xref: /openbmc/linux/kernel/sched/rt.c (revision a9a08845)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 
7 #include "sched.h"
8 
9 #include <linux/slab.h>
10 #include <linux/irq_work.h>
11 
12 int sched_rr_timeslice = RR_TIMESLICE;
13 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
14 
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16 
17 struct rt_bandwidth def_rt_bandwidth;
18 
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21 	struct rt_bandwidth *rt_b =
22 		container_of(timer, struct rt_bandwidth, rt_period_timer);
23 	int idle = 0;
24 	int overrun;
25 
26 	raw_spin_lock(&rt_b->rt_runtime_lock);
27 	for (;;) {
28 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29 		if (!overrun)
30 			break;
31 
32 		raw_spin_unlock(&rt_b->rt_runtime_lock);
33 		idle = do_sched_rt_period_timer(rt_b, overrun);
34 		raw_spin_lock(&rt_b->rt_runtime_lock);
35 	}
36 	if (idle)
37 		rt_b->rt_period_active = 0;
38 	raw_spin_unlock(&rt_b->rt_runtime_lock);
39 
40 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42 
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45 	rt_b->rt_period = ns_to_ktime(period);
46 	rt_b->rt_runtime = runtime;
47 
48 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
49 
50 	hrtimer_init(&rt_b->rt_period_timer,
51 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
52 	rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54 
55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
58 		return;
59 
60 	raw_spin_lock(&rt_b->rt_runtime_lock);
61 	if (!rt_b->rt_period_active) {
62 		rt_b->rt_period_active = 1;
63 		/*
64 		 * SCHED_DEADLINE updates the bandwidth, as a run away
65 		 * RT task with a DL task could hog a CPU. But DL does
66 		 * not reset the period. If a deadline task was running
67 		 * without an RT task running, it can cause RT tasks to
68 		 * throttle when they start up. Kick the timer right away
69 		 * to update the period.
70 		 */
71 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
72 		hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
73 	}
74 	raw_spin_unlock(&rt_b->rt_runtime_lock);
75 }
76 
77 void init_rt_rq(struct rt_rq *rt_rq)
78 {
79 	struct rt_prio_array *array;
80 	int i;
81 
82 	array = &rt_rq->active;
83 	for (i = 0; i < MAX_RT_PRIO; i++) {
84 		INIT_LIST_HEAD(array->queue + i);
85 		__clear_bit(i, array->bitmap);
86 	}
87 	/* delimiter for bitsearch: */
88 	__set_bit(MAX_RT_PRIO, array->bitmap);
89 
90 #if defined CONFIG_SMP
91 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
92 	rt_rq->highest_prio.next = MAX_RT_PRIO;
93 	rt_rq->rt_nr_migratory = 0;
94 	rt_rq->overloaded = 0;
95 	plist_head_init(&rt_rq->pushable_tasks);
96 #endif /* CONFIG_SMP */
97 	/* We start is dequeued state, because no RT tasks are queued */
98 	rt_rq->rt_queued = 0;
99 
100 	rt_rq->rt_time = 0;
101 	rt_rq->rt_throttled = 0;
102 	rt_rq->rt_runtime = 0;
103 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
104 }
105 
106 #ifdef CONFIG_RT_GROUP_SCHED
107 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
108 {
109 	hrtimer_cancel(&rt_b->rt_period_timer);
110 }
111 
112 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
113 
114 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
115 {
116 #ifdef CONFIG_SCHED_DEBUG
117 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
118 #endif
119 	return container_of(rt_se, struct task_struct, rt);
120 }
121 
122 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
123 {
124 	return rt_rq->rq;
125 }
126 
127 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
128 {
129 	return rt_se->rt_rq;
130 }
131 
132 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
133 {
134 	struct rt_rq *rt_rq = rt_se->rt_rq;
135 
136 	return rt_rq->rq;
137 }
138 
139 void free_rt_sched_group(struct task_group *tg)
140 {
141 	int i;
142 
143 	if (tg->rt_se)
144 		destroy_rt_bandwidth(&tg->rt_bandwidth);
145 
146 	for_each_possible_cpu(i) {
147 		if (tg->rt_rq)
148 			kfree(tg->rt_rq[i]);
149 		if (tg->rt_se)
150 			kfree(tg->rt_se[i]);
151 	}
152 
153 	kfree(tg->rt_rq);
154 	kfree(tg->rt_se);
155 }
156 
157 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
158 		struct sched_rt_entity *rt_se, int cpu,
159 		struct sched_rt_entity *parent)
160 {
161 	struct rq *rq = cpu_rq(cpu);
162 
163 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
164 	rt_rq->rt_nr_boosted = 0;
165 	rt_rq->rq = rq;
166 	rt_rq->tg = tg;
167 
168 	tg->rt_rq[cpu] = rt_rq;
169 	tg->rt_se[cpu] = rt_se;
170 
171 	if (!rt_se)
172 		return;
173 
174 	if (!parent)
175 		rt_se->rt_rq = &rq->rt;
176 	else
177 		rt_se->rt_rq = parent->my_q;
178 
179 	rt_se->my_q = rt_rq;
180 	rt_se->parent = parent;
181 	INIT_LIST_HEAD(&rt_se->run_list);
182 }
183 
184 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
185 {
186 	struct rt_rq *rt_rq;
187 	struct sched_rt_entity *rt_se;
188 	int i;
189 
190 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
191 	if (!tg->rt_rq)
192 		goto err;
193 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
194 	if (!tg->rt_se)
195 		goto err;
196 
197 	init_rt_bandwidth(&tg->rt_bandwidth,
198 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
199 
200 	for_each_possible_cpu(i) {
201 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
202 				     GFP_KERNEL, cpu_to_node(i));
203 		if (!rt_rq)
204 			goto err;
205 
206 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
207 				     GFP_KERNEL, cpu_to_node(i));
208 		if (!rt_se)
209 			goto err_free_rq;
210 
211 		init_rt_rq(rt_rq);
212 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
213 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
214 	}
215 
216 	return 1;
217 
218 err_free_rq:
219 	kfree(rt_rq);
220 err:
221 	return 0;
222 }
223 
224 #else /* CONFIG_RT_GROUP_SCHED */
225 
226 #define rt_entity_is_task(rt_se) (1)
227 
228 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
229 {
230 	return container_of(rt_se, struct task_struct, rt);
231 }
232 
233 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
234 {
235 	return container_of(rt_rq, struct rq, rt);
236 }
237 
238 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
239 {
240 	struct task_struct *p = rt_task_of(rt_se);
241 
242 	return task_rq(p);
243 }
244 
245 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
246 {
247 	struct rq *rq = rq_of_rt_se(rt_se);
248 
249 	return &rq->rt;
250 }
251 
252 void free_rt_sched_group(struct task_group *tg) { }
253 
254 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
255 {
256 	return 1;
257 }
258 #endif /* CONFIG_RT_GROUP_SCHED */
259 
260 #ifdef CONFIG_SMP
261 
262 static void pull_rt_task(struct rq *this_rq);
263 
264 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
265 {
266 	/* Try to pull RT tasks here if we lower this rq's prio */
267 	return rq->rt.highest_prio.curr > prev->prio;
268 }
269 
270 static inline int rt_overloaded(struct rq *rq)
271 {
272 	return atomic_read(&rq->rd->rto_count);
273 }
274 
275 static inline void rt_set_overload(struct rq *rq)
276 {
277 	if (!rq->online)
278 		return;
279 
280 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
281 	/*
282 	 * Make sure the mask is visible before we set
283 	 * the overload count. That is checked to determine
284 	 * if we should look at the mask. It would be a shame
285 	 * if we looked at the mask, but the mask was not
286 	 * updated yet.
287 	 *
288 	 * Matched by the barrier in pull_rt_task().
289 	 */
290 	smp_wmb();
291 	atomic_inc(&rq->rd->rto_count);
292 }
293 
294 static inline void rt_clear_overload(struct rq *rq)
295 {
296 	if (!rq->online)
297 		return;
298 
299 	/* the order here really doesn't matter */
300 	atomic_dec(&rq->rd->rto_count);
301 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
302 }
303 
304 static void update_rt_migration(struct rt_rq *rt_rq)
305 {
306 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
307 		if (!rt_rq->overloaded) {
308 			rt_set_overload(rq_of_rt_rq(rt_rq));
309 			rt_rq->overloaded = 1;
310 		}
311 	} else if (rt_rq->overloaded) {
312 		rt_clear_overload(rq_of_rt_rq(rt_rq));
313 		rt_rq->overloaded = 0;
314 	}
315 }
316 
317 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
318 {
319 	struct task_struct *p;
320 
321 	if (!rt_entity_is_task(rt_se))
322 		return;
323 
324 	p = rt_task_of(rt_se);
325 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
326 
327 	rt_rq->rt_nr_total++;
328 	if (p->nr_cpus_allowed > 1)
329 		rt_rq->rt_nr_migratory++;
330 
331 	update_rt_migration(rt_rq);
332 }
333 
334 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
335 {
336 	struct task_struct *p;
337 
338 	if (!rt_entity_is_task(rt_se))
339 		return;
340 
341 	p = rt_task_of(rt_se);
342 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
343 
344 	rt_rq->rt_nr_total--;
345 	if (p->nr_cpus_allowed > 1)
346 		rt_rq->rt_nr_migratory--;
347 
348 	update_rt_migration(rt_rq);
349 }
350 
351 static inline int has_pushable_tasks(struct rq *rq)
352 {
353 	return !plist_head_empty(&rq->rt.pushable_tasks);
354 }
355 
356 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
357 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
358 
359 static void push_rt_tasks(struct rq *);
360 static void pull_rt_task(struct rq *);
361 
362 static inline void queue_push_tasks(struct rq *rq)
363 {
364 	if (!has_pushable_tasks(rq))
365 		return;
366 
367 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
368 }
369 
370 static inline void queue_pull_task(struct rq *rq)
371 {
372 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
373 }
374 
375 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
376 {
377 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
378 	plist_node_init(&p->pushable_tasks, p->prio);
379 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
380 
381 	/* Update the highest prio pushable task */
382 	if (p->prio < rq->rt.highest_prio.next)
383 		rq->rt.highest_prio.next = p->prio;
384 }
385 
386 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
387 {
388 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
389 
390 	/* Update the new highest prio pushable task */
391 	if (has_pushable_tasks(rq)) {
392 		p = plist_first_entry(&rq->rt.pushable_tasks,
393 				      struct task_struct, pushable_tasks);
394 		rq->rt.highest_prio.next = p->prio;
395 	} else
396 		rq->rt.highest_prio.next = MAX_RT_PRIO;
397 }
398 
399 #else
400 
401 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
402 {
403 }
404 
405 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
406 {
407 }
408 
409 static inline
410 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
411 {
412 }
413 
414 static inline
415 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
416 {
417 }
418 
419 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
420 {
421 	return false;
422 }
423 
424 static inline void pull_rt_task(struct rq *this_rq)
425 {
426 }
427 
428 static inline void queue_push_tasks(struct rq *rq)
429 {
430 }
431 #endif /* CONFIG_SMP */
432 
433 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
434 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
435 
436 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
437 {
438 	return rt_se->on_rq;
439 }
440 
441 #ifdef CONFIG_RT_GROUP_SCHED
442 
443 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
444 {
445 	if (!rt_rq->tg)
446 		return RUNTIME_INF;
447 
448 	return rt_rq->rt_runtime;
449 }
450 
451 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
452 {
453 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
454 }
455 
456 typedef struct task_group *rt_rq_iter_t;
457 
458 static inline struct task_group *next_task_group(struct task_group *tg)
459 {
460 	do {
461 		tg = list_entry_rcu(tg->list.next,
462 			typeof(struct task_group), list);
463 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
464 
465 	if (&tg->list == &task_groups)
466 		tg = NULL;
467 
468 	return tg;
469 }
470 
471 #define for_each_rt_rq(rt_rq, iter, rq)					\
472 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
473 		(iter = next_task_group(iter)) &&			\
474 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
475 
476 #define for_each_sched_rt_entity(rt_se) \
477 	for (; rt_se; rt_se = rt_se->parent)
478 
479 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
480 {
481 	return rt_se->my_q;
482 }
483 
484 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
485 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
486 
487 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
488 {
489 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
490 	struct rq *rq = rq_of_rt_rq(rt_rq);
491 	struct sched_rt_entity *rt_se;
492 
493 	int cpu = cpu_of(rq);
494 
495 	rt_se = rt_rq->tg->rt_se[cpu];
496 
497 	if (rt_rq->rt_nr_running) {
498 		if (!rt_se)
499 			enqueue_top_rt_rq(rt_rq);
500 		else if (!on_rt_rq(rt_se))
501 			enqueue_rt_entity(rt_se, 0);
502 
503 		if (rt_rq->highest_prio.curr < curr->prio)
504 			resched_curr(rq);
505 	}
506 }
507 
508 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
509 {
510 	struct sched_rt_entity *rt_se;
511 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
512 
513 	rt_se = rt_rq->tg->rt_se[cpu];
514 
515 	if (!rt_se)
516 		dequeue_top_rt_rq(rt_rq);
517 	else if (on_rt_rq(rt_se))
518 		dequeue_rt_entity(rt_se, 0);
519 }
520 
521 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
522 {
523 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
524 }
525 
526 static int rt_se_boosted(struct sched_rt_entity *rt_se)
527 {
528 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
529 	struct task_struct *p;
530 
531 	if (rt_rq)
532 		return !!rt_rq->rt_nr_boosted;
533 
534 	p = rt_task_of(rt_se);
535 	return p->prio != p->normal_prio;
536 }
537 
538 #ifdef CONFIG_SMP
539 static inline const struct cpumask *sched_rt_period_mask(void)
540 {
541 	return this_rq()->rd->span;
542 }
543 #else
544 static inline const struct cpumask *sched_rt_period_mask(void)
545 {
546 	return cpu_online_mask;
547 }
548 #endif
549 
550 static inline
551 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
552 {
553 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
554 }
555 
556 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
557 {
558 	return &rt_rq->tg->rt_bandwidth;
559 }
560 
561 #else /* !CONFIG_RT_GROUP_SCHED */
562 
563 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
564 {
565 	return rt_rq->rt_runtime;
566 }
567 
568 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
569 {
570 	return ktime_to_ns(def_rt_bandwidth.rt_period);
571 }
572 
573 typedef struct rt_rq *rt_rq_iter_t;
574 
575 #define for_each_rt_rq(rt_rq, iter, rq) \
576 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
577 
578 #define for_each_sched_rt_entity(rt_se) \
579 	for (; rt_se; rt_se = NULL)
580 
581 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
582 {
583 	return NULL;
584 }
585 
586 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
587 {
588 	struct rq *rq = rq_of_rt_rq(rt_rq);
589 
590 	if (!rt_rq->rt_nr_running)
591 		return;
592 
593 	enqueue_top_rt_rq(rt_rq);
594 	resched_curr(rq);
595 }
596 
597 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
598 {
599 	dequeue_top_rt_rq(rt_rq);
600 }
601 
602 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
603 {
604 	return rt_rq->rt_throttled;
605 }
606 
607 static inline const struct cpumask *sched_rt_period_mask(void)
608 {
609 	return cpu_online_mask;
610 }
611 
612 static inline
613 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
614 {
615 	return &cpu_rq(cpu)->rt;
616 }
617 
618 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
619 {
620 	return &def_rt_bandwidth;
621 }
622 
623 #endif /* CONFIG_RT_GROUP_SCHED */
624 
625 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
626 {
627 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
628 
629 	return (hrtimer_active(&rt_b->rt_period_timer) ||
630 		rt_rq->rt_time < rt_b->rt_runtime);
631 }
632 
633 #ifdef CONFIG_SMP
634 /*
635  * We ran out of runtime, see if we can borrow some from our neighbours.
636  */
637 static void do_balance_runtime(struct rt_rq *rt_rq)
638 {
639 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
640 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
641 	int i, weight;
642 	u64 rt_period;
643 
644 	weight = cpumask_weight(rd->span);
645 
646 	raw_spin_lock(&rt_b->rt_runtime_lock);
647 	rt_period = ktime_to_ns(rt_b->rt_period);
648 	for_each_cpu(i, rd->span) {
649 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
650 		s64 diff;
651 
652 		if (iter == rt_rq)
653 			continue;
654 
655 		raw_spin_lock(&iter->rt_runtime_lock);
656 		/*
657 		 * Either all rqs have inf runtime and there's nothing to steal
658 		 * or __disable_runtime() below sets a specific rq to inf to
659 		 * indicate its been disabled and disalow stealing.
660 		 */
661 		if (iter->rt_runtime == RUNTIME_INF)
662 			goto next;
663 
664 		/*
665 		 * From runqueues with spare time, take 1/n part of their
666 		 * spare time, but no more than our period.
667 		 */
668 		diff = iter->rt_runtime - iter->rt_time;
669 		if (diff > 0) {
670 			diff = div_u64((u64)diff, weight);
671 			if (rt_rq->rt_runtime + diff > rt_period)
672 				diff = rt_period - rt_rq->rt_runtime;
673 			iter->rt_runtime -= diff;
674 			rt_rq->rt_runtime += diff;
675 			if (rt_rq->rt_runtime == rt_period) {
676 				raw_spin_unlock(&iter->rt_runtime_lock);
677 				break;
678 			}
679 		}
680 next:
681 		raw_spin_unlock(&iter->rt_runtime_lock);
682 	}
683 	raw_spin_unlock(&rt_b->rt_runtime_lock);
684 }
685 
686 /*
687  * Ensure this RQ takes back all the runtime it lend to its neighbours.
688  */
689 static void __disable_runtime(struct rq *rq)
690 {
691 	struct root_domain *rd = rq->rd;
692 	rt_rq_iter_t iter;
693 	struct rt_rq *rt_rq;
694 
695 	if (unlikely(!scheduler_running))
696 		return;
697 
698 	for_each_rt_rq(rt_rq, iter, rq) {
699 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
700 		s64 want;
701 		int i;
702 
703 		raw_spin_lock(&rt_b->rt_runtime_lock);
704 		raw_spin_lock(&rt_rq->rt_runtime_lock);
705 		/*
706 		 * Either we're all inf and nobody needs to borrow, or we're
707 		 * already disabled and thus have nothing to do, or we have
708 		 * exactly the right amount of runtime to take out.
709 		 */
710 		if (rt_rq->rt_runtime == RUNTIME_INF ||
711 				rt_rq->rt_runtime == rt_b->rt_runtime)
712 			goto balanced;
713 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
714 
715 		/*
716 		 * Calculate the difference between what we started out with
717 		 * and what we current have, that's the amount of runtime
718 		 * we lend and now have to reclaim.
719 		 */
720 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
721 
722 		/*
723 		 * Greedy reclaim, take back as much as we can.
724 		 */
725 		for_each_cpu(i, rd->span) {
726 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
727 			s64 diff;
728 
729 			/*
730 			 * Can't reclaim from ourselves or disabled runqueues.
731 			 */
732 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
733 				continue;
734 
735 			raw_spin_lock(&iter->rt_runtime_lock);
736 			if (want > 0) {
737 				diff = min_t(s64, iter->rt_runtime, want);
738 				iter->rt_runtime -= diff;
739 				want -= diff;
740 			} else {
741 				iter->rt_runtime -= want;
742 				want -= want;
743 			}
744 			raw_spin_unlock(&iter->rt_runtime_lock);
745 
746 			if (!want)
747 				break;
748 		}
749 
750 		raw_spin_lock(&rt_rq->rt_runtime_lock);
751 		/*
752 		 * We cannot be left wanting - that would mean some runtime
753 		 * leaked out of the system.
754 		 */
755 		BUG_ON(want);
756 balanced:
757 		/*
758 		 * Disable all the borrow logic by pretending we have inf
759 		 * runtime - in which case borrowing doesn't make sense.
760 		 */
761 		rt_rq->rt_runtime = RUNTIME_INF;
762 		rt_rq->rt_throttled = 0;
763 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
764 		raw_spin_unlock(&rt_b->rt_runtime_lock);
765 
766 		/* Make rt_rq available for pick_next_task() */
767 		sched_rt_rq_enqueue(rt_rq);
768 	}
769 }
770 
771 static void __enable_runtime(struct rq *rq)
772 {
773 	rt_rq_iter_t iter;
774 	struct rt_rq *rt_rq;
775 
776 	if (unlikely(!scheduler_running))
777 		return;
778 
779 	/*
780 	 * Reset each runqueue's bandwidth settings
781 	 */
782 	for_each_rt_rq(rt_rq, iter, rq) {
783 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
784 
785 		raw_spin_lock(&rt_b->rt_runtime_lock);
786 		raw_spin_lock(&rt_rq->rt_runtime_lock);
787 		rt_rq->rt_runtime = rt_b->rt_runtime;
788 		rt_rq->rt_time = 0;
789 		rt_rq->rt_throttled = 0;
790 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
791 		raw_spin_unlock(&rt_b->rt_runtime_lock);
792 	}
793 }
794 
795 static void balance_runtime(struct rt_rq *rt_rq)
796 {
797 	if (!sched_feat(RT_RUNTIME_SHARE))
798 		return;
799 
800 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
801 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
802 		do_balance_runtime(rt_rq);
803 		raw_spin_lock(&rt_rq->rt_runtime_lock);
804 	}
805 }
806 #else /* !CONFIG_SMP */
807 static inline void balance_runtime(struct rt_rq *rt_rq) {}
808 #endif /* CONFIG_SMP */
809 
810 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
811 {
812 	int i, idle = 1, throttled = 0;
813 	const struct cpumask *span;
814 
815 	span = sched_rt_period_mask();
816 #ifdef CONFIG_RT_GROUP_SCHED
817 	/*
818 	 * FIXME: isolated CPUs should really leave the root task group,
819 	 * whether they are isolcpus or were isolated via cpusets, lest
820 	 * the timer run on a CPU which does not service all runqueues,
821 	 * potentially leaving other CPUs indefinitely throttled.  If
822 	 * isolation is really required, the user will turn the throttle
823 	 * off to kill the perturbations it causes anyway.  Meanwhile,
824 	 * this maintains functionality for boot and/or troubleshooting.
825 	 */
826 	if (rt_b == &root_task_group.rt_bandwidth)
827 		span = cpu_online_mask;
828 #endif
829 	for_each_cpu(i, span) {
830 		int enqueue = 0;
831 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
832 		struct rq *rq = rq_of_rt_rq(rt_rq);
833 		int skip;
834 
835 		/*
836 		 * When span == cpu_online_mask, taking each rq->lock
837 		 * can be time-consuming. Try to avoid it when possible.
838 		 */
839 		raw_spin_lock(&rt_rq->rt_runtime_lock);
840 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
841 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
842 		if (skip)
843 			continue;
844 
845 		raw_spin_lock(&rq->lock);
846 		if (rt_rq->rt_time) {
847 			u64 runtime;
848 
849 			raw_spin_lock(&rt_rq->rt_runtime_lock);
850 			if (rt_rq->rt_throttled)
851 				balance_runtime(rt_rq);
852 			runtime = rt_rq->rt_runtime;
853 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
854 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
855 				rt_rq->rt_throttled = 0;
856 				enqueue = 1;
857 
858 				/*
859 				 * When we're idle and a woken (rt) task is
860 				 * throttled check_preempt_curr() will set
861 				 * skip_update and the time between the wakeup
862 				 * and this unthrottle will get accounted as
863 				 * 'runtime'.
864 				 */
865 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
866 					rq_clock_skip_update(rq, false);
867 			}
868 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
869 				idle = 0;
870 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
871 		} else if (rt_rq->rt_nr_running) {
872 			idle = 0;
873 			if (!rt_rq_throttled(rt_rq))
874 				enqueue = 1;
875 		}
876 		if (rt_rq->rt_throttled)
877 			throttled = 1;
878 
879 		if (enqueue)
880 			sched_rt_rq_enqueue(rt_rq);
881 		raw_spin_unlock(&rq->lock);
882 	}
883 
884 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
885 		return 1;
886 
887 	return idle;
888 }
889 
890 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
891 {
892 #ifdef CONFIG_RT_GROUP_SCHED
893 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
894 
895 	if (rt_rq)
896 		return rt_rq->highest_prio.curr;
897 #endif
898 
899 	return rt_task_of(rt_se)->prio;
900 }
901 
902 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
903 {
904 	u64 runtime = sched_rt_runtime(rt_rq);
905 
906 	if (rt_rq->rt_throttled)
907 		return rt_rq_throttled(rt_rq);
908 
909 	if (runtime >= sched_rt_period(rt_rq))
910 		return 0;
911 
912 	balance_runtime(rt_rq);
913 	runtime = sched_rt_runtime(rt_rq);
914 	if (runtime == RUNTIME_INF)
915 		return 0;
916 
917 	if (rt_rq->rt_time > runtime) {
918 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
919 
920 		/*
921 		 * Don't actually throttle groups that have no runtime assigned
922 		 * but accrue some time due to boosting.
923 		 */
924 		if (likely(rt_b->rt_runtime)) {
925 			rt_rq->rt_throttled = 1;
926 			printk_deferred_once("sched: RT throttling activated\n");
927 		} else {
928 			/*
929 			 * In case we did anyway, make it go away,
930 			 * replenishment is a joke, since it will replenish us
931 			 * with exactly 0 ns.
932 			 */
933 			rt_rq->rt_time = 0;
934 		}
935 
936 		if (rt_rq_throttled(rt_rq)) {
937 			sched_rt_rq_dequeue(rt_rq);
938 			return 1;
939 		}
940 	}
941 
942 	return 0;
943 }
944 
945 /*
946  * Update the current task's runtime statistics. Skip current tasks that
947  * are not in our scheduling class.
948  */
949 static void update_curr_rt(struct rq *rq)
950 {
951 	struct task_struct *curr = rq->curr;
952 	struct sched_rt_entity *rt_se = &curr->rt;
953 	u64 now = rq_clock_task(rq);
954 	u64 delta_exec;
955 
956 	if (curr->sched_class != &rt_sched_class)
957 		return;
958 
959 	delta_exec = now - curr->se.exec_start;
960 	if (unlikely((s64)delta_exec <= 0))
961 		return;
962 
963 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
964 	cpufreq_update_util(rq, SCHED_CPUFREQ_RT);
965 
966 	schedstat_set(curr->se.statistics.exec_max,
967 		      max(curr->se.statistics.exec_max, delta_exec));
968 
969 	curr->se.sum_exec_runtime += delta_exec;
970 	account_group_exec_runtime(curr, delta_exec);
971 
972 	curr->se.exec_start = now;
973 	cgroup_account_cputime(curr, delta_exec);
974 
975 	sched_rt_avg_update(rq, delta_exec);
976 
977 	if (!rt_bandwidth_enabled())
978 		return;
979 
980 	for_each_sched_rt_entity(rt_se) {
981 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
982 
983 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
984 			raw_spin_lock(&rt_rq->rt_runtime_lock);
985 			rt_rq->rt_time += delta_exec;
986 			if (sched_rt_runtime_exceeded(rt_rq))
987 				resched_curr(rq);
988 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
989 		}
990 	}
991 }
992 
993 static void
994 dequeue_top_rt_rq(struct rt_rq *rt_rq)
995 {
996 	struct rq *rq = rq_of_rt_rq(rt_rq);
997 
998 	BUG_ON(&rq->rt != rt_rq);
999 
1000 	if (!rt_rq->rt_queued)
1001 		return;
1002 
1003 	BUG_ON(!rq->nr_running);
1004 
1005 	sub_nr_running(rq, rt_rq->rt_nr_running);
1006 	rt_rq->rt_queued = 0;
1007 }
1008 
1009 static void
1010 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1011 {
1012 	struct rq *rq = rq_of_rt_rq(rt_rq);
1013 
1014 	BUG_ON(&rq->rt != rt_rq);
1015 
1016 	if (rt_rq->rt_queued)
1017 		return;
1018 	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1019 		return;
1020 
1021 	add_nr_running(rq, rt_rq->rt_nr_running);
1022 	rt_rq->rt_queued = 1;
1023 }
1024 
1025 #if defined CONFIG_SMP
1026 
1027 static void
1028 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1029 {
1030 	struct rq *rq = rq_of_rt_rq(rt_rq);
1031 
1032 #ifdef CONFIG_RT_GROUP_SCHED
1033 	/*
1034 	 * Change rq's cpupri only if rt_rq is the top queue.
1035 	 */
1036 	if (&rq->rt != rt_rq)
1037 		return;
1038 #endif
1039 	if (rq->online && prio < prev_prio)
1040 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1041 }
1042 
1043 static void
1044 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1045 {
1046 	struct rq *rq = rq_of_rt_rq(rt_rq);
1047 
1048 #ifdef CONFIG_RT_GROUP_SCHED
1049 	/*
1050 	 * Change rq's cpupri only if rt_rq is the top queue.
1051 	 */
1052 	if (&rq->rt != rt_rq)
1053 		return;
1054 #endif
1055 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1056 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1057 }
1058 
1059 #else /* CONFIG_SMP */
1060 
1061 static inline
1062 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1063 static inline
1064 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1065 
1066 #endif /* CONFIG_SMP */
1067 
1068 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1069 static void
1070 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1071 {
1072 	int prev_prio = rt_rq->highest_prio.curr;
1073 
1074 	if (prio < prev_prio)
1075 		rt_rq->highest_prio.curr = prio;
1076 
1077 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1078 }
1079 
1080 static void
1081 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1082 {
1083 	int prev_prio = rt_rq->highest_prio.curr;
1084 
1085 	if (rt_rq->rt_nr_running) {
1086 
1087 		WARN_ON(prio < prev_prio);
1088 
1089 		/*
1090 		 * This may have been our highest task, and therefore
1091 		 * we may have some recomputation to do
1092 		 */
1093 		if (prio == prev_prio) {
1094 			struct rt_prio_array *array = &rt_rq->active;
1095 
1096 			rt_rq->highest_prio.curr =
1097 				sched_find_first_bit(array->bitmap);
1098 		}
1099 
1100 	} else
1101 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1102 
1103 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1104 }
1105 
1106 #else
1107 
1108 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1109 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1110 
1111 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1112 
1113 #ifdef CONFIG_RT_GROUP_SCHED
1114 
1115 static void
1116 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1117 {
1118 	if (rt_se_boosted(rt_se))
1119 		rt_rq->rt_nr_boosted++;
1120 
1121 	if (rt_rq->tg)
1122 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1123 }
1124 
1125 static void
1126 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1127 {
1128 	if (rt_se_boosted(rt_se))
1129 		rt_rq->rt_nr_boosted--;
1130 
1131 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1132 }
1133 
1134 #else /* CONFIG_RT_GROUP_SCHED */
1135 
1136 static void
1137 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1138 {
1139 	start_rt_bandwidth(&def_rt_bandwidth);
1140 }
1141 
1142 static inline
1143 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1144 
1145 #endif /* CONFIG_RT_GROUP_SCHED */
1146 
1147 static inline
1148 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1149 {
1150 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1151 
1152 	if (group_rq)
1153 		return group_rq->rt_nr_running;
1154 	else
1155 		return 1;
1156 }
1157 
1158 static inline
1159 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1160 {
1161 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1162 	struct task_struct *tsk;
1163 
1164 	if (group_rq)
1165 		return group_rq->rr_nr_running;
1166 
1167 	tsk = rt_task_of(rt_se);
1168 
1169 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1170 }
1171 
1172 static inline
1173 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1174 {
1175 	int prio = rt_se_prio(rt_se);
1176 
1177 	WARN_ON(!rt_prio(prio));
1178 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1179 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1180 
1181 	inc_rt_prio(rt_rq, prio);
1182 	inc_rt_migration(rt_se, rt_rq);
1183 	inc_rt_group(rt_se, rt_rq);
1184 }
1185 
1186 static inline
1187 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1188 {
1189 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1190 	WARN_ON(!rt_rq->rt_nr_running);
1191 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1192 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1193 
1194 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1195 	dec_rt_migration(rt_se, rt_rq);
1196 	dec_rt_group(rt_se, rt_rq);
1197 }
1198 
1199 /*
1200  * Change rt_se->run_list location unless SAVE && !MOVE
1201  *
1202  * assumes ENQUEUE/DEQUEUE flags match
1203  */
1204 static inline bool move_entity(unsigned int flags)
1205 {
1206 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1207 		return false;
1208 
1209 	return true;
1210 }
1211 
1212 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1213 {
1214 	list_del_init(&rt_se->run_list);
1215 
1216 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1217 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1218 
1219 	rt_se->on_list = 0;
1220 }
1221 
1222 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1223 {
1224 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1225 	struct rt_prio_array *array = &rt_rq->active;
1226 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1227 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1228 
1229 	/*
1230 	 * Don't enqueue the group if its throttled, or when empty.
1231 	 * The latter is a consequence of the former when a child group
1232 	 * get throttled and the current group doesn't have any other
1233 	 * active members.
1234 	 */
1235 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1236 		if (rt_se->on_list)
1237 			__delist_rt_entity(rt_se, array);
1238 		return;
1239 	}
1240 
1241 	if (move_entity(flags)) {
1242 		WARN_ON_ONCE(rt_se->on_list);
1243 		if (flags & ENQUEUE_HEAD)
1244 			list_add(&rt_se->run_list, queue);
1245 		else
1246 			list_add_tail(&rt_se->run_list, queue);
1247 
1248 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1249 		rt_se->on_list = 1;
1250 	}
1251 	rt_se->on_rq = 1;
1252 
1253 	inc_rt_tasks(rt_se, rt_rq);
1254 }
1255 
1256 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1257 {
1258 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1259 	struct rt_prio_array *array = &rt_rq->active;
1260 
1261 	if (move_entity(flags)) {
1262 		WARN_ON_ONCE(!rt_se->on_list);
1263 		__delist_rt_entity(rt_se, array);
1264 	}
1265 	rt_se->on_rq = 0;
1266 
1267 	dec_rt_tasks(rt_se, rt_rq);
1268 }
1269 
1270 /*
1271  * Because the prio of an upper entry depends on the lower
1272  * entries, we must remove entries top - down.
1273  */
1274 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1275 {
1276 	struct sched_rt_entity *back = NULL;
1277 
1278 	for_each_sched_rt_entity(rt_se) {
1279 		rt_se->back = back;
1280 		back = rt_se;
1281 	}
1282 
1283 	dequeue_top_rt_rq(rt_rq_of_se(back));
1284 
1285 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1286 		if (on_rt_rq(rt_se))
1287 			__dequeue_rt_entity(rt_se, flags);
1288 	}
1289 }
1290 
1291 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1292 {
1293 	struct rq *rq = rq_of_rt_se(rt_se);
1294 
1295 	dequeue_rt_stack(rt_se, flags);
1296 	for_each_sched_rt_entity(rt_se)
1297 		__enqueue_rt_entity(rt_se, flags);
1298 	enqueue_top_rt_rq(&rq->rt);
1299 }
1300 
1301 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1302 {
1303 	struct rq *rq = rq_of_rt_se(rt_se);
1304 
1305 	dequeue_rt_stack(rt_se, flags);
1306 
1307 	for_each_sched_rt_entity(rt_se) {
1308 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1309 
1310 		if (rt_rq && rt_rq->rt_nr_running)
1311 			__enqueue_rt_entity(rt_se, flags);
1312 	}
1313 	enqueue_top_rt_rq(&rq->rt);
1314 }
1315 
1316 /*
1317  * Adding/removing a task to/from a priority array:
1318  */
1319 static void
1320 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1321 {
1322 	struct sched_rt_entity *rt_se = &p->rt;
1323 
1324 	if (flags & ENQUEUE_WAKEUP)
1325 		rt_se->timeout = 0;
1326 
1327 	enqueue_rt_entity(rt_se, flags);
1328 
1329 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1330 		enqueue_pushable_task(rq, p);
1331 }
1332 
1333 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1334 {
1335 	struct sched_rt_entity *rt_se = &p->rt;
1336 
1337 	update_curr_rt(rq);
1338 	dequeue_rt_entity(rt_se, flags);
1339 
1340 	dequeue_pushable_task(rq, p);
1341 }
1342 
1343 /*
1344  * Put task to the head or the end of the run list without the overhead of
1345  * dequeue followed by enqueue.
1346  */
1347 static void
1348 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1349 {
1350 	if (on_rt_rq(rt_se)) {
1351 		struct rt_prio_array *array = &rt_rq->active;
1352 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1353 
1354 		if (head)
1355 			list_move(&rt_se->run_list, queue);
1356 		else
1357 			list_move_tail(&rt_se->run_list, queue);
1358 	}
1359 }
1360 
1361 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1362 {
1363 	struct sched_rt_entity *rt_se = &p->rt;
1364 	struct rt_rq *rt_rq;
1365 
1366 	for_each_sched_rt_entity(rt_se) {
1367 		rt_rq = rt_rq_of_se(rt_se);
1368 		requeue_rt_entity(rt_rq, rt_se, head);
1369 	}
1370 }
1371 
1372 static void yield_task_rt(struct rq *rq)
1373 {
1374 	requeue_task_rt(rq, rq->curr, 0);
1375 }
1376 
1377 #ifdef CONFIG_SMP
1378 static int find_lowest_rq(struct task_struct *task);
1379 
1380 static int
1381 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1382 {
1383 	struct task_struct *curr;
1384 	struct rq *rq;
1385 
1386 	/* For anything but wake ups, just return the task_cpu */
1387 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1388 		goto out;
1389 
1390 	rq = cpu_rq(cpu);
1391 
1392 	rcu_read_lock();
1393 	curr = READ_ONCE(rq->curr); /* unlocked access */
1394 
1395 	/*
1396 	 * If the current task on @p's runqueue is an RT task, then
1397 	 * try to see if we can wake this RT task up on another
1398 	 * runqueue. Otherwise simply start this RT task
1399 	 * on its current runqueue.
1400 	 *
1401 	 * We want to avoid overloading runqueues. If the woken
1402 	 * task is a higher priority, then it will stay on this CPU
1403 	 * and the lower prio task should be moved to another CPU.
1404 	 * Even though this will probably make the lower prio task
1405 	 * lose its cache, we do not want to bounce a higher task
1406 	 * around just because it gave up its CPU, perhaps for a
1407 	 * lock?
1408 	 *
1409 	 * For equal prio tasks, we just let the scheduler sort it out.
1410 	 *
1411 	 * Otherwise, just let it ride on the affined RQ and the
1412 	 * post-schedule router will push the preempted task away
1413 	 *
1414 	 * This test is optimistic, if we get it wrong the load-balancer
1415 	 * will have to sort it out.
1416 	 */
1417 	if (curr && unlikely(rt_task(curr)) &&
1418 	    (curr->nr_cpus_allowed < 2 ||
1419 	     curr->prio <= p->prio)) {
1420 		int target = find_lowest_rq(p);
1421 
1422 		/*
1423 		 * Don't bother moving it if the destination CPU is
1424 		 * not running a lower priority task.
1425 		 */
1426 		if (target != -1 &&
1427 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1428 			cpu = target;
1429 	}
1430 	rcu_read_unlock();
1431 
1432 out:
1433 	return cpu;
1434 }
1435 
1436 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1437 {
1438 	/*
1439 	 * Current can't be migrated, useless to reschedule,
1440 	 * let's hope p can move out.
1441 	 */
1442 	if (rq->curr->nr_cpus_allowed == 1 ||
1443 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1444 		return;
1445 
1446 	/*
1447 	 * p is migratable, so let's not schedule it and
1448 	 * see if it is pushed or pulled somewhere else.
1449 	 */
1450 	if (p->nr_cpus_allowed != 1
1451 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1452 		return;
1453 
1454 	/*
1455 	 * There appears to be other cpus that can accept
1456 	 * current and none to run 'p', so lets reschedule
1457 	 * to try and push current away:
1458 	 */
1459 	requeue_task_rt(rq, p, 1);
1460 	resched_curr(rq);
1461 }
1462 
1463 #endif /* CONFIG_SMP */
1464 
1465 /*
1466  * Preempt the current task with a newly woken task if needed:
1467  */
1468 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1469 {
1470 	if (p->prio < rq->curr->prio) {
1471 		resched_curr(rq);
1472 		return;
1473 	}
1474 
1475 #ifdef CONFIG_SMP
1476 	/*
1477 	 * If:
1478 	 *
1479 	 * - the newly woken task is of equal priority to the current task
1480 	 * - the newly woken task is non-migratable while current is migratable
1481 	 * - current will be preempted on the next reschedule
1482 	 *
1483 	 * we should check to see if current can readily move to a different
1484 	 * cpu.  If so, we will reschedule to allow the push logic to try
1485 	 * to move current somewhere else, making room for our non-migratable
1486 	 * task.
1487 	 */
1488 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1489 		check_preempt_equal_prio(rq, p);
1490 #endif
1491 }
1492 
1493 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1494 						   struct rt_rq *rt_rq)
1495 {
1496 	struct rt_prio_array *array = &rt_rq->active;
1497 	struct sched_rt_entity *next = NULL;
1498 	struct list_head *queue;
1499 	int idx;
1500 
1501 	idx = sched_find_first_bit(array->bitmap);
1502 	BUG_ON(idx >= MAX_RT_PRIO);
1503 
1504 	queue = array->queue + idx;
1505 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1506 
1507 	return next;
1508 }
1509 
1510 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1511 {
1512 	struct sched_rt_entity *rt_se;
1513 	struct task_struct *p;
1514 	struct rt_rq *rt_rq  = &rq->rt;
1515 
1516 	do {
1517 		rt_se = pick_next_rt_entity(rq, rt_rq);
1518 		BUG_ON(!rt_se);
1519 		rt_rq = group_rt_rq(rt_se);
1520 	} while (rt_rq);
1521 
1522 	p = rt_task_of(rt_se);
1523 	p->se.exec_start = rq_clock_task(rq);
1524 
1525 	return p;
1526 }
1527 
1528 static struct task_struct *
1529 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1530 {
1531 	struct task_struct *p;
1532 	struct rt_rq *rt_rq = &rq->rt;
1533 
1534 	if (need_pull_rt_task(rq, prev)) {
1535 		/*
1536 		 * This is OK, because current is on_cpu, which avoids it being
1537 		 * picked for load-balance and preemption/IRQs are still
1538 		 * disabled avoiding further scheduler activity on it and we're
1539 		 * being very careful to re-start the picking loop.
1540 		 */
1541 		rq_unpin_lock(rq, rf);
1542 		pull_rt_task(rq);
1543 		rq_repin_lock(rq, rf);
1544 		/*
1545 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1546 		 * means a dl or stop task can slip in, in which case we need
1547 		 * to re-start task selection.
1548 		 */
1549 		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1550 			     rq->dl.dl_nr_running))
1551 			return RETRY_TASK;
1552 	}
1553 
1554 	/*
1555 	 * We may dequeue prev's rt_rq in put_prev_task().
1556 	 * So, we update time before rt_nr_running check.
1557 	 */
1558 	if (prev->sched_class == &rt_sched_class)
1559 		update_curr_rt(rq);
1560 
1561 	if (!rt_rq->rt_queued)
1562 		return NULL;
1563 
1564 	put_prev_task(rq, prev);
1565 
1566 	p = _pick_next_task_rt(rq);
1567 
1568 	/* The running task is never eligible for pushing */
1569 	dequeue_pushable_task(rq, p);
1570 
1571 	queue_push_tasks(rq);
1572 
1573 	return p;
1574 }
1575 
1576 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1577 {
1578 	update_curr_rt(rq);
1579 
1580 	/*
1581 	 * The previous task needs to be made eligible for pushing
1582 	 * if it is still active
1583 	 */
1584 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1585 		enqueue_pushable_task(rq, p);
1586 }
1587 
1588 #ifdef CONFIG_SMP
1589 
1590 /* Only try algorithms three times */
1591 #define RT_MAX_TRIES 3
1592 
1593 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1594 {
1595 	if (!task_running(rq, p) &&
1596 	    cpumask_test_cpu(cpu, &p->cpus_allowed))
1597 		return 1;
1598 	return 0;
1599 }
1600 
1601 /*
1602  * Return the highest pushable rq's task, which is suitable to be executed
1603  * on the cpu, NULL otherwise
1604  */
1605 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1606 {
1607 	struct plist_head *head = &rq->rt.pushable_tasks;
1608 	struct task_struct *p;
1609 
1610 	if (!has_pushable_tasks(rq))
1611 		return NULL;
1612 
1613 	plist_for_each_entry(p, head, pushable_tasks) {
1614 		if (pick_rt_task(rq, p, cpu))
1615 			return p;
1616 	}
1617 
1618 	return NULL;
1619 }
1620 
1621 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1622 
1623 static int find_lowest_rq(struct task_struct *task)
1624 {
1625 	struct sched_domain *sd;
1626 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1627 	int this_cpu = smp_processor_id();
1628 	int cpu      = task_cpu(task);
1629 
1630 	/* Make sure the mask is initialized first */
1631 	if (unlikely(!lowest_mask))
1632 		return -1;
1633 
1634 	if (task->nr_cpus_allowed == 1)
1635 		return -1; /* No other targets possible */
1636 
1637 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1638 		return -1; /* No targets found */
1639 
1640 	/*
1641 	 * At this point we have built a mask of cpus representing the
1642 	 * lowest priority tasks in the system.  Now we want to elect
1643 	 * the best one based on our affinity and topology.
1644 	 *
1645 	 * We prioritize the last cpu that the task executed on since
1646 	 * it is most likely cache-hot in that location.
1647 	 */
1648 	if (cpumask_test_cpu(cpu, lowest_mask))
1649 		return cpu;
1650 
1651 	/*
1652 	 * Otherwise, we consult the sched_domains span maps to figure
1653 	 * out which cpu is logically closest to our hot cache data.
1654 	 */
1655 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1656 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1657 
1658 	rcu_read_lock();
1659 	for_each_domain(cpu, sd) {
1660 		if (sd->flags & SD_WAKE_AFFINE) {
1661 			int best_cpu;
1662 
1663 			/*
1664 			 * "this_cpu" is cheaper to preempt than a
1665 			 * remote processor.
1666 			 */
1667 			if (this_cpu != -1 &&
1668 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1669 				rcu_read_unlock();
1670 				return this_cpu;
1671 			}
1672 
1673 			best_cpu = cpumask_first_and(lowest_mask,
1674 						     sched_domain_span(sd));
1675 			if (best_cpu < nr_cpu_ids) {
1676 				rcu_read_unlock();
1677 				return best_cpu;
1678 			}
1679 		}
1680 	}
1681 	rcu_read_unlock();
1682 
1683 	/*
1684 	 * And finally, if there were no matches within the domains
1685 	 * just give the caller *something* to work with from the compatible
1686 	 * locations.
1687 	 */
1688 	if (this_cpu != -1)
1689 		return this_cpu;
1690 
1691 	cpu = cpumask_any(lowest_mask);
1692 	if (cpu < nr_cpu_ids)
1693 		return cpu;
1694 	return -1;
1695 }
1696 
1697 /* Will lock the rq it finds */
1698 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1699 {
1700 	struct rq *lowest_rq = NULL;
1701 	int tries;
1702 	int cpu;
1703 
1704 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1705 		cpu = find_lowest_rq(task);
1706 
1707 		if ((cpu == -1) || (cpu == rq->cpu))
1708 			break;
1709 
1710 		lowest_rq = cpu_rq(cpu);
1711 
1712 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1713 			/*
1714 			 * Target rq has tasks of equal or higher priority,
1715 			 * retrying does not release any lock and is unlikely
1716 			 * to yield a different result.
1717 			 */
1718 			lowest_rq = NULL;
1719 			break;
1720 		}
1721 
1722 		/* if the prio of this runqueue changed, try again */
1723 		if (double_lock_balance(rq, lowest_rq)) {
1724 			/*
1725 			 * We had to unlock the run queue. In
1726 			 * the mean time, task could have
1727 			 * migrated already or had its affinity changed.
1728 			 * Also make sure that it wasn't scheduled on its rq.
1729 			 */
1730 			if (unlikely(task_rq(task) != rq ||
1731 				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1732 				     task_running(rq, task) ||
1733 				     !rt_task(task) ||
1734 				     !task_on_rq_queued(task))) {
1735 
1736 				double_unlock_balance(rq, lowest_rq);
1737 				lowest_rq = NULL;
1738 				break;
1739 			}
1740 		}
1741 
1742 		/* If this rq is still suitable use it. */
1743 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1744 			break;
1745 
1746 		/* try again */
1747 		double_unlock_balance(rq, lowest_rq);
1748 		lowest_rq = NULL;
1749 	}
1750 
1751 	return lowest_rq;
1752 }
1753 
1754 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1755 {
1756 	struct task_struct *p;
1757 
1758 	if (!has_pushable_tasks(rq))
1759 		return NULL;
1760 
1761 	p = plist_first_entry(&rq->rt.pushable_tasks,
1762 			      struct task_struct, pushable_tasks);
1763 
1764 	BUG_ON(rq->cpu != task_cpu(p));
1765 	BUG_ON(task_current(rq, p));
1766 	BUG_ON(p->nr_cpus_allowed <= 1);
1767 
1768 	BUG_ON(!task_on_rq_queued(p));
1769 	BUG_ON(!rt_task(p));
1770 
1771 	return p;
1772 }
1773 
1774 /*
1775  * If the current CPU has more than one RT task, see if the non
1776  * running task can migrate over to a CPU that is running a task
1777  * of lesser priority.
1778  */
1779 static int push_rt_task(struct rq *rq)
1780 {
1781 	struct task_struct *next_task;
1782 	struct rq *lowest_rq;
1783 	int ret = 0;
1784 
1785 	if (!rq->rt.overloaded)
1786 		return 0;
1787 
1788 	next_task = pick_next_pushable_task(rq);
1789 	if (!next_task)
1790 		return 0;
1791 
1792 retry:
1793 	if (unlikely(next_task == rq->curr)) {
1794 		WARN_ON(1);
1795 		return 0;
1796 	}
1797 
1798 	/*
1799 	 * It's possible that the next_task slipped in of
1800 	 * higher priority than current. If that's the case
1801 	 * just reschedule current.
1802 	 */
1803 	if (unlikely(next_task->prio < rq->curr->prio)) {
1804 		resched_curr(rq);
1805 		return 0;
1806 	}
1807 
1808 	/* We might release rq lock */
1809 	get_task_struct(next_task);
1810 
1811 	/* find_lock_lowest_rq locks the rq if found */
1812 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1813 	if (!lowest_rq) {
1814 		struct task_struct *task;
1815 		/*
1816 		 * find_lock_lowest_rq releases rq->lock
1817 		 * so it is possible that next_task has migrated.
1818 		 *
1819 		 * We need to make sure that the task is still on the same
1820 		 * run-queue and is also still the next task eligible for
1821 		 * pushing.
1822 		 */
1823 		task = pick_next_pushable_task(rq);
1824 		if (task == next_task) {
1825 			/*
1826 			 * The task hasn't migrated, and is still the next
1827 			 * eligible task, but we failed to find a run-queue
1828 			 * to push it to.  Do not retry in this case, since
1829 			 * other cpus will pull from us when ready.
1830 			 */
1831 			goto out;
1832 		}
1833 
1834 		if (!task)
1835 			/* No more tasks, just exit */
1836 			goto out;
1837 
1838 		/*
1839 		 * Something has shifted, try again.
1840 		 */
1841 		put_task_struct(next_task);
1842 		next_task = task;
1843 		goto retry;
1844 	}
1845 
1846 	deactivate_task(rq, next_task, 0);
1847 	set_task_cpu(next_task, lowest_rq->cpu);
1848 	activate_task(lowest_rq, next_task, 0);
1849 	ret = 1;
1850 
1851 	resched_curr(lowest_rq);
1852 
1853 	double_unlock_balance(rq, lowest_rq);
1854 
1855 out:
1856 	put_task_struct(next_task);
1857 
1858 	return ret;
1859 }
1860 
1861 static void push_rt_tasks(struct rq *rq)
1862 {
1863 	/* push_rt_task will return true if it moved an RT */
1864 	while (push_rt_task(rq))
1865 		;
1866 }
1867 
1868 #ifdef HAVE_RT_PUSH_IPI
1869 
1870 /*
1871  * When a high priority task schedules out from a CPU and a lower priority
1872  * task is scheduled in, a check is made to see if there's any RT tasks
1873  * on other CPUs that are waiting to run because a higher priority RT task
1874  * is currently running on its CPU. In this case, the CPU with multiple RT
1875  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1876  * up that may be able to run one of its non-running queued RT tasks.
1877  *
1878  * All CPUs with overloaded RT tasks need to be notified as there is currently
1879  * no way to know which of these CPUs have the highest priority task waiting
1880  * to run. Instead of trying to take a spinlock on each of these CPUs,
1881  * which has shown to cause large latency when done on machines with many
1882  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1883  * RT tasks waiting to run.
1884  *
1885  * Just sending an IPI to each of the CPUs is also an issue, as on large
1886  * count CPU machines, this can cause an IPI storm on a CPU, especially
1887  * if its the only CPU with multiple RT tasks queued, and a large number
1888  * of CPUs scheduling a lower priority task at the same time.
1889  *
1890  * Each root domain has its own irq work function that can iterate over
1891  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1892  * tassk must be checked if there's one or many CPUs that are lowering
1893  * their priority, there's a single irq work iterator that will try to
1894  * push off RT tasks that are waiting to run.
1895  *
1896  * When a CPU schedules a lower priority task, it will kick off the
1897  * irq work iterator that will jump to each CPU with overloaded RT tasks.
1898  * As it only takes the first CPU that schedules a lower priority task
1899  * to start the process, the rto_start variable is incremented and if
1900  * the atomic result is one, then that CPU will try to take the rto_lock.
1901  * This prevents high contention on the lock as the process handles all
1902  * CPUs scheduling lower priority tasks.
1903  *
1904  * All CPUs that are scheduling a lower priority task will increment the
1905  * rt_loop_next variable. This will make sure that the irq work iterator
1906  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1907  * priority task, even if the iterator is in the middle of a scan. Incrementing
1908  * the rt_loop_next will cause the iterator to perform another scan.
1909  *
1910  */
1911 static int rto_next_cpu(struct root_domain *rd)
1912 {
1913 	int next;
1914 	int cpu;
1915 
1916 	/*
1917 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1918 	 * rt_next_cpu() will simply return the first CPU found in
1919 	 * the rto_mask.
1920 	 *
1921 	 * If rto_next_cpu() is called with rto_cpu is a valid cpu, it
1922 	 * will return the next CPU found in the rto_mask.
1923 	 *
1924 	 * If there are no more CPUs left in the rto_mask, then a check is made
1925 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
1926 	 * the rto_lock held, but any CPU may increment the rto_loop_next
1927 	 * without any locking.
1928 	 */
1929 	for (;;) {
1930 
1931 		/* When rto_cpu is -1 this acts like cpumask_first() */
1932 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1933 
1934 		rd->rto_cpu = cpu;
1935 
1936 		if (cpu < nr_cpu_ids)
1937 			return cpu;
1938 
1939 		rd->rto_cpu = -1;
1940 
1941 		/*
1942 		 * ACQUIRE ensures we see the @rto_mask changes
1943 		 * made prior to the @next value observed.
1944 		 *
1945 		 * Matches WMB in rt_set_overload().
1946 		 */
1947 		next = atomic_read_acquire(&rd->rto_loop_next);
1948 
1949 		if (rd->rto_loop == next)
1950 			break;
1951 
1952 		rd->rto_loop = next;
1953 	}
1954 
1955 	return -1;
1956 }
1957 
1958 static inline bool rto_start_trylock(atomic_t *v)
1959 {
1960 	return !atomic_cmpxchg_acquire(v, 0, 1);
1961 }
1962 
1963 static inline void rto_start_unlock(atomic_t *v)
1964 {
1965 	atomic_set_release(v, 0);
1966 }
1967 
1968 static void tell_cpu_to_push(struct rq *rq)
1969 {
1970 	int cpu = -1;
1971 
1972 	/* Keep the loop going if the IPI is currently active */
1973 	atomic_inc(&rq->rd->rto_loop_next);
1974 
1975 	/* Only one CPU can initiate a loop at a time */
1976 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
1977 		return;
1978 
1979 	raw_spin_lock(&rq->rd->rto_lock);
1980 
1981 	/*
1982 	 * The rto_cpu is updated under the lock, if it has a valid cpu
1983 	 * then the IPI is still running and will continue due to the
1984 	 * update to loop_next, and nothing needs to be done here.
1985 	 * Otherwise it is finishing up and an ipi needs to be sent.
1986 	 */
1987 	if (rq->rd->rto_cpu < 0)
1988 		cpu = rto_next_cpu(rq->rd);
1989 
1990 	raw_spin_unlock(&rq->rd->rto_lock);
1991 
1992 	rto_start_unlock(&rq->rd->rto_loop_start);
1993 
1994 	if (cpu >= 0) {
1995 		/* Make sure the rd does not get freed while pushing */
1996 		sched_get_rd(rq->rd);
1997 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
1998 	}
1999 }
2000 
2001 /* Called from hardirq context */
2002 void rto_push_irq_work_func(struct irq_work *work)
2003 {
2004 	struct root_domain *rd =
2005 		container_of(work, struct root_domain, rto_push_work);
2006 	struct rq *rq;
2007 	int cpu;
2008 
2009 	rq = this_rq();
2010 
2011 	/*
2012 	 * We do not need to grab the lock to check for has_pushable_tasks.
2013 	 * When it gets updated, a check is made if a push is possible.
2014 	 */
2015 	if (has_pushable_tasks(rq)) {
2016 		raw_spin_lock(&rq->lock);
2017 		push_rt_tasks(rq);
2018 		raw_spin_unlock(&rq->lock);
2019 	}
2020 
2021 	raw_spin_lock(&rd->rto_lock);
2022 
2023 	/* Pass the IPI to the next rt overloaded queue */
2024 	cpu = rto_next_cpu(rd);
2025 
2026 	raw_spin_unlock(&rd->rto_lock);
2027 
2028 	if (cpu < 0) {
2029 		sched_put_rd(rd);
2030 		return;
2031 	}
2032 
2033 	/* Try the next RT overloaded CPU */
2034 	irq_work_queue_on(&rd->rto_push_work, cpu);
2035 }
2036 #endif /* HAVE_RT_PUSH_IPI */
2037 
2038 static void pull_rt_task(struct rq *this_rq)
2039 {
2040 	int this_cpu = this_rq->cpu, cpu;
2041 	bool resched = false;
2042 	struct task_struct *p;
2043 	struct rq *src_rq;
2044 	int rt_overload_count = rt_overloaded(this_rq);
2045 
2046 	if (likely(!rt_overload_count))
2047 		return;
2048 
2049 	/*
2050 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2051 	 * see overloaded we must also see the rto_mask bit.
2052 	 */
2053 	smp_rmb();
2054 
2055 	/* If we are the only overloaded CPU do nothing */
2056 	if (rt_overload_count == 1 &&
2057 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2058 		return;
2059 
2060 #ifdef HAVE_RT_PUSH_IPI
2061 	if (sched_feat(RT_PUSH_IPI)) {
2062 		tell_cpu_to_push(this_rq);
2063 		return;
2064 	}
2065 #endif
2066 
2067 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2068 		if (this_cpu == cpu)
2069 			continue;
2070 
2071 		src_rq = cpu_rq(cpu);
2072 
2073 		/*
2074 		 * Don't bother taking the src_rq->lock if the next highest
2075 		 * task is known to be lower-priority than our current task.
2076 		 * This may look racy, but if this value is about to go
2077 		 * logically higher, the src_rq will push this task away.
2078 		 * And if its going logically lower, we do not care
2079 		 */
2080 		if (src_rq->rt.highest_prio.next >=
2081 		    this_rq->rt.highest_prio.curr)
2082 			continue;
2083 
2084 		/*
2085 		 * We can potentially drop this_rq's lock in
2086 		 * double_lock_balance, and another CPU could
2087 		 * alter this_rq
2088 		 */
2089 		double_lock_balance(this_rq, src_rq);
2090 
2091 		/*
2092 		 * We can pull only a task, which is pushable
2093 		 * on its rq, and no others.
2094 		 */
2095 		p = pick_highest_pushable_task(src_rq, this_cpu);
2096 
2097 		/*
2098 		 * Do we have an RT task that preempts
2099 		 * the to-be-scheduled task?
2100 		 */
2101 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2102 			WARN_ON(p == src_rq->curr);
2103 			WARN_ON(!task_on_rq_queued(p));
2104 
2105 			/*
2106 			 * There's a chance that p is higher in priority
2107 			 * than what's currently running on its cpu.
2108 			 * This is just that p is wakeing up and hasn't
2109 			 * had a chance to schedule. We only pull
2110 			 * p if it is lower in priority than the
2111 			 * current task on the run queue
2112 			 */
2113 			if (p->prio < src_rq->curr->prio)
2114 				goto skip;
2115 
2116 			resched = true;
2117 
2118 			deactivate_task(src_rq, p, 0);
2119 			set_task_cpu(p, this_cpu);
2120 			activate_task(this_rq, p, 0);
2121 			/*
2122 			 * We continue with the search, just in
2123 			 * case there's an even higher prio task
2124 			 * in another runqueue. (low likelihood
2125 			 * but possible)
2126 			 */
2127 		}
2128 skip:
2129 		double_unlock_balance(this_rq, src_rq);
2130 	}
2131 
2132 	if (resched)
2133 		resched_curr(this_rq);
2134 }
2135 
2136 /*
2137  * If we are not running and we are not going to reschedule soon, we should
2138  * try to push tasks away now
2139  */
2140 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2141 {
2142 	if (!task_running(rq, p) &&
2143 	    !test_tsk_need_resched(rq->curr) &&
2144 	    p->nr_cpus_allowed > 1 &&
2145 	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2146 	    (rq->curr->nr_cpus_allowed < 2 ||
2147 	     rq->curr->prio <= p->prio))
2148 		push_rt_tasks(rq);
2149 }
2150 
2151 /* Assumes rq->lock is held */
2152 static void rq_online_rt(struct rq *rq)
2153 {
2154 	if (rq->rt.overloaded)
2155 		rt_set_overload(rq);
2156 
2157 	__enable_runtime(rq);
2158 
2159 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2160 }
2161 
2162 /* Assumes rq->lock is held */
2163 static void rq_offline_rt(struct rq *rq)
2164 {
2165 	if (rq->rt.overloaded)
2166 		rt_clear_overload(rq);
2167 
2168 	__disable_runtime(rq);
2169 
2170 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2171 }
2172 
2173 /*
2174  * When switch from the rt queue, we bring ourselves to a position
2175  * that we might want to pull RT tasks from other runqueues.
2176  */
2177 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2178 {
2179 	/*
2180 	 * If there are other RT tasks then we will reschedule
2181 	 * and the scheduling of the other RT tasks will handle
2182 	 * the balancing. But if we are the last RT task
2183 	 * we may need to handle the pulling of RT tasks
2184 	 * now.
2185 	 */
2186 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2187 		return;
2188 
2189 	queue_pull_task(rq);
2190 }
2191 
2192 void __init init_sched_rt_class(void)
2193 {
2194 	unsigned int i;
2195 
2196 	for_each_possible_cpu(i) {
2197 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2198 					GFP_KERNEL, cpu_to_node(i));
2199 	}
2200 }
2201 #endif /* CONFIG_SMP */
2202 
2203 /*
2204  * When switching a task to RT, we may overload the runqueue
2205  * with RT tasks. In this case we try to push them off to
2206  * other runqueues.
2207  */
2208 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2209 {
2210 	/*
2211 	 * If we are already running, then there's nothing
2212 	 * that needs to be done. But if we are not running
2213 	 * we may need to preempt the current running task.
2214 	 * If that current running task is also an RT task
2215 	 * then see if we can move to another run queue.
2216 	 */
2217 	if (task_on_rq_queued(p) && rq->curr != p) {
2218 #ifdef CONFIG_SMP
2219 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2220 			queue_push_tasks(rq);
2221 #endif /* CONFIG_SMP */
2222 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2223 			resched_curr(rq);
2224 	}
2225 }
2226 
2227 /*
2228  * Priority of the task has changed. This may cause
2229  * us to initiate a push or pull.
2230  */
2231 static void
2232 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2233 {
2234 	if (!task_on_rq_queued(p))
2235 		return;
2236 
2237 	if (rq->curr == p) {
2238 #ifdef CONFIG_SMP
2239 		/*
2240 		 * If our priority decreases while running, we
2241 		 * may need to pull tasks to this runqueue.
2242 		 */
2243 		if (oldprio < p->prio)
2244 			queue_pull_task(rq);
2245 
2246 		/*
2247 		 * If there's a higher priority task waiting to run
2248 		 * then reschedule.
2249 		 */
2250 		if (p->prio > rq->rt.highest_prio.curr)
2251 			resched_curr(rq);
2252 #else
2253 		/* For UP simply resched on drop of prio */
2254 		if (oldprio < p->prio)
2255 			resched_curr(rq);
2256 #endif /* CONFIG_SMP */
2257 	} else {
2258 		/*
2259 		 * This task is not running, but if it is
2260 		 * greater than the current running task
2261 		 * then reschedule.
2262 		 */
2263 		if (p->prio < rq->curr->prio)
2264 			resched_curr(rq);
2265 	}
2266 }
2267 
2268 #ifdef CONFIG_POSIX_TIMERS
2269 static void watchdog(struct rq *rq, struct task_struct *p)
2270 {
2271 	unsigned long soft, hard;
2272 
2273 	/* max may change after cur was read, this will be fixed next tick */
2274 	soft = task_rlimit(p, RLIMIT_RTTIME);
2275 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2276 
2277 	if (soft != RLIM_INFINITY) {
2278 		unsigned long next;
2279 
2280 		if (p->rt.watchdog_stamp != jiffies) {
2281 			p->rt.timeout++;
2282 			p->rt.watchdog_stamp = jiffies;
2283 		}
2284 
2285 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2286 		if (p->rt.timeout > next)
2287 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2288 	}
2289 }
2290 #else
2291 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2292 #endif
2293 
2294 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2295 {
2296 	struct sched_rt_entity *rt_se = &p->rt;
2297 
2298 	update_curr_rt(rq);
2299 
2300 	watchdog(rq, p);
2301 
2302 	/*
2303 	 * RR tasks need a special form of timeslice management.
2304 	 * FIFO tasks have no timeslices.
2305 	 */
2306 	if (p->policy != SCHED_RR)
2307 		return;
2308 
2309 	if (--p->rt.time_slice)
2310 		return;
2311 
2312 	p->rt.time_slice = sched_rr_timeslice;
2313 
2314 	/*
2315 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2316 	 * the only element on the queue
2317 	 */
2318 	for_each_sched_rt_entity(rt_se) {
2319 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2320 			requeue_task_rt(rq, p, 0);
2321 			resched_curr(rq);
2322 			return;
2323 		}
2324 	}
2325 }
2326 
2327 static void set_curr_task_rt(struct rq *rq)
2328 {
2329 	struct task_struct *p = rq->curr;
2330 
2331 	p->se.exec_start = rq_clock_task(rq);
2332 
2333 	/* The running task is never eligible for pushing */
2334 	dequeue_pushable_task(rq, p);
2335 }
2336 
2337 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2338 {
2339 	/*
2340 	 * Time slice is 0 for SCHED_FIFO tasks
2341 	 */
2342 	if (task->policy == SCHED_RR)
2343 		return sched_rr_timeslice;
2344 	else
2345 		return 0;
2346 }
2347 
2348 const struct sched_class rt_sched_class = {
2349 	.next			= &fair_sched_class,
2350 	.enqueue_task		= enqueue_task_rt,
2351 	.dequeue_task		= dequeue_task_rt,
2352 	.yield_task		= yield_task_rt,
2353 
2354 	.check_preempt_curr	= check_preempt_curr_rt,
2355 
2356 	.pick_next_task		= pick_next_task_rt,
2357 	.put_prev_task		= put_prev_task_rt,
2358 
2359 #ifdef CONFIG_SMP
2360 	.select_task_rq		= select_task_rq_rt,
2361 
2362 	.set_cpus_allowed       = set_cpus_allowed_common,
2363 	.rq_online              = rq_online_rt,
2364 	.rq_offline             = rq_offline_rt,
2365 	.task_woken		= task_woken_rt,
2366 	.switched_from		= switched_from_rt,
2367 #endif
2368 
2369 	.set_curr_task          = set_curr_task_rt,
2370 	.task_tick		= task_tick_rt,
2371 
2372 	.get_rr_interval	= get_rr_interval_rt,
2373 
2374 	.prio_changed		= prio_changed_rt,
2375 	.switched_to		= switched_to_rt,
2376 
2377 	.update_curr		= update_curr_rt,
2378 };
2379 
2380 #ifdef CONFIG_RT_GROUP_SCHED
2381 /*
2382  * Ensure that the real time constraints are schedulable.
2383  */
2384 static DEFINE_MUTEX(rt_constraints_mutex);
2385 
2386 /* Must be called with tasklist_lock held */
2387 static inline int tg_has_rt_tasks(struct task_group *tg)
2388 {
2389 	struct task_struct *g, *p;
2390 
2391 	/*
2392 	 * Autogroups do not have RT tasks; see autogroup_create().
2393 	 */
2394 	if (task_group_is_autogroup(tg))
2395 		return 0;
2396 
2397 	for_each_process_thread(g, p) {
2398 		if (rt_task(p) && task_group(p) == tg)
2399 			return 1;
2400 	}
2401 
2402 	return 0;
2403 }
2404 
2405 struct rt_schedulable_data {
2406 	struct task_group *tg;
2407 	u64 rt_period;
2408 	u64 rt_runtime;
2409 };
2410 
2411 static int tg_rt_schedulable(struct task_group *tg, void *data)
2412 {
2413 	struct rt_schedulable_data *d = data;
2414 	struct task_group *child;
2415 	unsigned long total, sum = 0;
2416 	u64 period, runtime;
2417 
2418 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2419 	runtime = tg->rt_bandwidth.rt_runtime;
2420 
2421 	if (tg == d->tg) {
2422 		period = d->rt_period;
2423 		runtime = d->rt_runtime;
2424 	}
2425 
2426 	/*
2427 	 * Cannot have more runtime than the period.
2428 	 */
2429 	if (runtime > period && runtime != RUNTIME_INF)
2430 		return -EINVAL;
2431 
2432 	/*
2433 	 * Ensure we don't starve existing RT tasks.
2434 	 */
2435 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2436 		return -EBUSY;
2437 
2438 	total = to_ratio(period, runtime);
2439 
2440 	/*
2441 	 * Nobody can have more than the global setting allows.
2442 	 */
2443 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2444 		return -EINVAL;
2445 
2446 	/*
2447 	 * The sum of our children's runtime should not exceed our own.
2448 	 */
2449 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2450 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2451 		runtime = child->rt_bandwidth.rt_runtime;
2452 
2453 		if (child == d->tg) {
2454 			period = d->rt_period;
2455 			runtime = d->rt_runtime;
2456 		}
2457 
2458 		sum += to_ratio(period, runtime);
2459 	}
2460 
2461 	if (sum > total)
2462 		return -EINVAL;
2463 
2464 	return 0;
2465 }
2466 
2467 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2468 {
2469 	int ret;
2470 
2471 	struct rt_schedulable_data data = {
2472 		.tg = tg,
2473 		.rt_period = period,
2474 		.rt_runtime = runtime,
2475 	};
2476 
2477 	rcu_read_lock();
2478 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2479 	rcu_read_unlock();
2480 
2481 	return ret;
2482 }
2483 
2484 static int tg_set_rt_bandwidth(struct task_group *tg,
2485 		u64 rt_period, u64 rt_runtime)
2486 {
2487 	int i, err = 0;
2488 
2489 	/*
2490 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2491 	 * kernel creating (and or operating) RT threads.
2492 	 */
2493 	if (tg == &root_task_group && rt_runtime == 0)
2494 		return -EINVAL;
2495 
2496 	/* No period doesn't make any sense. */
2497 	if (rt_period == 0)
2498 		return -EINVAL;
2499 
2500 	mutex_lock(&rt_constraints_mutex);
2501 	read_lock(&tasklist_lock);
2502 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2503 	if (err)
2504 		goto unlock;
2505 
2506 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2507 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2508 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2509 
2510 	for_each_possible_cpu(i) {
2511 		struct rt_rq *rt_rq = tg->rt_rq[i];
2512 
2513 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2514 		rt_rq->rt_runtime = rt_runtime;
2515 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2516 	}
2517 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2518 unlock:
2519 	read_unlock(&tasklist_lock);
2520 	mutex_unlock(&rt_constraints_mutex);
2521 
2522 	return err;
2523 }
2524 
2525 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2526 {
2527 	u64 rt_runtime, rt_period;
2528 
2529 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2530 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2531 	if (rt_runtime_us < 0)
2532 		rt_runtime = RUNTIME_INF;
2533 
2534 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2535 }
2536 
2537 long sched_group_rt_runtime(struct task_group *tg)
2538 {
2539 	u64 rt_runtime_us;
2540 
2541 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2542 		return -1;
2543 
2544 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2545 	do_div(rt_runtime_us, NSEC_PER_USEC);
2546 	return rt_runtime_us;
2547 }
2548 
2549 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2550 {
2551 	u64 rt_runtime, rt_period;
2552 
2553 	rt_period = rt_period_us * NSEC_PER_USEC;
2554 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2555 
2556 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2557 }
2558 
2559 long sched_group_rt_period(struct task_group *tg)
2560 {
2561 	u64 rt_period_us;
2562 
2563 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2564 	do_div(rt_period_us, NSEC_PER_USEC);
2565 	return rt_period_us;
2566 }
2567 
2568 static int sched_rt_global_constraints(void)
2569 {
2570 	int ret = 0;
2571 
2572 	mutex_lock(&rt_constraints_mutex);
2573 	read_lock(&tasklist_lock);
2574 	ret = __rt_schedulable(NULL, 0, 0);
2575 	read_unlock(&tasklist_lock);
2576 	mutex_unlock(&rt_constraints_mutex);
2577 
2578 	return ret;
2579 }
2580 
2581 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2582 {
2583 	/* Don't accept realtime tasks when there is no way for them to run */
2584 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2585 		return 0;
2586 
2587 	return 1;
2588 }
2589 
2590 #else /* !CONFIG_RT_GROUP_SCHED */
2591 static int sched_rt_global_constraints(void)
2592 {
2593 	unsigned long flags;
2594 	int i;
2595 
2596 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2597 	for_each_possible_cpu(i) {
2598 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2599 
2600 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2601 		rt_rq->rt_runtime = global_rt_runtime();
2602 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2603 	}
2604 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2605 
2606 	return 0;
2607 }
2608 #endif /* CONFIG_RT_GROUP_SCHED */
2609 
2610 static int sched_rt_global_validate(void)
2611 {
2612 	if (sysctl_sched_rt_period <= 0)
2613 		return -EINVAL;
2614 
2615 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2616 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2617 		return -EINVAL;
2618 
2619 	return 0;
2620 }
2621 
2622 static void sched_rt_do_global(void)
2623 {
2624 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2625 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2626 }
2627 
2628 int sched_rt_handler(struct ctl_table *table, int write,
2629 		void __user *buffer, size_t *lenp,
2630 		loff_t *ppos)
2631 {
2632 	int old_period, old_runtime;
2633 	static DEFINE_MUTEX(mutex);
2634 	int ret;
2635 
2636 	mutex_lock(&mutex);
2637 	old_period = sysctl_sched_rt_period;
2638 	old_runtime = sysctl_sched_rt_runtime;
2639 
2640 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2641 
2642 	if (!ret && write) {
2643 		ret = sched_rt_global_validate();
2644 		if (ret)
2645 			goto undo;
2646 
2647 		ret = sched_dl_global_validate();
2648 		if (ret)
2649 			goto undo;
2650 
2651 		ret = sched_rt_global_constraints();
2652 		if (ret)
2653 			goto undo;
2654 
2655 		sched_rt_do_global();
2656 		sched_dl_do_global();
2657 	}
2658 	if (0) {
2659 undo:
2660 		sysctl_sched_rt_period = old_period;
2661 		sysctl_sched_rt_runtime = old_runtime;
2662 	}
2663 	mutex_unlock(&mutex);
2664 
2665 	return ret;
2666 }
2667 
2668 int sched_rr_handler(struct ctl_table *table, int write,
2669 		void __user *buffer, size_t *lenp,
2670 		loff_t *ppos)
2671 {
2672 	int ret;
2673 	static DEFINE_MUTEX(mutex);
2674 
2675 	mutex_lock(&mutex);
2676 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2677 	/*
2678 	 * Make sure that internally we keep jiffies.
2679 	 * Also, writing zero resets the timeslice to default:
2680 	 */
2681 	if (!ret && write) {
2682 		sched_rr_timeslice =
2683 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2684 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2685 	}
2686 	mutex_unlock(&mutex);
2687 	return ret;
2688 }
2689 
2690 #ifdef CONFIG_SCHED_DEBUG
2691 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2692 
2693 void print_rt_stats(struct seq_file *m, int cpu)
2694 {
2695 	rt_rq_iter_t iter;
2696 	struct rt_rq *rt_rq;
2697 
2698 	rcu_read_lock();
2699 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2700 		print_rt_rq(m, cpu, rt_rq);
2701 	rcu_read_unlock();
2702 }
2703 #endif /* CONFIG_SCHED_DEBUG */
2704