1 /* 2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 3 * policies) 4 */ 5 6 #include "sched.h" 7 8 #include <linux/slab.h> 9 10 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 11 12 struct rt_bandwidth def_rt_bandwidth; 13 14 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 15 { 16 struct rt_bandwidth *rt_b = 17 container_of(timer, struct rt_bandwidth, rt_period_timer); 18 ktime_t now; 19 int overrun; 20 int idle = 0; 21 22 for (;;) { 23 now = hrtimer_cb_get_time(timer); 24 overrun = hrtimer_forward(timer, now, rt_b->rt_period); 25 26 if (!overrun) 27 break; 28 29 idle = do_sched_rt_period_timer(rt_b, overrun); 30 } 31 32 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 33 } 34 35 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 36 { 37 rt_b->rt_period = ns_to_ktime(period); 38 rt_b->rt_runtime = runtime; 39 40 raw_spin_lock_init(&rt_b->rt_runtime_lock); 41 42 hrtimer_init(&rt_b->rt_period_timer, 43 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 44 rt_b->rt_period_timer.function = sched_rt_period_timer; 45 } 46 47 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 48 { 49 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 50 return; 51 52 if (hrtimer_active(&rt_b->rt_period_timer)) 53 return; 54 55 raw_spin_lock(&rt_b->rt_runtime_lock); 56 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period); 57 raw_spin_unlock(&rt_b->rt_runtime_lock); 58 } 59 60 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) 61 { 62 struct rt_prio_array *array; 63 int i; 64 65 array = &rt_rq->active; 66 for (i = 0; i < MAX_RT_PRIO; i++) { 67 INIT_LIST_HEAD(array->queue + i); 68 __clear_bit(i, array->bitmap); 69 } 70 /* delimiter for bitsearch: */ 71 __set_bit(MAX_RT_PRIO, array->bitmap); 72 73 #if defined CONFIG_SMP 74 rt_rq->highest_prio.curr = MAX_RT_PRIO; 75 rt_rq->highest_prio.next = MAX_RT_PRIO; 76 rt_rq->rt_nr_migratory = 0; 77 rt_rq->overloaded = 0; 78 plist_head_init(&rt_rq->pushable_tasks); 79 #endif 80 81 rt_rq->rt_time = 0; 82 rt_rq->rt_throttled = 0; 83 rt_rq->rt_runtime = 0; 84 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 85 } 86 87 #ifdef CONFIG_RT_GROUP_SCHED 88 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 89 { 90 hrtimer_cancel(&rt_b->rt_period_timer); 91 } 92 93 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 94 95 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 96 { 97 #ifdef CONFIG_SCHED_DEBUG 98 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 99 #endif 100 return container_of(rt_se, struct task_struct, rt); 101 } 102 103 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 104 { 105 return rt_rq->rq; 106 } 107 108 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 109 { 110 return rt_se->rt_rq; 111 } 112 113 void free_rt_sched_group(struct task_group *tg) 114 { 115 int i; 116 117 if (tg->rt_se) 118 destroy_rt_bandwidth(&tg->rt_bandwidth); 119 120 for_each_possible_cpu(i) { 121 if (tg->rt_rq) 122 kfree(tg->rt_rq[i]); 123 if (tg->rt_se) 124 kfree(tg->rt_se[i]); 125 } 126 127 kfree(tg->rt_rq); 128 kfree(tg->rt_se); 129 } 130 131 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 132 struct sched_rt_entity *rt_se, int cpu, 133 struct sched_rt_entity *parent) 134 { 135 struct rq *rq = cpu_rq(cpu); 136 137 rt_rq->highest_prio.curr = MAX_RT_PRIO; 138 rt_rq->rt_nr_boosted = 0; 139 rt_rq->rq = rq; 140 rt_rq->tg = tg; 141 142 tg->rt_rq[cpu] = rt_rq; 143 tg->rt_se[cpu] = rt_se; 144 145 if (!rt_se) 146 return; 147 148 if (!parent) 149 rt_se->rt_rq = &rq->rt; 150 else 151 rt_se->rt_rq = parent->my_q; 152 153 rt_se->my_q = rt_rq; 154 rt_se->parent = parent; 155 INIT_LIST_HEAD(&rt_se->run_list); 156 } 157 158 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 159 { 160 struct rt_rq *rt_rq; 161 struct sched_rt_entity *rt_se; 162 int i; 163 164 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); 165 if (!tg->rt_rq) 166 goto err; 167 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); 168 if (!tg->rt_se) 169 goto err; 170 171 init_rt_bandwidth(&tg->rt_bandwidth, 172 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 173 174 for_each_possible_cpu(i) { 175 rt_rq = kzalloc_node(sizeof(struct rt_rq), 176 GFP_KERNEL, cpu_to_node(i)); 177 if (!rt_rq) 178 goto err; 179 180 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 181 GFP_KERNEL, cpu_to_node(i)); 182 if (!rt_se) 183 goto err_free_rq; 184 185 init_rt_rq(rt_rq, cpu_rq(i)); 186 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 187 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 188 } 189 190 return 1; 191 192 err_free_rq: 193 kfree(rt_rq); 194 err: 195 return 0; 196 } 197 198 #else /* CONFIG_RT_GROUP_SCHED */ 199 200 #define rt_entity_is_task(rt_se) (1) 201 202 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 203 { 204 return container_of(rt_se, struct task_struct, rt); 205 } 206 207 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 208 { 209 return container_of(rt_rq, struct rq, rt); 210 } 211 212 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 213 { 214 struct task_struct *p = rt_task_of(rt_se); 215 struct rq *rq = task_rq(p); 216 217 return &rq->rt; 218 } 219 220 void free_rt_sched_group(struct task_group *tg) { } 221 222 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 223 { 224 return 1; 225 } 226 #endif /* CONFIG_RT_GROUP_SCHED */ 227 228 #ifdef CONFIG_SMP 229 230 static inline int rt_overloaded(struct rq *rq) 231 { 232 return atomic_read(&rq->rd->rto_count); 233 } 234 235 static inline void rt_set_overload(struct rq *rq) 236 { 237 if (!rq->online) 238 return; 239 240 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 241 /* 242 * Make sure the mask is visible before we set 243 * the overload count. That is checked to determine 244 * if we should look at the mask. It would be a shame 245 * if we looked at the mask, but the mask was not 246 * updated yet. 247 */ 248 wmb(); 249 atomic_inc(&rq->rd->rto_count); 250 } 251 252 static inline void rt_clear_overload(struct rq *rq) 253 { 254 if (!rq->online) 255 return; 256 257 /* the order here really doesn't matter */ 258 atomic_dec(&rq->rd->rto_count); 259 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 260 } 261 262 static void update_rt_migration(struct rt_rq *rt_rq) 263 { 264 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 265 if (!rt_rq->overloaded) { 266 rt_set_overload(rq_of_rt_rq(rt_rq)); 267 rt_rq->overloaded = 1; 268 } 269 } else if (rt_rq->overloaded) { 270 rt_clear_overload(rq_of_rt_rq(rt_rq)); 271 rt_rq->overloaded = 0; 272 } 273 } 274 275 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 276 { 277 struct task_struct *p; 278 279 if (!rt_entity_is_task(rt_se)) 280 return; 281 282 p = rt_task_of(rt_se); 283 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 284 285 rt_rq->rt_nr_total++; 286 if (p->nr_cpus_allowed > 1) 287 rt_rq->rt_nr_migratory++; 288 289 update_rt_migration(rt_rq); 290 } 291 292 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 293 { 294 struct task_struct *p; 295 296 if (!rt_entity_is_task(rt_se)) 297 return; 298 299 p = rt_task_of(rt_se); 300 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 301 302 rt_rq->rt_nr_total--; 303 if (p->nr_cpus_allowed > 1) 304 rt_rq->rt_nr_migratory--; 305 306 update_rt_migration(rt_rq); 307 } 308 309 static inline int has_pushable_tasks(struct rq *rq) 310 { 311 return !plist_head_empty(&rq->rt.pushable_tasks); 312 } 313 314 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 315 { 316 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 317 plist_node_init(&p->pushable_tasks, p->prio); 318 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 319 320 /* Update the highest prio pushable task */ 321 if (p->prio < rq->rt.highest_prio.next) 322 rq->rt.highest_prio.next = p->prio; 323 } 324 325 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 326 { 327 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 328 329 /* Update the new highest prio pushable task */ 330 if (has_pushable_tasks(rq)) { 331 p = plist_first_entry(&rq->rt.pushable_tasks, 332 struct task_struct, pushable_tasks); 333 rq->rt.highest_prio.next = p->prio; 334 } else 335 rq->rt.highest_prio.next = MAX_RT_PRIO; 336 } 337 338 #else 339 340 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 341 { 342 } 343 344 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 345 { 346 } 347 348 static inline 349 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 350 { 351 } 352 353 static inline 354 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 355 { 356 } 357 358 #endif /* CONFIG_SMP */ 359 360 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 361 { 362 return !list_empty(&rt_se->run_list); 363 } 364 365 #ifdef CONFIG_RT_GROUP_SCHED 366 367 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 368 { 369 if (!rt_rq->tg) 370 return RUNTIME_INF; 371 372 return rt_rq->rt_runtime; 373 } 374 375 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 376 { 377 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 378 } 379 380 typedef struct task_group *rt_rq_iter_t; 381 382 static inline struct task_group *next_task_group(struct task_group *tg) 383 { 384 do { 385 tg = list_entry_rcu(tg->list.next, 386 typeof(struct task_group), list); 387 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 388 389 if (&tg->list == &task_groups) 390 tg = NULL; 391 392 return tg; 393 } 394 395 #define for_each_rt_rq(rt_rq, iter, rq) \ 396 for (iter = container_of(&task_groups, typeof(*iter), list); \ 397 (iter = next_task_group(iter)) && \ 398 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 399 400 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) 401 { 402 list_add_rcu(&rt_rq->leaf_rt_rq_list, 403 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list); 404 } 405 406 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) 407 { 408 list_del_rcu(&rt_rq->leaf_rt_rq_list); 409 } 410 411 #define for_each_leaf_rt_rq(rt_rq, rq) \ 412 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) 413 414 #define for_each_sched_rt_entity(rt_se) \ 415 for (; rt_se; rt_se = rt_se->parent) 416 417 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 418 { 419 return rt_se->my_q; 420 } 421 422 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); 423 static void dequeue_rt_entity(struct sched_rt_entity *rt_se); 424 425 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 426 { 427 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 428 struct sched_rt_entity *rt_se; 429 430 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 431 432 rt_se = rt_rq->tg->rt_se[cpu]; 433 434 if (rt_rq->rt_nr_running) { 435 if (rt_se && !on_rt_rq(rt_se)) 436 enqueue_rt_entity(rt_se, false); 437 if (rt_rq->highest_prio.curr < curr->prio) 438 resched_task(curr); 439 } 440 } 441 442 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 443 { 444 struct sched_rt_entity *rt_se; 445 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 446 447 rt_se = rt_rq->tg->rt_se[cpu]; 448 449 if (rt_se && on_rt_rq(rt_se)) 450 dequeue_rt_entity(rt_se); 451 } 452 453 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 454 { 455 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 456 } 457 458 static int rt_se_boosted(struct sched_rt_entity *rt_se) 459 { 460 struct rt_rq *rt_rq = group_rt_rq(rt_se); 461 struct task_struct *p; 462 463 if (rt_rq) 464 return !!rt_rq->rt_nr_boosted; 465 466 p = rt_task_of(rt_se); 467 return p->prio != p->normal_prio; 468 } 469 470 #ifdef CONFIG_SMP 471 static inline const struct cpumask *sched_rt_period_mask(void) 472 { 473 return cpu_rq(smp_processor_id())->rd->span; 474 } 475 #else 476 static inline const struct cpumask *sched_rt_period_mask(void) 477 { 478 return cpu_online_mask; 479 } 480 #endif 481 482 static inline 483 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 484 { 485 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 486 } 487 488 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 489 { 490 return &rt_rq->tg->rt_bandwidth; 491 } 492 493 #else /* !CONFIG_RT_GROUP_SCHED */ 494 495 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 496 { 497 return rt_rq->rt_runtime; 498 } 499 500 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 501 { 502 return ktime_to_ns(def_rt_bandwidth.rt_period); 503 } 504 505 typedef struct rt_rq *rt_rq_iter_t; 506 507 #define for_each_rt_rq(rt_rq, iter, rq) \ 508 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 509 510 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) 511 { 512 } 513 514 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) 515 { 516 } 517 518 #define for_each_leaf_rt_rq(rt_rq, rq) \ 519 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 520 521 #define for_each_sched_rt_entity(rt_se) \ 522 for (; rt_se; rt_se = NULL) 523 524 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 525 { 526 return NULL; 527 } 528 529 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 530 { 531 if (rt_rq->rt_nr_running) 532 resched_task(rq_of_rt_rq(rt_rq)->curr); 533 } 534 535 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 536 { 537 } 538 539 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 540 { 541 return rt_rq->rt_throttled; 542 } 543 544 static inline const struct cpumask *sched_rt_period_mask(void) 545 { 546 return cpu_online_mask; 547 } 548 549 static inline 550 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 551 { 552 return &cpu_rq(cpu)->rt; 553 } 554 555 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 556 { 557 return &def_rt_bandwidth; 558 } 559 560 #endif /* CONFIG_RT_GROUP_SCHED */ 561 562 #ifdef CONFIG_SMP 563 /* 564 * We ran out of runtime, see if we can borrow some from our neighbours. 565 */ 566 static int do_balance_runtime(struct rt_rq *rt_rq) 567 { 568 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 569 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 570 int i, weight, more = 0; 571 u64 rt_period; 572 573 weight = cpumask_weight(rd->span); 574 575 raw_spin_lock(&rt_b->rt_runtime_lock); 576 rt_period = ktime_to_ns(rt_b->rt_period); 577 for_each_cpu(i, rd->span) { 578 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 579 s64 diff; 580 581 if (iter == rt_rq) 582 continue; 583 584 raw_spin_lock(&iter->rt_runtime_lock); 585 /* 586 * Either all rqs have inf runtime and there's nothing to steal 587 * or __disable_runtime() below sets a specific rq to inf to 588 * indicate its been disabled and disalow stealing. 589 */ 590 if (iter->rt_runtime == RUNTIME_INF) 591 goto next; 592 593 /* 594 * From runqueues with spare time, take 1/n part of their 595 * spare time, but no more than our period. 596 */ 597 diff = iter->rt_runtime - iter->rt_time; 598 if (diff > 0) { 599 diff = div_u64((u64)diff, weight); 600 if (rt_rq->rt_runtime + diff > rt_period) 601 diff = rt_period - rt_rq->rt_runtime; 602 iter->rt_runtime -= diff; 603 rt_rq->rt_runtime += diff; 604 more = 1; 605 if (rt_rq->rt_runtime == rt_period) { 606 raw_spin_unlock(&iter->rt_runtime_lock); 607 break; 608 } 609 } 610 next: 611 raw_spin_unlock(&iter->rt_runtime_lock); 612 } 613 raw_spin_unlock(&rt_b->rt_runtime_lock); 614 615 return more; 616 } 617 618 /* 619 * Ensure this RQ takes back all the runtime it lend to its neighbours. 620 */ 621 static void __disable_runtime(struct rq *rq) 622 { 623 struct root_domain *rd = rq->rd; 624 rt_rq_iter_t iter; 625 struct rt_rq *rt_rq; 626 627 if (unlikely(!scheduler_running)) 628 return; 629 630 for_each_rt_rq(rt_rq, iter, rq) { 631 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 632 s64 want; 633 int i; 634 635 raw_spin_lock(&rt_b->rt_runtime_lock); 636 raw_spin_lock(&rt_rq->rt_runtime_lock); 637 /* 638 * Either we're all inf and nobody needs to borrow, or we're 639 * already disabled and thus have nothing to do, or we have 640 * exactly the right amount of runtime to take out. 641 */ 642 if (rt_rq->rt_runtime == RUNTIME_INF || 643 rt_rq->rt_runtime == rt_b->rt_runtime) 644 goto balanced; 645 raw_spin_unlock(&rt_rq->rt_runtime_lock); 646 647 /* 648 * Calculate the difference between what we started out with 649 * and what we current have, that's the amount of runtime 650 * we lend and now have to reclaim. 651 */ 652 want = rt_b->rt_runtime - rt_rq->rt_runtime; 653 654 /* 655 * Greedy reclaim, take back as much as we can. 656 */ 657 for_each_cpu(i, rd->span) { 658 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 659 s64 diff; 660 661 /* 662 * Can't reclaim from ourselves or disabled runqueues. 663 */ 664 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 665 continue; 666 667 raw_spin_lock(&iter->rt_runtime_lock); 668 if (want > 0) { 669 diff = min_t(s64, iter->rt_runtime, want); 670 iter->rt_runtime -= diff; 671 want -= diff; 672 } else { 673 iter->rt_runtime -= want; 674 want -= want; 675 } 676 raw_spin_unlock(&iter->rt_runtime_lock); 677 678 if (!want) 679 break; 680 } 681 682 raw_spin_lock(&rt_rq->rt_runtime_lock); 683 /* 684 * We cannot be left wanting - that would mean some runtime 685 * leaked out of the system. 686 */ 687 BUG_ON(want); 688 balanced: 689 /* 690 * Disable all the borrow logic by pretending we have inf 691 * runtime - in which case borrowing doesn't make sense. 692 */ 693 rt_rq->rt_runtime = RUNTIME_INF; 694 rt_rq->rt_throttled = 0; 695 raw_spin_unlock(&rt_rq->rt_runtime_lock); 696 raw_spin_unlock(&rt_b->rt_runtime_lock); 697 } 698 } 699 700 static void disable_runtime(struct rq *rq) 701 { 702 unsigned long flags; 703 704 raw_spin_lock_irqsave(&rq->lock, flags); 705 __disable_runtime(rq); 706 raw_spin_unlock_irqrestore(&rq->lock, flags); 707 } 708 709 static void __enable_runtime(struct rq *rq) 710 { 711 rt_rq_iter_t iter; 712 struct rt_rq *rt_rq; 713 714 if (unlikely(!scheduler_running)) 715 return; 716 717 /* 718 * Reset each runqueue's bandwidth settings 719 */ 720 for_each_rt_rq(rt_rq, iter, rq) { 721 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 722 723 raw_spin_lock(&rt_b->rt_runtime_lock); 724 raw_spin_lock(&rt_rq->rt_runtime_lock); 725 rt_rq->rt_runtime = rt_b->rt_runtime; 726 rt_rq->rt_time = 0; 727 rt_rq->rt_throttled = 0; 728 raw_spin_unlock(&rt_rq->rt_runtime_lock); 729 raw_spin_unlock(&rt_b->rt_runtime_lock); 730 } 731 } 732 733 static void enable_runtime(struct rq *rq) 734 { 735 unsigned long flags; 736 737 raw_spin_lock_irqsave(&rq->lock, flags); 738 __enable_runtime(rq); 739 raw_spin_unlock_irqrestore(&rq->lock, flags); 740 } 741 742 int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu) 743 { 744 int cpu = (int)(long)hcpu; 745 746 switch (action) { 747 case CPU_DOWN_PREPARE: 748 case CPU_DOWN_PREPARE_FROZEN: 749 disable_runtime(cpu_rq(cpu)); 750 return NOTIFY_OK; 751 752 case CPU_DOWN_FAILED: 753 case CPU_DOWN_FAILED_FROZEN: 754 case CPU_ONLINE: 755 case CPU_ONLINE_FROZEN: 756 enable_runtime(cpu_rq(cpu)); 757 return NOTIFY_OK; 758 759 default: 760 return NOTIFY_DONE; 761 } 762 } 763 764 static int balance_runtime(struct rt_rq *rt_rq) 765 { 766 int more = 0; 767 768 if (!sched_feat(RT_RUNTIME_SHARE)) 769 return more; 770 771 if (rt_rq->rt_time > rt_rq->rt_runtime) { 772 raw_spin_unlock(&rt_rq->rt_runtime_lock); 773 more = do_balance_runtime(rt_rq); 774 raw_spin_lock(&rt_rq->rt_runtime_lock); 775 } 776 777 return more; 778 } 779 #else /* !CONFIG_SMP */ 780 static inline int balance_runtime(struct rt_rq *rt_rq) 781 { 782 return 0; 783 } 784 #endif /* CONFIG_SMP */ 785 786 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 787 { 788 int i, idle = 1, throttled = 0; 789 const struct cpumask *span; 790 791 span = sched_rt_period_mask(); 792 #ifdef CONFIG_RT_GROUP_SCHED 793 /* 794 * FIXME: isolated CPUs should really leave the root task group, 795 * whether they are isolcpus or were isolated via cpusets, lest 796 * the timer run on a CPU which does not service all runqueues, 797 * potentially leaving other CPUs indefinitely throttled. If 798 * isolation is really required, the user will turn the throttle 799 * off to kill the perturbations it causes anyway. Meanwhile, 800 * this maintains functionality for boot and/or troubleshooting. 801 */ 802 if (rt_b == &root_task_group.rt_bandwidth) 803 span = cpu_online_mask; 804 #endif 805 for_each_cpu(i, span) { 806 int enqueue = 0; 807 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 808 struct rq *rq = rq_of_rt_rq(rt_rq); 809 810 raw_spin_lock(&rq->lock); 811 if (rt_rq->rt_time) { 812 u64 runtime; 813 814 raw_spin_lock(&rt_rq->rt_runtime_lock); 815 if (rt_rq->rt_throttled) 816 balance_runtime(rt_rq); 817 runtime = rt_rq->rt_runtime; 818 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 819 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 820 rt_rq->rt_throttled = 0; 821 enqueue = 1; 822 823 /* 824 * Force a clock update if the CPU was idle, 825 * lest wakeup -> unthrottle time accumulate. 826 */ 827 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 828 rq->skip_clock_update = -1; 829 } 830 if (rt_rq->rt_time || rt_rq->rt_nr_running) 831 idle = 0; 832 raw_spin_unlock(&rt_rq->rt_runtime_lock); 833 } else if (rt_rq->rt_nr_running) { 834 idle = 0; 835 if (!rt_rq_throttled(rt_rq)) 836 enqueue = 1; 837 } 838 if (rt_rq->rt_throttled) 839 throttled = 1; 840 841 if (enqueue) 842 sched_rt_rq_enqueue(rt_rq); 843 raw_spin_unlock(&rq->lock); 844 } 845 846 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 847 return 1; 848 849 return idle; 850 } 851 852 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 853 { 854 #ifdef CONFIG_RT_GROUP_SCHED 855 struct rt_rq *rt_rq = group_rt_rq(rt_se); 856 857 if (rt_rq) 858 return rt_rq->highest_prio.curr; 859 #endif 860 861 return rt_task_of(rt_se)->prio; 862 } 863 864 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 865 { 866 u64 runtime = sched_rt_runtime(rt_rq); 867 868 if (rt_rq->rt_throttled) 869 return rt_rq_throttled(rt_rq); 870 871 if (runtime >= sched_rt_period(rt_rq)) 872 return 0; 873 874 balance_runtime(rt_rq); 875 runtime = sched_rt_runtime(rt_rq); 876 if (runtime == RUNTIME_INF) 877 return 0; 878 879 if (rt_rq->rt_time > runtime) { 880 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 881 882 /* 883 * Don't actually throttle groups that have no runtime assigned 884 * but accrue some time due to boosting. 885 */ 886 if (likely(rt_b->rt_runtime)) { 887 static bool once = false; 888 889 rt_rq->rt_throttled = 1; 890 891 if (!once) { 892 once = true; 893 printk_sched("sched: RT throttling activated\n"); 894 } 895 } else { 896 /* 897 * In case we did anyway, make it go away, 898 * replenishment is a joke, since it will replenish us 899 * with exactly 0 ns. 900 */ 901 rt_rq->rt_time = 0; 902 } 903 904 if (rt_rq_throttled(rt_rq)) { 905 sched_rt_rq_dequeue(rt_rq); 906 return 1; 907 } 908 } 909 910 return 0; 911 } 912 913 /* 914 * Update the current task's runtime statistics. Skip current tasks that 915 * are not in our scheduling class. 916 */ 917 static void update_curr_rt(struct rq *rq) 918 { 919 struct task_struct *curr = rq->curr; 920 struct sched_rt_entity *rt_se = &curr->rt; 921 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 922 u64 delta_exec; 923 924 if (curr->sched_class != &rt_sched_class) 925 return; 926 927 delta_exec = rq->clock_task - curr->se.exec_start; 928 if (unlikely((s64)delta_exec < 0)) 929 delta_exec = 0; 930 931 schedstat_set(curr->se.statistics.exec_max, 932 max(curr->se.statistics.exec_max, delta_exec)); 933 934 curr->se.sum_exec_runtime += delta_exec; 935 account_group_exec_runtime(curr, delta_exec); 936 937 curr->se.exec_start = rq->clock_task; 938 cpuacct_charge(curr, delta_exec); 939 940 sched_rt_avg_update(rq, delta_exec); 941 942 if (!rt_bandwidth_enabled()) 943 return; 944 945 for_each_sched_rt_entity(rt_se) { 946 rt_rq = rt_rq_of_se(rt_se); 947 948 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 949 raw_spin_lock(&rt_rq->rt_runtime_lock); 950 rt_rq->rt_time += delta_exec; 951 if (sched_rt_runtime_exceeded(rt_rq)) 952 resched_task(curr); 953 raw_spin_unlock(&rt_rq->rt_runtime_lock); 954 } 955 } 956 } 957 958 #if defined CONFIG_SMP 959 960 static void 961 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 962 { 963 struct rq *rq = rq_of_rt_rq(rt_rq); 964 965 if (rq->online && prio < prev_prio) 966 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 967 } 968 969 static void 970 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 971 { 972 struct rq *rq = rq_of_rt_rq(rt_rq); 973 974 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 975 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 976 } 977 978 #else /* CONFIG_SMP */ 979 980 static inline 981 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 982 static inline 983 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 984 985 #endif /* CONFIG_SMP */ 986 987 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 988 static void 989 inc_rt_prio(struct rt_rq *rt_rq, int prio) 990 { 991 int prev_prio = rt_rq->highest_prio.curr; 992 993 if (prio < prev_prio) 994 rt_rq->highest_prio.curr = prio; 995 996 inc_rt_prio_smp(rt_rq, prio, prev_prio); 997 } 998 999 static void 1000 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1001 { 1002 int prev_prio = rt_rq->highest_prio.curr; 1003 1004 if (rt_rq->rt_nr_running) { 1005 1006 WARN_ON(prio < prev_prio); 1007 1008 /* 1009 * This may have been our highest task, and therefore 1010 * we may have some recomputation to do 1011 */ 1012 if (prio == prev_prio) { 1013 struct rt_prio_array *array = &rt_rq->active; 1014 1015 rt_rq->highest_prio.curr = 1016 sched_find_first_bit(array->bitmap); 1017 } 1018 1019 } else 1020 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1021 1022 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1023 } 1024 1025 #else 1026 1027 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1028 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1029 1030 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1031 1032 #ifdef CONFIG_RT_GROUP_SCHED 1033 1034 static void 1035 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1036 { 1037 if (rt_se_boosted(rt_se)) 1038 rt_rq->rt_nr_boosted++; 1039 1040 if (rt_rq->tg) 1041 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1042 } 1043 1044 static void 1045 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1046 { 1047 if (rt_se_boosted(rt_se)) 1048 rt_rq->rt_nr_boosted--; 1049 1050 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1051 } 1052 1053 #else /* CONFIG_RT_GROUP_SCHED */ 1054 1055 static void 1056 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1057 { 1058 start_rt_bandwidth(&def_rt_bandwidth); 1059 } 1060 1061 static inline 1062 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1063 1064 #endif /* CONFIG_RT_GROUP_SCHED */ 1065 1066 static inline 1067 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1068 { 1069 int prio = rt_se_prio(rt_se); 1070 1071 WARN_ON(!rt_prio(prio)); 1072 rt_rq->rt_nr_running++; 1073 1074 inc_rt_prio(rt_rq, prio); 1075 inc_rt_migration(rt_se, rt_rq); 1076 inc_rt_group(rt_se, rt_rq); 1077 } 1078 1079 static inline 1080 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1081 { 1082 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1083 WARN_ON(!rt_rq->rt_nr_running); 1084 rt_rq->rt_nr_running--; 1085 1086 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1087 dec_rt_migration(rt_se, rt_rq); 1088 dec_rt_group(rt_se, rt_rq); 1089 } 1090 1091 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) 1092 { 1093 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1094 struct rt_prio_array *array = &rt_rq->active; 1095 struct rt_rq *group_rq = group_rt_rq(rt_se); 1096 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1097 1098 /* 1099 * Don't enqueue the group if its throttled, or when empty. 1100 * The latter is a consequence of the former when a child group 1101 * get throttled and the current group doesn't have any other 1102 * active members. 1103 */ 1104 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) 1105 return; 1106 1107 if (!rt_rq->rt_nr_running) 1108 list_add_leaf_rt_rq(rt_rq); 1109 1110 if (head) 1111 list_add(&rt_se->run_list, queue); 1112 else 1113 list_add_tail(&rt_se->run_list, queue); 1114 __set_bit(rt_se_prio(rt_se), array->bitmap); 1115 1116 inc_rt_tasks(rt_se, rt_rq); 1117 } 1118 1119 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) 1120 { 1121 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1122 struct rt_prio_array *array = &rt_rq->active; 1123 1124 list_del_init(&rt_se->run_list); 1125 if (list_empty(array->queue + rt_se_prio(rt_se))) 1126 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1127 1128 dec_rt_tasks(rt_se, rt_rq); 1129 if (!rt_rq->rt_nr_running) 1130 list_del_leaf_rt_rq(rt_rq); 1131 } 1132 1133 /* 1134 * Because the prio of an upper entry depends on the lower 1135 * entries, we must remove entries top - down. 1136 */ 1137 static void dequeue_rt_stack(struct sched_rt_entity *rt_se) 1138 { 1139 struct sched_rt_entity *back = NULL; 1140 1141 for_each_sched_rt_entity(rt_se) { 1142 rt_se->back = back; 1143 back = rt_se; 1144 } 1145 1146 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1147 if (on_rt_rq(rt_se)) 1148 __dequeue_rt_entity(rt_se); 1149 } 1150 } 1151 1152 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) 1153 { 1154 dequeue_rt_stack(rt_se); 1155 for_each_sched_rt_entity(rt_se) 1156 __enqueue_rt_entity(rt_se, head); 1157 } 1158 1159 static void dequeue_rt_entity(struct sched_rt_entity *rt_se) 1160 { 1161 dequeue_rt_stack(rt_se); 1162 1163 for_each_sched_rt_entity(rt_se) { 1164 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1165 1166 if (rt_rq && rt_rq->rt_nr_running) 1167 __enqueue_rt_entity(rt_se, false); 1168 } 1169 } 1170 1171 /* 1172 * Adding/removing a task to/from a priority array: 1173 */ 1174 static void 1175 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1176 { 1177 struct sched_rt_entity *rt_se = &p->rt; 1178 1179 if (flags & ENQUEUE_WAKEUP) 1180 rt_se->timeout = 0; 1181 1182 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); 1183 1184 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1185 enqueue_pushable_task(rq, p); 1186 1187 inc_nr_running(rq); 1188 } 1189 1190 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1191 { 1192 struct sched_rt_entity *rt_se = &p->rt; 1193 1194 update_curr_rt(rq); 1195 dequeue_rt_entity(rt_se); 1196 1197 dequeue_pushable_task(rq, p); 1198 1199 dec_nr_running(rq); 1200 } 1201 1202 /* 1203 * Put task to the head or the end of the run list without the overhead of 1204 * dequeue followed by enqueue. 1205 */ 1206 static void 1207 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1208 { 1209 if (on_rt_rq(rt_se)) { 1210 struct rt_prio_array *array = &rt_rq->active; 1211 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1212 1213 if (head) 1214 list_move(&rt_se->run_list, queue); 1215 else 1216 list_move_tail(&rt_se->run_list, queue); 1217 } 1218 } 1219 1220 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1221 { 1222 struct sched_rt_entity *rt_se = &p->rt; 1223 struct rt_rq *rt_rq; 1224 1225 for_each_sched_rt_entity(rt_se) { 1226 rt_rq = rt_rq_of_se(rt_se); 1227 requeue_rt_entity(rt_rq, rt_se, head); 1228 } 1229 } 1230 1231 static void yield_task_rt(struct rq *rq) 1232 { 1233 requeue_task_rt(rq, rq->curr, 0); 1234 } 1235 1236 #ifdef CONFIG_SMP 1237 static int find_lowest_rq(struct task_struct *task); 1238 1239 static int 1240 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) 1241 { 1242 struct task_struct *curr; 1243 struct rq *rq; 1244 int cpu; 1245 1246 cpu = task_cpu(p); 1247 1248 if (p->nr_cpus_allowed == 1) 1249 goto out; 1250 1251 /* For anything but wake ups, just return the task_cpu */ 1252 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1253 goto out; 1254 1255 rq = cpu_rq(cpu); 1256 1257 rcu_read_lock(); 1258 curr = ACCESS_ONCE(rq->curr); /* unlocked access */ 1259 1260 /* 1261 * If the current task on @p's runqueue is an RT task, then 1262 * try to see if we can wake this RT task up on another 1263 * runqueue. Otherwise simply start this RT task 1264 * on its current runqueue. 1265 * 1266 * We want to avoid overloading runqueues. If the woken 1267 * task is a higher priority, then it will stay on this CPU 1268 * and the lower prio task should be moved to another CPU. 1269 * Even though this will probably make the lower prio task 1270 * lose its cache, we do not want to bounce a higher task 1271 * around just because it gave up its CPU, perhaps for a 1272 * lock? 1273 * 1274 * For equal prio tasks, we just let the scheduler sort it out. 1275 * 1276 * Otherwise, just let it ride on the affined RQ and the 1277 * post-schedule router will push the preempted task away 1278 * 1279 * This test is optimistic, if we get it wrong the load-balancer 1280 * will have to sort it out. 1281 */ 1282 if (curr && unlikely(rt_task(curr)) && 1283 (curr->nr_cpus_allowed < 2 || 1284 curr->prio <= p->prio) && 1285 (p->nr_cpus_allowed > 1)) { 1286 int target = find_lowest_rq(p); 1287 1288 if (target != -1) 1289 cpu = target; 1290 } 1291 rcu_read_unlock(); 1292 1293 out: 1294 return cpu; 1295 } 1296 1297 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1298 { 1299 if (rq->curr->nr_cpus_allowed == 1) 1300 return; 1301 1302 if (p->nr_cpus_allowed != 1 1303 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1304 return; 1305 1306 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1307 return; 1308 1309 /* 1310 * There appears to be other cpus that can accept 1311 * current and none to run 'p', so lets reschedule 1312 * to try and push current away: 1313 */ 1314 requeue_task_rt(rq, p, 1); 1315 resched_task(rq->curr); 1316 } 1317 1318 #endif /* CONFIG_SMP */ 1319 1320 /* 1321 * Preempt the current task with a newly woken task if needed: 1322 */ 1323 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1324 { 1325 if (p->prio < rq->curr->prio) { 1326 resched_task(rq->curr); 1327 return; 1328 } 1329 1330 #ifdef CONFIG_SMP 1331 /* 1332 * If: 1333 * 1334 * - the newly woken task is of equal priority to the current task 1335 * - the newly woken task is non-migratable while current is migratable 1336 * - current will be preempted on the next reschedule 1337 * 1338 * we should check to see if current can readily move to a different 1339 * cpu. If so, we will reschedule to allow the push logic to try 1340 * to move current somewhere else, making room for our non-migratable 1341 * task. 1342 */ 1343 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1344 check_preempt_equal_prio(rq, p); 1345 #endif 1346 } 1347 1348 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1349 struct rt_rq *rt_rq) 1350 { 1351 struct rt_prio_array *array = &rt_rq->active; 1352 struct sched_rt_entity *next = NULL; 1353 struct list_head *queue; 1354 int idx; 1355 1356 idx = sched_find_first_bit(array->bitmap); 1357 BUG_ON(idx >= MAX_RT_PRIO); 1358 1359 queue = array->queue + idx; 1360 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1361 1362 return next; 1363 } 1364 1365 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1366 { 1367 struct sched_rt_entity *rt_se; 1368 struct task_struct *p; 1369 struct rt_rq *rt_rq; 1370 1371 rt_rq = &rq->rt; 1372 1373 if (!rt_rq->rt_nr_running) 1374 return NULL; 1375 1376 if (rt_rq_throttled(rt_rq)) 1377 return NULL; 1378 1379 do { 1380 rt_se = pick_next_rt_entity(rq, rt_rq); 1381 BUG_ON(!rt_se); 1382 rt_rq = group_rt_rq(rt_se); 1383 } while (rt_rq); 1384 1385 p = rt_task_of(rt_se); 1386 p->se.exec_start = rq->clock_task; 1387 1388 return p; 1389 } 1390 1391 static struct task_struct *pick_next_task_rt(struct rq *rq) 1392 { 1393 struct task_struct *p = _pick_next_task_rt(rq); 1394 1395 /* The running task is never eligible for pushing */ 1396 if (p) 1397 dequeue_pushable_task(rq, p); 1398 1399 #ifdef CONFIG_SMP 1400 /* 1401 * We detect this state here so that we can avoid taking the RQ 1402 * lock again later if there is no need to push 1403 */ 1404 rq->post_schedule = has_pushable_tasks(rq); 1405 #endif 1406 1407 return p; 1408 } 1409 1410 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1411 { 1412 update_curr_rt(rq); 1413 1414 /* 1415 * The previous task needs to be made eligible for pushing 1416 * if it is still active 1417 */ 1418 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1419 enqueue_pushable_task(rq, p); 1420 } 1421 1422 #ifdef CONFIG_SMP 1423 1424 /* Only try algorithms three times */ 1425 #define RT_MAX_TRIES 3 1426 1427 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1428 { 1429 if (!task_running(rq, p) && 1430 (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) && 1431 (p->nr_cpus_allowed > 1)) 1432 return 1; 1433 return 0; 1434 } 1435 1436 /* Return the second highest RT task, NULL otherwise */ 1437 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) 1438 { 1439 struct task_struct *next = NULL; 1440 struct sched_rt_entity *rt_se; 1441 struct rt_prio_array *array; 1442 struct rt_rq *rt_rq; 1443 int idx; 1444 1445 for_each_leaf_rt_rq(rt_rq, rq) { 1446 array = &rt_rq->active; 1447 idx = sched_find_first_bit(array->bitmap); 1448 next_idx: 1449 if (idx >= MAX_RT_PRIO) 1450 continue; 1451 if (next && next->prio <= idx) 1452 continue; 1453 list_for_each_entry(rt_se, array->queue + idx, run_list) { 1454 struct task_struct *p; 1455 1456 if (!rt_entity_is_task(rt_se)) 1457 continue; 1458 1459 p = rt_task_of(rt_se); 1460 if (pick_rt_task(rq, p, cpu)) { 1461 next = p; 1462 break; 1463 } 1464 } 1465 if (!next) { 1466 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); 1467 goto next_idx; 1468 } 1469 } 1470 1471 return next; 1472 } 1473 1474 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1475 1476 static int find_lowest_rq(struct task_struct *task) 1477 { 1478 struct sched_domain *sd; 1479 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); 1480 int this_cpu = smp_processor_id(); 1481 int cpu = task_cpu(task); 1482 1483 /* Make sure the mask is initialized first */ 1484 if (unlikely(!lowest_mask)) 1485 return -1; 1486 1487 if (task->nr_cpus_allowed == 1) 1488 return -1; /* No other targets possible */ 1489 1490 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1491 return -1; /* No targets found */ 1492 1493 /* 1494 * At this point we have built a mask of cpus representing the 1495 * lowest priority tasks in the system. Now we want to elect 1496 * the best one based on our affinity and topology. 1497 * 1498 * We prioritize the last cpu that the task executed on since 1499 * it is most likely cache-hot in that location. 1500 */ 1501 if (cpumask_test_cpu(cpu, lowest_mask)) 1502 return cpu; 1503 1504 /* 1505 * Otherwise, we consult the sched_domains span maps to figure 1506 * out which cpu is logically closest to our hot cache data. 1507 */ 1508 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1509 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1510 1511 rcu_read_lock(); 1512 for_each_domain(cpu, sd) { 1513 if (sd->flags & SD_WAKE_AFFINE) { 1514 int best_cpu; 1515 1516 /* 1517 * "this_cpu" is cheaper to preempt than a 1518 * remote processor. 1519 */ 1520 if (this_cpu != -1 && 1521 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1522 rcu_read_unlock(); 1523 return this_cpu; 1524 } 1525 1526 best_cpu = cpumask_first_and(lowest_mask, 1527 sched_domain_span(sd)); 1528 if (best_cpu < nr_cpu_ids) { 1529 rcu_read_unlock(); 1530 return best_cpu; 1531 } 1532 } 1533 } 1534 rcu_read_unlock(); 1535 1536 /* 1537 * And finally, if there were no matches within the domains 1538 * just give the caller *something* to work with from the compatible 1539 * locations. 1540 */ 1541 if (this_cpu != -1) 1542 return this_cpu; 1543 1544 cpu = cpumask_any(lowest_mask); 1545 if (cpu < nr_cpu_ids) 1546 return cpu; 1547 return -1; 1548 } 1549 1550 /* Will lock the rq it finds */ 1551 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1552 { 1553 struct rq *lowest_rq = NULL; 1554 int tries; 1555 int cpu; 1556 1557 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1558 cpu = find_lowest_rq(task); 1559 1560 if ((cpu == -1) || (cpu == rq->cpu)) 1561 break; 1562 1563 lowest_rq = cpu_rq(cpu); 1564 1565 /* if the prio of this runqueue changed, try again */ 1566 if (double_lock_balance(rq, lowest_rq)) { 1567 /* 1568 * We had to unlock the run queue. In 1569 * the mean time, task could have 1570 * migrated already or had its affinity changed. 1571 * Also make sure that it wasn't scheduled on its rq. 1572 */ 1573 if (unlikely(task_rq(task) != rq || 1574 !cpumask_test_cpu(lowest_rq->cpu, 1575 tsk_cpus_allowed(task)) || 1576 task_running(rq, task) || 1577 !task->on_rq)) { 1578 1579 double_unlock_balance(rq, lowest_rq); 1580 lowest_rq = NULL; 1581 break; 1582 } 1583 } 1584 1585 /* If this rq is still suitable use it. */ 1586 if (lowest_rq->rt.highest_prio.curr > task->prio) 1587 break; 1588 1589 /* try again */ 1590 double_unlock_balance(rq, lowest_rq); 1591 lowest_rq = NULL; 1592 } 1593 1594 return lowest_rq; 1595 } 1596 1597 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1598 { 1599 struct task_struct *p; 1600 1601 if (!has_pushable_tasks(rq)) 1602 return NULL; 1603 1604 p = plist_first_entry(&rq->rt.pushable_tasks, 1605 struct task_struct, pushable_tasks); 1606 1607 BUG_ON(rq->cpu != task_cpu(p)); 1608 BUG_ON(task_current(rq, p)); 1609 BUG_ON(p->nr_cpus_allowed <= 1); 1610 1611 BUG_ON(!p->on_rq); 1612 BUG_ON(!rt_task(p)); 1613 1614 return p; 1615 } 1616 1617 /* 1618 * If the current CPU has more than one RT task, see if the non 1619 * running task can migrate over to a CPU that is running a task 1620 * of lesser priority. 1621 */ 1622 static int push_rt_task(struct rq *rq) 1623 { 1624 struct task_struct *next_task; 1625 struct rq *lowest_rq; 1626 int ret = 0; 1627 1628 if (!rq->rt.overloaded) 1629 return 0; 1630 1631 next_task = pick_next_pushable_task(rq); 1632 if (!next_task) 1633 return 0; 1634 1635 retry: 1636 if (unlikely(next_task == rq->curr)) { 1637 WARN_ON(1); 1638 return 0; 1639 } 1640 1641 /* 1642 * It's possible that the next_task slipped in of 1643 * higher priority than current. If that's the case 1644 * just reschedule current. 1645 */ 1646 if (unlikely(next_task->prio < rq->curr->prio)) { 1647 resched_task(rq->curr); 1648 return 0; 1649 } 1650 1651 /* We might release rq lock */ 1652 get_task_struct(next_task); 1653 1654 /* find_lock_lowest_rq locks the rq if found */ 1655 lowest_rq = find_lock_lowest_rq(next_task, rq); 1656 if (!lowest_rq) { 1657 struct task_struct *task; 1658 /* 1659 * find_lock_lowest_rq releases rq->lock 1660 * so it is possible that next_task has migrated. 1661 * 1662 * We need to make sure that the task is still on the same 1663 * run-queue and is also still the next task eligible for 1664 * pushing. 1665 */ 1666 task = pick_next_pushable_task(rq); 1667 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1668 /* 1669 * The task hasn't migrated, and is still the next 1670 * eligible task, but we failed to find a run-queue 1671 * to push it to. Do not retry in this case, since 1672 * other cpus will pull from us when ready. 1673 */ 1674 goto out; 1675 } 1676 1677 if (!task) 1678 /* No more tasks, just exit */ 1679 goto out; 1680 1681 /* 1682 * Something has shifted, try again. 1683 */ 1684 put_task_struct(next_task); 1685 next_task = task; 1686 goto retry; 1687 } 1688 1689 deactivate_task(rq, next_task, 0); 1690 set_task_cpu(next_task, lowest_rq->cpu); 1691 activate_task(lowest_rq, next_task, 0); 1692 ret = 1; 1693 1694 resched_task(lowest_rq->curr); 1695 1696 double_unlock_balance(rq, lowest_rq); 1697 1698 out: 1699 put_task_struct(next_task); 1700 1701 return ret; 1702 } 1703 1704 static void push_rt_tasks(struct rq *rq) 1705 { 1706 /* push_rt_task will return true if it moved an RT */ 1707 while (push_rt_task(rq)) 1708 ; 1709 } 1710 1711 static int pull_rt_task(struct rq *this_rq) 1712 { 1713 int this_cpu = this_rq->cpu, ret = 0, cpu; 1714 struct task_struct *p; 1715 struct rq *src_rq; 1716 1717 if (likely(!rt_overloaded(this_rq))) 1718 return 0; 1719 1720 for_each_cpu(cpu, this_rq->rd->rto_mask) { 1721 if (this_cpu == cpu) 1722 continue; 1723 1724 src_rq = cpu_rq(cpu); 1725 1726 /* 1727 * Don't bother taking the src_rq->lock if the next highest 1728 * task is known to be lower-priority than our current task. 1729 * This may look racy, but if this value is about to go 1730 * logically higher, the src_rq will push this task away. 1731 * And if its going logically lower, we do not care 1732 */ 1733 if (src_rq->rt.highest_prio.next >= 1734 this_rq->rt.highest_prio.curr) 1735 continue; 1736 1737 /* 1738 * We can potentially drop this_rq's lock in 1739 * double_lock_balance, and another CPU could 1740 * alter this_rq 1741 */ 1742 double_lock_balance(this_rq, src_rq); 1743 1744 /* 1745 * Are there still pullable RT tasks? 1746 */ 1747 if (src_rq->rt.rt_nr_running <= 1) 1748 goto skip; 1749 1750 p = pick_next_highest_task_rt(src_rq, this_cpu); 1751 1752 /* 1753 * Do we have an RT task that preempts 1754 * the to-be-scheduled task? 1755 */ 1756 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 1757 WARN_ON(p == src_rq->curr); 1758 WARN_ON(!p->on_rq); 1759 1760 /* 1761 * There's a chance that p is higher in priority 1762 * than what's currently running on its cpu. 1763 * This is just that p is wakeing up and hasn't 1764 * had a chance to schedule. We only pull 1765 * p if it is lower in priority than the 1766 * current task on the run queue 1767 */ 1768 if (p->prio < src_rq->curr->prio) 1769 goto skip; 1770 1771 ret = 1; 1772 1773 deactivate_task(src_rq, p, 0); 1774 set_task_cpu(p, this_cpu); 1775 activate_task(this_rq, p, 0); 1776 /* 1777 * We continue with the search, just in 1778 * case there's an even higher prio task 1779 * in another runqueue. (low likelihood 1780 * but possible) 1781 */ 1782 } 1783 skip: 1784 double_unlock_balance(this_rq, src_rq); 1785 } 1786 1787 return ret; 1788 } 1789 1790 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) 1791 { 1792 /* Try to pull RT tasks here if we lower this rq's prio */ 1793 if (rq->rt.highest_prio.curr > prev->prio) 1794 pull_rt_task(rq); 1795 } 1796 1797 static void post_schedule_rt(struct rq *rq) 1798 { 1799 push_rt_tasks(rq); 1800 } 1801 1802 /* 1803 * If we are not running and we are not going to reschedule soon, we should 1804 * try to push tasks away now 1805 */ 1806 static void task_woken_rt(struct rq *rq, struct task_struct *p) 1807 { 1808 if (!task_running(rq, p) && 1809 !test_tsk_need_resched(rq->curr) && 1810 has_pushable_tasks(rq) && 1811 p->nr_cpus_allowed > 1 && 1812 rt_task(rq->curr) && 1813 (rq->curr->nr_cpus_allowed < 2 || 1814 rq->curr->prio <= p->prio)) 1815 push_rt_tasks(rq); 1816 } 1817 1818 static void set_cpus_allowed_rt(struct task_struct *p, 1819 const struct cpumask *new_mask) 1820 { 1821 struct rq *rq; 1822 int weight; 1823 1824 BUG_ON(!rt_task(p)); 1825 1826 if (!p->on_rq) 1827 return; 1828 1829 weight = cpumask_weight(new_mask); 1830 1831 /* 1832 * Only update if the process changes its state from whether it 1833 * can migrate or not. 1834 */ 1835 if ((p->nr_cpus_allowed > 1) == (weight > 1)) 1836 return; 1837 1838 rq = task_rq(p); 1839 1840 /* 1841 * The process used to be able to migrate OR it can now migrate 1842 */ 1843 if (weight <= 1) { 1844 if (!task_current(rq, p)) 1845 dequeue_pushable_task(rq, p); 1846 BUG_ON(!rq->rt.rt_nr_migratory); 1847 rq->rt.rt_nr_migratory--; 1848 } else { 1849 if (!task_current(rq, p)) 1850 enqueue_pushable_task(rq, p); 1851 rq->rt.rt_nr_migratory++; 1852 } 1853 1854 update_rt_migration(&rq->rt); 1855 } 1856 1857 /* Assumes rq->lock is held */ 1858 static void rq_online_rt(struct rq *rq) 1859 { 1860 if (rq->rt.overloaded) 1861 rt_set_overload(rq); 1862 1863 __enable_runtime(rq); 1864 1865 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1866 } 1867 1868 /* Assumes rq->lock is held */ 1869 static void rq_offline_rt(struct rq *rq) 1870 { 1871 if (rq->rt.overloaded) 1872 rt_clear_overload(rq); 1873 1874 __disable_runtime(rq); 1875 1876 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 1877 } 1878 1879 /* 1880 * When switch from the rt queue, we bring ourselves to a position 1881 * that we might want to pull RT tasks from other runqueues. 1882 */ 1883 static void switched_from_rt(struct rq *rq, struct task_struct *p) 1884 { 1885 /* 1886 * If there are other RT tasks then we will reschedule 1887 * and the scheduling of the other RT tasks will handle 1888 * the balancing. But if we are the last RT task 1889 * we may need to handle the pulling of RT tasks 1890 * now. 1891 */ 1892 if (p->on_rq && !rq->rt.rt_nr_running) 1893 pull_rt_task(rq); 1894 } 1895 1896 void init_sched_rt_class(void) 1897 { 1898 unsigned int i; 1899 1900 for_each_possible_cpu(i) { 1901 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 1902 GFP_KERNEL, cpu_to_node(i)); 1903 } 1904 } 1905 #endif /* CONFIG_SMP */ 1906 1907 /* 1908 * When switching a task to RT, we may overload the runqueue 1909 * with RT tasks. In this case we try to push them off to 1910 * other runqueues. 1911 */ 1912 static void switched_to_rt(struct rq *rq, struct task_struct *p) 1913 { 1914 int check_resched = 1; 1915 1916 /* 1917 * If we are already running, then there's nothing 1918 * that needs to be done. But if we are not running 1919 * we may need to preempt the current running task. 1920 * If that current running task is also an RT task 1921 * then see if we can move to another run queue. 1922 */ 1923 if (p->on_rq && rq->curr != p) { 1924 #ifdef CONFIG_SMP 1925 if (rq->rt.overloaded && push_rt_task(rq) && 1926 /* Don't resched if we changed runqueues */ 1927 rq != task_rq(p)) 1928 check_resched = 0; 1929 #endif /* CONFIG_SMP */ 1930 if (check_resched && p->prio < rq->curr->prio) 1931 resched_task(rq->curr); 1932 } 1933 } 1934 1935 /* 1936 * Priority of the task has changed. This may cause 1937 * us to initiate a push or pull. 1938 */ 1939 static void 1940 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 1941 { 1942 if (!p->on_rq) 1943 return; 1944 1945 if (rq->curr == p) { 1946 #ifdef CONFIG_SMP 1947 /* 1948 * If our priority decreases while running, we 1949 * may need to pull tasks to this runqueue. 1950 */ 1951 if (oldprio < p->prio) 1952 pull_rt_task(rq); 1953 /* 1954 * If there's a higher priority task waiting to run 1955 * then reschedule. Note, the above pull_rt_task 1956 * can release the rq lock and p could migrate. 1957 * Only reschedule if p is still on the same runqueue. 1958 */ 1959 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) 1960 resched_task(p); 1961 #else 1962 /* For UP simply resched on drop of prio */ 1963 if (oldprio < p->prio) 1964 resched_task(p); 1965 #endif /* CONFIG_SMP */ 1966 } else { 1967 /* 1968 * This task is not running, but if it is 1969 * greater than the current running task 1970 * then reschedule. 1971 */ 1972 if (p->prio < rq->curr->prio) 1973 resched_task(rq->curr); 1974 } 1975 } 1976 1977 static void watchdog(struct rq *rq, struct task_struct *p) 1978 { 1979 unsigned long soft, hard; 1980 1981 /* max may change after cur was read, this will be fixed next tick */ 1982 soft = task_rlimit(p, RLIMIT_RTTIME); 1983 hard = task_rlimit_max(p, RLIMIT_RTTIME); 1984 1985 if (soft != RLIM_INFINITY) { 1986 unsigned long next; 1987 1988 p->rt.timeout++; 1989 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 1990 if (p->rt.timeout > next) 1991 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 1992 } 1993 } 1994 1995 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 1996 { 1997 struct sched_rt_entity *rt_se = &p->rt; 1998 1999 update_curr_rt(rq); 2000 2001 watchdog(rq, p); 2002 2003 /* 2004 * RR tasks need a special form of timeslice management. 2005 * FIFO tasks have no timeslices. 2006 */ 2007 if (p->policy != SCHED_RR) 2008 return; 2009 2010 if (--p->rt.time_slice) 2011 return; 2012 2013 p->rt.time_slice = RR_TIMESLICE; 2014 2015 /* 2016 * Requeue to the end of queue if we (and all of our ancestors) are the 2017 * only element on the queue 2018 */ 2019 for_each_sched_rt_entity(rt_se) { 2020 if (rt_se->run_list.prev != rt_se->run_list.next) { 2021 requeue_task_rt(rq, p, 0); 2022 set_tsk_need_resched(p); 2023 return; 2024 } 2025 } 2026 } 2027 2028 static void set_curr_task_rt(struct rq *rq) 2029 { 2030 struct task_struct *p = rq->curr; 2031 2032 p->se.exec_start = rq->clock_task; 2033 2034 /* The running task is never eligible for pushing */ 2035 dequeue_pushable_task(rq, p); 2036 } 2037 2038 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2039 { 2040 /* 2041 * Time slice is 0 for SCHED_FIFO tasks 2042 */ 2043 if (task->policy == SCHED_RR) 2044 return RR_TIMESLICE; 2045 else 2046 return 0; 2047 } 2048 2049 const struct sched_class rt_sched_class = { 2050 .next = &fair_sched_class, 2051 .enqueue_task = enqueue_task_rt, 2052 .dequeue_task = dequeue_task_rt, 2053 .yield_task = yield_task_rt, 2054 2055 .check_preempt_curr = check_preempt_curr_rt, 2056 2057 .pick_next_task = pick_next_task_rt, 2058 .put_prev_task = put_prev_task_rt, 2059 2060 #ifdef CONFIG_SMP 2061 .select_task_rq = select_task_rq_rt, 2062 2063 .set_cpus_allowed = set_cpus_allowed_rt, 2064 .rq_online = rq_online_rt, 2065 .rq_offline = rq_offline_rt, 2066 .pre_schedule = pre_schedule_rt, 2067 .post_schedule = post_schedule_rt, 2068 .task_woken = task_woken_rt, 2069 .switched_from = switched_from_rt, 2070 #endif 2071 2072 .set_curr_task = set_curr_task_rt, 2073 .task_tick = task_tick_rt, 2074 2075 .get_rr_interval = get_rr_interval_rt, 2076 2077 .prio_changed = prio_changed_rt, 2078 .switched_to = switched_to_rt, 2079 }; 2080 2081 #ifdef CONFIG_SCHED_DEBUG 2082 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2083 2084 void print_rt_stats(struct seq_file *m, int cpu) 2085 { 2086 rt_rq_iter_t iter; 2087 struct rt_rq *rt_rq; 2088 2089 rcu_read_lock(); 2090 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2091 print_rt_rq(m, cpu, rt_rq); 2092 rcu_read_unlock(); 2093 } 2094 #endif /* CONFIG_SCHED_DEBUG */ 2095