1 /* 2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 3 * policies) 4 */ 5 6 #include "sched.h" 7 8 #include <linux/slab.h> 9 10 int sched_rr_timeslice = RR_TIMESLICE; 11 12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 13 14 struct rt_bandwidth def_rt_bandwidth; 15 16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 17 { 18 struct rt_bandwidth *rt_b = 19 container_of(timer, struct rt_bandwidth, rt_period_timer); 20 ktime_t now; 21 int overrun; 22 int idle = 0; 23 24 for (;;) { 25 now = hrtimer_cb_get_time(timer); 26 overrun = hrtimer_forward(timer, now, rt_b->rt_period); 27 28 if (!overrun) 29 break; 30 31 idle = do_sched_rt_period_timer(rt_b, overrun); 32 } 33 34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 35 } 36 37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 38 { 39 rt_b->rt_period = ns_to_ktime(period); 40 rt_b->rt_runtime = runtime; 41 42 raw_spin_lock_init(&rt_b->rt_runtime_lock); 43 44 hrtimer_init(&rt_b->rt_period_timer, 45 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 46 rt_b->rt_period_timer.function = sched_rt_period_timer; 47 } 48 49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 50 { 51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 52 return; 53 54 if (hrtimer_active(&rt_b->rt_period_timer)) 55 return; 56 57 raw_spin_lock(&rt_b->rt_runtime_lock); 58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period); 59 raw_spin_unlock(&rt_b->rt_runtime_lock); 60 } 61 62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) 63 { 64 struct rt_prio_array *array; 65 int i; 66 67 array = &rt_rq->active; 68 for (i = 0; i < MAX_RT_PRIO; i++) { 69 INIT_LIST_HEAD(array->queue + i); 70 __clear_bit(i, array->bitmap); 71 } 72 /* delimiter for bitsearch: */ 73 __set_bit(MAX_RT_PRIO, array->bitmap); 74 75 #if defined CONFIG_SMP 76 rt_rq->highest_prio.curr = MAX_RT_PRIO; 77 rt_rq->highest_prio.next = MAX_RT_PRIO; 78 rt_rq->rt_nr_migratory = 0; 79 rt_rq->overloaded = 0; 80 plist_head_init(&rt_rq->pushable_tasks); 81 #endif 82 /* We start is dequeued state, because no RT tasks are queued */ 83 rt_rq->rt_queued = 0; 84 85 rt_rq->rt_time = 0; 86 rt_rq->rt_throttled = 0; 87 rt_rq->rt_runtime = 0; 88 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 89 } 90 91 #ifdef CONFIG_RT_GROUP_SCHED 92 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 93 { 94 hrtimer_cancel(&rt_b->rt_period_timer); 95 } 96 97 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 98 99 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 100 { 101 #ifdef CONFIG_SCHED_DEBUG 102 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 103 #endif 104 return container_of(rt_se, struct task_struct, rt); 105 } 106 107 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 108 { 109 return rt_rq->rq; 110 } 111 112 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 113 { 114 return rt_se->rt_rq; 115 } 116 117 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 118 { 119 struct rt_rq *rt_rq = rt_se->rt_rq; 120 121 return rt_rq->rq; 122 } 123 124 void free_rt_sched_group(struct task_group *tg) 125 { 126 int i; 127 128 if (tg->rt_se) 129 destroy_rt_bandwidth(&tg->rt_bandwidth); 130 131 for_each_possible_cpu(i) { 132 if (tg->rt_rq) 133 kfree(tg->rt_rq[i]); 134 if (tg->rt_se) 135 kfree(tg->rt_se[i]); 136 } 137 138 kfree(tg->rt_rq); 139 kfree(tg->rt_se); 140 } 141 142 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 143 struct sched_rt_entity *rt_se, int cpu, 144 struct sched_rt_entity *parent) 145 { 146 struct rq *rq = cpu_rq(cpu); 147 148 rt_rq->highest_prio.curr = MAX_RT_PRIO; 149 rt_rq->rt_nr_boosted = 0; 150 rt_rq->rq = rq; 151 rt_rq->tg = tg; 152 153 tg->rt_rq[cpu] = rt_rq; 154 tg->rt_se[cpu] = rt_se; 155 156 if (!rt_se) 157 return; 158 159 if (!parent) 160 rt_se->rt_rq = &rq->rt; 161 else 162 rt_se->rt_rq = parent->my_q; 163 164 rt_se->my_q = rt_rq; 165 rt_se->parent = parent; 166 INIT_LIST_HEAD(&rt_se->run_list); 167 } 168 169 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 170 { 171 struct rt_rq *rt_rq; 172 struct sched_rt_entity *rt_se; 173 int i; 174 175 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); 176 if (!tg->rt_rq) 177 goto err; 178 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); 179 if (!tg->rt_se) 180 goto err; 181 182 init_rt_bandwidth(&tg->rt_bandwidth, 183 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 184 185 for_each_possible_cpu(i) { 186 rt_rq = kzalloc_node(sizeof(struct rt_rq), 187 GFP_KERNEL, cpu_to_node(i)); 188 if (!rt_rq) 189 goto err; 190 191 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 192 GFP_KERNEL, cpu_to_node(i)); 193 if (!rt_se) 194 goto err_free_rq; 195 196 init_rt_rq(rt_rq, cpu_rq(i)); 197 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 198 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 199 } 200 201 return 1; 202 203 err_free_rq: 204 kfree(rt_rq); 205 err: 206 return 0; 207 } 208 209 #else /* CONFIG_RT_GROUP_SCHED */ 210 211 #define rt_entity_is_task(rt_se) (1) 212 213 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 214 { 215 return container_of(rt_se, struct task_struct, rt); 216 } 217 218 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 219 { 220 return container_of(rt_rq, struct rq, rt); 221 } 222 223 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 224 { 225 struct task_struct *p = rt_task_of(rt_se); 226 227 return task_rq(p); 228 } 229 230 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 231 { 232 struct rq *rq = rq_of_rt_se(rt_se); 233 234 return &rq->rt; 235 } 236 237 void free_rt_sched_group(struct task_group *tg) { } 238 239 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 240 { 241 return 1; 242 } 243 #endif /* CONFIG_RT_GROUP_SCHED */ 244 245 #ifdef CONFIG_SMP 246 247 static int pull_rt_task(struct rq *this_rq); 248 249 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 250 { 251 /* Try to pull RT tasks here if we lower this rq's prio */ 252 return rq->rt.highest_prio.curr > prev->prio; 253 } 254 255 static inline int rt_overloaded(struct rq *rq) 256 { 257 return atomic_read(&rq->rd->rto_count); 258 } 259 260 static inline void rt_set_overload(struct rq *rq) 261 { 262 if (!rq->online) 263 return; 264 265 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 266 /* 267 * Make sure the mask is visible before we set 268 * the overload count. That is checked to determine 269 * if we should look at the mask. It would be a shame 270 * if we looked at the mask, but the mask was not 271 * updated yet. 272 * 273 * Matched by the barrier in pull_rt_task(). 274 */ 275 smp_wmb(); 276 atomic_inc(&rq->rd->rto_count); 277 } 278 279 static inline void rt_clear_overload(struct rq *rq) 280 { 281 if (!rq->online) 282 return; 283 284 /* the order here really doesn't matter */ 285 atomic_dec(&rq->rd->rto_count); 286 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 287 } 288 289 static void update_rt_migration(struct rt_rq *rt_rq) 290 { 291 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 292 if (!rt_rq->overloaded) { 293 rt_set_overload(rq_of_rt_rq(rt_rq)); 294 rt_rq->overloaded = 1; 295 } 296 } else if (rt_rq->overloaded) { 297 rt_clear_overload(rq_of_rt_rq(rt_rq)); 298 rt_rq->overloaded = 0; 299 } 300 } 301 302 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 303 { 304 struct task_struct *p; 305 306 if (!rt_entity_is_task(rt_se)) 307 return; 308 309 p = rt_task_of(rt_se); 310 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 311 312 rt_rq->rt_nr_total++; 313 if (p->nr_cpus_allowed > 1) 314 rt_rq->rt_nr_migratory++; 315 316 update_rt_migration(rt_rq); 317 } 318 319 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 320 { 321 struct task_struct *p; 322 323 if (!rt_entity_is_task(rt_se)) 324 return; 325 326 p = rt_task_of(rt_se); 327 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 328 329 rt_rq->rt_nr_total--; 330 if (p->nr_cpus_allowed > 1) 331 rt_rq->rt_nr_migratory--; 332 333 update_rt_migration(rt_rq); 334 } 335 336 static inline int has_pushable_tasks(struct rq *rq) 337 { 338 return !plist_head_empty(&rq->rt.pushable_tasks); 339 } 340 341 static inline void set_post_schedule(struct rq *rq) 342 { 343 /* 344 * We detect this state here so that we can avoid taking the RQ 345 * lock again later if there is no need to push 346 */ 347 rq->post_schedule = has_pushable_tasks(rq); 348 } 349 350 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 351 { 352 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 353 plist_node_init(&p->pushable_tasks, p->prio); 354 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 355 356 /* Update the highest prio pushable task */ 357 if (p->prio < rq->rt.highest_prio.next) 358 rq->rt.highest_prio.next = p->prio; 359 } 360 361 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 362 { 363 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 364 365 /* Update the new highest prio pushable task */ 366 if (has_pushable_tasks(rq)) { 367 p = plist_first_entry(&rq->rt.pushable_tasks, 368 struct task_struct, pushable_tasks); 369 rq->rt.highest_prio.next = p->prio; 370 } else 371 rq->rt.highest_prio.next = MAX_RT_PRIO; 372 } 373 374 #else 375 376 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 377 { 378 } 379 380 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 381 { 382 } 383 384 static inline 385 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 386 { 387 } 388 389 static inline 390 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 391 { 392 } 393 394 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 395 { 396 return false; 397 } 398 399 static inline int pull_rt_task(struct rq *this_rq) 400 { 401 return 0; 402 } 403 404 static inline void set_post_schedule(struct rq *rq) 405 { 406 } 407 #endif /* CONFIG_SMP */ 408 409 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 410 static void dequeue_top_rt_rq(struct rt_rq *rt_rq); 411 412 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 413 { 414 return !list_empty(&rt_se->run_list); 415 } 416 417 #ifdef CONFIG_RT_GROUP_SCHED 418 419 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 420 { 421 if (!rt_rq->tg) 422 return RUNTIME_INF; 423 424 return rt_rq->rt_runtime; 425 } 426 427 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 428 { 429 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 430 } 431 432 typedef struct task_group *rt_rq_iter_t; 433 434 static inline struct task_group *next_task_group(struct task_group *tg) 435 { 436 do { 437 tg = list_entry_rcu(tg->list.next, 438 typeof(struct task_group), list); 439 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 440 441 if (&tg->list == &task_groups) 442 tg = NULL; 443 444 return tg; 445 } 446 447 #define for_each_rt_rq(rt_rq, iter, rq) \ 448 for (iter = container_of(&task_groups, typeof(*iter), list); \ 449 (iter = next_task_group(iter)) && \ 450 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 451 452 #define for_each_sched_rt_entity(rt_se) \ 453 for (; rt_se; rt_se = rt_se->parent) 454 455 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 456 { 457 return rt_se->my_q; 458 } 459 460 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); 461 static void dequeue_rt_entity(struct sched_rt_entity *rt_se); 462 463 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 464 { 465 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 466 struct sched_rt_entity *rt_se; 467 468 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 469 470 rt_se = rt_rq->tg->rt_se[cpu]; 471 472 if (rt_rq->rt_nr_running) { 473 if (!rt_se) 474 enqueue_top_rt_rq(rt_rq); 475 else if (!on_rt_rq(rt_se)) 476 enqueue_rt_entity(rt_se, false); 477 478 if (rt_rq->highest_prio.curr < curr->prio) 479 resched_task(curr); 480 } 481 } 482 483 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 484 { 485 struct sched_rt_entity *rt_se; 486 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 487 488 rt_se = rt_rq->tg->rt_se[cpu]; 489 490 if (!rt_se) 491 dequeue_top_rt_rq(rt_rq); 492 else if (on_rt_rq(rt_se)) 493 dequeue_rt_entity(rt_se); 494 } 495 496 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 497 { 498 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 499 } 500 501 static int rt_se_boosted(struct sched_rt_entity *rt_se) 502 { 503 struct rt_rq *rt_rq = group_rt_rq(rt_se); 504 struct task_struct *p; 505 506 if (rt_rq) 507 return !!rt_rq->rt_nr_boosted; 508 509 p = rt_task_of(rt_se); 510 return p->prio != p->normal_prio; 511 } 512 513 #ifdef CONFIG_SMP 514 static inline const struct cpumask *sched_rt_period_mask(void) 515 { 516 return this_rq()->rd->span; 517 } 518 #else 519 static inline const struct cpumask *sched_rt_period_mask(void) 520 { 521 return cpu_online_mask; 522 } 523 #endif 524 525 static inline 526 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 527 { 528 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 529 } 530 531 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 532 { 533 return &rt_rq->tg->rt_bandwidth; 534 } 535 536 #else /* !CONFIG_RT_GROUP_SCHED */ 537 538 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 539 { 540 return rt_rq->rt_runtime; 541 } 542 543 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 544 { 545 return ktime_to_ns(def_rt_bandwidth.rt_period); 546 } 547 548 typedef struct rt_rq *rt_rq_iter_t; 549 550 #define for_each_rt_rq(rt_rq, iter, rq) \ 551 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 552 553 #define for_each_sched_rt_entity(rt_se) \ 554 for (; rt_se; rt_se = NULL) 555 556 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 557 { 558 return NULL; 559 } 560 561 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 562 { 563 struct rq *rq = rq_of_rt_rq(rt_rq); 564 565 if (!rt_rq->rt_nr_running) 566 return; 567 568 enqueue_top_rt_rq(rt_rq); 569 resched_task(rq->curr); 570 } 571 572 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 573 { 574 dequeue_top_rt_rq(rt_rq); 575 } 576 577 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 578 { 579 return rt_rq->rt_throttled; 580 } 581 582 static inline const struct cpumask *sched_rt_period_mask(void) 583 { 584 return cpu_online_mask; 585 } 586 587 static inline 588 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 589 { 590 return &cpu_rq(cpu)->rt; 591 } 592 593 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 594 { 595 return &def_rt_bandwidth; 596 } 597 598 #endif /* CONFIG_RT_GROUP_SCHED */ 599 600 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 601 { 602 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 603 604 return (hrtimer_active(&rt_b->rt_period_timer) || 605 rt_rq->rt_time < rt_b->rt_runtime); 606 } 607 608 #ifdef CONFIG_SMP 609 /* 610 * We ran out of runtime, see if we can borrow some from our neighbours. 611 */ 612 static int do_balance_runtime(struct rt_rq *rt_rq) 613 { 614 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 615 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 616 int i, weight, more = 0; 617 u64 rt_period; 618 619 weight = cpumask_weight(rd->span); 620 621 raw_spin_lock(&rt_b->rt_runtime_lock); 622 rt_period = ktime_to_ns(rt_b->rt_period); 623 for_each_cpu(i, rd->span) { 624 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 625 s64 diff; 626 627 if (iter == rt_rq) 628 continue; 629 630 raw_spin_lock(&iter->rt_runtime_lock); 631 /* 632 * Either all rqs have inf runtime and there's nothing to steal 633 * or __disable_runtime() below sets a specific rq to inf to 634 * indicate its been disabled and disalow stealing. 635 */ 636 if (iter->rt_runtime == RUNTIME_INF) 637 goto next; 638 639 /* 640 * From runqueues with spare time, take 1/n part of their 641 * spare time, but no more than our period. 642 */ 643 diff = iter->rt_runtime - iter->rt_time; 644 if (diff > 0) { 645 diff = div_u64((u64)diff, weight); 646 if (rt_rq->rt_runtime + diff > rt_period) 647 diff = rt_period - rt_rq->rt_runtime; 648 iter->rt_runtime -= diff; 649 rt_rq->rt_runtime += diff; 650 more = 1; 651 if (rt_rq->rt_runtime == rt_period) { 652 raw_spin_unlock(&iter->rt_runtime_lock); 653 break; 654 } 655 } 656 next: 657 raw_spin_unlock(&iter->rt_runtime_lock); 658 } 659 raw_spin_unlock(&rt_b->rt_runtime_lock); 660 661 return more; 662 } 663 664 /* 665 * Ensure this RQ takes back all the runtime it lend to its neighbours. 666 */ 667 static void __disable_runtime(struct rq *rq) 668 { 669 struct root_domain *rd = rq->rd; 670 rt_rq_iter_t iter; 671 struct rt_rq *rt_rq; 672 673 if (unlikely(!scheduler_running)) 674 return; 675 676 for_each_rt_rq(rt_rq, iter, rq) { 677 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 678 s64 want; 679 int i; 680 681 raw_spin_lock(&rt_b->rt_runtime_lock); 682 raw_spin_lock(&rt_rq->rt_runtime_lock); 683 /* 684 * Either we're all inf and nobody needs to borrow, or we're 685 * already disabled and thus have nothing to do, or we have 686 * exactly the right amount of runtime to take out. 687 */ 688 if (rt_rq->rt_runtime == RUNTIME_INF || 689 rt_rq->rt_runtime == rt_b->rt_runtime) 690 goto balanced; 691 raw_spin_unlock(&rt_rq->rt_runtime_lock); 692 693 /* 694 * Calculate the difference between what we started out with 695 * and what we current have, that's the amount of runtime 696 * we lend and now have to reclaim. 697 */ 698 want = rt_b->rt_runtime - rt_rq->rt_runtime; 699 700 /* 701 * Greedy reclaim, take back as much as we can. 702 */ 703 for_each_cpu(i, rd->span) { 704 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 705 s64 diff; 706 707 /* 708 * Can't reclaim from ourselves or disabled runqueues. 709 */ 710 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 711 continue; 712 713 raw_spin_lock(&iter->rt_runtime_lock); 714 if (want > 0) { 715 diff = min_t(s64, iter->rt_runtime, want); 716 iter->rt_runtime -= diff; 717 want -= diff; 718 } else { 719 iter->rt_runtime -= want; 720 want -= want; 721 } 722 raw_spin_unlock(&iter->rt_runtime_lock); 723 724 if (!want) 725 break; 726 } 727 728 raw_spin_lock(&rt_rq->rt_runtime_lock); 729 /* 730 * We cannot be left wanting - that would mean some runtime 731 * leaked out of the system. 732 */ 733 BUG_ON(want); 734 balanced: 735 /* 736 * Disable all the borrow logic by pretending we have inf 737 * runtime - in which case borrowing doesn't make sense. 738 */ 739 rt_rq->rt_runtime = RUNTIME_INF; 740 rt_rq->rt_throttled = 0; 741 raw_spin_unlock(&rt_rq->rt_runtime_lock); 742 raw_spin_unlock(&rt_b->rt_runtime_lock); 743 } 744 } 745 746 static void __enable_runtime(struct rq *rq) 747 { 748 rt_rq_iter_t iter; 749 struct rt_rq *rt_rq; 750 751 if (unlikely(!scheduler_running)) 752 return; 753 754 /* 755 * Reset each runqueue's bandwidth settings 756 */ 757 for_each_rt_rq(rt_rq, iter, rq) { 758 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 759 760 raw_spin_lock(&rt_b->rt_runtime_lock); 761 raw_spin_lock(&rt_rq->rt_runtime_lock); 762 rt_rq->rt_runtime = rt_b->rt_runtime; 763 rt_rq->rt_time = 0; 764 rt_rq->rt_throttled = 0; 765 raw_spin_unlock(&rt_rq->rt_runtime_lock); 766 raw_spin_unlock(&rt_b->rt_runtime_lock); 767 } 768 } 769 770 static int balance_runtime(struct rt_rq *rt_rq) 771 { 772 int more = 0; 773 774 if (!sched_feat(RT_RUNTIME_SHARE)) 775 return more; 776 777 if (rt_rq->rt_time > rt_rq->rt_runtime) { 778 raw_spin_unlock(&rt_rq->rt_runtime_lock); 779 more = do_balance_runtime(rt_rq); 780 raw_spin_lock(&rt_rq->rt_runtime_lock); 781 } 782 783 return more; 784 } 785 #else /* !CONFIG_SMP */ 786 static inline int balance_runtime(struct rt_rq *rt_rq) 787 { 788 return 0; 789 } 790 #endif /* CONFIG_SMP */ 791 792 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 793 { 794 int i, idle = 1, throttled = 0; 795 const struct cpumask *span; 796 797 span = sched_rt_period_mask(); 798 #ifdef CONFIG_RT_GROUP_SCHED 799 /* 800 * FIXME: isolated CPUs should really leave the root task group, 801 * whether they are isolcpus or were isolated via cpusets, lest 802 * the timer run on a CPU which does not service all runqueues, 803 * potentially leaving other CPUs indefinitely throttled. If 804 * isolation is really required, the user will turn the throttle 805 * off to kill the perturbations it causes anyway. Meanwhile, 806 * this maintains functionality for boot and/or troubleshooting. 807 */ 808 if (rt_b == &root_task_group.rt_bandwidth) 809 span = cpu_online_mask; 810 #endif 811 for_each_cpu(i, span) { 812 int enqueue = 0; 813 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 814 struct rq *rq = rq_of_rt_rq(rt_rq); 815 816 raw_spin_lock(&rq->lock); 817 if (rt_rq->rt_time) { 818 u64 runtime; 819 820 raw_spin_lock(&rt_rq->rt_runtime_lock); 821 if (rt_rq->rt_throttled) 822 balance_runtime(rt_rq); 823 runtime = rt_rq->rt_runtime; 824 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 825 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 826 rt_rq->rt_throttled = 0; 827 enqueue = 1; 828 829 /* 830 * Force a clock update if the CPU was idle, 831 * lest wakeup -> unthrottle time accumulate. 832 */ 833 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 834 rq->skip_clock_update = -1; 835 } 836 if (rt_rq->rt_time || rt_rq->rt_nr_running) 837 idle = 0; 838 raw_spin_unlock(&rt_rq->rt_runtime_lock); 839 } else if (rt_rq->rt_nr_running) { 840 idle = 0; 841 if (!rt_rq_throttled(rt_rq)) 842 enqueue = 1; 843 } 844 if (rt_rq->rt_throttled) 845 throttled = 1; 846 847 if (enqueue) 848 sched_rt_rq_enqueue(rt_rq); 849 raw_spin_unlock(&rq->lock); 850 } 851 852 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 853 return 1; 854 855 return idle; 856 } 857 858 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 859 { 860 #ifdef CONFIG_RT_GROUP_SCHED 861 struct rt_rq *rt_rq = group_rt_rq(rt_se); 862 863 if (rt_rq) 864 return rt_rq->highest_prio.curr; 865 #endif 866 867 return rt_task_of(rt_se)->prio; 868 } 869 870 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 871 { 872 u64 runtime = sched_rt_runtime(rt_rq); 873 874 if (rt_rq->rt_throttled) 875 return rt_rq_throttled(rt_rq); 876 877 if (runtime >= sched_rt_period(rt_rq)) 878 return 0; 879 880 balance_runtime(rt_rq); 881 runtime = sched_rt_runtime(rt_rq); 882 if (runtime == RUNTIME_INF) 883 return 0; 884 885 if (rt_rq->rt_time > runtime) { 886 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 887 888 /* 889 * Don't actually throttle groups that have no runtime assigned 890 * but accrue some time due to boosting. 891 */ 892 if (likely(rt_b->rt_runtime)) { 893 rt_rq->rt_throttled = 1; 894 printk_deferred_once("sched: RT throttling activated\n"); 895 } else { 896 /* 897 * In case we did anyway, make it go away, 898 * replenishment is a joke, since it will replenish us 899 * with exactly 0 ns. 900 */ 901 rt_rq->rt_time = 0; 902 } 903 904 if (rt_rq_throttled(rt_rq)) { 905 sched_rt_rq_dequeue(rt_rq); 906 return 1; 907 } 908 } 909 910 return 0; 911 } 912 913 /* 914 * Update the current task's runtime statistics. Skip current tasks that 915 * are not in our scheduling class. 916 */ 917 static void update_curr_rt(struct rq *rq) 918 { 919 struct task_struct *curr = rq->curr; 920 struct sched_rt_entity *rt_se = &curr->rt; 921 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 922 u64 delta_exec; 923 924 if (curr->sched_class != &rt_sched_class) 925 return; 926 927 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 928 if (unlikely((s64)delta_exec <= 0)) 929 return; 930 931 schedstat_set(curr->se.statistics.exec_max, 932 max(curr->se.statistics.exec_max, delta_exec)); 933 934 curr->se.sum_exec_runtime += delta_exec; 935 account_group_exec_runtime(curr, delta_exec); 936 937 curr->se.exec_start = rq_clock_task(rq); 938 cpuacct_charge(curr, delta_exec); 939 940 sched_rt_avg_update(rq, delta_exec); 941 942 if (!rt_bandwidth_enabled()) 943 return; 944 945 for_each_sched_rt_entity(rt_se) { 946 rt_rq = rt_rq_of_se(rt_se); 947 948 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 949 raw_spin_lock(&rt_rq->rt_runtime_lock); 950 rt_rq->rt_time += delta_exec; 951 if (sched_rt_runtime_exceeded(rt_rq)) 952 resched_task(curr); 953 raw_spin_unlock(&rt_rq->rt_runtime_lock); 954 } 955 } 956 } 957 958 static void 959 dequeue_top_rt_rq(struct rt_rq *rt_rq) 960 { 961 struct rq *rq = rq_of_rt_rq(rt_rq); 962 963 BUG_ON(&rq->rt != rt_rq); 964 965 if (!rt_rq->rt_queued) 966 return; 967 968 BUG_ON(!rq->nr_running); 969 970 sub_nr_running(rq, rt_rq->rt_nr_running); 971 rt_rq->rt_queued = 0; 972 } 973 974 static void 975 enqueue_top_rt_rq(struct rt_rq *rt_rq) 976 { 977 struct rq *rq = rq_of_rt_rq(rt_rq); 978 979 BUG_ON(&rq->rt != rt_rq); 980 981 if (rt_rq->rt_queued) 982 return; 983 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running) 984 return; 985 986 add_nr_running(rq, rt_rq->rt_nr_running); 987 rt_rq->rt_queued = 1; 988 } 989 990 #if defined CONFIG_SMP 991 992 static void 993 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 994 { 995 struct rq *rq = rq_of_rt_rq(rt_rq); 996 997 #ifdef CONFIG_RT_GROUP_SCHED 998 /* 999 * Change rq's cpupri only if rt_rq is the top queue. 1000 */ 1001 if (&rq->rt != rt_rq) 1002 return; 1003 #endif 1004 if (rq->online && prio < prev_prio) 1005 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1006 } 1007 1008 static void 1009 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1010 { 1011 struct rq *rq = rq_of_rt_rq(rt_rq); 1012 1013 #ifdef CONFIG_RT_GROUP_SCHED 1014 /* 1015 * Change rq's cpupri only if rt_rq is the top queue. 1016 */ 1017 if (&rq->rt != rt_rq) 1018 return; 1019 #endif 1020 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1021 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1022 } 1023 1024 #else /* CONFIG_SMP */ 1025 1026 static inline 1027 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1028 static inline 1029 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1030 1031 #endif /* CONFIG_SMP */ 1032 1033 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1034 static void 1035 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1036 { 1037 int prev_prio = rt_rq->highest_prio.curr; 1038 1039 if (prio < prev_prio) 1040 rt_rq->highest_prio.curr = prio; 1041 1042 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1043 } 1044 1045 static void 1046 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1047 { 1048 int prev_prio = rt_rq->highest_prio.curr; 1049 1050 if (rt_rq->rt_nr_running) { 1051 1052 WARN_ON(prio < prev_prio); 1053 1054 /* 1055 * This may have been our highest task, and therefore 1056 * we may have some recomputation to do 1057 */ 1058 if (prio == prev_prio) { 1059 struct rt_prio_array *array = &rt_rq->active; 1060 1061 rt_rq->highest_prio.curr = 1062 sched_find_first_bit(array->bitmap); 1063 } 1064 1065 } else 1066 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1067 1068 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1069 } 1070 1071 #else 1072 1073 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1074 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1075 1076 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1077 1078 #ifdef CONFIG_RT_GROUP_SCHED 1079 1080 static void 1081 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1082 { 1083 if (rt_se_boosted(rt_se)) 1084 rt_rq->rt_nr_boosted++; 1085 1086 if (rt_rq->tg) 1087 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1088 } 1089 1090 static void 1091 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1092 { 1093 if (rt_se_boosted(rt_se)) 1094 rt_rq->rt_nr_boosted--; 1095 1096 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1097 } 1098 1099 #else /* CONFIG_RT_GROUP_SCHED */ 1100 1101 static void 1102 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1103 { 1104 start_rt_bandwidth(&def_rt_bandwidth); 1105 } 1106 1107 static inline 1108 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1109 1110 #endif /* CONFIG_RT_GROUP_SCHED */ 1111 1112 static inline 1113 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1114 { 1115 struct rt_rq *group_rq = group_rt_rq(rt_se); 1116 1117 if (group_rq) 1118 return group_rq->rt_nr_running; 1119 else 1120 return 1; 1121 } 1122 1123 static inline 1124 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1125 { 1126 int prio = rt_se_prio(rt_se); 1127 1128 WARN_ON(!rt_prio(prio)); 1129 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1130 1131 inc_rt_prio(rt_rq, prio); 1132 inc_rt_migration(rt_se, rt_rq); 1133 inc_rt_group(rt_se, rt_rq); 1134 } 1135 1136 static inline 1137 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1138 { 1139 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1140 WARN_ON(!rt_rq->rt_nr_running); 1141 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1142 1143 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1144 dec_rt_migration(rt_se, rt_rq); 1145 dec_rt_group(rt_se, rt_rq); 1146 } 1147 1148 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) 1149 { 1150 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1151 struct rt_prio_array *array = &rt_rq->active; 1152 struct rt_rq *group_rq = group_rt_rq(rt_se); 1153 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1154 1155 /* 1156 * Don't enqueue the group if its throttled, or when empty. 1157 * The latter is a consequence of the former when a child group 1158 * get throttled and the current group doesn't have any other 1159 * active members. 1160 */ 1161 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) 1162 return; 1163 1164 if (head) 1165 list_add(&rt_se->run_list, queue); 1166 else 1167 list_add_tail(&rt_se->run_list, queue); 1168 __set_bit(rt_se_prio(rt_se), array->bitmap); 1169 1170 inc_rt_tasks(rt_se, rt_rq); 1171 } 1172 1173 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) 1174 { 1175 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1176 struct rt_prio_array *array = &rt_rq->active; 1177 1178 list_del_init(&rt_se->run_list); 1179 if (list_empty(array->queue + rt_se_prio(rt_se))) 1180 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1181 1182 dec_rt_tasks(rt_se, rt_rq); 1183 } 1184 1185 /* 1186 * Because the prio of an upper entry depends on the lower 1187 * entries, we must remove entries top - down. 1188 */ 1189 static void dequeue_rt_stack(struct sched_rt_entity *rt_se) 1190 { 1191 struct sched_rt_entity *back = NULL; 1192 1193 for_each_sched_rt_entity(rt_se) { 1194 rt_se->back = back; 1195 back = rt_se; 1196 } 1197 1198 dequeue_top_rt_rq(rt_rq_of_se(back)); 1199 1200 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1201 if (on_rt_rq(rt_se)) 1202 __dequeue_rt_entity(rt_se); 1203 } 1204 } 1205 1206 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) 1207 { 1208 struct rq *rq = rq_of_rt_se(rt_se); 1209 1210 dequeue_rt_stack(rt_se); 1211 for_each_sched_rt_entity(rt_se) 1212 __enqueue_rt_entity(rt_se, head); 1213 enqueue_top_rt_rq(&rq->rt); 1214 } 1215 1216 static void dequeue_rt_entity(struct sched_rt_entity *rt_se) 1217 { 1218 struct rq *rq = rq_of_rt_se(rt_se); 1219 1220 dequeue_rt_stack(rt_se); 1221 1222 for_each_sched_rt_entity(rt_se) { 1223 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1224 1225 if (rt_rq && rt_rq->rt_nr_running) 1226 __enqueue_rt_entity(rt_se, false); 1227 } 1228 enqueue_top_rt_rq(&rq->rt); 1229 } 1230 1231 /* 1232 * Adding/removing a task to/from a priority array: 1233 */ 1234 static void 1235 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1236 { 1237 struct sched_rt_entity *rt_se = &p->rt; 1238 1239 if (flags & ENQUEUE_WAKEUP) 1240 rt_se->timeout = 0; 1241 1242 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); 1243 1244 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1245 enqueue_pushable_task(rq, p); 1246 } 1247 1248 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1249 { 1250 struct sched_rt_entity *rt_se = &p->rt; 1251 1252 update_curr_rt(rq); 1253 dequeue_rt_entity(rt_se); 1254 1255 dequeue_pushable_task(rq, p); 1256 } 1257 1258 /* 1259 * Put task to the head or the end of the run list without the overhead of 1260 * dequeue followed by enqueue. 1261 */ 1262 static void 1263 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1264 { 1265 if (on_rt_rq(rt_se)) { 1266 struct rt_prio_array *array = &rt_rq->active; 1267 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1268 1269 if (head) 1270 list_move(&rt_se->run_list, queue); 1271 else 1272 list_move_tail(&rt_se->run_list, queue); 1273 } 1274 } 1275 1276 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1277 { 1278 struct sched_rt_entity *rt_se = &p->rt; 1279 struct rt_rq *rt_rq; 1280 1281 for_each_sched_rt_entity(rt_se) { 1282 rt_rq = rt_rq_of_se(rt_se); 1283 requeue_rt_entity(rt_rq, rt_se, head); 1284 } 1285 } 1286 1287 static void yield_task_rt(struct rq *rq) 1288 { 1289 requeue_task_rt(rq, rq->curr, 0); 1290 } 1291 1292 #ifdef CONFIG_SMP 1293 static int find_lowest_rq(struct task_struct *task); 1294 1295 static int 1296 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1297 { 1298 struct task_struct *curr; 1299 struct rq *rq; 1300 1301 if (p->nr_cpus_allowed == 1) 1302 goto out; 1303 1304 /* For anything but wake ups, just return the task_cpu */ 1305 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1306 goto out; 1307 1308 rq = cpu_rq(cpu); 1309 1310 rcu_read_lock(); 1311 curr = ACCESS_ONCE(rq->curr); /* unlocked access */ 1312 1313 /* 1314 * If the current task on @p's runqueue is an RT task, then 1315 * try to see if we can wake this RT task up on another 1316 * runqueue. Otherwise simply start this RT task 1317 * on its current runqueue. 1318 * 1319 * We want to avoid overloading runqueues. If the woken 1320 * task is a higher priority, then it will stay on this CPU 1321 * and the lower prio task should be moved to another CPU. 1322 * Even though this will probably make the lower prio task 1323 * lose its cache, we do not want to bounce a higher task 1324 * around just because it gave up its CPU, perhaps for a 1325 * lock? 1326 * 1327 * For equal prio tasks, we just let the scheduler sort it out. 1328 * 1329 * Otherwise, just let it ride on the affined RQ and the 1330 * post-schedule router will push the preempted task away 1331 * 1332 * This test is optimistic, if we get it wrong the load-balancer 1333 * will have to sort it out. 1334 */ 1335 if (curr && unlikely(rt_task(curr)) && 1336 (curr->nr_cpus_allowed < 2 || 1337 curr->prio <= p->prio)) { 1338 int target = find_lowest_rq(p); 1339 1340 if (target != -1) 1341 cpu = target; 1342 } 1343 rcu_read_unlock(); 1344 1345 out: 1346 return cpu; 1347 } 1348 1349 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1350 { 1351 if (rq->curr->nr_cpus_allowed == 1) 1352 return; 1353 1354 if (p->nr_cpus_allowed != 1 1355 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1356 return; 1357 1358 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1359 return; 1360 1361 /* 1362 * There appears to be other cpus that can accept 1363 * current and none to run 'p', so lets reschedule 1364 * to try and push current away: 1365 */ 1366 requeue_task_rt(rq, p, 1); 1367 resched_task(rq->curr); 1368 } 1369 1370 #endif /* CONFIG_SMP */ 1371 1372 /* 1373 * Preempt the current task with a newly woken task if needed: 1374 */ 1375 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1376 { 1377 if (p->prio < rq->curr->prio) { 1378 resched_task(rq->curr); 1379 return; 1380 } 1381 1382 #ifdef CONFIG_SMP 1383 /* 1384 * If: 1385 * 1386 * - the newly woken task is of equal priority to the current task 1387 * - the newly woken task is non-migratable while current is migratable 1388 * - current will be preempted on the next reschedule 1389 * 1390 * we should check to see if current can readily move to a different 1391 * cpu. If so, we will reschedule to allow the push logic to try 1392 * to move current somewhere else, making room for our non-migratable 1393 * task. 1394 */ 1395 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1396 check_preempt_equal_prio(rq, p); 1397 #endif 1398 } 1399 1400 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1401 struct rt_rq *rt_rq) 1402 { 1403 struct rt_prio_array *array = &rt_rq->active; 1404 struct sched_rt_entity *next = NULL; 1405 struct list_head *queue; 1406 int idx; 1407 1408 idx = sched_find_first_bit(array->bitmap); 1409 BUG_ON(idx >= MAX_RT_PRIO); 1410 1411 queue = array->queue + idx; 1412 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1413 1414 return next; 1415 } 1416 1417 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1418 { 1419 struct sched_rt_entity *rt_se; 1420 struct task_struct *p; 1421 struct rt_rq *rt_rq = &rq->rt; 1422 1423 do { 1424 rt_se = pick_next_rt_entity(rq, rt_rq); 1425 BUG_ON(!rt_se); 1426 rt_rq = group_rt_rq(rt_se); 1427 } while (rt_rq); 1428 1429 p = rt_task_of(rt_se); 1430 p->se.exec_start = rq_clock_task(rq); 1431 1432 return p; 1433 } 1434 1435 static struct task_struct * 1436 pick_next_task_rt(struct rq *rq, struct task_struct *prev) 1437 { 1438 struct task_struct *p; 1439 struct rt_rq *rt_rq = &rq->rt; 1440 1441 if (need_pull_rt_task(rq, prev)) { 1442 pull_rt_task(rq); 1443 /* 1444 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1445 * means a dl or stop task can slip in, in which case we need 1446 * to re-start task selection. 1447 */ 1448 if (unlikely((rq->stop && rq->stop->on_rq) || 1449 rq->dl.dl_nr_running)) 1450 return RETRY_TASK; 1451 } 1452 1453 /* 1454 * We may dequeue prev's rt_rq in put_prev_task(). 1455 * So, we update time before rt_nr_running check. 1456 */ 1457 if (prev->sched_class == &rt_sched_class) 1458 update_curr_rt(rq); 1459 1460 if (!rt_rq->rt_queued) 1461 return NULL; 1462 1463 put_prev_task(rq, prev); 1464 1465 p = _pick_next_task_rt(rq); 1466 1467 /* The running task is never eligible for pushing */ 1468 if (p) 1469 dequeue_pushable_task(rq, p); 1470 1471 set_post_schedule(rq); 1472 1473 return p; 1474 } 1475 1476 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1477 { 1478 update_curr_rt(rq); 1479 1480 /* 1481 * The previous task needs to be made eligible for pushing 1482 * if it is still active 1483 */ 1484 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1485 enqueue_pushable_task(rq, p); 1486 } 1487 1488 #ifdef CONFIG_SMP 1489 1490 /* Only try algorithms three times */ 1491 #define RT_MAX_TRIES 3 1492 1493 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1494 { 1495 if (!task_running(rq, p) && 1496 cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 1497 return 1; 1498 return 0; 1499 } 1500 1501 /* 1502 * Return the highest pushable rq's task, which is suitable to be executed 1503 * on the cpu, NULL otherwise 1504 */ 1505 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1506 { 1507 struct plist_head *head = &rq->rt.pushable_tasks; 1508 struct task_struct *p; 1509 1510 if (!has_pushable_tasks(rq)) 1511 return NULL; 1512 1513 plist_for_each_entry(p, head, pushable_tasks) { 1514 if (pick_rt_task(rq, p, cpu)) 1515 return p; 1516 } 1517 1518 return NULL; 1519 } 1520 1521 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1522 1523 static int find_lowest_rq(struct task_struct *task) 1524 { 1525 struct sched_domain *sd; 1526 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); 1527 int this_cpu = smp_processor_id(); 1528 int cpu = task_cpu(task); 1529 1530 /* Make sure the mask is initialized first */ 1531 if (unlikely(!lowest_mask)) 1532 return -1; 1533 1534 if (task->nr_cpus_allowed == 1) 1535 return -1; /* No other targets possible */ 1536 1537 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1538 return -1; /* No targets found */ 1539 1540 /* 1541 * At this point we have built a mask of cpus representing the 1542 * lowest priority tasks in the system. Now we want to elect 1543 * the best one based on our affinity and topology. 1544 * 1545 * We prioritize the last cpu that the task executed on since 1546 * it is most likely cache-hot in that location. 1547 */ 1548 if (cpumask_test_cpu(cpu, lowest_mask)) 1549 return cpu; 1550 1551 /* 1552 * Otherwise, we consult the sched_domains span maps to figure 1553 * out which cpu is logically closest to our hot cache data. 1554 */ 1555 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1556 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1557 1558 rcu_read_lock(); 1559 for_each_domain(cpu, sd) { 1560 if (sd->flags & SD_WAKE_AFFINE) { 1561 int best_cpu; 1562 1563 /* 1564 * "this_cpu" is cheaper to preempt than a 1565 * remote processor. 1566 */ 1567 if (this_cpu != -1 && 1568 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1569 rcu_read_unlock(); 1570 return this_cpu; 1571 } 1572 1573 best_cpu = cpumask_first_and(lowest_mask, 1574 sched_domain_span(sd)); 1575 if (best_cpu < nr_cpu_ids) { 1576 rcu_read_unlock(); 1577 return best_cpu; 1578 } 1579 } 1580 } 1581 rcu_read_unlock(); 1582 1583 /* 1584 * And finally, if there were no matches within the domains 1585 * just give the caller *something* to work with from the compatible 1586 * locations. 1587 */ 1588 if (this_cpu != -1) 1589 return this_cpu; 1590 1591 cpu = cpumask_any(lowest_mask); 1592 if (cpu < nr_cpu_ids) 1593 return cpu; 1594 return -1; 1595 } 1596 1597 /* Will lock the rq it finds */ 1598 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1599 { 1600 struct rq *lowest_rq = NULL; 1601 int tries; 1602 int cpu; 1603 1604 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1605 cpu = find_lowest_rq(task); 1606 1607 if ((cpu == -1) || (cpu == rq->cpu)) 1608 break; 1609 1610 lowest_rq = cpu_rq(cpu); 1611 1612 /* if the prio of this runqueue changed, try again */ 1613 if (double_lock_balance(rq, lowest_rq)) { 1614 /* 1615 * We had to unlock the run queue. In 1616 * the mean time, task could have 1617 * migrated already or had its affinity changed. 1618 * Also make sure that it wasn't scheduled on its rq. 1619 */ 1620 if (unlikely(task_rq(task) != rq || 1621 !cpumask_test_cpu(lowest_rq->cpu, 1622 tsk_cpus_allowed(task)) || 1623 task_running(rq, task) || 1624 !task->on_rq)) { 1625 1626 double_unlock_balance(rq, lowest_rq); 1627 lowest_rq = NULL; 1628 break; 1629 } 1630 } 1631 1632 /* If this rq is still suitable use it. */ 1633 if (lowest_rq->rt.highest_prio.curr > task->prio) 1634 break; 1635 1636 /* try again */ 1637 double_unlock_balance(rq, lowest_rq); 1638 lowest_rq = NULL; 1639 } 1640 1641 return lowest_rq; 1642 } 1643 1644 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1645 { 1646 struct task_struct *p; 1647 1648 if (!has_pushable_tasks(rq)) 1649 return NULL; 1650 1651 p = plist_first_entry(&rq->rt.pushable_tasks, 1652 struct task_struct, pushable_tasks); 1653 1654 BUG_ON(rq->cpu != task_cpu(p)); 1655 BUG_ON(task_current(rq, p)); 1656 BUG_ON(p->nr_cpus_allowed <= 1); 1657 1658 BUG_ON(!p->on_rq); 1659 BUG_ON(!rt_task(p)); 1660 1661 return p; 1662 } 1663 1664 /* 1665 * If the current CPU has more than one RT task, see if the non 1666 * running task can migrate over to a CPU that is running a task 1667 * of lesser priority. 1668 */ 1669 static int push_rt_task(struct rq *rq) 1670 { 1671 struct task_struct *next_task; 1672 struct rq *lowest_rq; 1673 int ret = 0; 1674 1675 if (!rq->rt.overloaded) 1676 return 0; 1677 1678 next_task = pick_next_pushable_task(rq); 1679 if (!next_task) 1680 return 0; 1681 1682 retry: 1683 if (unlikely(next_task == rq->curr)) { 1684 WARN_ON(1); 1685 return 0; 1686 } 1687 1688 /* 1689 * It's possible that the next_task slipped in of 1690 * higher priority than current. If that's the case 1691 * just reschedule current. 1692 */ 1693 if (unlikely(next_task->prio < rq->curr->prio)) { 1694 resched_task(rq->curr); 1695 return 0; 1696 } 1697 1698 /* We might release rq lock */ 1699 get_task_struct(next_task); 1700 1701 /* find_lock_lowest_rq locks the rq if found */ 1702 lowest_rq = find_lock_lowest_rq(next_task, rq); 1703 if (!lowest_rq) { 1704 struct task_struct *task; 1705 /* 1706 * find_lock_lowest_rq releases rq->lock 1707 * so it is possible that next_task has migrated. 1708 * 1709 * We need to make sure that the task is still on the same 1710 * run-queue and is also still the next task eligible for 1711 * pushing. 1712 */ 1713 task = pick_next_pushable_task(rq); 1714 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1715 /* 1716 * The task hasn't migrated, and is still the next 1717 * eligible task, but we failed to find a run-queue 1718 * to push it to. Do not retry in this case, since 1719 * other cpus will pull from us when ready. 1720 */ 1721 goto out; 1722 } 1723 1724 if (!task) 1725 /* No more tasks, just exit */ 1726 goto out; 1727 1728 /* 1729 * Something has shifted, try again. 1730 */ 1731 put_task_struct(next_task); 1732 next_task = task; 1733 goto retry; 1734 } 1735 1736 deactivate_task(rq, next_task, 0); 1737 set_task_cpu(next_task, lowest_rq->cpu); 1738 activate_task(lowest_rq, next_task, 0); 1739 ret = 1; 1740 1741 resched_task(lowest_rq->curr); 1742 1743 double_unlock_balance(rq, lowest_rq); 1744 1745 out: 1746 put_task_struct(next_task); 1747 1748 return ret; 1749 } 1750 1751 static void push_rt_tasks(struct rq *rq) 1752 { 1753 /* push_rt_task will return true if it moved an RT */ 1754 while (push_rt_task(rq)) 1755 ; 1756 } 1757 1758 static int pull_rt_task(struct rq *this_rq) 1759 { 1760 int this_cpu = this_rq->cpu, ret = 0, cpu; 1761 struct task_struct *p; 1762 struct rq *src_rq; 1763 1764 if (likely(!rt_overloaded(this_rq))) 1765 return 0; 1766 1767 /* 1768 * Match the barrier from rt_set_overloaded; this guarantees that if we 1769 * see overloaded we must also see the rto_mask bit. 1770 */ 1771 smp_rmb(); 1772 1773 for_each_cpu(cpu, this_rq->rd->rto_mask) { 1774 if (this_cpu == cpu) 1775 continue; 1776 1777 src_rq = cpu_rq(cpu); 1778 1779 /* 1780 * Don't bother taking the src_rq->lock if the next highest 1781 * task is known to be lower-priority than our current task. 1782 * This may look racy, but if this value is about to go 1783 * logically higher, the src_rq will push this task away. 1784 * And if its going logically lower, we do not care 1785 */ 1786 if (src_rq->rt.highest_prio.next >= 1787 this_rq->rt.highest_prio.curr) 1788 continue; 1789 1790 /* 1791 * We can potentially drop this_rq's lock in 1792 * double_lock_balance, and another CPU could 1793 * alter this_rq 1794 */ 1795 double_lock_balance(this_rq, src_rq); 1796 1797 /* 1798 * We can pull only a task, which is pushable 1799 * on its rq, and no others. 1800 */ 1801 p = pick_highest_pushable_task(src_rq, this_cpu); 1802 1803 /* 1804 * Do we have an RT task that preempts 1805 * the to-be-scheduled task? 1806 */ 1807 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 1808 WARN_ON(p == src_rq->curr); 1809 WARN_ON(!p->on_rq); 1810 1811 /* 1812 * There's a chance that p is higher in priority 1813 * than what's currently running on its cpu. 1814 * This is just that p is wakeing up and hasn't 1815 * had a chance to schedule. We only pull 1816 * p if it is lower in priority than the 1817 * current task on the run queue 1818 */ 1819 if (p->prio < src_rq->curr->prio) 1820 goto skip; 1821 1822 ret = 1; 1823 1824 deactivate_task(src_rq, p, 0); 1825 set_task_cpu(p, this_cpu); 1826 activate_task(this_rq, p, 0); 1827 /* 1828 * We continue with the search, just in 1829 * case there's an even higher prio task 1830 * in another runqueue. (low likelihood 1831 * but possible) 1832 */ 1833 } 1834 skip: 1835 double_unlock_balance(this_rq, src_rq); 1836 } 1837 1838 return ret; 1839 } 1840 1841 static void post_schedule_rt(struct rq *rq) 1842 { 1843 push_rt_tasks(rq); 1844 } 1845 1846 /* 1847 * If we are not running and we are not going to reschedule soon, we should 1848 * try to push tasks away now 1849 */ 1850 static void task_woken_rt(struct rq *rq, struct task_struct *p) 1851 { 1852 if (!task_running(rq, p) && 1853 !test_tsk_need_resched(rq->curr) && 1854 has_pushable_tasks(rq) && 1855 p->nr_cpus_allowed > 1 && 1856 (dl_task(rq->curr) || rt_task(rq->curr)) && 1857 (rq->curr->nr_cpus_allowed < 2 || 1858 rq->curr->prio <= p->prio)) 1859 push_rt_tasks(rq); 1860 } 1861 1862 static void set_cpus_allowed_rt(struct task_struct *p, 1863 const struct cpumask *new_mask) 1864 { 1865 struct rq *rq; 1866 int weight; 1867 1868 BUG_ON(!rt_task(p)); 1869 1870 if (!p->on_rq) 1871 return; 1872 1873 weight = cpumask_weight(new_mask); 1874 1875 /* 1876 * Only update if the process changes its state from whether it 1877 * can migrate or not. 1878 */ 1879 if ((p->nr_cpus_allowed > 1) == (weight > 1)) 1880 return; 1881 1882 rq = task_rq(p); 1883 1884 /* 1885 * The process used to be able to migrate OR it can now migrate 1886 */ 1887 if (weight <= 1) { 1888 if (!task_current(rq, p)) 1889 dequeue_pushable_task(rq, p); 1890 BUG_ON(!rq->rt.rt_nr_migratory); 1891 rq->rt.rt_nr_migratory--; 1892 } else { 1893 if (!task_current(rq, p)) 1894 enqueue_pushable_task(rq, p); 1895 rq->rt.rt_nr_migratory++; 1896 } 1897 1898 update_rt_migration(&rq->rt); 1899 } 1900 1901 /* Assumes rq->lock is held */ 1902 static void rq_online_rt(struct rq *rq) 1903 { 1904 if (rq->rt.overloaded) 1905 rt_set_overload(rq); 1906 1907 __enable_runtime(rq); 1908 1909 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1910 } 1911 1912 /* Assumes rq->lock is held */ 1913 static void rq_offline_rt(struct rq *rq) 1914 { 1915 if (rq->rt.overloaded) 1916 rt_clear_overload(rq); 1917 1918 __disable_runtime(rq); 1919 1920 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 1921 } 1922 1923 /* 1924 * When switch from the rt queue, we bring ourselves to a position 1925 * that we might want to pull RT tasks from other runqueues. 1926 */ 1927 static void switched_from_rt(struct rq *rq, struct task_struct *p) 1928 { 1929 /* 1930 * If there are other RT tasks then we will reschedule 1931 * and the scheduling of the other RT tasks will handle 1932 * the balancing. But if we are the last RT task 1933 * we may need to handle the pulling of RT tasks 1934 * now. 1935 */ 1936 if (!p->on_rq || rq->rt.rt_nr_running) 1937 return; 1938 1939 if (pull_rt_task(rq)) 1940 resched_task(rq->curr); 1941 } 1942 1943 void __init init_sched_rt_class(void) 1944 { 1945 unsigned int i; 1946 1947 for_each_possible_cpu(i) { 1948 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 1949 GFP_KERNEL, cpu_to_node(i)); 1950 } 1951 } 1952 #endif /* CONFIG_SMP */ 1953 1954 /* 1955 * When switching a task to RT, we may overload the runqueue 1956 * with RT tasks. In this case we try to push them off to 1957 * other runqueues. 1958 */ 1959 static void switched_to_rt(struct rq *rq, struct task_struct *p) 1960 { 1961 int check_resched = 1; 1962 1963 /* 1964 * If we are already running, then there's nothing 1965 * that needs to be done. But if we are not running 1966 * we may need to preempt the current running task. 1967 * If that current running task is also an RT task 1968 * then see if we can move to another run queue. 1969 */ 1970 if (p->on_rq && rq->curr != p) { 1971 #ifdef CONFIG_SMP 1972 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded && 1973 /* Don't resched if we changed runqueues */ 1974 push_rt_task(rq) && rq != task_rq(p)) 1975 check_resched = 0; 1976 #endif /* CONFIG_SMP */ 1977 if (check_resched && p->prio < rq->curr->prio) 1978 resched_task(rq->curr); 1979 } 1980 } 1981 1982 /* 1983 * Priority of the task has changed. This may cause 1984 * us to initiate a push or pull. 1985 */ 1986 static void 1987 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 1988 { 1989 if (!p->on_rq) 1990 return; 1991 1992 if (rq->curr == p) { 1993 #ifdef CONFIG_SMP 1994 /* 1995 * If our priority decreases while running, we 1996 * may need to pull tasks to this runqueue. 1997 */ 1998 if (oldprio < p->prio) 1999 pull_rt_task(rq); 2000 /* 2001 * If there's a higher priority task waiting to run 2002 * then reschedule. Note, the above pull_rt_task 2003 * can release the rq lock and p could migrate. 2004 * Only reschedule if p is still on the same runqueue. 2005 */ 2006 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) 2007 resched_task(p); 2008 #else 2009 /* For UP simply resched on drop of prio */ 2010 if (oldprio < p->prio) 2011 resched_task(p); 2012 #endif /* CONFIG_SMP */ 2013 } else { 2014 /* 2015 * This task is not running, but if it is 2016 * greater than the current running task 2017 * then reschedule. 2018 */ 2019 if (p->prio < rq->curr->prio) 2020 resched_task(rq->curr); 2021 } 2022 } 2023 2024 static void watchdog(struct rq *rq, struct task_struct *p) 2025 { 2026 unsigned long soft, hard; 2027 2028 /* max may change after cur was read, this will be fixed next tick */ 2029 soft = task_rlimit(p, RLIMIT_RTTIME); 2030 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2031 2032 if (soft != RLIM_INFINITY) { 2033 unsigned long next; 2034 2035 if (p->rt.watchdog_stamp != jiffies) { 2036 p->rt.timeout++; 2037 p->rt.watchdog_stamp = jiffies; 2038 } 2039 2040 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2041 if (p->rt.timeout > next) 2042 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 2043 } 2044 } 2045 2046 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2047 { 2048 struct sched_rt_entity *rt_se = &p->rt; 2049 2050 update_curr_rt(rq); 2051 2052 watchdog(rq, p); 2053 2054 /* 2055 * RR tasks need a special form of timeslice management. 2056 * FIFO tasks have no timeslices. 2057 */ 2058 if (p->policy != SCHED_RR) 2059 return; 2060 2061 if (--p->rt.time_slice) 2062 return; 2063 2064 p->rt.time_slice = sched_rr_timeslice; 2065 2066 /* 2067 * Requeue to the end of queue if we (and all of our ancestors) are not 2068 * the only element on the queue 2069 */ 2070 for_each_sched_rt_entity(rt_se) { 2071 if (rt_se->run_list.prev != rt_se->run_list.next) { 2072 requeue_task_rt(rq, p, 0); 2073 set_tsk_need_resched(p); 2074 return; 2075 } 2076 } 2077 } 2078 2079 static void set_curr_task_rt(struct rq *rq) 2080 { 2081 struct task_struct *p = rq->curr; 2082 2083 p->se.exec_start = rq_clock_task(rq); 2084 2085 /* The running task is never eligible for pushing */ 2086 dequeue_pushable_task(rq, p); 2087 } 2088 2089 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2090 { 2091 /* 2092 * Time slice is 0 for SCHED_FIFO tasks 2093 */ 2094 if (task->policy == SCHED_RR) 2095 return sched_rr_timeslice; 2096 else 2097 return 0; 2098 } 2099 2100 const struct sched_class rt_sched_class = { 2101 .next = &fair_sched_class, 2102 .enqueue_task = enqueue_task_rt, 2103 .dequeue_task = dequeue_task_rt, 2104 .yield_task = yield_task_rt, 2105 2106 .check_preempt_curr = check_preempt_curr_rt, 2107 2108 .pick_next_task = pick_next_task_rt, 2109 .put_prev_task = put_prev_task_rt, 2110 2111 #ifdef CONFIG_SMP 2112 .select_task_rq = select_task_rq_rt, 2113 2114 .set_cpus_allowed = set_cpus_allowed_rt, 2115 .rq_online = rq_online_rt, 2116 .rq_offline = rq_offline_rt, 2117 .post_schedule = post_schedule_rt, 2118 .task_woken = task_woken_rt, 2119 .switched_from = switched_from_rt, 2120 #endif 2121 2122 .set_curr_task = set_curr_task_rt, 2123 .task_tick = task_tick_rt, 2124 2125 .get_rr_interval = get_rr_interval_rt, 2126 2127 .prio_changed = prio_changed_rt, 2128 .switched_to = switched_to_rt, 2129 }; 2130 2131 #ifdef CONFIG_SCHED_DEBUG 2132 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2133 2134 void print_rt_stats(struct seq_file *m, int cpu) 2135 { 2136 rt_rq_iter_t iter; 2137 struct rt_rq *rt_rq; 2138 2139 rcu_read_lock(); 2140 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2141 print_rt_rq(m, cpu, rt_rq); 2142 rcu_read_unlock(); 2143 } 2144 #endif /* CONFIG_SCHED_DEBUG */ 2145