xref: /openbmc/linux/kernel/sched/rt.c (revision 94c7b6fc)
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5 
6 #include "sched.h"
7 
8 #include <linux/slab.h>
9 
10 int sched_rr_timeslice = RR_TIMESLICE;
11 
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13 
14 struct rt_bandwidth def_rt_bandwidth;
15 
16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17 {
18 	struct rt_bandwidth *rt_b =
19 		container_of(timer, struct rt_bandwidth, rt_period_timer);
20 	ktime_t now;
21 	int overrun;
22 	int idle = 0;
23 
24 	for (;;) {
25 		now = hrtimer_cb_get_time(timer);
26 		overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27 
28 		if (!overrun)
29 			break;
30 
31 		idle = do_sched_rt_period_timer(rt_b, overrun);
32 	}
33 
34 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35 }
36 
37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38 {
39 	rt_b->rt_period = ns_to_ktime(period);
40 	rt_b->rt_runtime = runtime;
41 
42 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
43 
44 	hrtimer_init(&rt_b->rt_period_timer,
45 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 	rt_b->rt_period_timer.function = sched_rt_period_timer;
47 }
48 
49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50 {
51 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 		return;
53 
54 	if (hrtimer_active(&rt_b->rt_period_timer))
55 		return;
56 
57 	raw_spin_lock(&rt_b->rt_runtime_lock);
58 	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 	raw_spin_unlock(&rt_b->rt_runtime_lock);
60 }
61 
62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63 {
64 	struct rt_prio_array *array;
65 	int i;
66 
67 	array = &rt_rq->active;
68 	for (i = 0; i < MAX_RT_PRIO; i++) {
69 		INIT_LIST_HEAD(array->queue + i);
70 		__clear_bit(i, array->bitmap);
71 	}
72 	/* delimiter for bitsearch: */
73 	__set_bit(MAX_RT_PRIO, array->bitmap);
74 
75 #if defined CONFIG_SMP
76 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 	rt_rq->highest_prio.next = MAX_RT_PRIO;
78 	rt_rq->rt_nr_migratory = 0;
79 	rt_rq->overloaded = 0;
80 	plist_head_init(&rt_rq->pushable_tasks);
81 #endif
82 	/* We start is dequeued state, because no RT tasks are queued */
83 	rt_rq->rt_queued = 0;
84 
85 	rt_rq->rt_time = 0;
86 	rt_rq->rt_throttled = 0;
87 	rt_rq->rt_runtime = 0;
88 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
89 }
90 
91 #ifdef CONFIG_RT_GROUP_SCHED
92 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
93 {
94 	hrtimer_cancel(&rt_b->rt_period_timer);
95 }
96 
97 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
98 
99 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
100 {
101 #ifdef CONFIG_SCHED_DEBUG
102 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
103 #endif
104 	return container_of(rt_se, struct task_struct, rt);
105 }
106 
107 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
108 {
109 	return rt_rq->rq;
110 }
111 
112 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
113 {
114 	return rt_se->rt_rq;
115 }
116 
117 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
118 {
119 	struct rt_rq *rt_rq = rt_se->rt_rq;
120 
121 	return rt_rq->rq;
122 }
123 
124 void free_rt_sched_group(struct task_group *tg)
125 {
126 	int i;
127 
128 	if (tg->rt_se)
129 		destroy_rt_bandwidth(&tg->rt_bandwidth);
130 
131 	for_each_possible_cpu(i) {
132 		if (tg->rt_rq)
133 			kfree(tg->rt_rq[i]);
134 		if (tg->rt_se)
135 			kfree(tg->rt_se[i]);
136 	}
137 
138 	kfree(tg->rt_rq);
139 	kfree(tg->rt_se);
140 }
141 
142 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
143 		struct sched_rt_entity *rt_se, int cpu,
144 		struct sched_rt_entity *parent)
145 {
146 	struct rq *rq = cpu_rq(cpu);
147 
148 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
149 	rt_rq->rt_nr_boosted = 0;
150 	rt_rq->rq = rq;
151 	rt_rq->tg = tg;
152 
153 	tg->rt_rq[cpu] = rt_rq;
154 	tg->rt_se[cpu] = rt_se;
155 
156 	if (!rt_se)
157 		return;
158 
159 	if (!parent)
160 		rt_se->rt_rq = &rq->rt;
161 	else
162 		rt_se->rt_rq = parent->my_q;
163 
164 	rt_se->my_q = rt_rq;
165 	rt_se->parent = parent;
166 	INIT_LIST_HEAD(&rt_se->run_list);
167 }
168 
169 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
170 {
171 	struct rt_rq *rt_rq;
172 	struct sched_rt_entity *rt_se;
173 	int i;
174 
175 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
176 	if (!tg->rt_rq)
177 		goto err;
178 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
179 	if (!tg->rt_se)
180 		goto err;
181 
182 	init_rt_bandwidth(&tg->rt_bandwidth,
183 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
184 
185 	for_each_possible_cpu(i) {
186 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
187 				     GFP_KERNEL, cpu_to_node(i));
188 		if (!rt_rq)
189 			goto err;
190 
191 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
192 				     GFP_KERNEL, cpu_to_node(i));
193 		if (!rt_se)
194 			goto err_free_rq;
195 
196 		init_rt_rq(rt_rq, cpu_rq(i));
197 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
198 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
199 	}
200 
201 	return 1;
202 
203 err_free_rq:
204 	kfree(rt_rq);
205 err:
206 	return 0;
207 }
208 
209 #else /* CONFIG_RT_GROUP_SCHED */
210 
211 #define rt_entity_is_task(rt_se) (1)
212 
213 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
214 {
215 	return container_of(rt_se, struct task_struct, rt);
216 }
217 
218 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
219 {
220 	return container_of(rt_rq, struct rq, rt);
221 }
222 
223 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
224 {
225 	struct task_struct *p = rt_task_of(rt_se);
226 
227 	return task_rq(p);
228 }
229 
230 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
231 {
232 	struct rq *rq = rq_of_rt_se(rt_se);
233 
234 	return &rq->rt;
235 }
236 
237 void free_rt_sched_group(struct task_group *tg) { }
238 
239 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
240 {
241 	return 1;
242 }
243 #endif /* CONFIG_RT_GROUP_SCHED */
244 
245 #ifdef CONFIG_SMP
246 
247 static int pull_rt_task(struct rq *this_rq);
248 
249 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
250 {
251 	/* Try to pull RT tasks here if we lower this rq's prio */
252 	return rq->rt.highest_prio.curr > prev->prio;
253 }
254 
255 static inline int rt_overloaded(struct rq *rq)
256 {
257 	return atomic_read(&rq->rd->rto_count);
258 }
259 
260 static inline void rt_set_overload(struct rq *rq)
261 {
262 	if (!rq->online)
263 		return;
264 
265 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
266 	/*
267 	 * Make sure the mask is visible before we set
268 	 * the overload count. That is checked to determine
269 	 * if we should look at the mask. It would be a shame
270 	 * if we looked at the mask, but the mask was not
271 	 * updated yet.
272 	 *
273 	 * Matched by the barrier in pull_rt_task().
274 	 */
275 	smp_wmb();
276 	atomic_inc(&rq->rd->rto_count);
277 }
278 
279 static inline void rt_clear_overload(struct rq *rq)
280 {
281 	if (!rq->online)
282 		return;
283 
284 	/* the order here really doesn't matter */
285 	atomic_dec(&rq->rd->rto_count);
286 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
287 }
288 
289 static void update_rt_migration(struct rt_rq *rt_rq)
290 {
291 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
292 		if (!rt_rq->overloaded) {
293 			rt_set_overload(rq_of_rt_rq(rt_rq));
294 			rt_rq->overloaded = 1;
295 		}
296 	} else if (rt_rq->overloaded) {
297 		rt_clear_overload(rq_of_rt_rq(rt_rq));
298 		rt_rq->overloaded = 0;
299 	}
300 }
301 
302 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
303 {
304 	struct task_struct *p;
305 
306 	if (!rt_entity_is_task(rt_se))
307 		return;
308 
309 	p = rt_task_of(rt_se);
310 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
311 
312 	rt_rq->rt_nr_total++;
313 	if (p->nr_cpus_allowed > 1)
314 		rt_rq->rt_nr_migratory++;
315 
316 	update_rt_migration(rt_rq);
317 }
318 
319 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
320 {
321 	struct task_struct *p;
322 
323 	if (!rt_entity_is_task(rt_se))
324 		return;
325 
326 	p = rt_task_of(rt_se);
327 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
328 
329 	rt_rq->rt_nr_total--;
330 	if (p->nr_cpus_allowed > 1)
331 		rt_rq->rt_nr_migratory--;
332 
333 	update_rt_migration(rt_rq);
334 }
335 
336 static inline int has_pushable_tasks(struct rq *rq)
337 {
338 	return !plist_head_empty(&rq->rt.pushable_tasks);
339 }
340 
341 static inline void set_post_schedule(struct rq *rq)
342 {
343 	/*
344 	 * We detect this state here so that we can avoid taking the RQ
345 	 * lock again later if there is no need to push
346 	 */
347 	rq->post_schedule = has_pushable_tasks(rq);
348 }
349 
350 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
351 {
352 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
353 	plist_node_init(&p->pushable_tasks, p->prio);
354 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
355 
356 	/* Update the highest prio pushable task */
357 	if (p->prio < rq->rt.highest_prio.next)
358 		rq->rt.highest_prio.next = p->prio;
359 }
360 
361 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
362 {
363 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
364 
365 	/* Update the new highest prio pushable task */
366 	if (has_pushable_tasks(rq)) {
367 		p = plist_first_entry(&rq->rt.pushable_tasks,
368 				      struct task_struct, pushable_tasks);
369 		rq->rt.highest_prio.next = p->prio;
370 	} else
371 		rq->rt.highest_prio.next = MAX_RT_PRIO;
372 }
373 
374 #else
375 
376 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
377 {
378 }
379 
380 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
381 {
382 }
383 
384 static inline
385 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
386 {
387 }
388 
389 static inline
390 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
391 {
392 }
393 
394 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
395 {
396 	return false;
397 }
398 
399 static inline int pull_rt_task(struct rq *this_rq)
400 {
401 	return 0;
402 }
403 
404 static inline void set_post_schedule(struct rq *rq)
405 {
406 }
407 #endif /* CONFIG_SMP */
408 
409 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
410 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
411 
412 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
413 {
414 	return !list_empty(&rt_se->run_list);
415 }
416 
417 #ifdef CONFIG_RT_GROUP_SCHED
418 
419 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
420 {
421 	if (!rt_rq->tg)
422 		return RUNTIME_INF;
423 
424 	return rt_rq->rt_runtime;
425 }
426 
427 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
428 {
429 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
430 }
431 
432 typedef struct task_group *rt_rq_iter_t;
433 
434 static inline struct task_group *next_task_group(struct task_group *tg)
435 {
436 	do {
437 		tg = list_entry_rcu(tg->list.next,
438 			typeof(struct task_group), list);
439 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
440 
441 	if (&tg->list == &task_groups)
442 		tg = NULL;
443 
444 	return tg;
445 }
446 
447 #define for_each_rt_rq(rt_rq, iter, rq)					\
448 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
449 		(iter = next_task_group(iter)) &&			\
450 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
451 
452 #define for_each_sched_rt_entity(rt_se) \
453 	for (; rt_se; rt_se = rt_se->parent)
454 
455 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
456 {
457 	return rt_se->my_q;
458 }
459 
460 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
461 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
462 
463 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
464 {
465 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
466 	struct sched_rt_entity *rt_se;
467 
468 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
469 
470 	rt_se = rt_rq->tg->rt_se[cpu];
471 
472 	if (rt_rq->rt_nr_running) {
473 		if (!rt_se)
474 			enqueue_top_rt_rq(rt_rq);
475 		else if (!on_rt_rq(rt_se))
476 			enqueue_rt_entity(rt_se, false);
477 
478 		if (rt_rq->highest_prio.curr < curr->prio)
479 			resched_task(curr);
480 	}
481 }
482 
483 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
484 {
485 	struct sched_rt_entity *rt_se;
486 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
487 
488 	rt_se = rt_rq->tg->rt_se[cpu];
489 
490 	if (!rt_se)
491 		dequeue_top_rt_rq(rt_rq);
492 	else if (on_rt_rq(rt_se))
493 		dequeue_rt_entity(rt_se);
494 }
495 
496 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
497 {
498 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
499 }
500 
501 static int rt_se_boosted(struct sched_rt_entity *rt_se)
502 {
503 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
504 	struct task_struct *p;
505 
506 	if (rt_rq)
507 		return !!rt_rq->rt_nr_boosted;
508 
509 	p = rt_task_of(rt_se);
510 	return p->prio != p->normal_prio;
511 }
512 
513 #ifdef CONFIG_SMP
514 static inline const struct cpumask *sched_rt_period_mask(void)
515 {
516 	return this_rq()->rd->span;
517 }
518 #else
519 static inline const struct cpumask *sched_rt_period_mask(void)
520 {
521 	return cpu_online_mask;
522 }
523 #endif
524 
525 static inline
526 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
527 {
528 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
529 }
530 
531 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
532 {
533 	return &rt_rq->tg->rt_bandwidth;
534 }
535 
536 #else /* !CONFIG_RT_GROUP_SCHED */
537 
538 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
539 {
540 	return rt_rq->rt_runtime;
541 }
542 
543 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
544 {
545 	return ktime_to_ns(def_rt_bandwidth.rt_period);
546 }
547 
548 typedef struct rt_rq *rt_rq_iter_t;
549 
550 #define for_each_rt_rq(rt_rq, iter, rq) \
551 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
552 
553 #define for_each_sched_rt_entity(rt_se) \
554 	for (; rt_se; rt_se = NULL)
555 
556 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
557 {
558 	return NULL;
559 }
560 
561 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
562 {
563 	struct rq *rq = rq_of_rt_rq(rt_rq);
564 
565 	if (!rt_rq->rt_nr_running)
566 		return;
567 
568 	enqueue_top_rt_rq(rt_rq);
569 	resched_task(rq->curr);
570 }
571 
572 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
573 {
574 	dequeue_top_rt_rq(rt_rq);
575 }
576 
577 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
578 {
579 	return rt_rq->rt_throttled;
580 }
581 
582 static inline const struct cpumask *sched_rt_period_mask(void)
583 {
584 	return cpu_online_mask;
585 }
586 
587 static inline
588 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
589 {
590 	return &cpu_rq(cpu)->rt;
591 }
592 
593 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
594 {
595 	return &def_rt_bandwidth;
596 }
597 
598 #endif /* CONFIG_RT_GROUP_SCHED */
599 
600 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
601 {
602 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
603 
604 	return (hrtimer_active(&rt_b->rt_period_timer) ||
605 		rt_rq->rt_time < rt_b->rt_runtime);
606 }
607 
608 #ifdef CONFIG_SMP
609 /*
610  * We ran out of runtime, see if we can borrow some from our neighbours.
611  */
612 static int do_balance_runtime(struct rt_rq *rt_rq)
613 {
614 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
615 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
616 	int i, weight, more = 0;
617 	u64 rt_period;
618 
619 	weight = cpumask_weight(rd->span);
620 
621 	raw_spin_lock(&rt_b->rt_runtime_lock);
622 	rt_period = ktime_to_ns(rt_b->rt_period);
623 	for_each_cpu(i, rd->span) {
624 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
625 		s64 diff;
626 
627 		if (iter == rt_rq)
628 			continue;
629 
630 		raw_spin_lock(&iter->rt_runtime_lock);
631 		/*
632 		 * Either all rqs have inf runtime and there's nothing to steal
633 		 * or __disable_runtime() below sets a specific rq to inf to
634 		 * indicate its been disabled and disalow stealing.
635 		 */
636 		if (iter->rt_runtime == RUNTIME_INF)
637 			goto next;
638 
639 		/*
640 		 * From runqueues with spare time, take 1/n part of their
641 		 * spare time, but no more than our period.
642 		 */
643 		diff = iter->rt_runtime - iter->rt_time;
644 		if (diff > 0) {
645 			diff = div_u64((u64)diff, weight);
646 			if (rt_rq->rt_runtime + diff > rt_period)
647 				diff = rt_period - rt_rq->rt_runtime;
648 			iter->rt_runtime -= diff;
649 			rt_rq->rt_runtime += diff;
650 			more = 1;
651 			if (rt_rq->rt_runtime == rt_period) {
652 				raw_spin_unlock(&iter->rt_runtime_lock);
653 				break;
654 			}
655 		}
656 next:
657 		raw_spin_unlock(&iter->rt_runtime_lock);
658 	}
659 	raw_spin_unlock(&rt_b->rt_runtime_lock);
660 
661 	return more;
662 }
663 
664 /*
665  * Ensure this RQ takes back all the runtime it lend to its neighbours.
666  */
667 static void __disable_runtime(struct rq *rq)
668 {
669 	struct root_domain *rd = rq->rd;
670 	rt_rq_iter_t iter;
671 	struct rt_rq *rt_rq;
672 
673 	if (unlikely(!scheduler_running))
674 		return;
675 
676 	for_each_rt_rq(rt_rq, iter, rq) {
677 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
678 		s64 want;
679 		int i;
680 
681 		raw_spin_lock(&rt_b->rt_runtime_lock);
682 		raw_spin_lock(&rt_rq->rt_runtime_lock);
683 		/*
684 		 * Either we're all inf and nobody needs to borrow, or we're
685 		 * already disabled and thus have nothing to do, or we have
686 		 * exactly the right amount of runtime to take out.
687 		 */
688 		if (rt_rq->rt_runtime == RUNTIME_INF ||
689 				rt_rq->rt_runtime == rt_b->rt_runtime)
690 			goto balanced;
691 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
692 
693 		/*
694 		 * Calculate the difference between what we started out with
695 		 * and what we current have, that's the amount of runtime
696 		 * we lend and now have to reclaim.
697 		 */
698 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
699 
700 		/*
701 		 * Greedy reclaim, take back as much as we can.
702 		 */
703 		for_each_cpu(i, rd->span) {
704 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
705 			s64 diff;
706 
707 			/*
708 			 * Can't reclaim from ourselves or disabled runqueues.
709 			 */
710 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
711 				continue;
712 
713 			raw_spin_lock(&iter->rt_runtime_lock);
714 			if (want > 0) {
715 				diff = min_t(s64, iter->rt_runtime, want);
716 				iter->rt_runtime -= diff;
717 				want -= diff;
718 			} else {
719 				iter->rt_runtime -= want;
720 				want -= want;
721 			}
722 			raw_spin_unlock(&iter->rt_runtime_lock);
723 
724 			if (!want)
725 				break;
726 		}
727 
728 		raw_spin_lock(&rt_rq->rt_runtime_lock);
729 		/*
730 		 * We cannot be left wanting - that would mean some runtime
731 		 * leaked out of the system.
732 		 */
733 		BUG_ON(want);
734 balanced:
735 		/*
736 		 * Disable all the borrow logic by pretending we have inf
737 		 * runtime - in which case borrowing doesn't make sense.
738 		 */
739 		rt_rq->rt_runtime = RUNTIME_INF;
740 		rt_rq->rt_throttled = 0;
741 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
742 		raw_spin_unlock(&rt_b->rt_runtime_lock);
743 	}
744 }
745 
746 static void __enable_runtime(struct rq *rq)
747 {
748 	rt_rq_iter_t iter;
749 	struct rt_rq *rt_rq;
750 
751 	if (unlikely(!scheduler_running))
752 		return;
753 
754 	/*
755 	 * Reset each runqueue's bandwidth settings
756 	 */
757 	for_each_rt_rq(rt_rq, iter, rq) {
758 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
759 
760 		raw_spin_lock(&rt_b->rt_runtime_lock);
761 		raw_spin_lock(&rt_rq->rt_runtime_lock);
762 		rt_rq->rt_runtime = rt_b->rt_runtime;
763 		rt_rq->rt_time = 0;
764 		rt_rq->rt_throttled = 0;
765 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
766 		raw_spin_unlock(&rt_b->rt_runtime_lock);
767 	}
768 }
769 
770 static int balance_runtime(struct rt_rq *rt_rq)
771 {
772 	int more = 0;
773 
774 	if (!sched_feat(RT_RUNTIME_SHARE))
775 		return more;
776 
777 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
778 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
779 		more = do_balance_runtime(rt_rq);
780 		raw_spin_lock(&rt_rq->rt_runtime_lock);
781 	}
782 
783 	return more;
784 }
785 #else /* !CONFIG_SMP */
786 static inline int balance_runtime(struct rt_rq *rt_rq)
787 {
788 	return 0;
789 }
790 #endif /* CONFIG_SMP */
791 
792 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
793 {
794 	int i, idle = 1, throttled = 0;
795 	const struct cpumask *span;
796 
797 	span = sched_rt_period_mask();
798 #ifdef CONFIG_RT_GROUP_SCHED
799 	/*
800 	 * FIXME: isolated CPUs should really leave the root task group,
801 	 * whether they are isolcpus or were isolated via cpusets, lest
802 	 * the timer run on a CPU which does not service all runqueues,
803 	 * potentially leaving other CPUs indefinitely throttled.  If
804 	 * isolation is really required, the user will turn the throttle
805 	 * off to kill the perturbations it causes anyway.  Meanwhile,
806 	 * this maintains functionality for boot and/or troubleshooting.
807 	 */
808 	if (rt_b == &root_task_group.rt_bandwidth)
809 		span = cpu_online_mask;
810 #endif
811 	for_each_cpu(i, span) {
812 		int enqueue = 0;
813 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
814 		struct rq *rq = rq_of_rt_rq(rt_rq);
815 
816 		raw_spin_lock(&rq->lock);
817 		if (rt_rq->rt_time) {
818 			u64 runtime;
819 
820 			raw_spin_lock(&rt_rq->rt_runtime_lock);
821 			if (rt_rq->rt_throttled)
822 				balance_runtime(rt_rq);
823 			runtime = rt_rq->rt_runtime;
824 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
825 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
826 				rt_rq->rt_throttled = 0;
827 				enqueue = 1;
828 
829 				/*
830 				 * Force a clock update if the CPU was idle,
831 				 * lest wakeup -> unthrottle time accumulate.
832 				 */
833 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
834 					rq->skip_clock_update = -1;
835 			}
836 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
837 				idle = 0;
838 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
839 		} else if (rt_rq->rt_nr_running) {
840 			idle = 0;
841 			if (!rt_rq_throttled(rt_rq))
842 				enqueue = 1;
843 		}
844 		if (rt_rq->rt_throttled)
845 			throttled = 1;
846 
847 		if (enqueue)
848 			sched_rt_rq_enqueue(rt_rq);
849 		raw_spin_unlock(&rq->lock);
850 	}
851 
852 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
853 		return 1;
854 
855 	return idle;
856 }
857 
858 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
859 {
860 #ifdef CONFIG_RT_GROUP_SCHED
861 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
862 
863 	if (rt_rq)
864 		return rt_rq->highest_prio.curr;
865 #endif
866 
867 	return rt_task_of(rt_se)->prio;
868 }
869 
870 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
871 {
872 	u64 runtime = sched_rt_runtime(rt_rq);
873 
874 	if (rt_rq->rt_throttled)
875 		return rt_rq_throttled(rt_rq);
876 
877 	if (runtime >= sched_rt_period(rt_rq))
878 		return 0;
879 
880 	balance_runtime(rt_rq);
881 	runtime = sched_rt_runtime(rt_rq);
882 	if (runtime == RUNTIME_INF)
883 		return 0;
884 
885 	if (rt_rq->rt_time > runtime) {
886 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
887 
888 		/*
889 		 * Don't actually throttle groups that have no runtime assigned
890 		 * but accrue some time due to boosting.
891 		 */
892 		if (likely(rt_b->rt_runtime)) {
893 			rt_rq->rt_throttled = 1;
894 			printk_deferred_once("sched: RT throttling activated\n");
895 		} else {
896 			/*
897 			 * In case we did anyway, make it go away,
898 			 * replenishment is a joke, since it will replenish us
899 			 * with exactly 0 ns.
900 			 */
901 			rt_rq->rt_time = 0;
902 		}
903 
904 		if (rt_rq_throttled(rt_rq)) {
905 			sched_rt_rq_dequeue(rt_rq);
906 			return 1;
907 		}
908 	}
909 
910 	return 0;
911 }
912 
913 /*
914  * Update the current task's runtime statistics. Skip current tasks that
915  * are not in our scheduling class.
916  */
917 static void update_curr_rt(struct rq *rq)
918 {
919 	struct task_struct *curr = rq->curr;
920 	struct sched_rt_entity *rt_se = &curr->rt;
921 	u64 delta_exec;
922 
923 	if (curr->sched_class != &rt_sched_class)
924 		return;
925 
926 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
927 	if (unlikely((s64)delta_exec <= 0))
928 		return;
929 
930 	schedstat_set(curr->se.statistics.exec_max,
931 		      max(curr->se.statistics.exec_max, delta_exec));
932 
933 	curr->se.sum_exec_runtime += delta_exec;
934 	account_group_exec_runtime(curr, delta_exec);
935 
936 	curr->se.exec_start = rq_clock_task(rq);
937 	cpuacct_charge(curr, delta_exec);
938 
939 	sched_rt_avg_update(rq, delta_exec);
940 
941 	if (!rt_bandwidth_enabled())
942 		return;
943 
944 	for_each_sched_rt_entity(rt_se) {
945 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
946 
947 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
948 			raw_spin_lock(&rt_rq->rt_runtime_lock);
949 			rt_rq->rt_time += delta_exec;
950 			if (sched_rt_runtime_exceeded(rt_rq))
951 				resched_task(curr);
952 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
953 		}
954 	}
955 }
956 
957 static void
958 dequeue_top_rt_rq(struct rt_rq *rt_rq)
959 {
960 	struct rq *rq = rq_of_rt_rq(rt_rq);
961 
962 	BUG_ON(&rq->rt != rt_rq);
963 
964 	if (!rt_rq->rt_queued)
965 		return;
966 
967 	BUG_ON(!rq->nr_running);
968 
969 	sub_nr_running(rq, rt_rq->rt_nr_running);
970 	rt_rq->rt_queued = 0;
971 }
972 
973 static void
974 enqueue_top_rt_rq(struct rt_rq *rt_rq)
975 {
976 	struct rq *rq = rq_of_rt_rq(rt_rq);
977 
978 	BUG_ON(&rq->rt != rt_rq);
979 
980 	if (rt_rq->rt_queued)
981 		return;
982 	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
983 		return;
984 
985 	add_nr_running(rq, rt_rq->rt_nr_running);
986 	rt_rq->rt_queued = 1;
987 }
988 
989 #if defined CONFIG_SMP
990 
991 static void
992 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
993 {
994 	struct rq *rq = rq_of_rt_rq(rt_rq);
995 
996 #ifdef CONFIG_RT_GROUP_SCHED
997 	/*
998 	 * Change rq's cpupri only if rt_rq is the top queue.
999 	 */
1000 	if (&rq->rt != rt_rq)
1001 		return;
1002 #endif
1003 	if (rq->online && prio < prev_prio)
1004 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1005 }
1006 
1007 static void
1008 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1009 {
1010 	struct rq *rq = rq_of_rt_rq(rt_rq);
1011 
1012 #ifdef CONFIG_RT_GROUP_SCHED
1013 	/*
1014 	 * Change rq's cpupri only if rt_rq is the top queue.
1015 	 */
1016 	if (&rq->rt != rt_rq)
1017 		return;
1018 #endif
1019 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1020 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1021 }
1022 
1023 #else /* CONFIG_SMP */
1024 
1025 static inline
1026 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1027 static inline
1028 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1029 
1030 #endif /* CONFIG_SMP */
1031 
1032 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1033 static void
1034 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1035 {
1036 	int prev_prio = rt_rq->highest_prio.curr;
1037 
1038 	if (prio < prev_prio)
1039 		rt_rq->highest_prio.curr = prio;
1040 
1041 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1042 }
1043 
1044 static void
1045 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1046 {
1047 	int prev_prio = rt_rq->highest_prio.curr;
1048 
1049 	if (rt_rq->rt_nr_running) {
1050 
1051 		WARN_ON(prio < prev_prio);
1052 
1053 		/*
1054 		 * This may have been our highest task, and therefore
1055 		 * we may have some recomputation to do
1056 		 */
1057 		if (prio == prev_prio) {
1058 			struct rt_prio_array *array = &rt_rq->active;
1059 
1060 			rt_rq->highest_prio.curr =
1061 				sched_find_first_bit(array->bitmap);
1062 		}
1063 
1064 	} else
1065 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1066 
1067 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1068 }
1069 
1070 #else
1071 
1072 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1073 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1074 
1075 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1076 
1077 #ifdef CONFIG_RT_GROUP_SCHED
1078 
1079 static void
1080 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1081 {
1082 	if (rt_se_boosted(rt_se))
1083 		rt_rq->rt_nr_boosted++;
1084 
1085 	if (rt_rq->tg)
1086 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1087 }
1088 
1089 static void
1090 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1091 {
1092 	if (rt_se_boosted(rt_se))
1093 		rt_rq->rt_nr_boosted--;
1094 
1095 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1096 }
1097 
1098 #else /* CONFIG_RT_GROUP_SCHED */
1099 
1100 static void
1101 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1102 {
1103 	start_rt_bandwidth(&def_rt_bandwidth);
1104 }
1105 
1106 static inline
1107 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1108 
1109 #endif /* CONFIG_RT_GROUP_SCHED */
1110 
1111 static inline
1112 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1113 {
1114 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1115 
1116 	if (group_rq)
1117 		return group_rq->rt_nr_running;
1118 	else
1119 		return 1;
1120 }
1121 
1122 static inline
1123 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1124 {
1125 	int prio = rt_se_prio(rt_se);
1126 
1127 	WARN_ON(!rt_prio(prio));
1128 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1129 
1130 	inc_rt_prio(rt_rq, prio);
1131 	inc_rt_migration(rt_se, rt_rq);
1132 	inc_rt_group(rt_se, rt_rq);
1133 }
1134 
1135 static inline
1136 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1137 {
1138 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1139 	WARN_ON(!rt_rq->rt_nr_running);
1140 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1141 
1142 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1143 	dec_rt_migration(rt_se, rt_rq);
1144 	dec_rt_group(rt_se, rt_rq);
1145 }
1146 
1147 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1148 {
1149 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1150 	struct rt_prio_array *array = &rt_rq->active;
1151 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1152 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1153 
1154 	/*
1155 	 * Don't enqueue the group if its throttled, or when empty.
1156 	 * The latter is a consequence of the former when a child group
1157 	 * get throttled and the current group doesn't have any other
1158 	 * active members.
1159 	 */
1160 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1161 		return;
1162 
1163 	if (head)
1164 		list_add(&rt_se->run_list, queue);
1165 	else
1166 		list_add_tail(&rt_se->run_list, queue);
1167 	__set_bit(rt_se_prio(rt_se), array->bitmap);
1168 
1169 	inc_rt_tasks(rt_se, rt_rq);
1170 }
1171 
1172 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1173 {
1174 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1175 	struct rt_prio_array *array = &rt_rq->active;
1176 
1177 	list_del_init(&rt_se->run_list);
1178 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1179 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1180 
1181 	dec_rt_tasks(rt_se, rt_rq);
1182 }
1183 
1184 /*
1185  * Because the prio of an upper entry depends on the lower
1186  * entries, we must remove entries top - down.
1187  */
1188 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1189 {
1190 	struct sched_rt_entity *back = NULL;
1191 
1192 	for_each_sched_rt_entity(rt_se) {
1193 		rt_se->back = back;
1194 		back = rt_se;
1195 	}
1196 
1197 	dequeue_top_rt_rq(rt_rq_of_se(back));
1198 
1199 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1200 		if (on_rt_rq(rt_se))
1201 			__dequeue_rt_entity(rt_se);
1202 	}
1203 }
1204 
1205 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1206 {
1207 	struct rq *rq = rq_of_rt_se(rt_se);
1208 
1209 	dequeue_rt_stack(rt_se);
1210 	for_each_sched_rt_entity(rt_se)
1211 		__enqueue_rt_entity(rt_se, head);
1212 	enqueue_top_rt_rq(&rq->rt);
1213 }
1214 
1215 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1216 {
1217 	struct rq *rq = rq_of_rt_se(rt_se);
1218 
1219 	dequeue_rt_stack(rt_se);
1220 
1221 	for_each_sched_rt_entity(rt_se) {
1222 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1223 
1224 		if (rt_rq && rt_rq->rt_nr_running)
1225 			__enqueue_rt_entity(rt_se, false);
1226 	}
1227 	enqueue_top_rt_rq(&rq->rt);
1228 }
1229 
1230 /*
1231  * Adding/removing a task to/from a priority array:
1232  */
1233 static void
1234 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1235 {
1236 	struct sched_rt_entity *rt_se = &p->rt;
1237 
1238 	if (flags & ENQUEUE_WAKEUP)
1239 		rt_se->timeout = 0;
1240 
1241 	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1242 
1243 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1244 		enqueue_pushable_task(rq, p);
1245 }
1246 
1247 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1248 {
1249 	struct sched_rt_entity *rt_se = &p->rt;
1250 
1251 	update_curr_rt(rq);
1252 	dequeue_rt_entity(rt_se);
1253 
1254 	dequeue_pushable_task(rq, p);
1255 }
1256 
1257 /*
1258  * Put task to the head or the end of the run list without the overhead of
1259  * dequeue followed by enqueue.
1260  */
1261 static void
1262 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1263 {
1264 	if (on_rt_rq(rt_se)) {
1265 		struct rt_prio_array *array = &rt_rq->active;
1266 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1267 
1268 		if (head)
1269 			list_move(&rt_se->run_list, queue);
1270 		else
1271 			list_move_tail(&rt_se->run_list, queue);
1272 	}
1273 }
1274 
1275 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1276 {
1277 	struct sched_rt_entity *rt_se = &p->rt;
1278 	struct rt_rq *rt_rq;
1279 
1280 	for_each_sched_rt_entity(rt_se) {
1281 		rt_rq = rt_rq_of_se(rt_se);
1282 		requeue_rt_entity(rt_rq, rt_se, head);
1283 	}
1284 }
1285 
1286 static void yield_task_rt(struct rq *rq)
1287 {
1288 	requeue_task_rt(rq, rq->curr, 0);
1289 }
1290 
1291 #ifdef CONFIG_SMP
1292 static int find_lowest_rq(struct task_struct *task);
1293 
1294 static int
1295 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1296 {
1297 	struct task_struct *curr;
1298 	struct rq *rq;
1299 
1300 	if (p->nr_cpus_allowed == 1)
1301 		goto out;
1302 
1303 	/* For anything but wake ups, just return the task_cpu */
1304 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1305 		goto out;
1306 
1307 	rq = cpu_rq(cpu);
1308 
1309 	rcu_read_lock();
1310 	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1311 
1312 	/*
1313 	 * If the current task on @p's runqueue is an RT task, then
1314 	 * try to see if we can wake this RT task up on another
1315 	 * runqueue. Otherwise simply start this RT task
1316 	 * on its current runqueue.
1317 	 *
1318 	 * We want to avoid overloading runqueues. If the woken
1319 	 * task is a higher priority, then it will stay on this CPU
1320 	 * and the lower prio task should be moved to another CPU.
1321 	 * Even though this will probably make the lower prio task
1322 	 * lose its cache, we do not want to bounce a higher task
1323 	 * around just because it gave up its CPU, perhaps for a
1324 	 * lock?
1325 	 *
1326 	 * For equal prio tasks, we just let the scheduler sort it out.
1327 	 *
1328 	 * Otherwise, just let it ride on the affined RQ and the
1329 	 * post-schedule router will push the preempted task away
1330 	 *
1331 	 * This test is optimistic, if we get it wrong the load-balancer
1332 	 * will have to sort it out.
1333 	 */
1334 	if (curr && unlikely(rt_task(curr)) &&
1335 	    (curr->nr_cpus_allowed < 2 ||
1336 	     curr->prio <= p->prio)) {
1337 		int target = find_lowest_rq(p);
1338 
1339 		if (target != -1)
1340 			cpu = target;
1341 	}
1342 	rcu_read_unlock();
1343 
1344 out:
1345 	return cpu;
1346 }
1347 
1348 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1349 {
1350 	if (rq->curr->nr_cpus_allowed == 1)
1351 		return;
1352 
1353 	if (p->nr_cpus_allowed != 1
1354 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1355 		return;
1356 
1357 	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1358 		return;
1359 
1360 	/*
1361 	 * There appears to be other cpus that can accept
1362 	 * current and none to run 'p', so lets reschedule
1363 	 * to try and push current away:
1364 	 */
1365 	requeue_task_rt(rq, p, 1);
1366 	resched_task(rq->curr);
1367 }
1368 
1369 #endif /* CONFIG_SMP */
1370 
1371 /*
1372  * Preempt the current task with a newly woken task if needed:
1373  */
1374 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1375 {
1376 	if (p->prio < rq->curr->prio) {
1377 		resched_task(rq->curr);
1378 		return;
1379 	}
1380 
1381 #ifdef CONFIG_SMP
1382 	/*
1383 	 * If:
1384 	 *
1385 	 * - the newly woken task is of equal priority to the current task
1386 	 * - the newly woken task is non-migratable while current is migratable
1387 	 * - current will be preempted on the next reschedule
1388 	 *
1389 	 * we should check to see if current can readily move to a different
1390 	 * cpu.  If so, we will reschedule to allow the push logic to try
1391 	 * to move current somewhere else, making room for our non-migratable
1392 	 * task.
1393 	 */
1394 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1395 		check_preempt_equal_prio(rq, p);
1396 #endif
1397 }
1398 
1399 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1400 						   struct rt_rq *rt_rq)
1401 {
1402 	struct rt_prio_array *array = &rt_rq->active;
1403 	struct sched_rt_entity *next = NULL;
1404 	struct list_head *queue;
1405 	int idx;
1406 
1407 	idx = sched_find_first_bit(array->bitmap);
1408 	BUG_ON(idx >= MAX_RT_PRIO);
1409 
1410 	queue = array->queue + idx;
1411 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1412 
1413 	return next;
1414 }
1415 
1416 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1417 {
1418 	struct sched_rt_entity *rt_se;
1419 	struct task_struct *p;
1420 	struct rt_rq *rt_rq  = &rq->rt;
1421 
1422 	do {
1423 		rt_se = pick_next_rt_entity(rq, rt_rq);
1424 		BUG_ON(!rt_se);
1425 		rt_rq = group_rt_rq(rt_se);
1426 	} while (rt_rq);
1427 
1428 	p = rt_task_of(rt_se);
1429 	p->se.exec_start = rq_clock_task(rq);
1430 
1431 	return p;
1432 }
1433 
1434 static struct task_struct *
1435 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1436 {
1437 	struct task_struct *p;
1438 	struct rt_rq *rt_rq = &rq->rt;
1439 
1440 	if (need_pull_rt_task(rq, prev)) {
1441 		pull_rt_task(rq);
1442 		/*
1443 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1444 		 * means a dl or stop task can slip in, in which case we need
1445 		 * to re-start task selection.
1446 		 */
1447 		if (unlikely((rq->stop && rq->stop->on_rq) ||
1448 			     rq->dl.dl_nr_running))
1449 			return RETRY_TASK;
1450 	}
1451 
1452 	/*
1453 	 * We may dequeue prev's rt_rq in put_prev_task().
1454 	 * So, we update time before rt_nr_running check.
1455 	 */
1456 	if (prev->sched_class == &rt_sched_class)
1457 		update_curr_rt(rq);
1458 
1459 	if (!rt_rq->rt_queued)
1460 		return NULL;
1461 
1462 	put_prev_task(rq, prev);
1463 
1464 	p = _pick_next_task_rt(rq);
1465 
1466 	/* The running task is never eligible for pushing */
1467 	if (p)
1468 		dequeue_pushable_task(rq, p);
1469 
1470 	set_post_schedule(rq);
1471 
1472 	return p;
1473 }
1474 
1475 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1476 {
1477 	update_curr_rt(rq);
1478 
1479 	/*
1480 	 * The previous task needs to be made eligible for pushing
1481 	 * if it is still active
1482 	 */
1483 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1484 		enqueue_pushable_task(rq, p);
1485 }
1486 
1487 #ifdef CONFIG_SMP
1488 
1489 /* Only try algorithms three times */
1490 #define RT_MAX_TRIES 3
1491 
1492 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1493 {
1494 	if (!task_running(rq, p) &&
1495 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1496 		return 1;
1497 	return 0;
1498 }
1499 
1500 /*
1501  * Return the highest pushable rq's task, which is suitable to be executed
1502  * on the cpu, NULL otherwise
1503  */
1504 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1505 {
1506 	struct plist_head *head = &rq->rt.pushable_tasks;
1507 	struct task_struct *p;
1508 
1509 	if (!has_pushable_tasks(rq))
1510 		return NULL;
1511 
1512 	plist_for_each_entry(p, head, pushable_tasks) {
1513 		if (pick_rt_task(rq, p, cpu))
1514 			return p;
1515 	}
1516 
1517 	return NULL;
1518 }
1519 
1520 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1521 
1522 static int find_lowest_rq(struct task_struct *task)
1523 {
1524 	struct sched_domain *sd;
1525 	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1526 	int this_cpu = smp_processor_id();
1527 	int cpu      = task_cpu(task);
1528 
1529 	/* Make sure the mask is initialized first */
1530 	if (unlikely(!lowest_mask))
1531 		return -1;
1532 
1533 	if (task->nr_cpus_allowed == 1)
1534 		return -1; /* No other targets possible */
1535 
1536 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1537 		return -1; /* No targets found */
1538 
1539 	/*
1540 	 * At this point we have built a mask of cpus representing the
1541 	 * lowest priority tasks in the system.  Now we want to elect
1542 	 * the best one based on our affinity and topology.
1543 	 *
1544 	 * We prioritize the last cpu that the task executed on since
1545 	 * it is most likely cache-hot in that location.
1546 	 */
1547 	if (cpumask_test_cpu(cpu, lowest_mask))
1548 		return cpu;
1549 
1550 	/*
1551 	 * Otherwise, we consult the sched_domains span maps to figure
1552 	 * out which cpu is logically closest to our hot cache data.
1553 	 */
1554 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1555 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1556 
1557 	rcu_read_lock();
1558 	for_each_domain(cpu, sd) {
1559 		if (sd->flags & SD_WAKE_AFFINE) {
1560 			int best_cpu;
1561 
1562 			/*
1563 			 * "this_cpu" is cheaper to preempt than a
1564 			 * remote processor.
1565 			 */
1566 			if (this_cpu != -1 &&
1567 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1568 				rcu_read_unlock();
1569 				return this_cpu;
1570 			}
1571 
1572 			best_cpu = cpumask_first_and(lowest_mask,
1573 						     sched_domain_span(sd));
1574 			if (best_cpu < nr_cpu_ids) {
1575 				rcu_read_unlock();
1576 				return best_cpu;
1577 			}
1578 		}
1579 	}
1580 	rcu_read_unlock();
1581 
1582 	/*
1583 	 * And finally, if there were no matches within the domains
1584 	 * just give the caller *something* to work with from the compatible
1585 	 * locations.
1586 	 */
1587 	if (this_cpu != -1)
1588 		return this_cpu;
1589 
1590 	cpu = cpumask_any(lowest_mask);
1591 	if (cpu < nr_cpu_ids)
1592 		return cpu;
1593 	return -1;
1594 }
1595 
1596 /* Will lock the rq it finds */
1597 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1598 {
1599 	struct rq *lowest_rq = NULL;
1600 	int tries;
1601 	int cpu;
1602 
1603 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1604 		cpu = find_lowest_rq(task);
1605 
1606 		if ((cpu == -1) || (cpu == rq->cpu))
1607 			break;
1608 
1609 		lowest_rq = cpu_rq(cpu);
1610 
1611 		/* if the prio of this runqueue changed, try again */
1612 		if (double_lock_balance(rq, lowest_rq)) {
1613 			/*
1614 			 * We had to unlock the run queue. In
1615 			 * the mean time, task could have
1616 			 * migrated already or had its affinity changed.
1617 			 * Also make sure that it wasn't scheduled on its rq.
1618 			 */
1619 			if (unlikely(task_rq(task) != rq ||
1620 				     !cpumask_test_cpu(lowest_rq->cpu,
1621 						       tsk_cpus_allowed(task)) ||
1622 				     task_running(rq, task) ||
1623 				     !task->on_rq)) {
1624 
1625 				double_unlock_balance(rq, lowest_rq);
1626 				lowest_rq = NULL;
1627 				break;
1628 			}
1629 		}
1630 
1631 		/* If this rq is still suitable use it. */
1632 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1633 			break;
1634 
1635 		/* try again */
1636 		double_unlock_balance(rq, lowest_rq);
1637 		lowest_rq = NULL;
1638 	}
1639 
1640 	return lowest_rq;
1641 }
1642 
1643 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1644 {
1645 	struct task_struct *p;
1646 
1647 	if (!has_pushable_tasks(rq))
1648 		return NULL;
1649 
1650 	p = plist_first_entry(&rq->rt.pushable_tasks,
1651 			      struct task_struct, pushable_tasks);
1652 
1653 	BUG_ON(rq->cpu != task_cpu(p));
1654 	BUG_ON(task_current(rq, p));
1655 	BUG_ON(p->nr_cpus_allowed <= 1);
1656 
1657 	BUG_ON(!p->on_rq);
1658 	BUG_ON(!rt_task(p));
1659 
1660 	return p;
1661 }
1662 
1663 /*
1664  * If the current CPU has more than one RT task, see if the non
1665  * running task can migrate over to a CPU that is running a task
1666  * of lesser priority.
1667  */
1668 static int push_rt_task(struct rq *rq)
1669 {
1670 	struct task_struct *next_task;
1671 	struct rq *lowest_rq;
1672 	int ret = 0;
1673 
1674 	if (!rq->rt.overloaded)
1675 		return 0;
1676 
1677 	next_task = pick_next_pushable_task(rq);
1678 	if (!next_task)
1679 		return 0;
1680 
1681 retry:
1682 	if (unlikely(next_task == rq->curr)) {
1683 		WARN_ON(1);
1684 		return 0;
1685 	}
1686 
1687 	/*
1688 	 * It's possible that the next_task slipped in of
1689 	 * higher priority than current. If that's the case
1690 	 * just reschedule current.
1691 	 */
1692 	if (unlikely(next_task->prio < rq->curr->prio)) {
1693 		resched_task(rq->curr);
1694 		return 0;
1695 	}
1696 
1697 	/* We might release rq lock */
1698 	get_task_struct(next_task);
1699 
1700 	/* find_lock_lowest_rq locks the rq if found */
1701 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1702 	if (!lowest_rq) {
1703 		struct task_struct *task;
1704 		/*
1705 		 * find_lock_lowest_rq releases rq->lock
1706 		 * so it is possible that next_task has migrated.
1707 		 *
1708 		 * We need to make sure that the task is still on the same
1709 		 * run-queue and is also still the next task eligible for
1710 		 * pushing.
1711 		 */
1712 		task = pick_next_pushable_task(rq);
1713 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1714 			/*
1715 			 * The task hasn't migrated, and is still the next
1716 			 * eligible task, but we failed to find a run-queue
1717 			 * to push it to.  Do not retry in this case, since
1718 			 * other cpus will pull from us when ready.
1719 			 */
1720 			goto out;
1721 		}
1722 
1723 		if (!task)
1724 			/* No more tasks, just exit */
1725 			goto out;
1726 
1727 		/*
1728 		 * Something has shifted, try again.
1729 		 */
1730 		put_task_struct(next_task);
1731 		next_task = task;
1732 		goto retry;
1733 	}
1734 
1735 	deactivate_task(rq, next_task, 0);
1736 	set_task_cpu(next_task, lowest_rq->cpu);
1737 	activate_task(lowest_rq, next_task, 0);
1738 	ret = 1;
1739 
1740 	resched_task(lowest_rq->curr);
1741 
1742 	double_unlock_balance(rq, lowest_rq);
1743 
1744 out:
1745 	put_task_struct(next_task);
1746 
1747 	return ret;
1748 }
1749 
1750 static void push_rt_tasks(struct rq *rq)
1751 {
1752 	/* push_rt_task will return true if it moved an RT */
1753 	while (push_rt_task(rq))
1754 		;
1755 }
1756 
1757 static int pull_rt_task(struct rq *this_rq)
1758 {
1759 	int this_cpu = this_rq->cpu, ret = 0, cpu;
1760 	struct task_struct *p;
1761 	struct rq *src_rq;
1762 
1763 	if (likely(!rt_overloaded(this_rq)))
1764 		return 0;
1765 
1766 	/*
1767 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
1768 	 * see overloaded we must also see the rto_mask bit.
1769 	 */
1770 	smp_rmb();
1771 
1772 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1773 		if (this_cpu == cpu)
1774 			continue;
1775 
1776 		src_rq = cpu_rq(cpu);
1777 
1778 		/*
1779 		 * Don't bother taking the src_rq->lock if the next highest
1780 		 * task is known to be lower-priority than our current task.
1781 		 * This may look racy, but if this value is about to go
1782 		 * logically higher, the src_rq will push this task away.
1783 		 * And if its going logically lower, we do not care
1784 		 */
1785 		if (src_rq->rt.highest_prio.next >=
1786 		    this_rq->rt.highest_prio.curr)
1787 			continue;
1788 
1789 		/*
1790 		 * We can potentially drop this_rq's lock in
1791 		 * double_lock_balance, and another CPU could
1792 		 * alter this_rq
1793 		 */
1794 		double_lock_balance(this_rq, src_rq);
1795 
1796 		/*
1797 		 * We can pull only a task, which is pushable
1798 		 * on its rq, and no others.
1799 		 */
1800 		p = pick_highest_pushable_task(src_rq, this_cpu);
1801 
1802 		/*
1803 		 * Do we have an RT task that preempts
1804 		 * the to-be-scheduled task?
1805 		 */
1806 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1807 			WARN_ON(p == src_rq->curr);
1808 			WARN_ON(!p->on_rq);
1809 
1810 			/*
1811 			 * There's a chance that p is higher in priority
1812 			 * than what's currently running on its cpu.
1813 			 * This is just that p is wakeing up and hasn't
1814 			 * had a chance to schedule. We only pull
1815 			 * p if it is lower in priority than the
1816 			 * current task on the run queue
1817 			 */
1818 			if (p->prio < src_rq->curr->prio)
1819 				goto skip;
1820 
1821 			ret = 1;
1822 
1823 			deactivate_task(src_rq, p, 0);
1824 			set_task_cpu(p, this_cpu);
1825 			activate_task(this_rq, p, 0);
1826 			/*
1827 			 * We continue with the search, just in
1828 			 * case there's an even higher prio task
1829 			 * in another runqueue. (low likelihood
1830 			 * but possible)
1831 			 */
1832 		}
1833 skip:
1834 		double_unlock_balance(this_rq, src_rq);
1835 	}
1836 
1837 	return ret;
1838 }
1839 
1840 static void post_schedule_rt(struct rq *rq)
1841 {
1842 	push_rt_tasks(rq);
1843 }
1844 
1845 /*
1846  * If we are not running and we are not going to reschedule soon, we should
1847  * try to push tasks away now
1848  */
1849 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1850 {
1851 	if (!task_running(rq, p) &&
1852 	    !test_tsk_need_resched(rq->curr) &&
1853 	    has_pushable_tasks(rq) &&
1854 	    p->nr_cpus_allowed > 1 &&
1855 	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
1856 	    (rq->curr->nr_cpus_allowed < 2 ||
1857 	     rq->curr->prio <= p->prio))
1858 		push_rt_tasks(rq);
1859 }
1860 
1861 static void set_cpus_allowed_rt(struct task_struct *p,
1862 				const struct cpumask *new_mask)
1863 {
1864 	struct rq *rq;
1865 	int weight;
1866 
1867 	BUG_ON(!rt_task(p));
1868 
1869 	if (!p->on_rq)
1870 		return;
1871 
1872 	weight = cpumask_weight(new_mask);
1873 
1874 	/*
1875 	 * Only update if the process changes its state from whether it
1876 	 * can migrate or not.
1877 	 */
1878 	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1879 		return;
1880 
1881 	rq = task_rq(p);
1882 
1883 	/*
1884 	 * The process used to be able to migrate OR it can now migrate
1885 	 */
1886 	if (weight <= 1) {
1887 		if (!task_current(rq, p))
1888 			dequeue_pushable_task(rq, p);
1889 		BUG_ON(!rq->rt.rt_nr_migratory);
1890 		rq->rt.rt_nr_migratory--;
1891 	} else {
1892 		if (!task_current(rq, p))
1893 			enqueue_pushable_task(rq, p);
1894 		rq->rt.rt_nr_migratory++;
1895 	}
1896 
1897 	update_rt_migration(&rq->rt);
1898 }
1899 
1900 /* Assumes rq->lock is held */
1901 static void rq_online_rt(struct rq *rq)
1902 {
1903 	if (rq->rt.overloaded)
1904 		rt_set_overload(rq);
1905 
1906 	__enable_runtime(rq);
1907 
1908 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1909 }
1910 
1911 /* Assumes rq->lock is held */
1912 static void rq_offline_rt(struct rq *rq)
1913 {
1914 	if (rq->rt.overloaded)
1915 		rt_clear_overload(rq);
1916 
1917 	__disable_runtime(rq);
1918 
1919 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1920 }
1921 
1922 /*
1923  * When switch from the rt queue, we bring ourselves to a position
1924  * that we might want to pull RT tasks from other runqueues.
1925  */
1926 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1927 {
1928 	/*
1929 	 * If there are other RT tasks then we will reschedule
1930 	 * and the scheduling of the other RT tasks will handle
1931 	 * the balancing. But if we are the last RT task
1932 	 * we may need to handle the pulling of RT tasks
1933 	 * now.
1934 	 */
1935 	if (!p->on_rq || rq->rt.rt_nr_running)
1936 		return;
1937 
1938 	if (pull_rt_task(rq))
1939 		resched_task(rq->curr);
1940 }
1941 
1942 void __init init_sched_rt_class(void)
1943 {
1944 	unsigned int i;
1945 
1946 	for_each_possible_cpu(i) {
1947 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1948 					GFP_KERNEL, cpu_to_node(i));
1949 	}
1950 }
1951 #endif /* CONFIG_SMP */
1952 
1953 /*
1954  * When switching a task to RT, we may overload the runqueue
1955  * with RT tasks. In this case we try to push them off to
1956  * other runqueues.
1957  */
1958 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1959 {
1960 	int check_resched = 1;
1961 
1962 	/*
1963 	 * If we are already running, then there's nothing
1964 	 * that needs to be done. But if we are not running
1965 	 * we may need to preempt the current running task.
1966 	 * If that current running task is also an RT task
1967 	 * then see if we can move to another run queue.
1968 	 */
1969 	if (p->on_rq && rq->curr != p) {
1970 #ifdef CONFIG_SMP
1971 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
1972 		    /* Don't resched if we changed runqueues */
1973 		    push_rt_task(rq) && rq != task_rq(p))
1974 			check_resched = 0;
1975 #endif /* CONFIG_SMP */
1976 		if (check_resched && p->prio < rq->curr->prio)
1977 			resched_task(rq->curr);
1978 	}
1979 }
1980 
1981 /*
1982  * Priority of the task has changed. This may cause
1983  * us to initiate a push or pull.
1984  */
1985 static void
1986 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1987 {
1988 	if (!p->on_rq)
1989 		return;
1990 
1991 	if (rq->curr == p) {
1992 #ifdef CONFIG_SMP
1993 		/*
1994 		 * If our priority decreases while running, we
1995 		 * may need to pull tasks to this runqueue.
1996 		 */
1997 		if (oldprio < p->prio)
1998 			pull_rt_task(rq);
1999 		/*
2000 		 * If there's a higher priority task waiting to run
2001 		 * then reschedule. Note, the above pull_rt_task
2002 		 * can release the rq lock and p could migrate.
2003 		 * Only reschedule if p is still on the same runqueue.
2004 		 */
2005 		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
2006 			resched_task(p);
2007 #else
2008 		/* For UP simply resched on drop of prio */
2009 		if (oldprio < p->prio)
2010 			resched_task(p);
2011 #endif /* CONFIG_SMP */
2012 	} else {
2013 		/*
2014 		 * This task is not running, but if it is
2015 		 * greater than the current running task
2016 		 * then reschedule.
2017 		 */
2018 		if (p->prio < rq->curr->prio)
2019 			resched_task(rq->curr);
2020 	}
2021 }
2022 
2023 static void watchdog(struct rq *rq, struct task_struct *p)
2024 {
2025 	unsigned long soft, hard;
2026 
2027 	/* max may change after cur was read, this will be fixed next tick */
2028 	soft = task_rlimit(p, RLIMIT_RTTIME);
2029 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2030 
2031 	if (soft != RLIM_INFINITY) {
2032 		unsigned long next;
2033 
2034 		if (p->rt.watchdog_stamp != jiffies) {
2035 			p->rt.timeout++;
2036 			p->rt.watchdog_stamp = jiffies;
2037 		}
2038 
2039 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2040 		if (p->rt.timeout > next)
2041 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2042 	}
2043 }
2044 
2045 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2046 {
2047 	struct sched_rt_entity *rt_se = &p->rt;
2048 
2049 	update_curr_rt(rq);
2050 
2051 	watchdog(rq, p);
2052 
2053 	/*
2054 	 * RR tasks need a special form of timeslice management.
2055 	 * FIFO tasks have no timeslices.
2056 	 */
2057 	if (p->policy != SCHED_RR)
2058 		return;
2059 
2060 	if (--p->rt.time_slice)
2061 		return;
2062 
2063 	p->rt.time_slice = sched_rr_timeslice;
2064 
2065 	/*
2066 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2067 	 * the only element on the queue
2068 	 */
2069 	for_each_sched_rt_entity(rt_se) {
2070 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2071 			requeue_task_rt(rq, p, 0);
2072 			set_tsk_need_resched(p);
2073 			return;
2074 		}
2075 	}
2076 }
2077 
2078 static void set_curr_task_rt(struct rq *rq)
2079 {
2080 	struct task_struct *p = rq->curr;
2081 
2082 	p->se.exec_start = rq_clock_task(rq);
2083 
2084 	/* The running task is never eligible for pushing */
2085 	dequeue_pushable_task(rq, p);
2086 }
2087 
2088 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2089 {
2090 	/*
2091 	 * Time slice is 0 for SCHED_FIFO tasks
2092 	 */
2093 	if (task->policy == SCHED_RR)
2094 		return sched_rr_timeslice;
2095 	else
2096 		return 0;
2097 }
2098 
2099 const struct sched_class rt_sched_class = {
2100 	.next			= &fair_sched_class,
2101 	.enqueue_task		= enqueue_task_rt,
2102 	.dequeue_task		= dequeue_task_rt,
2103 	.yield_task		= yield_task_rt,
2104 
2105 	.check_preempt_curr	= check_preempt_curr_rt,
2106 
2107 	.pick_next_task		= pick_next_task_rt,
2108 	.put_prev_task		= put_prev_task_rt,
2109 
2110 #ifdef CONFIG_SMP
2111 	.select_task_rq		= select_task_rq_rt,
2112 
2113 	.set_cpus_allowed       = set_cpus_allowed_rt,
2114 	.rq_online              = rq_online_rt,
2115 	.rq_offline             = rq_offline_rt,
2116 	.post_schedule		= post_schedule_rt,
2117 	.task_woken		= task_woken_rt,
2118 	.switched_from		= switched_from_rt,
2119 #endif
2120 
2121 	.set_curr_task          = set_curr_task_rt,
2122 	.task_tick		= task_tick_rt,
2123 
2124 	.get_rr_interval	= get_rr_interval_rt,
2125 
2126 	.prio_changed		= prio_changed_rt,
2127 	.switched_to		= switched_to_rt,
2128 };
2129 
2130 #ifdef CONFIG_SCHED_DEBUG
2131 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2132 
2133 void print_rt_stats(struct seq_file *m, int cpu)
2134 {
2135 	rt_rq_iter_t iter;
2136 	struct rt_rq *rt_rq;
2137 
2138 	rcu_read_lock();
2139 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2140 		print_rt_rq(m, cpu, rt_rq);
2141 	rcu_read_unlock();
2142 }
2143 #endif /* CONFIG_SCHED_DEBUG */
2144