xref: /openbmc/linux/kernel/sched/rt.c (revision 86bee12f)
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5 
6 #include "sched.h"
7 
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10 
11 int sched_rr_timeslice = RR_TIMESLICE;
12 
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14 
15 struct rt_bandwidth def_rt_bandwidth;
16 
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19 	struct rt_bandwidth *rt_b =
20 		container_of(timer, struct rt_bandwidth, rt_period_timer);
21 	int idle = 0;
22 	int overrun;
23 
24 	raw_spin_lock(&rt_b->rt_runtime_lock);
25 	for (;;) {
26 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27 		if (!overrun)
28 			break;
29 
30 		raw_spin_unlock(&rt_b->rt_runtime_lock);
31 		idle = do_sched_rt_period_timer(rt_b, overrun);
32 		raw_spin_lock(&rt_b->rt_runtime_lock);
33 	}
34 	if (idle)
35 		rt_b->rt_period_active = 0;
36 	raw_spin_unlock(&rt_b->rt_runtime_lock);
37 
38 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40 
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43 	rt_b->rt_period = ns_to_ktime(period);
44 	rt_b->rt_runtime = runtime;
45 
46 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
47 
48 	hrtimer_init(&rt_b->rt_period_timer,
49 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50 	rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52 
53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 		return;
57 
58 	raw_spin_lock(&rt_b->rt_runtime_lock);
59 	if (!rt_b->rt_period_active) {
60 		rt_b->rt_period_active = 1;
61 		/*
62 		 * SCHED_DEADLINE updates the bandwidth, as a run away
63 		 * RT task with a DL task could hog a CPU. But DL does
64 		 * not reset the period. If a deadline task was running
65 		 * without an RT task running, it can cause RT tasks to
66 		 * throttle when they start up. Kick the timer right away
67 		 * to update the period.
68 		 */
69 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
70 		hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
71 	}
72 	raw_spin_unlock(&rt_b->rt_runtime_lock);
73 }
74 
75 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
76 static void push_irq_work_func(struct irq_work *work);
77 #endif
78 
79 void init_rt_rq(struct rt_rq *rt_rq)
80 {
81 	struct rt_prio_array *array;
82 	int i;
83 
84 	array = &rt_rq->active;
85 	for (i = 0; i < MAX_RT_PRIO; i++) {
86 		INIT_LIST_HEAD(array->queue + i);
87 		__clear_bit(i, array->bitmap);
88 	}
89 	/* delimiter for bitsearch: */
90 	__set_bit(MAX_RT_PRIO, array->bitmap);
91 
92 #if defined CONFIG_SMP
93 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
94 	rt_rq->highest_prio.next = MAX_RT_PRIO;
95 	rt_rq->rt_nr_migratory = 0;
96 	rt_rq->overloaded = 0;
97 	plist_head_init(&rt_rq->pushable_tasks);
98 
99 #ifdef HAVE_RT_PUSH_IPI
100 	rt_rq->push_flags = 0;
101 	rt_rq->push_cpu = nr_cpu_ids;
102 	raw_spin_lock_init(&rt_rq->push_lock);
103 	init_irq_work(&rt_rq->push_work, push_irq_work_func);
104 #endif
105 #endif /* CONFIG_SMP */
106 	/* We start is dequeued state, because no RT tasks are queued */
107 	rt_rq->rt_queued = 0;
108 
109 	rt_rq->rt_time = 0;
110 	rt_rq->rt_throttled = 0;
111 	rt_rq->rt_runtime = 0;
112 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
113 }
114 
115 #ifdef CONFIG_RT_GROUP_SCHED
116 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
117 {
118 	hrtimer_cancel(&rt_b->rt_period_timer);
119 }
120 
121 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
122 
123 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
124 {
125 #ifdef CONFIG_SCHED_DEBUG
126 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
127 #endif
128 	return container_of(rt_se, struct task_struct, rt);
129 }
130 
131 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
132 {
133 	return rt_rq->rq;
134 }
135 
136 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
137 {
138 	return rt_se->rt_rq;
139 }
140 
141 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
142 {
143 	struct rt_rq *rt_rq = rt_se->rt_rq;
144 
145 	return rt_rq->rq;
146 }
147 
148 void free_rt_sched_group(struct task_group *tg)
149 {
150 	int i;
151 
152 	if (tg->rt_se)
153 		destroy_rt_bandwidth(&tg->rt_bandwidth);
154 
155 	for_each_possible_cpu(i) {
156 		if (tg->rt_rq)
157 			kfree(tg->rt_rq[i]);
158 		if (tg->rt_se)
159 			kfree(tg->rt_se[i]);
160 	}
161 
162 	kfree(tg->rt_rq);
163 	kfree(tg->rt_se);
164 }
165 
166 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
167 		struct sched_rt_entity *rt_se, int cpu,
168 		struct sched_rt_entity *parent)
169 {
170 	struct rq *rq = cpu_rq(cpu);
171 
172 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
173 	rt_rq->rt_nr_boosted = 0;
174 	rt_rq->rq = rq;
175 	rt_rq->tg = tg;
176 
177 	tg->rt_rq[cpu] = rt_rq;
178 	tg->rt_se[cpu] = rt_se;
179 
180 	if (!rt_se)
181 		return;
182 
183 	if (!parent)
184 		rt_se->rt_rq = &rq->rt;
185 	else
186 		rt_se->rt_rq = parent->my_q;
187 
188 	rt_se->my_q = rt_rq;
189 	rt_se->parent = parent;
190 	INIT_LIST_HEAD(&rt_se->run_list);
191 }
192 
193 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
194 {
195 	struct rt_rq *rt_rq;
196 	struct sched_rt_entity *rt_se;
197 	int i;
198 
199 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
200 	if (!tg->rt_rq)
201 		goto err;
202 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
203 	if (!tg->rt_se)
204 		goto err;
205 
206 	init_rt_bandwidth(&tg->rt_bandwidth,
207 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
208 
209 	for_each_possible_cpu(i) {
210 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
211 				     GFP_KERNEL, cpu_to_node(i));
212 		if (!rt_rq)
213 			goto err;
214 
215 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
216 				     GFP_KERNEL, cpu_to_node(i));
217 		if (!rt_se)
218 			goto err_free_rq;
219 
220 		init_rt_rq(rt_rq);
221 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
222 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
223 	}
224 
225 	return 1;
226 
227 err_free_rq:
228 	kfree(rt_rq);
229 err:
230 	return 0;
231 }
232 
233 #else /* CONFIG_RT_GROUP_SCHED */
234 
235 #define rt_entity_is_task(rt_se) (1)
236 
237 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
238 {
239 	return container_of(rt_se, struct task_struct, rt);
240 }
241 
242 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
243 {
244 	return container_of(rt_rq, struct rq, rt);
245 }
246 
247 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
248 {
249 	struct task_struct *p = rt_task_of(rt_se);
250 
251 	return task_rq(p);
252 }
253 
254 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
255 {
256 	struct rq *rq = rq_of_rt_se(rt_se);
257 
258 	return &rq->rt;
259 }
260 
261 void free_rt_sched_group(struct task_group *tg) { }
262 
263 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
264 {
265 	return 1;
266 }
267 #endif /* CONFIG_RT_GROUP_SCHED */
268 
269 #ifdef CONFIG_SMP
270 
271 static void pull_rt_task(struct rq *this_rq);
272 
273 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
274 {
275 	/* Try to pull RT tasks here if we lower this rq's prio */
276 	return rq->rt.highest_prio.curr > prev->prio;
277 }
278 
279 static inline int rt_overloaded(struct rq *rq)
280 {
281 	return atomic_read(&rq->rd->rto_count);
282 }
283 
284 static inline void rt_set_overload(struct rq *rq)
285 {
286 	if (!rq->online)
287 		return;
288 
289 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
290 	/*
291 	 * Make sure the mask is visible before we set
292 	 * the overload count. That is checked to determine
293 	 * if we should look at the mask. It would be a shame
294 	 * if we looked at the mask, but the mask was not
295 	 * updated yet.
296 	 *
297 	 * Matched by the barrier in pull_rt_task().
298 	 */
299 	smp_wmb();
300 	atomic_inc(&rq->rd->rto_count);
301 }
302 
303 static inline void rt_clear_overload(struct rq *rq)
304 {
305 	if (!rq->online)
306 		return;
307 
308 	/* the order here really doesn't matter */
309 	atomic_dec(&rq->rd->rto_count);
310 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
311 }
312 
313 static void update_rt_migration(struct rt_rq *rt_rq)
314 {
315 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
316 		if (!rt_rq->overloaded) {
317 			rt_set_overload(rq_of_rt_rq(rt_rq));
318 			rt_rq->overloaded = 1;
319 		}
320 	} else if (rt_rq->overloaded) {
321 		rt_clear_overload(rq_of_rt_rq(rt_rq));
322 		rt_rq->overloaded = 0;
323 	}
324 }
325 
326 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
327 {
328 	struct task_struct *p;
329 
330 	if (!rt_entity_is_task(rt_se))
331 		return;
332 
333 	p = rt_task_of(rt_se);
334 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
335 
336 	rt_rq->rt_nr_total++;
337 	if (tsk_nr_cpus_allowed(p) > 1)
338 		rt_rq->rt_nr_migratory++;
339 
340 	update_rt_migration(rt_rq);
341 }
342 
343 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
344 {
345 	struct task_struct *p;
346 
347 	if (!rt_entity_is_task(rt_se))
348 		return;
349 
350 	p = rt_task_of(rt_se);
351 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
352 
353 	rt_rq->rt_nr_total--;
354 	if (tsk_nr_cpus_allowed(p) > 1)
355 		rt_rq->rt_nr_migratory--;
356 
357 	update_rt_migration(rt_rq);
358 }
359 
360 static inline int has_pushable_tasks(struct rq *rq)
361 {
362 	return !plist_head_empty(&rq->rt.pushable_tasks);
363 }
364 
365 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
366 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
367 
368 static void push_rt_tasks(struct rq *);
369 static void pull_rt_task(struct rq *);
370 
371 static inline void queue_push_tasks(struct rq *rq)
372 {
373 	if (!has_pushable_tasks(rq))
374 		return;
375 
376 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
377 }
378 
379 static inline void queue_pull_task(struct rq *rq)
380 {
381 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
382 }
383 
384 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
385 {
386 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
387 	plist_node_init(&p->pushable_tasks, p->prio);
388 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
389 
390 	/* Update the highest prio pushable task */
391 	if (p->prio < rq->rt.highest_prio.next)
392 		rq->rt.highest_prio.next = p->prio;
393 }
394 
395 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
396 {
397 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
398 
399 	/* Update the new highest prio pushable task */
400 	if (has_pushable_tasks(rq)) {
401 		p = plist_first_entry(&rq->rt.pushable_tasks,
402 				      struct task_struct, pushable_tasks);
403 		rq->rt.highest_prio.next = p->prio;
404 	} else
405 		rq->rt.highest_prio.next = MAX_RT_PRIO;
406 }
407 
408 #else
409 
410 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
411 {
412 }
413 
414 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
415 {
416 }
417 
418 static inline
419 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
420 {
421 }
422 
423 static inline
424 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
425 {
426 }
427 
428 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
429 {
430 	return false;
431 }
432 
433 static inline void pull_rt_task(struct rq *this_rq)
434 {
435 }
436 
437 static inline void queue_push_tasks(struct rq *rq)
438 {
439 }
440 #endif /* CONFIG_SMP */
441 
442 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
443 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
444 
445 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
446 {
447 	return rt_se->on_rq;
448 }
449 
450 #ifdef CONFIG_RT_GROUP_SCHED
451 
452 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
453 {
454 	if (!rt_rq->tg)
455 		return RUNTIME_INF;
456 
457 	return rt_rq->rt_runtime;
458 }
459 
460 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
461 {
462 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
463 }
464 
465 typedef struct task_group *rt_rq_iter_t;
466 
467 static inline struct task_group *next_task_group(struct task_group *tg)
468 {
469 	do {
470 		tg = list_entry_rcu(tg->list.next,
471 			typeof(struct task_group), list);
472 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
473 
474 	if (&tg->list == &task_groups)
475 		tg = NULL;
476 
477 	return tg;
478 }
479 
480 #define for_each_rt_rq(rt_rq, iter, rq)					\
481 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
482 		(iter = next_task_group(iter)) &&			\
483 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
484 
485 #define for_each_sched_rt_entity(rt_se) \
486 	for (; rt_se; rt_se = rt_se->parent)
487 
488 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
489 {
490 	return rt_se->my_q;
491 }
492 
493 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
494 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
495 
496 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
497 {
498 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
499 	struct rq *rq = rq_of_rt_rq(rt_rq);
500 	struct sched_rt_entity *rt_se;
501 
502 	int cpu = cpu_of(rq);
503 
504 	rt_se = rt_rq->tg->rt_se[cpu];
505 
506 	if (rt_rq->rt_nr_running) {
507 		if (!rt_se)
508 			enqueue_top_rt_rq(rt_rq);
509 		else if (!on_rt_rq(rt_se))
510 			enqueue_rt_entity(rt_se, 0);
511 
512 		if (rt_rq->highest_prio.curr < curr->prio)
513 			resched_curr(rq);
514 	}
515 }
516 
517 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
518 {
519 	struct sched_rt_entity *rt_se;
520 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
521 
522 	rt_se = rt_rq->tg->rt_se[cpu];
523 
524 	if (!rt_se)
525 		dequeue_top_rt_rq(rt_rq);
526 	else if (on_rt_rq(rt_se))
527 		dequeue_rt_entity(rt_se, 0);
528 }
529 
530 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
531 {
532 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
533 }
534 
535 static int rt_se_boosted(struct sched_rt_entity *rt_se)
536 {
537 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
538 	struct task_struct *p;
539 
540 	if (rt_rq)
541 		return !!rt_rq->rt_nr_boosted;
542 
543 	p = rt_task_of(rt_se);
544 	return p->prio != p->normal_prio;
545 }
546 
547 #ifdef CONFIG_SMP
548 static inline const struct cpumask *sched_rt_period_mask(void)
549 {
550 	return this_rq()->rd->span;
551 }
552 #else
553 static inline const struct cpumask *sched_rt_period_mask(void)
554 {
555 	return cpu_online_mask;
556 }
557 #endif
558 
559 static inline
560 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
561 {
562 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
563 }
564 
565 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
566 {
567 	return &rt_rq->tg->rt_bandwidth;
568 }
569 
570 #else /* !CONFIG_RT_GROUP_SCHED */
571 
572 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
573 {
574 	return rt_rq->rt_runtime;
575 }
576 
577 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
578 {
579 	return ktime_to_ns(def_rt_bandwidth.rt_period);
580 }
581 
582 typedef struct rt_rq *rt_rq_iter_t;
583 
584 #define for_each_rt_rq(rt_rq, iter, rq) \
585 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
586 
587 #define for_each_sched_rt_entity(rt_se) \
588 	for (; rt_se; rt_se = NULL)
589 
590 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
591 {
592 	return NULL;
593 }
594 
595 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
596 {
597 	struct rq *rq = rq_of_rt_rq(rt_rq);
598 
599 	if (!rt_rq->rt_nr_running)
600 		return;
601 
602 	enqueue_top_rt_rq(rt_rq);
603 	resched_curr(rq);
604 }
605 
606 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
607 {
608 	dequeue_top_rt_rq(rt_rq);
609 }
610 
611 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
612 {
613 	return rt_rq->rt_throttled;
614 }
615 
616 static inline const struct cpumask *sched_rt_period_mask(void)
617 {
618 	return cpu_online_mask;
619 }
620 
621 static inline
622 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
623 {
624 	return &cpu_rq(cpu)->rt;
625 }
626 
627 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
628 {
629 	return &def_rt_bandwidth;
630 }
631 
632 #endif /* CONFIG_RT_GROUP_SCHED */
633 
634 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
635 {
636 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
637 
638 	return (hrtimer_active(&rt_b->rt_period_timer) ||
639 		rt_rq->rt_time < rt_b->rt_runtime);
640 }
641 
642 #ifdef CONFIG_SMP
643 /*
644  * We ran out of runtime, see if we can borrow some from our neighbours.
645  */
646 static void do_balance_runtime(struct rt_rq *rt_rq)
647 {
648 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
649 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
650 	int i, weight;
651 	u64 rt_period;
652 
653 	weight = cpumask_weight(rd->span);
654 
655 	raw_spin_lock(&rt_b->rt_runtime_lock);
656 	rt_period = ktime_to_ns(rt_b->rt_period);
657 	for_each_cpu(i, rd->span) {
658 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
659 		s64 diff;
660 
661 		if (iter == rt_rq)
662 			continue;
663 
664 		raw_spin_lock(&iter->rt_runtime_lock);
665 		/*
666 		 * Either all rqs have inf runtime and there's nothing to steal
667 		 * or __disable_runtime() below sets a specific rq to inf to
668 		 * indicate its been disabled and disalow stealing.
669 		 */
670 		if (iter->rt_runtime == RUNTIME_INF)
671 			goto next;
672 
673 		/*
674 		 * From runqueues with spare time, take 1/n part of their
675 		 * spare time, but no more than our period.
676 		 */
677 		diff = iter->rt_runtime - iter->rt_time;
678 		if (diff > 0) {
679 			diff = div_u64((u64)diff, weight);
680 			if (rt_rq->rt_runtime + diff > rt_period)
681 				diff = rt_period - rt_rq->rt_runtime;
682 			iter->rt_runtime -= diff;
683 			rt_rq->rt_runtime += diff;
684 			if (rt_rq->rt_runtime == rt_period) {
685 				raw_spin_unlock(&iter->rt_runtime_lock);
686 				break;
687 			}
688 		}
689 next:
690 		raw_spin_unlock(&iter->rt_runtime_lock);
691 	}
692 	raw_spin_unlock(&rt_b->rt_runtime_lock);
693 }
694 
695 /*
696  * Ensure this RQ takes back all the runtime it lend to its neighbours.
697  */
698 static void __disable_runtime(struct rq *rq)
699 {
700 	struct root_domain *rd = rq->rd;
701 	rt_rq_iter_t iter;
702 	struct rt_rq *rt_rq;
703 
704 	if (unlikely(!scheduler_running))
705 		return;
706 
707 	for_each_rt_rq(rt_rq, iter, rq) {
708 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
709 		s64 want;
710 		int i;
711 
712 		raw_spin_lock(&rt_b->rt_runtime_lock);
713 		raw_spin_lock(&rt_rq->rt_runtime_lock);
714 		/*
715 		 * Either we're all inf and nobody needs to borrow, or we're
716 		 * already disabled and thus have nothing to do, or we have
717 		 * exactly the right amount of runtime to take out.
718 		 */
719 		if (rt_rq->rt_runtime == RUNTIME_INF ||
720 				rt_rq->rt_runtime == rt_b->rt_runtime)
721 			goto balanced;
722 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
723 
724 		/*
725 		 * Calculate the difference between what we started out with
726 		 * and what we current have, that's the amount of runtime
727 		 * we lend and now have to reclaim.
728 		 */
729 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
730 
731 		/*
732 		 * Greedy reclaim, take back as much as we can.
733 		 */
734 		for_each_cpu(i, rd->span) {
735 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
736 			s64 diff;
737 
738 			/*
739 			 * Can't reclaim from ourselves or disabled runqueues.
740 			 */
741 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
742 				continue;
743 
744 			raw_spin_lock(&iter->rt_runtime_lock);
745 			if (want > 0) {
746 				diff = min_t(s64, iter->rt_runtime, want);
747 				iter->rt_runtime -= diff;
748 				want -= diff;
749 			} else {
750 				iter->rt_runtime -= want;
751 				want -= want;
752 			}
753 			raw_spin_unlock(&iter->rt_runtime_lock);
754 
755 			if (!want)
756 				break;
757 		}
758 
759 		raw_spin_lock(&rt_rq->rt_runtime_lock);
760 		/*
761 		 * We cannot be left wanting - that would mean some runtime
762 		 * leaked out of the system.
763 		 */
764 		BUG_ON(want);
765 balanced:
766 		/*
767 		 * Disable all the borrow logic by pretending we have inf
768 		 * runtime - in which case borrowing doesn't make sense.
769 		 */
770 		rt_rq->rt_runtime = RUNTIME_INF;
771 		rt_rq->rt_throttled = 0;
772 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
773 		raw_spin_unlock(&rt_b->rt_runtime_lock);
774 
775 		/* Make rt_rq available for pick_next_task() */
776 		sched_rt_rq_enqueue(rt_rq);
777 	}
778 }
779 
780 static void __enable_runtime(struct rq *rq)
781 {
782 	rt_rq_iter_t iter;
783 	struct rt_rq *rt_rq;
784 
785 	if (unlikely(!scheduler_running))
786 		return;
787 
788 	/*
789 	 * Reset each runqueue's bandwidth settings
790 	 */
791 	for_each_rt_rq(rt_rq, iter, rq) {
792 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
793 
794 		raw_spin_lock(&rt_b->rt_runtime_lock);
795 		raw_spin_lock(&rt_rq->rt_runtime_lock);
796 		rt_rq->rt_runtime = rt_b->rt_runtime;
797 		rt_rq->rt_time = 0;
798 		rt_rq->rt_throttled = 0;
799 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
800 		raw_spin_unlock(&rt_b->rt_runtime_lock);
801 	}
802 }
803 
804 static void balance_runtime(struct rt_rq *rt_rq)
805 {
806 	if (!sched_feat(RT_RUNTIME_SHARE))
807 		return;
808 
809 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
810 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
811 		do_balance_runtime(rt_rq);
812 		raw_spin_lock(&rt_rq->rt_runtime_lock);
813 	}
814 }
815 #else /* !CONFIG_SMP */
816 static inline void balance_runtime(struct rt_rq *rt_rq) {}
817 #endif /* CONFIG_SMP */
818 
819 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
820 {
821 	int i, idle = 1, throttled = 0;
822 	const struct cpumask *span;
823 
824 	span = sched_rt_period_mask();
825 #ifdef CONFIG_RT_GROUP_SCHED
826 	/*
827 	 * FIXME: isolated CPUs should really leave the root task group,
828 	 * whether they are isolcpus or were isolated via cpusets, lest
829 	 * the timer run on a CPU which does not service all runqueues,
830 	 * potentially leaving other CPUs indefinitely throttled.  If
831 	 * isolation is really required, the user will turn the throttle
832 	 * off to kill the perturbations it causes anyway.  Meanwhile,
833 	 * this maintains functionality for boot and/or troubleshooting.
834 	 */
835 	if (rt_b == &root_task_group.rt_bandwidth)
836 		span = cpu_online_mask;
837 #endif
838 	for_each_cpu(i, span) {
839 		int enqueue = 0;
840 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
841 		struct rq *rq = rq_of_rt_rq(rt_rq);
842 
843 		raw_spin_lock(&rq->lock);
844 		if (rt_rq->rt_time) {
845 			u64 runtime;
846 
847 			raw_spin_lock(&rt_rq->rt_runtime_lock);
848 			if (rt_rq->rt_throttled)
849 				balance_runtime(rt_rq);
850 			runtime = rt_rq->rt_runtime;
851 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
852 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
853 				rt_rq->rt_throttled = 0;
854 				enqueue = 1;
855 
856 				/*
857 				 * When we're idle and a woken (rt) task is
858 				 * throttled check_preempt_curr() will set
859 				 * skip_update and the time between the wakeup
860 				 * and this unthrottle will get accounted as
861 				 * 'runtime'.
862 				 */
863 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
864 					rq_clock_skip_update(rq, false);
865 			}
866 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
867 				idle = 0;
868 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
869 		} else if (rt_rq->rt_nr_running) {
870 			idle = 0;
871 			if (!rt_rq_throttled(rt_rq))
872 				enqueue = 1;
873 		}
874 		if (rt_rq->rt_throttled)
875 			throttled = 1;
876 
877 		if (enqueue)
878 			sched_rt_rq_enqueue(rt_rq);
879 		raw_spin_unlock(&rq->lock);
880 	}
881 
882 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
883 		return 1;
884 
885 	return idle;
886 }
887 
888 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
889 {
890 #ifdef CONFIG_RT_GROUP_SCHED
891 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
892 
893 	if (rt_rq)
894 		return rt_rq->highest_prio.curr;
895 #endif
896 
897 	return rt_task_of(rt_se)->prio;
898 }
899 
900 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
901 {
902 	u64 runtime = sched_rt_runtime(rt_rq);
903 
904 	if (rt_rq->rt_throttled)
905 		return rt_rq_throttled(rt_rq);
906 
907 	if (runtime >= sched_rt_period(rt_rq))
908 		return 0;
909 
910 	balance_runtime(rt_rq);
911 	runtime = sched_rt_runtime(rt_rq);
912 	if (runtime == RUNTIME_INF)
913 		return 0;
914 
915 	if (rt_rq->rt_time > runtime) {
916 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
917 
918 		/*
919 		 * Don't actually throttle groups that have no runtime assigned
920 		 * but accrue some time due to boosting.
921 		 */
922 		if (likely(rt_b->rt_runtime)) {
923 			rt_rq->rt_throttled = 1;
924 			printk_deferred_once("sched: RT throttling activated\n");
925 		} else {
926 			/*
927 			 * In case we did anyway, make it go away,
928 			 * replenishment is a joke, since it will replenish us
929 			 * with exactly 0 ns.
930 			 */
931 			rt_rq->rt_time = 0;
932 		}
933 
934 		if (rt_rq_throttled(rt_rq)) {
935 			sched_rt_rq_dequeue(rt_rq);
936 			return 1;
937 		}
938 	}
939 
940 	return 0;
941 }
942 
943 /*
944  * Update the current task's runtime statistics. Skip current tasks that
945  * are not in our scheduling class.
946  */
947 static void update_curr_rt(struct rq *rq)
948 {
949 	struct task_struct *curr = rq->curr;
950 	struct sched_rt_entity *rt_se = &curr->rt;
951 	u64 delta_exec;
952 
953 	if (curr->sched_class != &rt_sched_class)
954 		return;
955 
956 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
957 	if (unlikely((s64)delta_exec <= 0))
958 		return;
959 
960 	/* Kick cpufreq (see the comment in linux/cpufreq.h). */
961 	if (cpu_of(rq) == smp_processor_id())
962 		cpufreq_trigger_update(rq_clock(rq));
963 
964 	schedstat_set(curr->se.statistics.exec_max,
965 		      max(curr->se.statistics.exec_max, delta_exec));
966 
967 	curr->se.sum_exec_runtime += delta_exec;
968 	account_group_exec_runtime(curr, delta_exec);
969 
970 	curr->se.exec_start = rq_clock_task(rq);
971 	cpuacct_charge(curr, delta_exec);
972 
973 	sched_rt_avg_update(rq, delta_exec);
974 
975 	if (!rt_bandwidth_enabled())
976 		return;
977 
978 	for_each_sched_rt_entity(rt_se) {
979 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
980 
981 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
982 			raw_spin_lock(&rt_rq->rt_runtime_lock);
983 			rt_rq->rt_time += delta_exec;
984 			if (sched_rt_runtime_exceeded(rt_rq))
985 				resched_curr(rq);
986 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
987 		}
988 	}
989 }
990 
991 static void
992 dequeue_top_rt_rq(struct rt_rq *rt_rq)
993 {
994 	struct rq *rq = rq_of_rt_rq(rt_rq);
995 
996 	BUG_ON(&rq->rt != rt_rq);
997 
998 	if (!rt_rq->rt_queued)
999 		return;
1000 
1001 	BUG_ON(!rq->nr_running);
1002 
1003 	sub_nr_running(rq, rt_rq->rt_nr_running);
1004 	rt_rq->rt_queued = 0;
1005 }
1006 
1007 static void
1008 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1009 {
1010 	struct rq *rq = rq_of_rt_rq(rt_rq);
1011 
1012 	BUG_ON(&rq->rt != rt_rq);
1013 
1014 	if (rt_rq->rt_queued)
1015 		return;
1016 	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1017 		return;
1018 
1019 	add_nr_running(rq, rt_rq->rt_nr_running);
1020 	rt_rq->rt_queued = 1;
1021 }
1022 
1023 #if defined CONFIG_SMP
1024 
1025 static void
1026 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1027 {
1028 	struct rq *rq = rq_of_rt_rq(rt_rq);
1029 
1030 #ifdef CONFIG_RT_GROUP_SCHED
1031 	/*
1032 	 * Change rq's cpupri only if rt_rq is the top queue.
1033 	 */
1034 	if (&rq->rt != rt_rq)
1035 		return;
1036 #endif
1037 	if (rq->online && prio < prev_prio)
1038 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1039 }
1040 
1041 static void
1042 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1043 {
1044 	struct rq *rq = rq_of_rt_rq(rt_rq);
1045 
1046 #ifdef CONFIG_RT_GROUP_SCHED
1047 	/*
1048 	 * Change rq's cpupri only if rt_rq is the top queue.
1049 	 */
1050 	if (&rq->rt != rt_rq)
1051 		return;
1052 #endif
1053 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1054 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1055 }
1056 
1057 #else /* CONFIG_SMP */
1058 
1059 static inline
1060 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1061 static inline
1062 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1063 
1064 #endif /* CONFIG_SMP */
1065 
1066 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1067 static void
1068 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1069 {
1070 	int prev_prio = rt_rq->highest_prio.curr;
1071 
1072 	if (prio < prev_prio)
1073 		rt_rq->highest_prio.curr = prio;
1074 
1075 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1076 }
1077 
1078 static void
1079 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1080 {
1081 	int prev_prio = rt_rq->highest_prio.curr;
1082 
1083 	if (rt_rq->rt_nr_running) {
1084 
1085 		WARN_ON(prio < prev_prio);
1086 
1087 		/*
1088 		 * This may have been our highest task, and therefore
1089 		 * we may have some recomputation to do
1090 		 */
1091 		if (prio == prev_prio) {
1092 			struct rt_prio_array *array = &rt_rq->active;
1093 
1094 			rt_rq->highest_prio.curr =
1095 				sched_find_first_bit(array->bitmap);
1096 		}
1097 
1098 	} else
1099 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1100 
1101 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1102 }
1103 
1104 #else
1105 
1106 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1107 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1108 
1109 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1110 
1111 #ifdef CONFIG_RT_GROUP_SCHED
1112 
1113 static void
1114 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1115 {
1116 	if (rt_se_boosted(rt_se))
1117 		rt_rq->rt_nr_boosted++;
1118 
1119 	if (rt_rq->tg)
1120 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1121 }
1122 
1123 static void
1124 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1125 {
1126 	if (rt_se_boosted(rt_se))
1127 		rt_rq->rt_nr_boosted--;
1128 
1129 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1130 }
1131 
1132 #else /* CONFIG_RT_GROUP_SCHED */
1133 
1134 static void
1135 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1136 {
1137 	start_rt_bandwidth(&def_rt_bandwidth);
1138 }
1139 
1140 static inline
1141 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1142 
1143 #endif /* CONFIG_RT_GROUP_SCHED */
1144 
1145 static inline
1146 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1147 {
1148 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1149 
1150 	if (group_rq)
1151 		return group_rq->rt_nr_running;
1152 	else
1153 		return 1;
1154 }
1155 
1156 static inline
1157 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1158 {
1159 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1160 	struct task_struct *tsk;
1161 
1162 	if (group_rq)
1163 		return group_rq->rr_nr_running;
1164 
1165 	tsk = rt_task_of(rt_se);
1166 
1167 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1168 }
1169 
1170 static inline
1171 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1172 {
1173 	int prio = rt_se_prio(rt_se);
1174 
1175 	WARN_ON(!rt_prio(prio));
1176 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1177 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1178 
1179 	inc_rt_prio(rt_rq, prio);
1180 	inc_rt_migration(rt_se, rt_rq);
1181 	inc_rt_group(rt_se, rt_rq);
1182 }
1183 
1184 static inline
1185 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1186 {
1187 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1188 	WARN_ON(!rt_rq->rt_nr_running);
1189 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1190 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1191 
1192 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1193 	dec_rt_migration(rt_se, rt_rq);
1194 	dec_rt_group(rt_se, rt_rq);
1195 }
1196 
1197 /*
1198  * Change rt_se->run_list location unless SAVE && !MOVE
1199  *
1200  * assumes ENQUEUE/DEQUEUE flags match
1201  */
1202 static inline bool move_entity(unsigned int flags)
1203 {
1204 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1205 		return false;
1206 
1207 	return true;
1208 }
1209 
1210 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1211 {
1212 	list_del_init(&rt_se->run_list);
1213 
1214 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1215 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1216 
1217 	rt_se->on_list = 0;
1218 }
1219 
1220 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1221 {
1222 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1223 	struct rt_prio_array *array = &rt_rq->active;
1224 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1225 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1226 
1227 	/*
1228 	 * Don't enqueue the group if its throttled, or when empty.
1229 	 * The latter is a consequence of the former when a child group
1230 	 * get throttled and the current group doesn't have any other
1231 	 * active members.
1232 	 */
1233 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1234 		if (rt_se->on_list)
1235 			__delist_rt_entity(rt_se, array);
1236 		return;
1237 	}
1238 
1239 	if (move_entity(flags)) {
1240 		WARN_ON_ONCE(rt_se->on_list);
1241 		if (flags & ENQUEUE_HEAD)
1242 			list_add(&rt_se->run_list, queue);
1243 		else
1244 			list_add_tail(&rt_se->run_list, queue);
1245 
1246 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1247 		rt_se->on_list = 1;
1248 	}
1249 	rt_se->on_rq = 1;
1250 
1251 	inc_rt_tasks(rt_se, rt_rq);
1252 }
1253 
1254 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1255 {
1256 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1257 	struct rt_prio_array *array = &rt_rq->active;
1258 
1259 	if (move_entity(flags)) {
1260 		WARN_ON_ONCE(!rt_se->on_list);
1261 		__delist_rt_entity(rt_se, array);
1262 	}
1263 	rt_se->on_rq = 0;
1264 
1265 	dec_rt_tasks(rt_se, rt_rq);
1266 }
1267 
1268 /*
1269  * Because the prio of an upper entry depends on the lower
1270  * entries, we must remove entries top - down.
1271  */
1272 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1273 {
1274 	struct sched_rt_entity *back = NULL;
1275 
1276 	for_each_sched_rt_entity(rt_se) {
1277 		rt_se->back = back;
1278 		back = rt_se;
1279 	}
1280 
1281 	dequeue_top_rt_rq(rt_rq_of_se(back));
1282 
1283 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1284 		if (on_rt_rq(rt_se))
1285 			__dequeue_rt_entity(rt_se, flags);
1286 	}
1287 }
1288 
1289 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1290 {
1291 	struct rq *rq = rq_of_rt_se(rt_se);
1292 
1293 	dequeue_rt_stack(rt_se, flags);
1294 	for_each_sched_rt_entity(rt_se)
1295 		__enqueue_rt_entity(rt_se, flags);
1296 	enqueue_top_rt_rq(&rq->rt);
1297 }
1298 
1299 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1300 {
1301 	struct rq *rq = rq_of_rt_se(rt_se);
1302 
1303 	dequeue_rt_stack(rt_se, flags);
1304 
1305 	for_each_sched_rt_entity(rt_se) {
1306 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1307 
1308 		if (rt_rq && rt_rq->rt_nr_running)
1309 			__enqueue_rt_entity(rt_se, flags);
1310 	}
1311 	enqueue_top_rt_rq(&rq->rt);
1312 }
1313 
1314 /*
1315  * Adding/removing a task to/from a priority array:
1316  */
1317 static void
1318 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1319 {
1320 	struct sched_rt_entity *rt_se = &p->rt;
1321 
1322 	if (flags & ENQUEUE_WAKEUP)
1323 		rt_se->timeout = 0;
1324 
1325 	enqueue_rt_entity(rt_se, flags);
1326 
1327 	if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
1328 		enqueue_pushable_task(rq, p);
1329 }
1330 
1331 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1332 {
1333 	struct sched_rt_entity *rt_se = &p->rt;
1334 
1335 	update_curr_rt(rq);
1336 	dequeue_rt_entity(rt_se, flags);
1337 
1338 	dequeue_pushable_task(rq, p);
1339 }
1340 
1341 /*
1342  * Put task to the head or the end of the run list without the overhead of
1343  * dequeue followed by enqueue.
1344  */
1345 static void
1346 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1347 {
1348 	if (on_rt_rq(rt_se)) {
1349 		struct rt_prio_array *array = &rt_rq->active;
1350 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1351 
1352 		if (head)
1353 			list_move(&rt_se->run_list, queue);
1354 		else
1355 			list_move_tail(&rt_se->run_list, queue);
1356 	}
1357 }
1358 
1359 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1360 {
1361 	struct sched_rt_entity *rt_se = &p->rt;
1362 	struct rt_rq *rt_rq;
1363 
1364 	for_each_sched_rt_entity(rt_se) {
1365 		rt_rq = rt_rq_of_se(rt_se);
1366 		requeue_rt_entity(rt_rq, rt_se, head);
1367 	}
1368 }
1369 
1370 static void yield_task_rt(struct rq *rq)
1371 {
1372 	requeue_task_rt(rq, rq->curr, 0);
1373 }
1374 
1375 #ifdef CONFIG_SMP
1376 static int find_lowest_rq(struct task_struct *task);
1377 
1378 static int
1379 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1380 {
1381 	struct task_struct *curr;
1382 	struct rq *rq;
1383 
1384 	/* For anything but wake ups, just return the task_cpu */
1385 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1386 		goto out;
1387 
1388 	rq = cpu_rq(cpu);
1389 
1390 	rcu_read_lock();
1391 	curr = READ_ONCE(rq->curr); /* unlocked access */
1392 
1393 	/*
1394 	 * If the current task on @p's runqueue is an RT task, then
1395 	 * try to see if we can wake this RT task up on another
1396 	 * runqueue. Otherwise simply start this RT task
1397 	 * on its current runqueue.
1398 	 *
1399 	 * We want to avoid overloading runqueues. If the woken
1400 	 * task is a higher priority, then it will stay on this CPU
1401 	 * and the lower prio task should be moved to another CPU.
1402 	 * Even though this will probably make the lower prio task
1403 	 * lose its cache, we do not want to bounce a higher task
1404 	 * around just because it gave up its CPU, perhaps for a
1405 	 * lock?
1406 	 *
1407 	 * For equal prio tasks, we just let the scheduler sort it out.
1408 	 *
1409 	 * Otherwise, just let it ride on the affined RQ and the
1410 	 * post-schedule router will push the preempted task away
1411 	 *
1412 	 * This test is optimistic, if we get it wrong the load-balancer
1413 	 * will have to sort it out.
1414 	 */
1415 	if (curr && unlikely(rt_task(curr)) &&
1416 	    (tsk_nr_cpus_allowed(curr) < 2 ||
1417 	     curr->prio <= p->prio)) {
1418 		int target = find_lowest_rq(p);
1419 
1420 		/*
1421 		 * Don't bother moving it if the destination CPU is
1422 		 * not running a lower priority task.
1423 		 */
1424 		if (target != -1 &&
1425 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1426 			cpu = target;
1427 	}
1428 	rcu_read_unlock();
1429 
1430 out:
1431 	return cpu;
1432 }
1433 
1434 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1435 {
1436 	/*
1437 	 * Current can't be migrated, useless to reschedule,
1438 	 * let's hope p can move out.
1439 	 */
1440 	if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
1441 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1442 		return;
1443 
1444 	/*
1445 	 * p is migratable, so let's not schedule it and
1446 	 * see if it is pushed or pulled somewhere else.
1447 	 */
1448 	if (tsk_nr_cpus_allowed(p) != 1
1449 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1450 		return;
1451 
1452 	/*
1453 	 * There appears to be other cpus that can accept
1454 	 * current and none to run 'p', so lets reschedule
1455 	 * to try and push current away:
1456 	 */
1457 	requeue_task_rt(rq, p, 1);
1458 	resched_curr(rq);
1459 }
1460 
1461 #endif /* CONFIG_SMP */
1462 
1463 /*
1464  * Preempt the current task with a newly woken task if needed:
1465  */
1466 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1467 {
1468 	if (p->prio < rq->curr->prio) {
1469 		resched_curr(rq);
1470 		return;
1471 	}
1472 
1473 #ifdef CONFIG_SMP
1474 	/*
1475 	 * If:
1476 	 *
1477 	 * - the newly woken task is of equal priority to the current task
1478 	 * - the newly woken task is non-migratable while current is migratable
1479 	 * - current will be preempted on the next reschedule
1480 	 *
1481 	 * we should check to see if current can readily move to a different
1482 	 * cpu.  If so, we will reschedule to allow the push logic to try
1483 	 * to move current somewhere else, making room for our non-migratable
1484 	 * task.
1485 	 */
1486 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1487 		check_preempt_equal_prio(rq, p);
1488 #endif
1489 }
1490 
1491 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1492 						   struct rt_rq *rt_rq)
1493 {
1494 	struct rt_prio_array *array = &rt_rq->active;
1495 	struct sched_rt_entity *next = NULL;
1496 	struct list_head *queue;
1497 	int idx;
1498 
1499 	idx = sched_find_first_bit(array->bitmap);
1500 	BUG_ON(idx >= MAX_RT_PRIO);
1501 
1502 	queue = array->queue + idx;
1503 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1504 
1505 	return next;
1506 }
1507 
1508 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1509 {
1510 	struct sched_rt_entity *rt_se;
1511 	struct task_struct *p;
1512 	struct rt_rq *rt_rq  = &rq->rt;
1513 
1514 	do {
1515 		rt_se = pick_next_rt_entity(rq, rt_rq);
1516 		BUG_ON(!rt_se);
1517 		rt_rq = group_rt_rq(rt_se);
1518 	} while (rt_rq);
1519 
1520 	p = rt_task_of(rt_se);
1521 	p->se.exec_start = rq_clock_task(rq);
1522 
1523 	return p;
1524 }
1525 
1526 static struct task_struct *
1527 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
1528 {
1529 	struct task_struct *p;
1530 	struct rt_rq *rt_rq = &rq->rt;
1531 
1532 	if (need_pull_rt_task(rq, prev)) {
1533 		/*
1534 		 * This is OK, because current is on_cpu, which avoids it being
1535 		 * picked for load-balance and preemption/IRQs are still
1536 		 * disabled avoiding further scheduler activity on it and we're
1537 		 * being very careful to re-start the picking loop.
1538 		 */
1539 		lockdep_unpin_lock(&rq->lock, cookie);
1540 		pull_rt_task(rq);
1541 		lockdep_repin_lock(&rq->lock, cookie);
1542 		/*
1543 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1544 		 * means a dl or stop task can slip in, in which case we need
1545 		 * to re-start task selection.
1546 		 */
1547 		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1548 			     rq->dl.dl_nr_running))
1549 			return RETRY_TASK;
1550 	}
1551 
1552 	/*
1553 	 * We may dequeue prev's rt_rq in put_prev_task().
1554 	 * So, we update time before rt_nr_running check.
1555 	 */
1556 	if (prev->sched_class == &rt_sched_class)
1557 		update_curr_rt(rq);
1558 
1559 	if (!rt_rq->rt_queued)
1560 		return NULL;
1561 
1562 	put_prev_task(rq, prev);
1563 
1564 	p = _pick_next_task_rt(rq);
1565 
1566 	/* The running task is never eligible for pushing */
1567 	dequeue_pushable_task(rq, p);
1568 
1569 	queue_push_tasks(rq);
1570 
1571 	return p;
1572 }
1573 
1574 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1575 {
1576 	update_curr_rt(rq);
1577 
1578 	/*
1579 	 * The previous task needs to be made eligible for pushing
1580 	 * if it is still active
1581 	 */
1582 	if (on_rt_rq(&p->rt) && tsk_nr_cpus_allowed(p) > 1)
1583 		enqueue_pushable_task(rq, p);
1584 }
1585 
1586 #ifdef CONFIG_SMP
1587 
1588 /* Only try algorithms three times */
1589 #define RT_MAX_TRIES 3
1590 
1591 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1592 {
1593 	if (!task_running(rq, p) &&
1594 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1595 		return 1;
1596 	return 0;
1597 }
1598 
1599 /*
1600  * Return the highest pushable rq's task, which is suitable to be executed
1601  * on the cpu, NULL otherwise
1602  */
1603 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1604 {
1605 	struct plist_head *head = &rq->rt.pushable_tasks;
1606 	struct task_struct *p;
1607 
1608 	if (!has_pushable_tasks(rq))
1609 		return NULL;
1610 
1611 	plist_for_each_entry(p, head, pushable_tasks) {
1612 		if (pick_rt_task(rq, p, cpu))
1613 			return p;
1614 	}
1615 
1616 	return NULL;
1617 }
1618 
1619 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1620 
1621 static int find_lowest_rq(struct task_struct *task)
1622 {
1623 	struct sched_domain *sd;
1624 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1625 	int this_cpu = smp_processor_id();
1626 	int cpu      = task_cpu(task);
1627 
1628 	/* Make sure the mask is initialized first */
1629 	if (unlikely(!lowest_mask))
1630 		return -1;
1631 
1632 	if (tsk_nr_cpus_allowed(task) == 1)
1633 		return -1; /* No other targets possible */
1634 
1635 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1636 		return -1; /* No targets found */
1637 
1638 	/*
1639 	 * At this point we have built a mask of cpus representing the
1640 	 * lowest priority tasks in the system.  Now we want to elect
1641 	 * the best one based on our affinity and topology.
1642 	 *
1643 	 * We prioritize the last cpu that the task executed on since
1644 	 * it is most likely cache-hot in that location.
1645 	 */
1646 	if (cpumask_test_cpu(cpu, lowest_mask))
1647 		return cpu;
1648 
1649 	/*
1650 	 * Otherwise, we consult the sched_domains span maps to figure
1651 	 * out which cpu is logically closest to our hot cache data.
1652 	 */
1653 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1654 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1655 
1656 	rcu_read_lock();
1657 	for_each_domain(cpu, sd) {
1658 		if (sd->flags & SD_WAKE_AFFINE) {
1659 			int best_cpu;
1660 
1661 			/*
1662 			 * "this_cpu" is cheaper to preempt than a
1663 			 * remote processor.
1664 			 */
1665 			if (this_cpu != -1 &&
1666 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1667 				rcu_read_unlock();
1668 				return this_cpu;
1669 			}
1670 
1671 			best_cpu = cpumask_first_and(lowest_mask,
1672 						     sched_domain_span(sd));
1673 			if (best_cpu < nr_cpu_ids) {
1674 				rcu_read_unlock();
1675 				return best_cpu;
1676 			}
1677 		}
1678 	}
1679 	rcu_read_unlock();
1680 
1681 	/*
1682 	 * And finally, if there were no matches within the domains
1683 	 * just give the caller *something* to work with from the compatible
1684 	 * locations.
1685 	 */
1686 	if (this_cpu != -1)
1687 		return this_cpu;
1688 
1689 	cpu = cpumask_any(lowest_mask);
1690 	if (cpu < nr_cpu_ids)
1691 		return cpu;
1692 	return -1;
1693 }
1694 
1695 /* Will lock the rq it finds */
1696 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1697 {
1698 	struct rq *lowest_rq = NULL;
1699 	int tries;
1700 	int cpu;
1701 
1702 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1703 		cpu = find_lowest_rq(task);
1704 
1705 		if ((cpu == -1) || (cpu == rq->cpu))
1706 			break;
1707 
1708 		lowest_rq = cpu_rq(cpu);
1709 
1710 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1711 			/*
1712 			 * Target rq has tasks of equal or higher priority,
1713 			 * retrying does not release any lock and is unlikely
1714 			 * to yield a different result.
1715 			 */
1716 			lowest_rq = NULL;
1717 			break;
1718 		}
1719 
1720 		/* if the prio of this runqueue changed, try again */
1721 		if (double_lock_balance(rq, lowest_rq)) {
1722 			/*
1723 			 * We had to unlock the run queue. In
1724 			 * the mean time, task could have
1725 			 * migrated already or had its affinity changed.
1726 			 * Also make sure that it wasn't scheduled on its rq.
1727 			 */
1728 			if (unlikely(task_rq(task) != rq ||
1729 				     !cpumask_test_cpu(lowest_rq->cpu,
1730 						       tsk_cpus_allowed(task)) ||
1731 				     task_running(rq, task) ||
1732 				     !rt_task(task) ||
1733 				     !task_on_rq_queued(task))) {
1734 
1735 				double_unlock_balance(rq, lowest_rq);
1736 				lowest_rq = NULL;
1737 				break;
1738 			}
1739 		}
1740 
1741 		/* If this rq is still suitable use it. */
1742 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1743 			break;
1744 
1745 		/* try again */
1746 		double_unlock_balance(rq, lowest_rq);
1747 		lowest_rq = NULL;
1748 	}
1749 
1750 	return lowest_rq;
1751 }
1752 
1753 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1754 {
1755 	struct task_struct *p;
1756 
1757 	if (!has_pushable_tasks(rq))
1758 		return NULL;
1759 
1760 	p = plist_first_entry(&rq->rt.pushable_tasks,
1761 			      struct task_struct, pushable_tasks);
1762 
1763 	BUG_ON(rq->cpu != task_cpu(p));
1764 	BUG_ON(task_current(rq, p));
1765 	BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
1766 
1767 	BUG_ON(!task_on_rq_queued(p));
1768 	BUG_ON(!rt_task(p));
1769 
1770 	return p;
1771 }
1772 
1773 /*
1774  * If the current CPU has more than one RT task, see if the non
1775  * running task can migrate over to a CPU that is running a task
1776  * of lesser priority.
1777  */
1778 static int push_rt_task(struct rq *rq)
1779 {
1780 	struct task_struct *next_task;
1781 	struct rq *lowest_rq;
1782 	int ret = 0;
1783 
1784 	if (!rq->rt.overloaded)
1785 		return 0;
1786 
1787 	next_task = pick_next_pushable_task(rq);
1788 	if (!next_task)
1789 		return 0;
1790 
1791 retry:
1792 	if (unlikely(next_task == rq->curr)) {
1793 		WARN_ON(1);
1794 		return 0;
1795 	}
1796 
1797 	/*
1798 	 * It's possible that the next_task slipped in of
1799 	 * higher priority than current. If that's the case
1800 	 * just reschedule current.
1801 	 */
1802 	if (unlikely(next_task->prio < rq->curr->prio)) {
1803 		resched_curr(rq);
1804 		return 0;
1805 	}
1806 
1807 	/* We might release rq lock */
1808 	get_task_struct(next_task);
1809 
1810 	/* find_lock_lowest_rq locks the rq if found */
1811 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1812 	if (!lowest_rq) {
1813 		struct task_struct *task;
1814 		/*
1815 		 * find_lock_lowest_rq releases rq->lock
1816 		 * so it is possible that next_task has migrated.
1817 		 *
1818 		 * We need to make sure that the task is still on the same
1819 		 * run-queue and is also still the next task eligible for
1820 		 * pushing.
1821 		 */
1822 		task = pick_next_pushable_task(rq);
1823 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1824 			/*
1825 			 * The task hasn't migrated, and is still the next
1826 			 * eligible task, but we failed to find a run-queue
1827 			 * to push it to.  Do not retry in this case, since
1828 			 * other cpus will pull from us when ready.
1829 			 */
1830 			goto out;
1831 		}
1832 
1833 		if (!task)
1834 			/* No more tasks, just exit */
1835 			goto out;
1836 
1837 		/*
1838 		 * Something has shifted, try again.
1839 		 */
1840 		put_task_struct(next_task);
1841 		next_task = task;
1842 		goto retry;
1843 	}
1844 
1845 	deactivate_task(rq, next_task, 0);
1846 	set_task_cpu(next_task, lowest_rq->cpu);
1847 	activate_task(lowest_rq, next_task, 0);
1848 	ret = 1;
1849 
1850 	resched_curr(lowest_rq);
1851 
1852 	double_unlock_balance(rq, lowest_rq);
1853 
1854 out:
1855 	put_task_struct(next_task);
1856 
1857 	return ret;
1858 }
1859 
1860 static void push_rt_tasks(struct rq *rq)
1861 {
1862 	/* push_rt_task will return true if it moved an RT */
1863 	while (push_rt_task(rq))
1864 		;
1865 }
1866 
1867 #ifdef HAVE_RT_PUSH_IPI
1868 /*
1869  * The search for the next cpu always starts at rq->cpu and ends
1870  * when we reach rq->cpu again. It will never return rq->cpu.
1871  * This returns the next cpu to check, or nr_cpu_ids if the loop
1872  * is complete.
1873  *
1874  * rq->rt.push_cpu holds the last cpu returned by this function,
1875  * or if this is the first instance, it must hold rq->cpu.
1876  */
1877 static int rto_next_cpu(struct rq *rq)
1878 {
1879 	int prev_cpu = rq->rt.push_cpu;
1880 	int cpu;
1881 
1882 	cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1883 
1884 	/*
1885 	 * If the previous cpu is less than the rq's CPU, then it already
1886 	 * passed the end of the mask, and has started from the beginning.
1887 	 * We end if the next CPU is greater or equal to rq's CPU.
1888 	 */
1889 	if (prev_cpu < rq->cpu) {
1890 		if (cpu >= rq->cpu)
1891 			return nr_cpu_ids;
1892 
1893 	} else if (cpu >= nr_cpu_ids) {
1894 		/*
1895 		 * We passed the end of the mask, start at the beginning.
1896 		 * If the result is greater or equal to the rq's CPU, then
1897 		 * the loop is finished.
1898 		 */
1899 		cpu = cpumask_first(rq->rd->rto_mask);
1900 		if (cpu >= rq->cpu)
1901 			return nr_cpu_ids;
1902 	}
1903 	rq->rt.push_cpu = cpu;
1904 
1905 	/* Return cpu to let the caller know if the loop is finished or not */
1906 	return cpu;
1907 }
1908 
1909 static int find_next_push_cpu(struct rq *rq)
1910 {
1911 	struct rq *next_rq;
1912 	int cpu;
1913 
1914 	while (1) {
1915 		cpu = rto_next_cpu(rq);
1916 		if (cpu >= nr_cpu_ids)
1917 			break;
1918 		next_rq = cpu_rq(cpu);
1919 
1920 		/* Make sure the next rq can push to this rq */
1921 		if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1922 			break;
1923 	}
1924 
1925 	return cpu;
1926 }
1927 
1928 #define RT_PUSH_IPI_EXECUTING		1
1929 #define RT_PUSH_IPI_RESTART		2
1930 
1931 static void tell_cpu_to_push(struct rq *rq)
1932 {
1933 	int cpu;
1934 
1935 	if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1936 		raw_spin_lock(&rq->rt.push_lock);
1937 		/* Make sure it's still executing */
1938 		if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1939 			/*
1940 			 * Tell the IPI to restart the loop as things have
1941 			 * changed since it started.
1942 			 */
1943 			rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1944 			raw_spin_unlock(&rq->rt.push_lock);
1945 			return;
1946 		}
1947 		raw_spin_unlock(&rq->rt.push_lock);
1948 	}
1949 
1950 	/* When here, there's no IPI going around */
1951 
1952 	rq->rt.push_cpu = rq->cpu;
1953 	cpu = find_next_push_cpu(rq);
1954 	if (cpu >= nr_cpu_ids)
1955 		return;
1956 
1957 	rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1958 
1959 	irq_work_queue_on(&rq->rt.push_work, cpu);
1960 }
1961 
1962 /* Called from hardirq context */
1963 static void try_to_push_tasks(void *arg)
1964 {
1965 	struct rt_rq *rt_rq = arg;
1966 	struct rq *rq, *src_rq;
1967 	int this_cpu;
1968 	int cpu;
1969 
1970 	this_cpu = rt_rq->push_cpu;
1971 
1972 	/* Paranoid check */
1973 	BUG_ON(this_cpu != smp_processor_id());
1974 
1975 	rq = cpu_rq(this_cpu);
1976 	src_rq = rq_of_rt_rq(rt_rq);
1977 
1978 again:
1979 	if (has_pushable_tasks(rq)) {
1980 		raw_spin_lock(&rq->lock);
1981 		push_rt_task(rq);
1982 		raw_spin_unlock(&rq->lock);
1983 	}
1984 
1985 	/* Pass the IPI to the next rt overloaded queue */
1986 	raw_spin_lock(&rt_rq->push_lock);
1987 	/*
1988 	 * If the source queue changed since the IPI went out,
1989 	 * we need to restart the search from that CPU again.
1990 	 */
1991 	if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1992 		rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1993 		rt_rq->push_cpu = src_rq->cpu;
1994 	}
1995 
1996 	cpu = find_next_push_cpu(src_rq);
1997 
1998 	if (cpu >= nr_cpu_ids)
1999 		rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
2000 	raw_spin_unlock(&rt_rq->push_lock);
2001 
2002 	if (cpu >= nr_cpu_ids)
2003 		return;
2004 
2005 	/*
2006 	 * It is possible that a restart caused this CPU to be
2007 	 * chosen again. Don't bother with an IPI, just see if we
2008 	 * have more to push.
2009 	 */
2010 	if (unlikely(cpu == rq->cpu))
2011 		goto again;
2012 
2013 	/* Try the next RT overloaded CPU */
2014 	irq_work_queue_on(&rt_rq->push_work, cpu);
2015 }
2016 
2017 static void push_irq_work_func(struct irq_work *work)
2018 {
2019 	struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
2020 
2021 	try_to_push_tasks(rt_rq);
2022 }
2023 #endif /* HAVE_RT_PUSH_IPI */
2024 
2025 static void pull_rt_task(struct rq *this_rq)
2026 {
2027 	int this_cpu = this_rq->cpu, cpu;
2028 	bool resched = false;
2029 	struct task_struct *p;
2030 	struct rq *src_rq;
2031 
2032 	if (likely(!rt_overloaded(this_rq)))
2033 		return;
2034 
2035 	/*
2036 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2037 	 * see overloaded we must also see the rto_mask bit.
2038 	 */
2039 	smp_rmb();
2040 
2041 #ifdef HAVE_RT_PUSH_IPI
2042 	if (sched_feat(RT_PUSH_IPI)) {
2043 		tell_cpu_to_push(this_rq);
2044 		return;
2045 	}
2046 #endif
2047 
2048 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2049 		if (this_cpu == cpu)
2050 			continue;
2051 
2052 		src_rq = cpu_rq(cpu);
2053 
2054 		/*
2055 		 * Don't bother taking the src_rq->lock if the next highest
2056 		 * task is known to be lower-priority than our current task.
2057 		 * This may look racy, but if this value is about to go
2058 		 * logically higher, the src_rq will push this task away.
2059 		 * And if its going logically lower, we do not care
2060 		 */
2061 		if (src_rq->rt.highest_prio.next >=
2062 		    this_rq->rt.highest_prio.curr)
2063 			continue;
2064 
2065 		/*
2066 		 * We can potentially drop this_rq's lock in
2067 		 * double_lock_balance, and another CPU could
2068 		 * alter this_rq
2069 		 */
2070 		double_lock_balance(this_rq, src_rq);
2071 
2072 		/*
2073 		 * We can pull only a task, which is pushable
2074 		 * on its rq, and no others.
2075 		 */
2076 		p = pick_highest_pushable_task(src_rq, this_cpu);
2077 
2078 		/*
2079 		 * Do we have an RT task that preempts
2080 		 * the to-be-scheduled task?
2081 		 */
2082 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2083 			WARN_ON(p == src_rq->curr);
2084 			WARN_ON(!task_on_rq_queued(p));
2085 
2086 			/*
2087 			 * There's a chance that p is higher in priority
2088 			 * than what's currently running on its cpu.
2089 			 * This is just that p is wakeing up and hasn't
2090 			 * had a chance to schedule. We only pull
2091 			 * p if it is lower in priority than the
2092 			 * current task on the run queue
2093 			 */
2094 			if (p->prio < src_rq->curr->prio)
2095 				goto skip;
2096 
2097 			resched = true;
2098 
2099 			deactivate_task(src_rq, p, 0);
2100 			set_task_cpu(p, this_cpu);
2101 			activate_task(this_rq, p, 0);
2102 			/*
2103 			 * We continue with the search, just in
2104 			 * case there's an even higher prio task
2105 			 * in another runqueue. (low likelihood
2106 			 * but possible)
2107 			 */
2108 		}
2109 skip:
2110 		double_unlock_balance(this_rq, src_rq);
2111 	}
2112 
2113 	if (resched)
2114 		resched_curr(this_rq);
2115 }
2116 
2117 /*
2118  * If we are not running and we are not going to reschedule soon, we should
2119  * try to push tasks away now
2120  */
2121 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2122 {
2123 	if (!task_running(rq, p) &&
2124 	    !test_tsk_need_resched(rq->curr) &&
2125 	    tsk_nr_cpus_allowed(p) > 1 &&
2126 	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2127 	    (tsk_nr_cpus_allowed(rq->curr) < 2 ||
2128 	     rq->curr->prio <= p->prio))
2129 		push_rt_tasks(rq);
2130 }
2131 
2132 /* Assumes rq->lock is held */
2133 static void rq_online_rt(struct rq *rq)
2134 {
2135 	if (rq->rt.overloaded)
2136 		rt_set_overload(rq);
2137 
2138 	__enable_runtime(rq);
2139 
2140 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2141 }
2142 
2143 /* Assumes rq->lock is held */
2144 static void rq_offline_rt(struct rq *rq)
2145 {
2146 	if (rq->rt.overloaded)
2147 		rt_clear_overload(rq);
2148 
2149 	__disable_runtime(rq);
2150 
2151 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2152 }
2153 
2154 /*
2155  * When switch from the rt queue, we bring ourselves to a position
2156  * that we might want to pull RT tasks from other runqueues.
2157  */
2158 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2159 {
2160 	/*
2161 	 * If there are other RT tasks then we will reschedule
2162 	 * and the scheduling of the other RT tasks will handle
2163 	 * the balancing. But if we are the last RT task
2164 	 * we may need to handle the pulling of RT tasks
2165 	 * now.
2166 	 */
2167 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2168 		return;
2169 
2170 	queue_pull_task(rq);
2171 }
2172 
2173 void __init init_sched_rt_class(void)
2174 {
2175 	unsigned int i;
2176 
2177 	for_each_possible_cpu(i) {
2178 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2179 					GFP_KERNEL, cpu_to_node(i));
2180 	}
2181 }
2182 #endif /* CONFIG_SMP */
2183 
2184 /*
2185  * When switching a task to RT, we may overload the runqueue
2186  * with RT tasks. In this case we try to push them off to
2187  * other runqueues.
2188  */
2189 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2190 {
2191 	/*
2192 	 * If we are already running, then there's nothing
2193 	 * that needs to be done. But if we are not running
2194 	 * we may need to preempt the current running task.
2195 	 * If that current running task is also an RT task
2196 	 * then see if we can move to another run queue.
2197 	 */
2198 	if (task_on_rq_queued(p) && rq->curr != p) {
2199 #ifdef CONFIG_SMP
2200 		if (tsk_nr_cpus_allowed(p) > 1 && rq->rt.overloaded)
2201 			queue_push_tasks(rq);
2202 #else
2203 		if (p->prio < rq->curr->prio)
2204 			resched_curr(rq);
2205 #endif /* CONFIG_SMP */
2206 	}
2207 }
2208 
2209 /*
2210  * Priority of the task has changed. This may cause
2211  * us to initiate a push or pull.
2212  */
2213 static void
2214 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2215 {
2216 	if (!task_on_rq_queued(p))
2217 		return;
2218 
2219 	if (rq->curr == p) {
2220 #ifdef CONFIG_SMP
2221 		/*
2222 		 * If our priority decreases while running, we
2223 		 * may need to pull tasks to this runqueue.
2224 		 */
2225 		if (oldprio < p->prio)
2226 			queue_pull_task(rq);
2227 
2228 		/*
2229 		 * If there's a higher priority task waiting to run
2230 		 * then reschedule.
2231 		 */
2232 		if (p->prio > rq->rt.highest_prio.curr)
2233 			resched_curr(rq);
2234 #else
2235 		/* For UP simply resched on drop of prio */
2236 		if (oldprio < p->prio)
2237 			resched_curr(rq);
2238 #endif /* CONFIG_SMP */
2239 	} else {
2240 		/*
2241 		 * This task is not running, but if it is
2242 		 * greater than the current running task
2243 		 * then reschedule.
2244 		 */
2245 		if (p->prio < rq->curr->prio)
2246 			resched_curr(rq);
2247 	}
2248 }
2249 
2250 static void watchdog(struct rq *rq, struct task_struct *p)
2251 {
2252 	unsigned long soft, hard;
2253 
2254 	/* max may change after cur was read, this will be fixed next tick */
2255 	soft = task_rlimit(p, RLIMIT_RTTIME);
2256 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2257 
2258 	if (soft != RLIM_INFINITY) {
2259 		unsigned long next;
2260 
2261 		if (p->rt.watchdog_stamp != jiffies) {
2262 			p->rt.timeout++;
2263 			p->rt.watchdog_stamp = jiffies;
2264 		}
2265 
2266 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2267 		if (p->rt.timeout > next)
2268 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2269 	}
2270 }
2271 
2272 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2273 {
2274 	struct sched_rt_entity *rt_se = &p->rt;
2275 
2276 	update_curr_rt(rq);
2277 
2278 	watchdog(rq, p);
2279 
2280 	/*
2281 	 * RR tasks need a special form of timeslice management.
2282 	 * FIFO tasks have no timeslices.
2283 	 */
2284 	if (p->policy != SCHED_RR)
2285 		return;
2286 
2287 	if (--p->rt.time_slice)
2288 		return;
2289 
2290 	p->rt.time_slice = sched_rr_timeslice;
2291 
2292 	/*
2293 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2294 	 * the only element on the queue
2295 	 */
2296 	for_each_sched_rt_entity(rt_se) {
2297 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2298 			requeue_task_rt(rq, p, 0);
2299 			resched_curr(rq);
2300 			return;
2301 		}
2302 	}
2303 }
2304 
2305 static void set_curr_task_rt(struct rq *rq)
2306 {
2307 	struct task_struct *p = rq->curr;
2308 
2309 	p->se.exec_start = rq_clock_task(rq);
2310 
2311 	/* The running task is never eligible for pushing */
2312 	dequeue_pushable_task(rq, p);
2313 }
2314 
2315 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2316 {
2317 	/*
2318 	 * Time slice is 0 for SCHED_FIFO tasks
2319 	 */
2320 	if (task->policy == SCHED_RR)
2321 		return sched_rr_timeslice;
2322 	else
2323 		return 0;
2324 }
2325 
2326 const struct sched_class rt_sched_class = {
2327 	.next			= &fair_sched_class,
2328 	.enqueue_task		= enqueue_task_rt,
2329 	.dequeue_task		= dequeue_task_rt,
2330 	.yield_task		= yield_task_rt,
2331 
2332 	.check_preempt_curr	= check_preempt_curr_rt,
2333 
2334 	.pick_next_task		= pick_next_task_rt,
2335 	.put_prev_task		= put_prev_task_rt,
2336 
2337 #ifdef CONFIG_SMP
2338 	.select_task_rq		= select_task_rq_rt,
2339 
2340 	.set_cpus_allowed       = set_cpus_allowed_common,
2341 	.rq_online              = rq_online_rt,
2342 	.rq_offline             = rq_offline_rt,
2343 	.task_woken		= task_woken_rt,
2344 	.switched_from		= switched_from_rt,
2345 #endif
2346 
2347 	.set_curr_task          = set_curr_task_rt,
2348 	.task_tick		= task_tick_rt,
2349 
2350 	.get_rr_interval	= get_rr_interval_rt,
2351 
2352 	.prio_changed		= prio_changed_rt,
2353 	.switched_to		= switched_to_rt,
2354 
2355 	.update_curr		= update_curr_rt,
2356 };
2357 
2358 #ifdef CONFIG_SCHED_DEBUG
2359 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2360 
2361 void print_rt_stats(struct seq_file *m, int cpu)
2362 {
2363 	rt_rq_iter_t iter;
2364 	struct rt_rq *rt_rq;
2365 
2366 	rcu_read_lock();
2367 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2368 		print_rt_rq(m, cpu, rt_rq);
2369 	rcu_read_unlock();
2370 }
2371 #endif /* CONFIG_SCHED_DEBUG */
2372