2162 */ 2163 put_task_struct(next_task); 2164 next_task = task; 2165 goto retry; 2166 } 2167 2168 deactivate_task(rq, next_task, 0); 2169 set_task_cpu(next_task, lowest_rq->cpu); 2170 activate_task(lowest_rq, next_task, 0); 2171 resched_curr(lowest_rq); 2172 ret = 1; 2173 2174 double_unlock_balance(rq, lowest_rq); 2175 out: 2176 put_task_struct(next_task); 2177 2178 return ret; 2179 } 2180 2181 static void push_rt_tasks(struct rq *rq) 2182 { 2183 /* push_rt_task will return true if it moved an RT */ 2184 while (push_rt_task(rq, false)) 2185 ; 2186 } 2187 2188 #ifdef HAVE_RT_PUSH_IPI 2189 2190 /* 2191 * When a high priority task schedules out from a CPU and a lower priority 2192 * task is scheduled in, a check is made to see if there's any RT tasks 2193 * on other CPUs that are waiting to run because a higher priority RT task 2194 * is currently running on its CPU. In this case, the CPU with multiple RT 2195 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 2196 * up that may be able to run one of its non-running queued RT tasks. 2197 * 2198 * All CPUs with overloaded RT tasks need to be notified as there is currently 2199 * no way to know which of these CPUs have the highest priority task waiting 2200 * to run. Instead of trying to take a spinlock on each of these CPUs, 2201 * which has shown to cause large latency when done on machines with many 2202 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 2203 * RT tasks waiting to run. 2204 * 2205 * Just sending an IPI to each of the CPUs is also an issue, as on large 2206 * count CPU machines, this can cause an IPI storm on a CPU, especially 2207 * if its the only CPU with multiple RT tasks queued, and a large number 2208 * of CPUs scheduling a lower priority task at the same time. 2209 * 2210 * Each root domain has its own irq work function that can iterate over 2211 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 2212 * task must be checked if there's one or many CPUs that are lowering 2213 * their priority, there's a single irq work iterator that will try to 2214 * push off RT tasks that are waiting to run. 2215 * 2216 * When a CPU schedules a lower priority task, it will kick off the 2217 * irq work iterator that will jump to each CPU with overloaded RT tasks. 2218 * As it only takes the first CPU that schedules a lower priority task 2219 * to start the process, the rto_start variable is incremented and if 2220 * the atomic result is one, then that CPU will try to take the rto_lock. 2221 * This prevents high contention on the lock as the process handles all 2222 * CPUs scheduling lower priority tasks. 2223 * 2224 * All CPUs that are scheduling a lower priority task will increment the 2225 * rt_loop_next variable. This will make sure that the irq work iterator 2226 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 2227 * priority task, even if the iterator is in the middle of a scan. Incrementing 2228 * the rt_loop_next will cause the iterator to perform another scan. 2229 * 2230 */ 2231 static int rto_next_cpu(struct root_domain *rd) 2232 { 2233 int next; 2234 int cpu; 2235 2236 /* 2237 * When starting the IPI RT pushing, the rto_cpu is set to -1, 2238 * rt_next_cpu() will simply return the first CPU found in 2239 * the rto_mask. 2240 * 2241 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it 2242 * will return the next CPU found in the rto_mask. 2243 * 2244 * If there are no more CPUs left in the rto_mask, then a check is made 2245 * against rto_loop and rto_loop_next. rto_loop is only updated with 2246 * the rto_lock held, but any CPU may increment the rto_loop_next 2247 * without any locking. 2248 */ 2249 for (;;) { 2250 2251 /* When rto_cpu is -1 this acts like cpumask_first() */ 2252 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 2253 2254 rd->rto_cpu = cpu; 2255 2256 if (cpu < nr_cpu_ids) 2257 return cpu; 2258 2259 rd->rto_cpu = -1; 2260 2261 /* 2262 * ACQUIRE ensures we see the @rto_mask changes 2263 * made prior to the @next value observed. 2264 * 2265 * Matches WMB in rt_set_overload(). 2266 */ 2267 next = atomic_read_acquire(&rd->rto_loop_next); 2268 2269 if (rd->rto_loop == next) 2270 break; 2271 2272 rd->rto_loop = next; 2273 } 2274 2275 return -1; 2276 } 2277 2278 static inline bool rto_start_trylock(atomic_t *v) 2279 { 2280 return !atomic_cmpxchg_acquire(v, 0, 1); 2281 } 2282 2283 static inline void rto_start_unlock(atomic_t *v) 2284 { 2285 atomic_set_release(v, 0); 2286 } 2287 2288 static void tell_cpu_to_push(struct rq *rq) 2289 { 2290 int cpu = -1; 2291 2292 /* Keep the loop going if the IPI is currently active */ 2293 atomic_inc(&rq->rd->rto_loop_next); 2294 2295 /* Only one CPU can initiate a loop at a time */ 2296 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 2297 return; 2298 2299 raw_spin_lock(&rq->rd->rto_lock); 2300 2301 /* 2302 * The rto_cpu is updated under the lock, if it has a valid CPU 2303 * then the IPI is still running and will continue due to the 2304 * update to loop_next, and nothing needs to be done here. 2305 * Otherwise it is finishing up and an ipi needs to be sent. 2306 */ 2307 if (rq->rd->rto_cpu < 0) 2308 cpu = rto_next_cpu(rq->rd); 2309 2310 raw_spin_unlock(&rq->rd->rto_lock); 2311 2312 rto_start_unlock(&rq->rd->rto_loop_start); 2313 2314 if (cpu >= 0) { 2315 /* Make sure the rd does not get freed while pushing */ 2316 sched_get_rd(rq->rd); 2317 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 2318 } 2319 } 2320 2321 /* Called from hardirq context */ 2322 void rto_push_irq_work_func(struct irq_work *work) 2323 { 2324 struct root_domain *rd = 2325 container_of(work, struct root_domain, rto_push_work); 2326 struct rq *rq; 2327 int cpu; 2328 2329 rq = this_rq(); 2330 2331 /* 2332 * We do not need to grab the lock to check for has_pushable_tasks. 2333 * When it gets updated, a check is made if a push is possible. 2334 */ 2335 if (has_pushable_tasks(rq)) { 2336 raw_spin_rq_lock(rq); 2337 while (push_rt_task(rq, true)) 2338 ; 2339 raw_spin_rq_unlock(rq); 2340 } 2341 2342 raw_spin_lock(&rd->rto_lock); 2343 2344 /* Pass the IPI to the next rt overloaded queue */ 2345 cpu = rto_next_cpu(rd); 2346 2347 raw_spin_unlock(&rd->rto_lock); 2348 2349 if (cpu < 0) { 2350 sched_put_rd(rd); 2351 return; 2352 } 2353 2354 /* Try the next RT overloaded CPU */ 2355 irq_work_queue_on(&rd->rto_push_work, cpu); 2356 } 2357 #endif /* HAVE_RT_PUSH_IPI */ 2358 2359 static void pull_rt_task(struct rq *this_rq) 2360 { 2361 int this_cpu = this_rq->cpu, cpu; 2362 bool resched = false; 2363 struct task_struct *p, *push_task; 2364 struct rq *src_rq; 2365 int rt_overload_count = rt_overloaded(this_rq); 2366 2367 if (likely(!rt_overload_count)) 2368 return; 2369 2370 /* 2371 * Match the barrier from rt_set_overloaded; this guarantees that if we 2372 * see overloaded we must also see the rto_mask bit. 2373 */ 2374 smp_rmb(); 2375 2376 /* If we are the only overloaded CPU do nothing */ 2377 if (rt_overload_count == 1 && 2378 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2379 return; 2380 2381 #ifdef HAVE_RT_PUSH_IPI 2382 if (sched_feat(RT_PUSH_IPI)) { 2383 tell_cpu_to_push(this_rq); 2384 return; 2385 } 2386 #endif 2387 2388 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2389 if (this_cpu == cpu) 2390 continue; 2391 2392 src_rq = cpu_rq(cpu); 2393 2394 /* 2395 * Don't bother taking the src_rq->lock if the next highest 2396 * task is known to be lower-priority than our current task. 2397 * This may look racy, but if this value is about to go 2398 * logically higher, the src_rq will push this task away. 2399 * And if its going logically lower, we do not care 2400 */ 2401 if (src_rq->rt.highest_prio.next >= 2402 this_rq->rt.highest_prio.curr) 2403 continue; 2404 2405 /* 2406 * We can potentially drop this_rq's lock in 2407 * double_lock_balance, and another CPU could 2408 * alter this_rq 2409 */ 2410 push_task = NULL; 2411 double_lock_balance(this_rq, src_rq); 2412 2413 /* 2414 * We can pull only a task, which is pushable 2415 * on its rq, and no others. 2416 */ 2417 p = pick_highest_pushable_task(src_rq, this_cpu); 2418 2419 /* 2420 * Do we have an RT task that preempts 2421 * the to-be-scheduled task? 2422 */ 2423 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2424 WARN_ON(p == src_rq->curr); 2425 WARN_ON(!task_on_rq_queued(p)); 2426 2427 /* 2428 * There's a chance that p is higher in priority 2429 * than what's currently running on its CPU. 2430 * This is just that p is waking up and hasn't 2431 * had a chance to schedule. We only pull 2432 * p if it is lower in priority than the 2433 * current task on the run queue 2434 */ 2435 if (p->prio < src_rq->curr->prio) 2436 goto skip; 2437 2438 if (is_migration_disabled(p)) { 2439 push_task = get_push_task(src_rq); 2440 } else { 2441 deactivate_task(src_rq, p, 0); 2442 set_task_cpu(p, this_cpu); 2443 activate_task(this_rq, p, 0); 2444 resched = true; 2445 } 2446 /* 2447 * We continue with the search, just in 2448 * case there's an even higher prio task 2449 * in another runqueue. (low likelihood 2450 * but possible) 2451 */ 2452 } 2453 skip: 2454 double_unlock_balance(this_rq, src_rq); 2455 2456 if (push_task) { 2457 preempt_disable(); 2458 raw_spin_rq_unlock(this_rq); 2459 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2460 push_task, &src_rq->push_work); 2461 preempt_enable(); 2462 raw_spin_rq_lock(this_rq); 2463 } 2464 } 2465 2466 if (resched) 2467 resched_curr(this_rq); 2468 } 2469 2470 /* 2471 * If we are not running and we are not going to reschedule soon, we should 2472 * try to push tasks away now 2473 */ 2474 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2475 { 2476 bool need_to_push = !task_on_cpu(rq, p) && 2477 !test_tsk_need_resched(rq->curr) && 2478 p->nr_cpus_allowed > 1 && 2479 (dl_task(rq->curr) || rt_task(rq->curr)) && 2480 (rq->curr->nr_cpus_allowed < 2 || 2481 rq->curr->prio <= p->prio); 2482 2483 if (need_to_push) 2484 push_rt_tasks(rq); 2485 } 2486 2487 /* Assumes rq->lock is held */ 2488 static void rq_online_rt(struct rq *rq) 2489 { 2490 if (rq->rt.overloaded) 2491 rt_set_overload(rq); 2492 2493 __enable_runtime(rq); 2494 2495 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2496 } 2497 2498 /* Assumes rq->lock is held */ 2499 static void rq_offline_rt(struct rq *rq) 2500 { 2501 if (rq->rt.overloaded) 2502 rt_clear_overload(rq); 2503 2504 __disable_runtime(rq); 2505 2506 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2507 } 2508 2509 /* 2510 * When switch from the rt queue, we bring ourselves to a position 2511 * that we might want to pull RT tasks from other runqueues. 2512 */ 2513 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2514 { 2515 /* 2516 * If there are other RT tasks then we will reschedule 2517 * and the scheduling of the other RT tasks will handle 2518 * the balancing. But if we are the last RT task 2519 * we may need to handle the pulling of RT tasks 2520 * now. 2521 */ 2522 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2523 return; 2524 2525 rt_queue_pull_task(rq); 2526 } 2527 2528 void __init init_sched_rt_class(void) 2529 { 2530 unsigned int i; 2531 2532 for_each_possible_cpu(i) { 2533 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2534 GFP_KERNEL, cpu_to_node(i)); 2535 } 2536 } 2537 #endif /* CONFIG_SMP */ 2538 2539 /* 2540 * When switching a task to RT, we may overload the runqueue 2541 * with RT tasks. In this case we try to push them off to 2542 * other runqueues. 2543 */ 2544 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2545 { 2546 /* 2547 * If we are running, update the avg_rt tracking, as the running time 2548 * will now on be accounted into the latter. 2549 */ 2550 if (task_current(rq, p)) { 2551 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2552 return; 2553 } 2554 2555 /* 2556 * If we are not running we may need to preempt the current 2557 * running task. If that current running task is also an RT task 2558 * then see if we can move to another run queue. 2559 */ 2560 if (task_on_rq_queued(p)) { 2561 #ifdef CONFIG_SMP 2562 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2563 rt_queue_push_tasks(rq); 2564 #endif /* CONFIG_SMP */ 2565 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) 2566 resched_curr(rq); 2567 } 2568 } 2569 2570 /* 2571 * Priority of the task has changed. This may cause 2572 * us to initiate a push or pull. 2573 */ 2574 static void 2575 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2576 { 2577 if (!task_on_rq_queued(p)) 2578 return; 2579 2580 if (task_current(rq, p)) { 2581 #ifdef CONFIG_SMP 2582 /* 2583 * If our priority decreases while running, we 2584 * may need to pull tasks to this runqueue. 2585 */ 2586 if (oldprio < p->prio) 2587 rt_queue_pull_task(rq); 2588 2589 /* 2590 * If there's a higher priority task waiting to run 2591 * then reschedule. 2592 */ 2593 if (p->prio > rq->rt.highest_prio.curr) 2594 resched_curr(rq); 2595 #else 2596 /* For UP simply resched on drop of prio */ 2597 if (oldprio < p->prio) 2598 resched_curr(rq); 2599 #endif /* CONFIG_SMP */ 2600 } else { 2601 /* 2602 * This task is not running, but if it is 2603 * greater than the current running task 2604 * then reschedule. 2605 */ 2606 if (p->prio < rq->curr->prio) 2607 resched_curr(rq); 2608 } 2609 } 2610 2611 #ifdef CONFIG_POSIX_TIMERS 2612 static void watchdog(struct rq *rq, struct task_struct *p) 2613 { 2614 unsigned long soft, hard; 2615 2616 /* max may change after cur was read, this will be fixed next tick */ 2617 soft = task_rlimit(p, RLIMIT_RTTIME); 2618 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2619 2620 if (soft != RLIM_INFINITY) { 2621 unsigned long next; 2622 2623 if (p->rt.watchdog_stamp != jiffies) { 2624 p->rt.timeout++; 2625 p->rt.watchdog_stamp = jiffies; 2626 } 2627 2628 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2629 if (p->rt.timeout > next) { 2630 posix_cputimers_rt_watchdog(&p->posix_cputimers, 2631 p->se.sum_exec_runtime); 2632 } 2633 } 2634 } 2635 #else 2636 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2637 #endif 2638 2639 /* 2640 * scheduler tick hitting a task of our scheduling class. 2641 * 2642 * NOTE: This function can be called remotely by the tick offload that 2643 * goes along full dynticks. Therefore no local assumption can be made 2644 * and everything must be accessed through the @rq and @curr passed in 2645 * parameters. 2646 */ 2647 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2648 { 2649 struct sched_rt_entity *rt_se = &p->rt; 2650 2651 update_curr_rt(rq); 2652 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2653 2654 watchdog(rq, p); 2655 2656 /* 2657 * RR tasks need a special form of timeslice management. 2658 * FIFO tasks have no timeslices. 2659 */ 2660 if (p->policy != SCHED_RR) 2661 return; 2662 2663 if (--p->rt.time_slice) 2664 return; 2665 2666 p->rt.time_slice = sched_rr_timeslice; 2667 2668 /* 2669 * Requeue to the end of queue if we (and all of our ancestors) are not 2670 * the only element on the queue 2671 */ 2672 for_each_sched_rt_entity(rt_se) { 2673 if (rt_se->run_list.prev != rt_se->run_list.next) { 2674 requeue_task_rt(rq, p, 0); 2675 resched_curr(rq); 2676 return; 2677 } 2678 } 2679 } 2680 2681 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2682 { 2683 /* 2684 * Time slice is 0 for SCHED_FIFO tasks 2685 */ 2686 if (task->policy == SCHED_RR) 2687 return sched_rr_timeslice; 2688 else 2689 return 0; 2690 } 2691 2692 #ifdef CONFIG_SCHED_CORE 2693 static int task_is_throttled_rt(struct task_struct *p, int cpu) 2694 { 2695 struct rt_rq *rt_rq; 2696 2697 #ifdef CONFIG_RT_GROUP_SCHED 2698 rt_rq = task_group(p)->rt_rq[cpu]; 2699 #else 2700 rt_rq = &cpu_rq(cpu)->rt; 2701 #endif 2702 2703 return rt_rq_throttled(rt_rq); 2704 } 2705 #endif 2706 2707 DEFINE_SCHED_CLASS(rt) = { 2708 2709 .enqueue_task = enqueue_task_rt, 2710 .dequeue_task = dequeue_task_rt, 2711 .yield_task = yield_task_rt, 2712 2713 .check_preempt_curr = check_preempt_curr_rt, 2714 2715 .pick_next_task = pick_next_task_rt, 2716 .put_prev_task = put_prev_task_rt, 2717 .set_next_task = set_next_task_rt, 2718 2719 #ifdef CONFIG_SMP 2720 .balance = balance_rt, 2721 .pick_task = pick_task_rt, 2722 .select_task_rq = select_task_rq_rt, 2723 .set_cpus_allowed = set_cpus_allowed_common, 2724 .rq_online = rq_online_rt, 2725 .rq_offline = rq_offline_rt, 2726 .task_woken = task_woken_rt, 2727 .switched_from = switched_from_rt, 2728 .find_lock_rq = find_lock_lowest_rq, 2729 #endif 2730 2731 .task_tick = task_tick_rt, 2732 2733 .get_rr_interval = get_rr_interval_rt, 2734 2735 .prio_changed = prio_changed_rt, 2736 .switched_to = switched_to_rt, 2737 2738 .update_curr = update_curr_rt, 2739 2740 #ifdef CONFIG_SCHED_CORE 2741 .task_is_throttled = task_is_throttled_rt, 2742 #endif 2743 2744 #ifdef CONFIG_UCLAMP_TASK 2745 .uclamp_enabled = 1, 2746 #endif 2747 }; 2748 2749 #ifdef CONFIG_RT_GROUP_SCHED 2750 /* 2751 * Ensure that the real time constraints are schedulable. 2752 */ 2753 static DEFINE_MUTEX(rt_constraints_mutex); 2754 2755 static inline int tg_has_rt_tasks(struct task_group *tg) 2756 { 2757 struct task_struct *task; 2758 struct css_task_iter it; 2759 int ret = 0; 2760 2761 /* 2762 * Autogroups do not have RT tasks; see autogroup_create(). 2763 */ 2764 if (task_group_is_autogroup(tg)) 2765 return 0; 2766 2767 css_task_iter_start(&tg->css, 0, &it); 2768 while (!ret && (task = css_task_iter_next(&it))) 2769 ret |= rt_task(task); 2770 css_task_iter_end(&it); 2771 2772 return ret; 2773 } 2774 2775 struct rt_schedulable_data { 2776 struct task_group *tg; 2777 u64 rt_period; 2778 u64 rt_runtime; 2779 }; 2780 2781 static int tg_rt_schedulable(struct task_group *tg, void *data) 2782 { 2783 struct rt_schedulable_data *d = data; 2784 struct task_group *child; 2785 unsigned long total, sum = 0; 2786 u64 period, runtime; 2787 2788 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2789 runtime = tg->rt_bandwidth.rt_runtime; 2790 2791 if (tg == d->tg) { 2792 period = d->rt_period; 2793 runtime = d->rt_runtime; 2794 } 2795 2796 /* 2797 * Cannot have more runtime than the period. 2798 */ 2799 if (runtime > period && runtime != RUNTIME_INF) 2800 return -EINVAL; 2801 2802 /* 2803 * Ensure we don't starve existing RT tasks if runtime turns zero. 2804 */ 2805 if (rt_bandwidth_enabled() && !runtime && 2806 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg)) 2807 return -EBUSY; 2808 2809 total = to_ratio(period, runtime); 2810 2811 /* 2812 * Nobody can have more than the global setting allows. 2813 */ 2814 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2815 return -EINVAL; 2816 2817 /* 2818 * The sum of our children's runtime should not exceed our own. 2819 */ 2820 list_for_each_entry_rcu(child, &tg->children, siblings) { 2821 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2822 runtime = child->rt_bandwidth.rt_runtime; 2823 2824 if (child == d->tg) { 2825 period = d->rt_period; 2826 runtime = d->rt_runtime; 2827 } 2828 2829 sum += to_ratio(period, runtime); 2830 } 2831 2832 if (sum > total) 2833 return -EINVAL; 2834 2835 return 0; 2836 } 2837 2838 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2839 { 2840 int ret; 2841 2842 struct rt_schedulable_data data = { 2843 .tg = tg, 2844 .rt_period = period, 2845 .rt_runtime = runtime, 2846 }; 2847 2848 rcu_read_lock(); 2849 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2850 rcu_read_unlock(); 2851 2852 return ret; 2853 } 2854 2855 static int tg_set_rt_bandwidth(struct task_group *tg, 2856 u64 rt_period, u64 rt_runtime) 2857 { 2858 int i, err = 0; 2859 2860 /* 2861 * Disallowing the root group RT runtime is BAD, it would disallow the 2862 * kernel creating (and or operating) RT threads. 2863 */ 2864 if (tg == &root_task_group && rt_runtime == 0) 2865 return -EINVAL; 2866 2867 /* No period doesn't make any sense. */ 2868 if (rt_period == 0) 2869 return -EINVAL; 2870 2871 /* 2872 * Bound quota to defend quota against overflow during bandwidth shift. 2873 */ 2874 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime) 2875 return -EINVAL; 2876 2877 mutex_lock(&rt_constraints_mutex); 2878 err = __rt_schedulable(tg, rt_period, rt_runtime); 2879 if (err) 2880 goto unlock; 2881 2882 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2883 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2884 tg->rt_bandwidth.rt_runtime = rt_runtime; 2885 2886 for_each_possible_cpu(i) { 2887 struct rt_rq *rt_rq = tg->rt_rq[i]; 2888 2889 raw_spin_lock(&rt_rq->rt_runtime_lock); 2890 rt_rq->rt_runtime = rt_runtime; 2891 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2892 } 2893 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2894 unlock: 2895 mutex_unlock(&rt_constraints_mutex); 2896 2897 return err; 2898 } 2899 2900 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2901 { 2902 u64 rt_runtime, rt_period; 2903 2904 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2905 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2906 if (rt_runtime_us < 0) 2907 rt_runtime = RUNTIME_INF; 2908 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) 2909 return -EINVAL; 2910 2911 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2912 } 2913 2914 long sched_group_rt_runtime(struct task_group *tg) 2915 { 2916 u64 rt_runtime_us; 2917 2918 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2919 return -1; 2920 2921 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2922 do_div(rt_runtime_us, NSEC_PER_USEC); 2923 return rt_runtime_us; 2924 } 2925 2926 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2927 { 2928 u64 rt_runtime, rt_period; 2929 2930 if (rt_period_us > U64_MAX / NSEC_PER_USEC) 2931 return -EINVAL; 2932 2933 rt_period = rt_period_us * NSEC_PER_USEC; 2934 rt_runtime = tg->rt_bandwidth.rt_runtime; 2935 2936 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2937 } 2938 2939 long sched_group_rt_period(struct task_group *tg) 2940 { 2941 u64 rt_period_us; 2942 2943 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2944 do_div(rt_period_us, NSEC_PER_USEC); 2945 return rt_period_us; 2946 } 2947 2948 #ifdef CONFIG_SYSCTL 2949 static int sched_rt_global_constraints(void) 2950 { 2951 int ret = 0; 2952 2953 mutex_lock(&rt_constraints_mutex); 2954 ret = __rt_schedulable(NULL, 0, 0); 2955 mutex_unlock(&rt_constraints_mutex); 2956 2957 return ret; 2958 } 2959 #endif /* CONFIG_SYSCTL */ 2960 2961 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2962 { 2963 /* Don't accept realtime tasks when there is no way for them to run */ 2964 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2965 return 0; 2966 2967 return 1; 2968 } 2969 2970 #else /* !CONFIG_RT_GROUP_SCHED */ 2971 2972 #ifdef CONFIG_SYSCTL 2973 static int sched_rt_global_constraints(void) 2974 { 2975 unsigned long flags; 2976 int i; 2977 2978 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2979 for_each_possible_cpu(i) { 2980 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2981 2982 raw_spin_lock(&rt_rq->rt_runtime_lock); 2983 rt_rq->rt_runtime = global_rt_runtime(); 2984 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2985 } 2986 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2987 2988 return 0; 2989 } 2990 #endif /* CONFIG_SYSCTL */ 2991 #endif /* CONFIG_RT_GROUP_SCHED */ 2992 2993 #ifdef CONFIG_SYSCTL 2994 static int sched_rt_global_validate(void) 2995 { 2996 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2997 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) || 2998 ((u64)sysctl_sched_rt_runtime * 2999 NSEC_PER_USEC > max_rt_runtime))) 3000 return -EINVAL; 3001 3002 return 0; 3003 } 3004 3005 static void sched_rt_do_global(void) 3006 { 3007 unsigned long flags; 3008 3009 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 3010 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 3011 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 3012 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 3013 } 3014 3015 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer, 3016 size_t *lenp, loff_t *ppos) 3017 { 3018 int old_period, old_runtime; 3019 static DEFINE_MUTEX(mutex); 3020 int ret; 3021 3022 mutex_lock(&mutex); 3023 old_period = sysctl_sched_rt_period; 3024 old_runtime = sysctl_sched_rt_runtime; 3025 3026 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3027 3028 if (!ret && write) { 3029 ret = sched_rt_global_validate(); 3030 if (ret) 3031 goto undo; 3032 3033 ret = sched_dl_global_validate(); 3034 if (ret) 3035 goto undo; 3036 3037 ret = sched_rt_global_constraints(); 3038 if (ret) 3039 goto undo; 3040 3041 sched_rt_do_global(); 3042 sched_dl_do_global(); 3043 } 3044 if (0) { 3045 undo: 3046 sysctl_sched_rt_period = old_period; 3047 sysctl_sched_rt_runtime = old_runtime; 3048 } 3049 mutex_unlock(&mutex); 3050 3051 return ret; 3052 } 3053 3054 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer, 3055 size_t *lenp, loff_t *ppos) 3056 { 3057 int ret; 3058 static DEFINE_MUTEX(mutex); 3059 3060 mutex_lock(&mutex); 3061 ret = proc_dointvec(table, write, buffer, lenp, ppos); 3062 /* 3063 * Make sure that internally we keep jiffies. 3064 * Also, writing zero resets the timeslice to default: 3065 */ 3066 if (!ret && write) { 3067 sched_rr_timeslice = 3068 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 3069 msecs_to_jiffies(sysctl_sched_rr_timeslice); 3070 3071 if (sysctl_sched_rr_timeslice <= 0) 3072 sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE); 3073 } 3074 mutex_unlock(&mutex); 3075 3076 return ret; 3077 } 3078 #endif /* CONFIG_SYSCTL */ 3079 3080 #ifdef CONFIG_SCHED_DEBUG 3081 void print_rt_stats(struct seq_file *m, int cpu) 3082 { 3083 rt_rq_iter_t iter; 3084 struct rt_rq *rt_rq; 3085 3086 rcu_read_lock(); 3087 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 3088 print_rt_rq(m, cpu, rt_rq); 3089 rcu_read_unlock(); 3090 } 3091 #endif /* CONFIG_SCHED_DEBUG */ 3092