1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 #include "sched.h" 7 8 #include "pelt.h" 9 10 int sched_rr_timeslice = RR_TIMESLICE; 11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE; 12 13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 14 15 struct rt_bandwidth def_rt_bandwidth; 16 17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 18 { 19 struct rt_bandwidth *rt_b = 20 container_of(timer, struct rt_bandwidth, rt_period_timer); 21 int idle = 0; 22 int overrun; 23 24 raw_spin_lock(&rt_b->rt_runtime_lock); 25 for (;;) { 26 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 27 if (!overrun) 28 break; 29 30 raw_spin_unlock(&rt_b->rt_runtime_lock); 31 idle = do_sched_rt_period_timer(rt_b, overrun); 32 raw_spin_lock(&rt_b->rt_runtime_lock); 33 } 34 if (idle) 35 rt_b->rt_period_active = 0; 36 raw_spin_unlock(&rt_b->rt_runtime_lock); 37 38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 39 } 40 41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 42 { 43 rt_b->rt_period = ns_to_ktime(period); 44 rt_b->rt_runtime = runtime; 45 46 raw_spin_lock_init(&rt_b->rt_runtime_lock); 47 48 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC, 49 HRTIMER_MODE_REL_HARD); 50 rt_b->rt_period_timer.function = sched_rt_period_timer; 51 } 52 53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 54 { 55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 56 return; 57 58 raw_spin_lock(&rt_b->rt_runtime_lock); 59 if (!rt_b->rt_period_active) { 60 rt_b->rt_period_active = 1; 61 /* 62 * SCHED_DEADLINE updates the bandwidth, as a run away 63 * RT task with a DL task could hog a CPU. But DL does 64 * not reset the period. If a deadline task was running 65 * without an RT task running, it can cause RT tasks to 66 * throttle when they start up. Kick the timer right away 67 * to update the period. 68 */ 69 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 70 hrtimer_start_expires(&rt_b->rt_period_timer, 71 HRTIMER_MODE_ABS_PINNED_HARD); 72 } 73 raw_spin_unlock(&rt_b->rt_runtime_lock); 74 } 75 76 void init_rt_rq(struct rt_rq *rt_rq) 77 { 78 struct rt_prio_array *array; 79 int i; 80 81 array = &rt_rq->active; 82 for (i = 0; i < MAX_RT_PRIO; i++) { 83 INIT_LIST_HEAD(array->queue + i); 84 __clear_bit(i, array->bitmap); 85 } 86 /* delimiter for bitsearch: */ 87 __set_bit(MAX_RT_PRIO, array->bitmap); 88 89 #if defined CONFIG_SMP 90 rt_rq->highest_prio.curr = MAX_RT_PRIO; 91 rt_rq->highest_prio.next = MAX_RT_PRIO; 92 rt_rq->rt_nr_migratory = 0; 93 rt_rq->overloaded = 0; 94 plist_head_init(&rt_rq->pushable_tasks); 95 #endif /* CONFIG_SMP */ 96 /* We start is dequeued state, because no RT tasks are queued */ 97 rt_rq->rt_queued = 0; 98 99 rt_rq->rt_time = 0; 100 rt_rq->rt_throttled = 0; 101 rt_rq->rt_runtime = 0; 102 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 103 } 104 105 #ifdef CONFIG_RT_GROUP_SCHED 106 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 107 { 108 hrtimer_cancel(&rt_b->rt_period_timer); 109 } 110 111 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 112 113 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 114 { 115 #ifdef CONFIG_SCHED_DEBUG 116 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 117 #endif 118 return container_of(rt_se, struct task_struct, rt); 119 } 120 121 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 122 { 123 return rt_rq->rq; 124 } 125 126 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 127 { 128 return rt_se->rt_rq; 129 } 130 131 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 132 { 133 struct rt_rq *rt_rq = rt_se->rt_rq; 134 135 return rt_rq->rq; 136 } 137 138 void free_rt_sched_group(struct task_group *tg) 139 { 140 int i; 141 142 if (tg->rt_se) 143 destroy_rt_bandwidth(&tg->rt_bandwidth); 144 145 for_each_possible_cpu(i) { 146 if (tg->rt_rq) 147 kfree(tg->rt_rq[i]); 148 if (tg->rt_se) 149 kfree(tg->rt_se[i]); 150 } 151 152 kfree(tg->rt_rq); 153 kfree(tg->rt_se); 154 } 155 156 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 157 struct sched_rt_entity *rt_se, int cpu, 158 struct sched_rt_entity *parent) 159 { 160 struct rq *rq = cpu_rq(cpu); 161 162 rt_rq->highest_prio.curr = MAX_RT_PRIO; 163 rt_rq->rt_nr_boosted = 0; 164 rt_rq->rq = rq; 165 rt_rq->tg = tg; 166 167 tg->rt_rq[cpu] = rt_rq; 168 tg->rt_se[cpu] = rt_se; 169 170 if (!rt_se) 171 return; 172 173 if (!parent) 174 rt_se->rt_rq = &rq->rt; 175 else 176 rt_se->rt_rq = parent->my_q; 177 178 rt_se->my_q = rt_rq; 179 rt_se->parent = parent; 180 INIT_LIST_HEAD(&rt_se->run_list); 181 } 182 183 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 184 { 185 struct rt_rq *rt_rq; 186 struct sched_rt_entity *rt_se; 187 int i; 188 189 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); 190 if (!tg->rt_rq) 191 goto err; 192 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); 193 if (!tg->rt_se) 194 goto err; 195 196 init_rt_bandwidth(&tg->rt_bandwidth, 197 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 198 199 for_each_possible_cpu(i) { 200 rt_rq = kzalloc_node(sizeof(struct rt_rq), 201 GFP_KERNEL, cpu_to_node(i)); 202 if (!rt_rq) 203 goto err; 204 205 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 206 GFP_KERNEL, cpu_to_node(i)); 207 if (!rt_se) 208 goto err_free_rq; 209 210 init_rt_rq(rt_rq); 211 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 212 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 213 } 214 215 return 1; 216 217 err_free_rq: 218 kfree(rt_rq); 219 err: 220 return 0; 221 } 222 223 #else /* CONFIG_RT_GROUP_SCHED */ 224 225 #define rt_entity_is_task(rt_se) (1) 226 227 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 228 { 229 return container_of(rt_se, struct task_struct, rt); 230 } 231 232 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 233 { 234 return container_of(rt_rq, struct rq, rt); 235 } 236 237 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 238 { 239 struct task_struct *p = rt_task_of(rt_se); 240 241 return task_rq(p); 242 } 243 244 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 245 { 246 struct rq *rq = rq_of_rt_se(rt_se); 247 248 return &rq->rt; 249 } 250 251 void free_rt_sched_group(struct task_group *tg) { } 252 253 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 254 { 255 return 1; 256 } 257 #endif /* CONFIG_RT_GROUP_SCHED */ 258 259 #ifdef CONFIG_SMP 260 261 static void pull_rt_task(struct rq *this_rq); 262 263 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 264 { 265 /* Try to pull RT tasks here if we lower this rq's prio */ 266 return rq->rt.highest_prio.curr > prev->prio; 267 } 268 269 static inline int rt_overloaded(struct rq *rq) 270 { 271 return atomic_read(&rq->rd->rto_count); 272 } 273 274 static inline void rt_set_overload(struct rq *rq) 275 { 276 if (!rq->online) 277 return; 278 279 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 280 /* 281 * Make sure the mask is visible before we set 282 * the overload count. That is checked to determine 283 * if we should look at the mask. It would be a shame 284 * if we looked at the mask, but the mask was not 285 * updated yet. 286 * 287 * Matched by the barrier in pull_rt_task(). 288 */ 289 smp_wmb(); 290 atomic_inc(&rq->rd->rto_count); 291 } 292 293 static inline void rt_clear_overload(struct rq *rq) 294 { 295 if (!rq->online) 296 return; 297 298 /* the order here really doesn't matter */ 299 atomic_dec(&rq->rd->rto_count); 300 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 301 } 302 303 static void update_rt_migration(struct rt_rq *rt_rq) 304 { 305 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 306 if (!rt_rq->overloaded) { 307 rt_set_overload(rq_of_rt_rq(rt_rq)); 308 rt_rq->overloaded = 1; 309 } 310 } else if (rt_rq->overloaded) { 311 rt_clear_overload(rq_of_rt_rq(rt_rq)); 312 rt_rq->overloaded = 0; 313 } 314 } 315 316 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 317 { 318 struct task_struct *p; 319 320 if (!rt_entity_is_task(rt_se)) 321 return; 322 323 p = rt_task_of(rt_se); 324 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 325 326 rt_rq->rt_nr_total++; 327 if (p->nr_cpus_allowed > 1) 328 rt_rq->rt_nr_migratory++; 329 330 update_rt_migration(rt_rq); 331 } 332 333 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 334 { 335 struct task_struct *p; 336 337 if (!rt_entity_is_task(rt_se)) 338 return; 339 340 p = rt_task_of(rt_se); 341 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 342 343 rt_rq->rt_nr_total--; 344 if (p->nr_cpus_allowed > 1) 345 rt_rq->rt_nr_migratory--; 346 347 update_rt_migration(rt_rq); 348 } 349 350 static inline int has_pushable_tasks(struct rq *rq) 351 { 352 return !plist_head_empty(&rq->rt.pushable_tasks); 353 } 354 355 static DEFINE_PER_CPU(struct callback_head, rt_push_head); 356 static DEFINE_PER_CPU(struct callback_head, rt_pull_head); 357 358 static void push_rt_tasks(struct rq *); 359 static void pull_rt_task(struct rq *); 360 361 static inline void rt_queue_push_tasks(struct rq *rq) 362 { 363 if (!has_pushable_tasks(rq)) 364 return; 365 366 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 367 } 368 369 static inline void rt_queue_pull_task(struct rq *rq) 370 { 371 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 372 } 373 374 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 375 { 376 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 377 plist_node_init(&p->pushable_tasks, p->prio); 378 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 379 380 /* Update the highest prio pushable task */ 381 if (p->prio < rq->rt.highest_prio.next) 382 rq->rt.highest_prio.next = p->prio; 383 } 384 385 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 386 { 387 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 388 389 /* Update the new highest prio pushable task */ 390 if (has_pushable_tasks(rq)) { 391 p = plist_first_entry(&rq->rt.pushable_tasks, 392 struct task_struct, pushable_tasks); 393 rq->rt.highest_prio.next = p->prio; 394 } else 395 rq->rt.highest_prio.next = MAX_RT_PRIO; 396 } 397 398 #else 399 400 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 401 { 402 } 403 404 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 405 { 406 } 407 408 static inline 409 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 410 { 411 } 412 413 static inline 414 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 415 { 416 } 417 418 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 419 { 420 return false; 421 } 422 423 static inline void pull_rt_task(struct rq *this_rq) 424 { 425 } 426 427 static inline void rt_queue_push_tasks(struct rq *rq) 428 { 429 } 430 #endif /* CONFIG_SMP */ 431 432 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 433 static void dequeue_top_rt_rq(struct rt_rq *rt_rq); 434 435 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 436 { 437 return rt_se->on_rq; 438 } 439 440 #ifdef CONFIG_RT_GROUP_SCHED 441 442 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 443 { 444 if (!rt_rq->tg) 445 return RUNTIME_INF; 446 447 return rt_rq->rt_runtime; 448 } 449 450 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 451 { 452 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 453 } 454 455 typedef struct task_group *rt_rq_iter_t; 456 457 static inline struct task_group *next_task_group(struct task_group *tg) 458 { 459 do { 460 tg = list_entry_rcu(tg->list.next, 461 typeof(struct task_group), list); 462 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 463 464 if (&tg->list == &task_groups) 465 tg = NULL; 466 467 return tg; 468 } 469 470 #define for_each_rt_rq(rt_rq, iter, rq) \ 471 for (iter = container_of(&task_groups, typeof(*iter), list); \ 472 (iter = next_task_group(iter)) && \ 473 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 474 475 #define for_each_sched_rt_entity(rt_se) \ 476 for (; rt_se; rt_se = rt_se->parent) 477 478 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 479 { 480 return rt_se->my_q; 481 } 482 483 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 484 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 485 486 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 487 { 488 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 489 struct rq *rq = rq_of_rt_rq(rt_rq); 490 struct sched_rt_entity *rt_se; 491 492 int cpu = cpu_of(rq); 493 494 rt_se = rt_rq->tg->rt_se[cpu]; 495 496 if (rt_rq->rt_nr_running) { 497 if (!rt_se) 498 enqueue_top_rt_rq(rt_rq); 499 else if (!on_rt_rq(rt_se)) 500 enqueue_rt_entity(rt_se, 0); 501 502 if (rt_rq->highest_prio.curr < curr->prio) 503 resched_curr(rq); 504 } 505 } 506 507 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 508 { 509 struct sched_rt_entity *rt_se; 510 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 511 512 rt_se = rt_rq->tg->rt_se[cpu]; 513 514 if (!rt_se) { 515 dequeue_top_rt_rq(rt_rq); 516 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 517 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); 518 } 519 else if (on_rt_rq(rt_se)) 520 dequeue_rt_entity(rt_se, 0); 521 } 522 523 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 524 { 525 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 526 } 527 528 static int rt_se_boosted(struct sched_rt_entity *rt_se) 529 { 530 struct rt_rq *rt_rq = group_rt_rq(rt_se); 531 struct task_struct *p; 532 533 if (rt_rq) 534 return !!rt_rq->rt_nr_boosted; 535 536 p = rt_task_of(rt_se); 537 return p->prio != p->normal_prio; 538 } 539 540 #ifdef CONFIG_SMP 541 static inline const struct cpumask *sched_rt_period_mask(void) 542 { 543 return this_rq()->rd->span; 544 } 545 #else 546 static inline const struct cpumask *sched_rt_period_mask(void) 547 { 548 return cpu_online_mask; 549 } 550 #endif 551 552 static inline 553 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 554 { 555 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 556 } 557 558 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 559 { 560 return &rt_rq->tg->rt_bandwidth; 561 } 562 563 #else /* !CONFIG_RT_GROUP_SCHED */ 564 565 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 566 { 567 return rt_rq->rt_runtime; 568 } 569 570 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 571 { 572 return ktime_to_ns(def_rt_bandwidth.rt_period); 573 } 574 575 typedef struct rt_rq *rt_rq_iter_t; 576 577 #define for_each_rt_rq(rt_rq, iter, rq) \ 578 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 579 580 #define for_each_sched_rt_entity(rt_se) \ 581 for (; rt_se; rt_se = NULL) 582 583 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 584 { 585 return NULL; 586 } 587 588 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 589 { 590 struct rq *rq = rq_of_rt_rq(rt_rq); 591 592 if (!rt_rq->rt_nr_running) 593 return; 594 595 enqueue_top_rt_rq(rt_rq); 596 resched_curr(rq); 597 } 598 599 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 600 { 601 dequeue_top_rt_rq(rt_rq); 602 } 603 604 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 605 { 606 return rt_rq->rt_throttled; 607 } 608 609 static inline const struct cpumask *sched_rt_period_mask(void) 610 { 611 return cpu_online_mask; 612 } 613 614 static inline 615 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 616 { 617 return &cpu_rq(cpu)->rt; 618 } 619 620 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 621 { 622 return &def_rt_bandwidth; 623 } 624 625 #endif /* CONFIG_RT_GROUP_SCHED */ 626 627 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 628 { 629 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 630 631 return (hrtimer_active(&rt_b->rt_period_timer) || 632 rt_rq->rt_time < rt_b->rt_runtime); 633 } 634 635 #ifdef CONFIG_SMP 636 /* 637 * We ran out of runtime, see if we can borrow some from our neighbours. 638 */ 639 static void do_balance_runtime(struct rt_rq *rt_rq) 640 { 641 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 642 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 643 int i, weight; 644 u64 rt_period; 645 646 weight = cpumask_weight(rd->span); 647 648 raw_spin_lock(&rt_b->rt_runtime_lock); 649 rt_period = ktime_to_ns(rt_b->rt_period); 650 for_each_cpu(i, rd->span) { 651 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 652 s64 diff; 653 654 if (iter == rt_rq) 655 continue; 656 657 raw_spin_lock(&iter->rt_runtime_lock); 658 /* 659 * Either all rqs have inf runtime and there's nothing to steal 660 * or __disable_runtime() below sets a specific rq to inf to 661 * indicate its been disabled and disalow stealing. 662 */ 663 if (iter->rt_runtime == RUNTIME_INF) 664 goto next; 665 666 /* 667 * From runqueues with spare time, take 1/n part of their 668 * spare time, but no more than our period. 669 */ 670 diff = iter->rt_runtime - iter->rt_time; 671 if (diff > 0) { 672 diff = div_u64((u64)diff, weight); 673 if (rt_rq->rt_runtime + diff > rt_period) 674 diff = rt_period - rt_rq->rt_runtime; 675 iter->rt_runtime -= diff; 676 rt_rq->rt_runtime += diff; 677 if (rt_rq->rt_runtime == rt_period) { 678 raw_spin_unlock(&iter->rt_runtime_lock); 679 break; 680 } 681 } 682 next: 683 raw_spin_unlock(&iter->rt_runtime_lock); 684 } 685 raw_spin_unlock(&rt_b->rt_runtime_lock); 686 } 687 688 /* 689 * Ensure this RQ takes back all the runtime it lend to its neighbours. 690 */ 691 static void __disable_runtime(struct rq *rq) 692 { 693 struct root_domain *rd = rq->rd; 694 rt_rq_iter_t iter; 695 struct rt_rq *rt_rq; 696 697 if (unlikely(!scheduler_running)) 698 return; 699 700 for_each_rt_rq(rt_rq, iter, rq) { 701 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 702 s64 want; 703 int i; 704 705 raw_spin_lock(&rt_b->rt_runtime_lock); 706 raw_spin_lock(&rt_rq->rt_runtime_lock); 707 /* 708 * Either we're all inf and nobody needs to borrow, or we're 709 * already disabled and thus have nothing to do, or we have 710 * exactly the right amount of runtime to take out. 711 */ 712 if (rt_rq->rt_runtime == RUNTIME_INF || 713 rt_rq->rt_runtime == rt_b->rt_runtime) 714 goto balanced; 715 raw_spin_unlock(&rt_rq->rt_runtime_lock); 716 717 /* 718 * Calculate the difference between what we started out with 719 * and what we current have, that's the amount of runtime 720 * we lend and now have to reclaim. 721 */ 722 want = rt_b->rt_runtime - rt_rq->rt_runtime; 723 724 /* 725 * Greedy reclaim, take back as much as we can. 726 */ 727 for_each_cpu(i, rd->span) { 728 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 729 s64 diff; 730 731 /* 732 * Can't reclaim from ourselves or disabled runqueues. 733 */ 734 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 735 continue; 736 737 raw_spin_lock(&iter->rt_runtime_lock); 738 if (want > 0) { 739 diff = min_t(s64, iter->rt_runtime, want); 740 iter->rt_runtime -= diff; 741 want -= diff; 742 } else { 743 iter->rt_runtime -= want; 744 want -= want; 745 } 746 raw_spin_unlock(&iter->rt_runtime_lock); 747 748 if (!want) 749 break; 750 } 751 752 raw_spin_lock(&rt_rq->rt_runtime_lock); 753 /* 754 * We cannot be left wanting - that would mean some runtime 755 * leaked out of the system. 756 */ 757 BUG_ON(want); 758 balanced: 759 /* 760 * Disable all the borrow logic by pretending we have inf 761 * runtime - in which case borrowing doesn't make sense. 762 */ 763 rt_rq->rt_runtime = RUNTIME_INF; 764 rt_rq->rt_throttled = 0; 765 raw_spin_unlock(&rt_rq->rt_runtime_lock); 766 raw_spin_unlock(&rt_b->rt_runtime_lock); 767 768 /* Make rt_rq available for pick_next_task() */ 769 sched_rt_rq_enqueue(rt_rq); 770 } 771 } 772 773 static void __enable_runtime(struct rq *rq) 774 { 775 rt_rq_iter_t iter; 776 struct rt_rq *rt_rq; 777 778 if (unlikely(!scheduler_running)) 779 return; 780 781 /* 782 * Reset each runqueue's bandwidth settings 783 */ 784 for_each_rt_rq(rt_rq, iter, rq) { 785 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 786 787 raw_spin_lock(&rt_b->rt_runtime_lock); 788 raw_spin_lock(&rt_rq->rt_runtime_lock); 789 rt_rq->rt_runtime = rt_b->rt_runtime; 790 rt_rq->rt_time = 0; 791 rt_rq->rt_throttled = 0; 792 raw_spin_unlock(&rt_rq->rt_runtime_lock); 793 raw_spin_unlock(&rt_b->rt_runtime_lock); 794 } 795 } 796 797 static void balance_runtime(struct rt_rq *rt_rq) 798 { 799 if (!sched_feat(RT_RUNTIME_SHARE)) 800 return; 801 802 if (rt_rq->rt_time > rt_rq->rt_runtime) { 803 raw_spin_unlock(&rt_rq->rt_runtime_lock); 804 do_balance_runtime(rt_rq); 805 raw_spin_lock(&rt_rq->rt_runtime_lock); 806 } 807 } 808 #else /* !CONFIG_SMP */ 809 static inline void balance_runtime(struct rt_rq *rt_rq) {} 810 #endif /* CONFIG_SMP */ 811 812 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 813 { 814 int i, idle = 1, throttled = 0; 815 const struct cpumask *span; 816 817 span = sched_rt_period_mask(); 818 #ifdef CONFIG_RT_GROUP_SCHED 819 /* 820 * FIXME: isolated CPUs should really leave the root task group, 821 * whether they are isolcpus or were isolated via cpusets, lest 822 * the timer run on a CPU which does not service all runqueues, 823 * potentially leaving other CPUs indefinitely throttled. If 824 * isolation is really required, the user will turn the throttle 825 * off to kill the perturbations it causes anyway. Meanwhile, 826 * this maintains functionality for boot and/or troubleshooting. 827 */ 828 if (rt_b == &root_task_group.rt_bandwidth) 829 span = cpu_online_mask; 830 #endif 831 for_each_cpu(i, span) { 832 int enqueue = 0; 833 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 834 struct rq *rq = rq_of_rt_rq(rt_rq); 835 int skip; 836 837 /* 838 * When span == cpu_online_mask, taking each rq->lock 839 * can be time-consuming. Try to avoid it when possible. 840 */ 841 raw_spin_lock(&rt_rq->rt_runtime_lock); 842 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) 843 rt_rq->rt_runtime = rt_b->rt_runtime; 844 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 845 raw_spin_unlock(&rt_rq->rt_runtime_lock); 846 if (skip) 847 continue; 848 849 raw_spin_lock(&rq->lock); 850 update_rq_clock(rq); 851 852 if (rt_rq->rt_time) { 853 u64 runtime; 854 855 raw_spin_lock(&rt_rq->rt_runtime_lock); 856 if (rt_rq->rt_throttled) 857 balance_runtime(rt_rq); 858 runtime = rt_rq->rt_runtime; 859 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 860 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 861 rt_rq->rt_throttled = 0; 862 enqueue = 1; 863 864 /* 865 * When we're idle and a woken (rt) task is 866 * throttled check_preempt_curr() will set 867 * skip_update and the time between the wakeup 868 * and this unthrottle will get accounted as 869 * 'runtime'. 870 */ 871 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 872 rq_clock_cancel_skipupdate(rq); 873 } 874 if (rt_rq->rt_time || rt_rq->rt_nr_running) 875 idle = 0; 876 raw_spin_unlock(&rt_rq->rt_runtime_lock); 877 } else if (rt_rq->rt_nr_running) { 878 idle = 0; 879 if (!rt_rq_throttled(rt_rq)) 880 enqueue = 1; 881 } 882 if (rt_rq->rt_throttled) 883 throttled = 1; 884 885 if (enqueue) 886 sched_rt_rq_enqueue(rt_rq); 887 raw_spin_unlock(&rq->lock); 888 } 889 890 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 891 return 1; 892 893 return idle; 894 } 895 896 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 897 { 898 #ifdef CONFIG_RT_GROUP_SCHED 899 struct rt_rq *rt_rq = group_rt_rq(rt_se); 900 901 if (rt_rq) 902 return rt_rq->highest_prio.curr; 903 #endif 904 905 return rt_task_of(rt_se)->prio; 906 } 907 908 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 909 { 910 u64 runtime = sched_rt_runtime(rt_rq); 911 912 if (rt_rq->rt_throttled) 913 return rt_rq_throttled(rt_rq); 914 915 if (runtime >= sched_rt_period(rt_rq)) 916 return 0; 917 918 balance_runtime(rt_rq); 919 runtime = sched_rt_runtime(rt_rq); 920 if (runtime == RUNTIME_INF) 921 return 0; 922 923 if (rt_rq->rt_time > runtime) { 924 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 925 926 /* 927 * Don't actually throttle groups that have no runtime assigned 928 * but accrue some time due to boosting. 929 */ 930 if (likely(rt_b->rt_runtime)) { 931 rt_rq->rt_throttled = 1; 932 printk_deferred_once("sched: RT throttling activated\n"); 933 } else { 934 /* 935 * In case we did anyway, make it go away, 936 * replenishment is a joke, since it will replenish us 937 * with exactly 0 ns. 938 */ 939 rt_rq->rt_time = 0; 940 } 941 942 if (rt_rq_throttled(rt_rq)) { 943 sched_rt_rq_dequeue(rt_rq); 944 return 1; 945 } 946 } 947 948 return 0; 949 } 950 951 /* 952 * Update the current task's runtime statistics. Skip current tasks that 953 * are not in our scheduling class. 954 */ 955 static void update_curr_rt(struct rq *rq) 956 { 957 struct task_struct *curr = rq->curr; 958 struct sched_rt_entity *rt_se = &curr->rt; 959 u64 delta_exec; 960 u64 now; 961 962 if (curr->sched_class != &rt_sched_class) 963 return; 964 965 now = rq_clock_task(rq); 966 delta_exec = now - curr->se.exec_start; 967 if (unlikely((s64)delta_exec <= 0)) 968 return; 969 970 schedstat_set(curr->se.statistics.exec_max, 971 max(curr->se.statistics.exec_max, delta_exec)); 972 973 curr->se.sum_exec_runtime += delta_exec; 974 account_group_exec_runtime(curr, delta_exec); 975 976 curr->se.exec_start = now; 977 cgroup_account_cputime(curr, delta_exec); 978 979 if (!rt_bandwidth_enabled()) 980 return; 981 982 for_each_sched_rt_entity(rt_se) { 983 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 984 985 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 986 raw_spin_lock(&rt_rq->rt_runtime_lock); 987 rt_rq->rt_time += delta_exec; 988 if (sched_rt_runtime_exceeded(rt_rq)) 989 resched_curr(rq); 990 raw_spin_unlock(&rt_rq->rt_runtime_lock); 991 } 992 } 993 } 994 995 static void 996 dequeue_top_rt_rq(struct rt_rq *rt_rq) 997 { 998 struct rq *rq = rq_of_rt_rq(rt_rq); 999 1000 BUG_ON(&rq->rt != rt_rq); 1001 1002 if (!rt_rq->rt_queued) 1003 return; 1004 1005 BUG_ON(!rq->nr_running); 1006 1007 sub_nr_running(rq, rt_rq->rt_nr_running); 1008 rt_rq->rt_queued = 0; 1009 1010 } 1011 1012 static void 1013 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1014 { 1015 struct rq *rq = rq_of_rt_rq(rt_rq); 1016 1017 BUG_ON(&rq->rt != rt_rq); 1018 1019 if (rt_rq->rt_queued) 1020 return; 1021 1022 if (rt_rq_throttled(rt_rq)) 1023 return; 1024 1025 if (rt_rq->rt_nr_running) { 1026 add_nr_running(rq, rt_rq->rt_nr_running); 1027 rt_rq->rt_queued = 1; 1028 } 1029 1030 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 1031 cpufreq_update_util(rq, 0); 1032 } 1033 1034 #if defined CONFIG_SMP 1035 1036 static void 1037 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1038 { 1039 struct rq *rq = rq_of_rt_rq(rt_rq); 1040 1041 #ifdef CONFIG_RT_GROUP_SCHED 1042 /* 1043 * Change rq's cpupri only if rt_rq is the top queue. 1044 */ 1045 if (&rq->rt != rt_rq) 1046 return; 1047 #endif 1048 if (rq->online && prio < prev_prio) 1049 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1050 } 1051 1052 static void 1053 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1054 { 1055 struct rq *rq = rq_of_rt_rq(rt_rq); 1056 1057 #ifdef CONFIG_RT_GROUP_SCHED 1058 /* 1059 * Change rq's cpupri only if rt_rq is the top queue. 1060 */ 1061 if (&rq->rt != rt_rq) 1062 return; 1063 #endif 1064 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1065 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1066 } 1067 1068 #else /* CONFIG_SMP */ 1069 1070 static inline 1071 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1072 static inline 1073 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1074 1075 #endif /* CONFIG_SMP */ 1076 1077 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1078 static void 1079 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1080 { 1081 int prev_prio = rt_rq->highest_prio.curr; 1082 1083 if (prio < prev_prio) 1084 rt_rq->highest_prio.curr = prio; 1085 1086 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1087 } 1088 1089 static void 1090 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1091 { 1092 int prev_prio = rt_rq->highest_prio.curr; 1093 1094 if (rt_rq->rt_nr_running) { 1095 1096 WARN_ON(prio < prev_prio); 1097 1098 /* 1099 * This may have been our highest task, and therefore 1100 * we may have some recomputation to do 1101 */ 1102 if (prio == prev_prio) { 1103 struct rt_prio_array *array = &rt_rq->active; 1104 1105 rt_rq->highest_prio.curr = 1106 sched_find_first_bit(array->bitmap); 1107 } 1108 1109 } else 1110 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1111 1112 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1113 } 1114 1115 #else 1116 1117 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1118 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1119 1120 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1121 1122 #ifdef CONFIG_RT_GROUP_SCHED 1123 1124 static void 1125 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1126 { 1127 if (rt_se_boosted(rt_se)) 1128 rt_rq->rt_nr_boosted++; 1129 1130 if (rt_rq->tg) 1131 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1132 } 1133 1134 static void 1135 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1136 { 1137 if (rt_se_boosted(rt_se)) 1138 rt_rq->rt_nr_boosted--; 1139 1140 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1141 } 1142 1143 #else /* CONFIG_RT_GROUP_SCHED */ 1144 1145 static void 1146 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1147 { 1148 start_rt_bandwidth(&def_rt_bandwidth); 1149 } 1150 1151 static inline 1152 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1153 1154 #endif /* CONFIG_RT_GROUP_SCHED */ 1155 1156 static inline 1157 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1158 { 1159 struct rt_rq *group_rq = group_rt_rq(rt_se); 1160 1161 if (group_rq) 1162 return group_rq->rt_nr_running; 1163 else 1164 return 1; 1165 } 1166 1167 static inline 1168 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1169 { 1170 struct rt_rq *group_rq = group_rt_rq(rt_se); 1171 struct task_struct *tsk; 1172 1173 if (group_rq) 1174 return group_rq->rr_nr_running; 1175 1176 tsk = rt_task_of(rt_se); 1177 1178 return (tsk->policy == SCHED_RR) ? 1 : 0; 1179 } 1180 1181 static inline 1182 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1183 { 1184 int prio = rt_se_prio(rt_se); 1185 1186 WARN_ON(!rt_prio(prio)); 1187 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1188 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1189 1190 inc_rt_prio(rt_rq, prio); 1191 inc_rt_migration(rt_se, rt_rq); 1192 inc_rt_group(rt_se, rt_rq); 1193 } 1194 1195 static inline 1196 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1197 { 1198 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1199 WARN_ON(!rt_rq->rt_nr_running); 1200 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1201 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1202 1203 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1204 dec_rt_migration(rt_se, rt_rq); 1205 dec_rt_group(rt_se, rt_rq); 1206 } 1207 1208 /* 1209 * Change rt_se->run_list location unless SAVE && !MOVE 1210 * 1211 * assumes ENQUEUE/DEQUEUE flags match 1212 */ 1213 static inline bool move_entity(unsigned int flags) 1214 { 1215 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1216 return false; 1217 1218 return true; 1219 } 1220 1221 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1222 { 1223 list_del_init(&rt_se->run_list); 1224 1225 if (list_empty(array->queue + rt_se_prio(rt_se))) 1226 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1227 1228 rt_se->on_list = 0; 1229 } 1230 1231 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1232 { 1233 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1234 struct rt_prio_array *array = &rt_rq->active; 1235 struct rt_rq *group_rq = group_rt_rq(rt_se); 1236 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1237 1238 /* 1239 * Don't enqueue the group if its throttled, or when empty. 1240 * The latter is a consequence of the former when a child group 1241 * get throttled and the current group doesn't have any other 1242 * active members. 1243 */ 1244 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1245 if (rt_se->on_list) 1246 __delist_rt_entity(rt_se, array); 1247 return; 1248 } 1249 1250 if (move_entity(flags)) { 1251 WARN_ON_ONCE(rt_se->on_list); 1252 if (flags & ENQUEUE_HEAD) 1253 list_add(&rt_se->run_list, queue); 1254 else 1255 list_add_tail(&rt_se->run_list, queue); 1256 1257 __set_bit(rt_se_prio(rt_se), array->bitmap); 1258 rt_se->on_list = 1; 1259 } 1260 rt_se->on_rq = 1; 1261 1262 inc_rt_tasks(rt_se, rt_rq); 1263 } 1264 1265 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1266 { 1267 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1268 struct rt_prio_array *array = &rt_rq->active; 1269 1270 if (move_entity(flags)) { 1271 WARN_ON_ONCE(!rt_se->on_list); 1272 __delist_rt_entity(rt_se, array); 1273 } 1274 rt_se->on_rq = 0; 1275 1276 dec_rt_tasks(rt_se, rt_rq); 1277 } 1278 1279 /* 1280 * Because the prio of an upper entry depends on the lower 1281 * entries, we must remove entries top - down. 1282 */ 1283 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1284 { 1285 struct sched_rt_entity *back = NULL; 1286 1287 for_each_sched_rt_entity(rt_se) { 1288 rt_se->back = back; 1289 back = rt_se; 1290 } 1291 1292 dequeue_top_rt_rq(rt_rq_of_se(back)); 1293 1294 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1295 if (on_rt_rq(rt_se)) 1296 __dequeue_rt_entity(rt_se, flags); 1297 } 1298 } 1299 1300 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1301 { 1302 struct rq *rq = rq_of_rt_se(rt_se); 1303 1304 dequeue_rt_stack(rt_se, flags); 1305 for_each_sched_rt_entity(rt_se) 1306 __enqueue_rt_entity(rt_se, flags); 1307 enqueue_top_rt_rq(&rq->rt); 1308 } 1309 1310 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1311 { 1312 struct rq *rq = rq_of_rt_se(rt_se); 1313 1314 dequeue_rt_stack(rt_se, flags); 1315 1316 for_each_sched_rt_entity(rt_se) { 1317 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1318 1319 if (rt_rq && rt_rq->rt_nr_running) 1320 __enqueue_rt_entity(rt_se, flags); 1321 } 1322 enqueue_top_rt_rq(&rq->rt); 1323 } 1324 1325 /* 1326 * Adding/removing a task to/from a priority array: 1327 */ 1328 static void 1329 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1330 { 1331 struct sched_rt_entity *rt_se = &p->rt; 1332 1333 if (flags & ENQUEUE_WAKEUP) 1334 rt_se->timeout = 0; 1335 1336 enqueue_rt_entity(rt_se, flags); 1337 1338 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1339 enqueue_pushable_task(rq, p); 1340 } 1341 1342 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1343 { 1344 struct sched_rt_entity *rt_se = &p->rt; 1345 1346 update_curr_rt(rq); 1347 dequeue_rt_entity(rt_se, flags); 1348 1349 dequeue_pushable_task(rq, p); 1350 } 1351 1352 /* 1353 * Put task to the head or the end of the run list without the overhead of 1354 * dequeue followed by enqueue. 1355 */ 1356 static void 1357 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1358 { 1359 if (on_rt_rq(rt_se)) { 1360 struct rt_prio_array *array = &rt_rq->active; 1361 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1362 1363 if (head) 1364 list_move(&rt_se->run_list, queue); 1365 else 1366 list_move_tail(&rt_se->run_list, queue); 1367 } 1368 } 1369 1370 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1371 { 1372 struct sched_rt_entity *rt_se = &p->rt; 1373 struct rt_rq *rt_rq; 1374 1375 for_each_sched_rt_entity(rt_se) { 1376 rt_rq = rt_rq_of_se(rt_se); 1377 requeue_rt_entity(rt_rq, rt_se, head); 1378 } 1379 } 1380 1381 static void yield_task_rt(struct rq *rq) 1382 { 1383 requeue_task_rt(rq, rq->curr, 0); 1384 } 1385 1386 #ifdef CONFIG_SMP 1387 static int find_lowest_rq(struct task_struct *task); 1388 1389 static int 1390 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1391 { 1392 struct task_struct *curr; 1393 struct rq *rq; 1394 1395 /* For anything but wake ups, just return the task_cpu */ 1396 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1397 goto out; 1398 1399 rq = cpu_rq(cpu); 1400 1401 rcu_read_lock(); 1402 curr = READ_ONCE(rq->curr); /* unlocked access */ 1403 1404 /* 1405 * If the current task on @p's runqueue is an RT task, then 1406 * try to see if we can wake this RT task up on another 1407 * runqueue. Otherwise simply start this RT task 1408 * on its current runqueue. 1409 * 1410 * We want to avoid overloading runqueues. If the woken 1411 * task is a higher priority, then it will stay on this CPU 1412 * and the lower prio task should be moved to another CPU. 1413 * Even though this will probably make the lower prio task 1414 * lose its cache, we do not want to bounce a higher task 1415 * around just because it gave up its CPU, perhaps for a 1416 * lock? 1417 * 1418 * For equal prio tasks, we just let the scheduler sort it out. 1419 * 1420 * Otherwise, just let it ride on the affined RQ and the 1421 * post-schedule router will push the preempted task away 1422 * 1423 * This test is optimistic, if we get it wrong the load-balancer 1424 * will have to sort it out. 1425 */ 1426 if (curr && unlikely(rt_task(curr)) && 1427 (curr->nr_cpus_allowed < 2 || 1428 curr->prio <= p->prio)) { 1429 int target = find_lowest_rq(p); 1430 1431 /* 1432 * Don't bother moving it if the destination CPU is 1433 * not running a lower priority task. 1434 */ 1435 if (target != -1 && 1436 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1437 cpu = target; 1438 } 1439 rcu_read_unlock(); 1440 1441 out: 1442 return cpu; 1443 } 1444 1445 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1446 { 1447 /* 1448 * Current can't be migrated, useless to reschedule, 1449 * let's hope p can move out. 1450 */ 1451 if (rq->curr->nr_cpus_allowed == 1 || 1452 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1453 return; 1454 1455 /* 1456 * p is migratable, so let's not schedule it and 1457 * see if it is pushed or pulled somewhere else. 1458 */ 1459 if (p->nr_cpus_allowed != 1 1460 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1461 return; 1462 1463 /* 1464 * There appear to be other CPUs that can accept 1465 * the current task but none can run 'p', so lets reschedule 1466 * to try and push the current task away: 1467 */ 1468 requeue_task_rt(rq, p, 1); 1469 resched_curr(rq); 1470 } 1471 1472 #endif /* CONFIG_SMP */ 1473 1474 /* 1475 * Preempt the current task with a newly woken task if needed: 1476 */ 1477 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1478 { 1479 if (p->prio < rq->curr->prio) { 1480 resched_curr(rq); 1481 return; 1482 } 1483 1484 #ifdef CONFIG_SMP 1485 /* 1486 * If: 1487 * 1488 * - the newly woken task is of equal priority to the current task 1489 * - the newly woken task is non-migratable while current is migratable 1490 * - current will be preempted on the next reschedule 1491 * 1492 * we should check to see if current can readily move to a different 1493 * cpu. If so, we will reschedule to allow the push logic to try 1494 * to move current somewhere else, making room for our non-migratable 1495 * task. 1496 */ 1497 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1498 check_preempt_equal_prio(rq, p); 1499 #endif 1500 } 1501 1502 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p) 1503 { 1504 p->se.exec_start = rq_clock_task(rq); 1505 1506 /* The running task is never eligible for pushing */ 1507 dequeue_pushable_task(rq, p); 1508 1509 /* 1510 * If prev task was rt, put_prev_task() has already updated the 1511 * utilization. We only care of the case where we start to schedule a 1512 * rt task 1513 */ 1514 if (rq->curr->sched_class != &rt_sched_class) 1515 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1516 1517 rt_queue_push_tasks(rq); 1518 } 1519 1520 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1521 struct rt_rq *rt_rq) 1522 { 1523 struct rt_prio_array *array = &rt_rq->active; 1524 struct sched_rt_entity *next = NULL; 1525 struct list_head *queue; 1526 int idx; 1527 1528 idx = sched_find_first_bit(array->bitmap); 1529 BUG_ON(idx >= MAX_RT_PRIO); 1530 1531 queue = array->queue + idx; 1532 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1533 1534 return next; 1535 } 1536 1537 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1538 { 1539 struct sched_rt_entity *rt_se; 1540 struct rt_rq *rt_rq = &rq->rt; 1541 1542 do { 1543 rt_se = pick_next_rt_entity(rq, rt_rq); 1544 BUG_ON(!rt_se); 1545 rt_rq = group_rt_rq(rt_se); 1546 } while (rt_rq); 1547 1548 return rt_task_of(rt_se); 1549 } 1550 1551 static struct task_struct * 1552 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 1553 { 1554 struct task_struct *p; 1555 struct rt_rq *rt_rq = &rq->rt; 1556 1557 WARN_ON_ONCE(prev || rf); 1558 1559 if (!rt_rq->rt_queued) 1560 return NULL; 1561 1562 p = _pick_next_task_rt(rq); 1563 1564 set_next_task_rt(rq, p); 1565 1566 return p; 1567 } 1568 1569 static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1570 { 1571 update_curr_rt(rq); 1572 1573 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1574 1575 /* 1576 * The previous task needs to be made eligible for pushing 1577 * if it is still active 1578 */ 1579 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1580 enqueue_pushable_task(rq, p); 1581 1582 if (rf && !on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) { 1583 /* 1584 * This is OK, because current is on_cpu, which avoids it being 1585 * picked for load-balance and preemption/IRQs are still 1586 * disabled avoiding further scheduler activity on it and we've 1587 * not yet started the picking loop. 1588 */ 1589 rq_unpin_lock(rq, rf); 1590 pull_rt_task(rq); 1591 rq_repin_lock(rq, rf); 1592 } 1593 } 1594 1595 #ifdef CONFIG_SMP 1596 1597 /* Only try algorithms three times */ 1598 #define RT_MAX_TRIES 3 1599 1600 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1601 { 1602 if (!task_running(rq, p) && 1603 cpumask_test_cpu(cpu, p->cpus_ptr)) 1604 return 1; 1605 1606 return 0; 1607 } 1608 1609 /* 1610 * Return the highest pushable rq's task, which is suitable to be executed 1611 * on the CPU, NULL otherwise 1612 */ 1613 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1614 { 1615 struct plist_head *head = &rq->rt.pushable_tasks; 1616 struct task_struct *p; 1617 1618 if (!has_pushable_tasks(rq)) 1619 return NULL; 1620 1621 plist_for_each_entry(p, head, pushable_tasks) { 1622 if (pick_rt_task(rq, p, cpu)) 1623 return p; 1624 } 1625 1626 return NULL; 1627 } 1628 1629 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1630 1631 static int find_lowest_rq(struct task_struct *task) 1632 { 1633 struct sched_domain *sd; 1634 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1635 int this_cpu = smp_processor_id(); 1636 int cpu = task_cpu(task); 1637 1638 /* Make sure the mask is initialized first */ 1639 if (unlikely(!lowest_mask)) 1640 return -1; 1641 1642 if (task->nr_cpus_allowed == 1) 1643 return -1; /* No other targets possible */ 1644 1645 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1646 return -1; /* No targets found */ 1647 1648 /* 1649 * At this point we have built a mask of CPUs representing the 1650 * lowest priority tasks in the system. Now we want to elect 1651 * the best one based on our affinity and topology. 1652 * 1653 * We prioritize the last CPU that the task executed on since 1654 * it is most likely cache-hot in that location. 1655 */ 1656 if (cpumask_test_cpu(cpu, lowest_mask)) 1657 return cpu; 1658 1659 /* 1660 * Otherwise, we consult the sched_domains span maps to figure 1661 * out which CPU is logically closest to our hot cache data. 1662 */ 1663 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1664 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1665 1666 rcu_read_lock(); 1667 for_each_domain(cpu, sd) { 1668 if (sd->flags & SD_WAKE_AFFINE) { 1669 int best_cpu; 1670 1671 /* 1672 * "this_cpu" is cheaper to preempt than a 1673 * remote processor. 1674 */ 1675 if (this_cpu != -1 && 1676 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1677 rcu_read_unlock(); 1678 return this_cpu; 1679 } 1680 1681 best_cpu = cpumask_first_and(lowest_mask, 1682 sched_domain_span(sd)); 1683 if (best_cpu < nr_cpu_ids) { 1684 rcu_read_unlock(); 1685 return best_cpu; 1686 } 1687 } 1688 } 1689 rcu_read_unlock(); 1690 1691 /* 1692 * And finally, if there were no matches within the domains 1693 * just give the caller *something* to work with from the compatible 1694 * locations. 1695 */ 1696 if (this_cpu != -1) 1697 return this_cpu; 1698 1699 cpu = cpumask_any(lowest_mask); 1700 if (cpu < nr_cpu_ids) 1701 return cpu; 1702 1703 return -1; 1704 } 1705 1706 /* Will lock the rq it finds */ 1707 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1708 { 1709 struct rq *lowest_rq = NULL; 1710 int tries; 1711 int cpu; 1712 1713 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1714 cpu = find_lowest_rq(task); 1715 1716 if ((cpu == -1) || (cpu == rq->cpu)) 1717 break; 1718 1719 lowest_rq = cpu_rq(cpu); 1720 1721 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1722 /* 1723 * Target rq has tasks of equal or higher priority, 1724 * retrying does not release any lock and is unlikely 1725 * to yield a different result. 1726 */ 1727 lowest_rq = NULL; 1728 break; 1729 } 1730 1731 /* if the prio of this runqueue changed, try again */ 1732 if (double_lock_balance(rq, lowest_rq)) { 1733 /* 1734 * We had to unlock the run queue. In 1735 * the mean time, task could have 1736 * migrated already or had its affinity changed. 1737 * Also make sure that it wasn't scheduled on its rq. 1738 */ 1739 if (unlikely(task_rq(task) != rq || 1740 !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) || 1741 task_running(rq, task) || 1742 !rt_task(task) || 1743 !task_on_rq_queued(task))) { 1744 1745 double_unlock_balance(rq, lowest_rq); 1746 lowest_rq = NULL; 1747 break; 1748 } 1749 } 1750 1751 /* If this rq is still suitable use it. */ 1752 if (lowest_rq->rt.highest_prio.curr > task->prio) 1753 break; 1754 1755 /* try again */ 1756 double_unlock_balance(rq, lowest_rq); 1757 lowest_rq = NULL; 1758 } 1759 1760 return lowest_rq; 1761 } 1762 1763 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1764 { 1765 struct task_struct *p; 1766 1767 if (!has_pushable_tasks(rq)) 1768 return NULL; 1769 1770 p = plist_first_entry(&rq->rt.pushable_tasks, 1771 struct task_struct, pushable_tasks); 1772 1773 BUG_ON(rq->cpu != task_cpu(p)); 1774 BUG_ON(task_current(rq, p)); 1775 BUG_ON(p->nr_cpus_allowed <= 1); 1776 1777 BUG_ON(!task_on_rq_queued(p)); 1778 BUG_ON(!rt_task(p)); 1779 1780 return p; 1781 } 1782 1783 /* 1784 * If the current CPU has more than one RT task, see if the non 1785 * running task can migrate over to a CPU that is running a task 1786 * of lesser priority. 1787 */ 1788 static int push_rt_task(struct rq *rq) 1789 { 1790 struct task_struct *next_task; 1791 struct rq *lowest_rq; 1792 int ret = 0; 1793 1794 if (!rq->rt.overloaded) 1795 return 0; 1796 1797 next_task = pick_next_pushable_task(rq); 1798 if (!next_task) 1799 return 0; 1800 1801 retry: 1802 if (WARN_ON(next_task == rq->curr)) 1803 return 0; 1804 1805 /* 1806 * It's possible that the next_task slipped in of 1807 * higher priority than current. If that's the case 1808 * just reschedule current. 1809 */ 1810 if (unlikely(next_task->prio < rq->curr->prio)) { 1811 resched_curr(rq); 1812 return 0; 1813 } 1814 1815 /* We might release rq lock */ 1816 get_task_struct(next_task); 1817 1818 /* find_lock_lowest_rq locks the rq if found */ 1819 lowest_rq = find_lock_lowest_rq(next_task, rq); 1820 if (!lowest_rq) { 1821 struct task_struct *task; 1822 /* 1823 * find_lock_lowest_rq releases rq->lock 1824 * so it is possible that next_task has migrated. 1825 * 1826 * We need to make sure that the task is still on the same 1827 * run-queue and is also still the next task eligible for 1828 * pushing. 1829 */ 1830 task = pick_next_pushable_task(rq); 1831 if (task == next_task) { 1832 /* 1833 * The task hasn't migrated, and is still the next 1834 * eligible task, but we failed to find a run-queue 1835 * to push it to. Do not retry in this case, since 1836 * other CPUs will pull from us when ready. 1837 */ 1838 goto out; 1839 } 1840 1841 if (!task) 1842 /* No more tasks, just exit */ 1843 goto out; 1844 1845 /* 1846 * Something has shifted, try again. 1847 */ 1848 put_task_struct(next_task); 1849 next_task = task; 1850 goto retry; 1851 } 1852 1853 deactivate_task(rq, next_task, 0); 1854 set_task_cpu(next_task, lowest_rq->cpu); 1855 activate_task(lowest_rq, next_task, 0); 1856 ret = 1; 1857 1858 resched_curr(lowest_rq); 1859 1860 double_unlock_balance(rq, lowest_rq); 1861 1862 out: 1863 put_task_struct(next_task); 1864 1865 return ret; 1866 } 1867 1868 static void push_rt_tasks(struct rq *rq) 1869 { 1870 /* push_rt_task will return true if it moved an RT */ 1871 while (push_rt_task(rq)) 1872 ; 1873 } 1874 1875 #ifdef HAVE_RT_PUSH_IPI 1876 1877 /* 1878 * When a high priority task schedules out from a CPU and a lower priority 1879 * task is scheduled in, a check is made to see if there's any RT tasks 1880 * on other CPUs that are waiting to run because a higher priority RT task 1881 * is currently running on its CPU. In this case, the CPU with multiple RT 1882 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 1883 * up that may be able to run one of its non-running queued RT tasks. 1884 * 1885 * All CPUs with overloaded RT tasks need to be notified as there is currently 1886 * no way to know which of these CPUs have the highest priority task waiting 1887 * to run. Instead of trying to take a spinlock on each of these CPUs, 1888 * which has shown to cause large latency when done on machines with many 1889 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 1890 * RT tasks waiting to run. 1891 * 1892 * Just sending an IPI to each of the CPUs is also an issue, as on large 1893 * count CPU machines, this can cause an IPI storm on a CPU, especially 1894 * if its the only CPU with multiple RT tasks queued, and a large number 1895 * of CPUs scheduling a lower priority task at the same time. 1896 * 1897 * Each root domain has its own irq work function that can iterate over 1898 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 1899 * tassk must be checked if there's one or many CPUs that are lowering 1900 * their priority, there's a single irq work iterator that will try to 1901 * push off RT tasks that are waiting to run. 1902 * 1903 * When a CPU schedules a lower priority task, it will kick off the 1904 * irq work iterator that will jump to each CPU with overloaded RT tasks. 1905 * As it only takes the first CPU that schedules a lower priority task 1906 * to start the process, the rto_start variable is incremented and if 1907 * the atomic result is one, then that CPU will try to take the rto_lock. 1908 * This prevents high contention on the lock as the process handles all 1909 * CPUs scheduling lower priority tasks. 1910 * 1911 * All CPUs that are scheduling a lower priority task will increment the 1912 * rt_loop_next variable. This will make sure that the irq work iterator 1913 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 1914 * priority task, even if the iterator is in the middle of a scan. Incrementing 1915 * the rt_loop_next will cause the iterator to perform another scan. 1916 * 1917 */ 1918 static int rto_next_cpu(struct root_domain *rd) 1919 { 1920 int next; 1921 int cpu; 1922 1923 /* 1924 * When starting the IPI RT pushing, the rto_cpu is set to -1, 1925 * rt_next_cpu() will simply return the first CPU found in 1926 * the rto_mask. 1927 * 1928 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it 1929 * will return the next CPU found in the rto_mask. 1930 * 1931 * If there are no more CPUs left in the rto_mask, then a check is made 1932 * against rto_loop and rto_loop_next. rto_loop is only updated with 1933 * the rto_lock held, but any CPU may increment the rto_loop_next 1934 * without any locking. 1935 */ 1936 for (;;) { 1937 1938 /* When rto_cpu is -1 this acts like cpumask_first() */ 1939 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 1940 1941 rd->rto_cpu = cpu; 1942 1943 if (cpu < nr_cpu_ids) 1944 return cpu; 1945 1946 rd->rto_cpu = -1; 1947 1948 /* 1949 * ACQUIRE ensures we see the @rto_mask changes 1950 * made prior to the @next value observed. 1951 * 1952 * Matches WMB in rt_set_overload(). 1953 */ 1954 next = atomic_read_acquire(&rd->rto_loop_next); 1955 1956 if (rd->rto_loop == next) 1957 break; 1958 1959 rd->rto_loop = next; 1960 } 1961 1962 return -1; 1963 } 1964 1965 static inline bool rto_start_trylock(atomic_t *v) 1966 { 1967 return !atomic_cmpxchg_acquire(v, 0, 1); 1968 } 1969 1970 static inline void rto_start_unlock(atomic_t *v) 1971 { 1972 atomic_set_release(v, 0); 1973 } 1974 1975 static void tell_cpu_to_push(struct rq *rq) 1976 { 1977 int cpu = -1; 1978 1979 /* Keep the loop going if the IPI is currently active */ 1980 atomic_inc(&rq->rd->rto_loop_next); 1981 1982 /* Only one CPU can initiate a loop at a time */ 1983 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 1984 return; 1985 1986 raw_spin_lock(&rq->rd->rto_lock); 1987 1988 /* 1989 * The rto_cpu is updated under the lock, if it has a valid CPU 1990 * then the IPI is still running and will continue due to the 1991 * update to loop_next, and nothing needs to be done here. 1992 * Otherwise it is finishing up and an ipi needs to be sent. 1993 */ 1994 if (rq->rd->rto_cpu < 0) 1995 cpu = rto_next_cpu(rq->rd); 1996 1997 raw_spin_unlock(&rq->rd->rto_lock); 1998 1999 rto_start_unlock(&rq->rd->rto_loop_start); 2000 2001 if (cpu >= 0) { 2002 /* Make sure the rd does not get freed while pushing */ 2003 sched_get_rd(rq->rd); 2004 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 2005 } 2006 } 2007 2008 /* Called from hardirq context */ 2009 void rto_push_irq_work_func(struct irq_work *work) 2010 { 2011 struct root_domain *rd = 2012 container_of(work, struct root_domain, rto_push_work); 2013 struct rq *rq; 2014 int cpu; 2015 2016 rq = this_rq(); 2017 2018 /* 2019 * We do not need to grab the lock to check for has_pushable_tasks. 2020 * When it gets updated, a check is made if a push is possible. 2021 */ 2022 if (has_pushable_tasks(rq)) { 2023 raw_spin_lock(&rq->lock); 2024 push_rt_tasks(rq); 2025 raw_spin_unlock(&rq->lock); 2026 } 2027 2028 raw_spin_lock(&rd->rto_lock); 2029 2030 /* Pass the IPI to the next rt overloaded queue */ 2031 cpu = rto_next_cpu(rd); 2032 2033 raw_spin_unlock(&rd->rto_lock); 2034 2035 if (cpu < 0) { 2036 sched_put_rd(rd); 2037 return; 2038 } 2039 2040 /* Try the next RT overloaded CPU */ 2041 irq_work_queue_on(&rd->rto_push_work, cpu); 2042 } 2043 #endif /* HAVE_RT_PUSH_IPI */ 2044 2045 static void pull_rt_task(struct rq *this_rq) 2046 { 2047 int this_cpu = this_rq->cpu, cpu; 2048 bool resched = false; 2049 struct task_struct *p; 2050 struct rq *src_rq; 2051 int rt_overload_count = rt_overloaded(this_rq); 2052 2053 if (likely(!rt_overload_count)) 2054 return; 2055 2056 /* 2057 * Match the barrier from rt_set_overloaded; this guarantees that if we 2058 * see overloaded we must also see the rto_mask bit. 2059 */ 2060 smp_rmb(); 2061 2062 /* If we are the only overloaded CPU do nothing */ 2063 if (rt_overload_count == 1 && 2064 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2065 return; 2066 2067 #ifdef HAVE_RT_PUSH_IPI 2068 if (sched_feat(RT_PUSH_IPI)) { 2069 tell_cpu_to_push(this_rq); 2070 return; 2071 } 2072 #endif 2073 2074 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2075 if (this_cpu == cpu) 2076 continue; 2077 2078 src_rq = cpu_rq(cpu); 2079 2080 /* 2081 * Don't bother taking the src_rq->lock if the next highest 2082 * task is known to be lower-priority than our current task. 2083 * This may look racy, but if this value is about to go 2084 * logically higher, the src_rq will push this task away. 2085 * And if its going logically lower, we do not care 2086 */ 2087 if (src_rq->rt.highest_prio.next >= 2088 this_rq->rt.highest_prio.curr) 2089 continue; 2090 2091 /* 2092 * We can potentially drop this_rq's lock in 2093 * double_lock_balance, and another CPU could 2094 * alter this_rq 2095 */ 2096 double_lock_balance(this_rq, src_rq); 2097 2098 /* 2099 * We can pull only a task, which is pushable 2100 * on its rq, and no others. 2101 */ 2102 p = pick_highest_pushable_task(src_rq, this_cpu); 2103 2104 /* 2105 * Do we have an RT task that preempts 2106 * the to-be-scheduled task? 2107 */ 2108 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2109 WARN_ON(p == src_rq->curr); 2110 WARN_ON(!task_on_rq_queued(p)); 2111 2112 /* 2113 * There's a chance that p is higher in priority 2114 * than what's currently running on its CPU. 2115 * This is just that p is wakeing up and hasn't 2116 * had a chance to schedule. We only pull 2117 * p if it is lower in priority than the 2118 * current task on the run queue 2119 */ 2120 if (p->prio < src_rq->curr->prio) 2121 goto skip; 2122 2123 resched = true; 2124 2125 deactivate_task(src_rq, p, 0); 2126 set_task_cpu(p, this_cpu); 2127 activate_task(this_rq, p, 0); 2128 /* 2129 * We continue with the search, just in 2130 * case there's an even higher prio task 2131 * in another runqueue. (low likelihood 2132 * but possible) 2133 */ 2134 } 2135 skip: 2136 double_unlock_balance(this_rq, src_rq); 2137 } 2138 2139 if (resched) 2140 resched_curr(this_rq); 2141 } 2142 2143 /* 2144 * If we are not running and we are not going to reschedule soon, we should 2145 * try to push tasks away now 2146 */ 2147 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2148 { 2149 if (!task_running(rq, p) && 2150 !test_tsk_need_resched(rq->curr) && 2151 p->nr_cpus_allowed > 1 && 2152 (dl_task(rq->curr) || rt_task(rq->curr)) && 2153 (rq->curr->nr_cpus_allowed < 2 || 2154 rq->curr->prio <= p->prio)) 2155 push_rt_tasks(rq); 2156 } 2157 2158 /* Assumes rq->lock is held */ 2159 static void rq_online_rt(struct rq *rq) 2160 { 2161 if (rq->rt.overloaded) 2162 rt_set_overload(rq); 2163 2164 __enable_runtime(rq); 2165 2166 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2167 } 2168 2169 /* Assumes rq->lock is held */ 2170 static void rq_offline_rt(struct rq *rq) 2171 { 2172 if (rq->rt.overloaded) 2173 rt_clear_overload(rq); 2174 2175 __disable_runtime(rq); 2176 2177 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2178 } 2179 2180 /* 2181 * When switch from the rt queue, we bring ourselves to a position 2182 * that we might want to pull RT tasks from other runqueues. 2183 */ 2184 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2185 { 2186 /* 2187 * If there are other RT tasks then we will reschedule 2188 * and the scheduling of the other RT tasks will handle 2189 * the balancing. But if we are the last RT task 2190 * we may need to handle the pulling of RT tasks 2191 * now. 2192 */ 2193 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2194 return; 2195 2196 rt_queue_pull_task(rq); 2197 } 2198 2199 void __init init_sched_rt_class(void) 2200 { 2201 unsigned int i; 2202 2203 for_each_possible_cpu(i) { 2204 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2205 GFP_KERNEL, cpu_to_node(i)); 2206 } 2207 } 2208 #endif /* CONFIG_SMP */ 2209 2210 /* 2211 * When switching a task to RT, we may overload the runqueue 2212 * with RT tasks. In this case we try to push them off to 2213 * other runqueues. 2214 */ 2215 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2216 { 2217 /* 2218 * If we are already running, then there's nothing 2219 * that needs to be done. But if we are not running 2220 * we may need to preempt the current running task. 2221 * If that current running task is also an RT task 2222 * then see if we can move to another run queue. 2223 */ 2224 if (task_on_rq_queued(p) && rq->curr != p) { 2225 #ifdef CONFIG_SMP 2226 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2227 rt_queue_push_tasks(rq); 2228 #endif /* CONFIG_SMP */ 2229 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) 2230 resched_curr(rq); 2231 } 2232 } 2233 2234 /* 2235 * Priority of the task has changed. This may cause 2236 * us to initiate a push or pull. 2237 */ 2238 static void 2239 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2240 { 2241 if (!task_on_rq_queued(p)) 2242 return; 2243 2244 if (rq->curr == p) { 2245 #ifdef CONFIG_SMP 2246 /* 2247 * If our priority decreases while running, we 2248 * may need to pull tasks to this runqueue. 2249 */ 2250 if (oldprio < p->prio) 2251 rt_queue_pull_task(rq); 2252 2253 /* 2254 * If there's a higher priority task waiting to run 2255 * then reschedule. 2256 */ 2257 if (p->prio > rq->rt.highest_prio.curr) 2258 resched_curr(rq); 2259 #else 2260 /* For UP simply resched on drop of prio */ 2261 if (oldprio < p->prio) 2262 resched_curr(rq); 2263 #endif /* CONFIG_SMP */ 2264 } else { 2265 /* 2266 * This task is not running, but if it is 2267 * greater than the current running task 2268 * then reschedule. 2269 */ 2270 if (p->prio < rq->curr->prio) 2271 resched_curr(rq); 2272 } 2273 } 2274 2275 #ifdef CONFIG_POSIX_TIMERS 2276 static void watchdog(struct rq *rq, struct task_struct *p) 2277 { 2278 unsigned long soft, hard; 2279 2280 /* max may change after cur was read, this will be fixed next tick */ 2281 soft = task_rlimit(p, RLIMIT_RTTIME); 2282 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2283 2284 if (soft != RLIM_INFINITY) { 2285 unsigned long next; 2286 2287 if (p->rt.watchdog_stamp != jiffies) { 2288 p->rt.timeout++; 2289 p->rt.watchdog_stamp = jiffies; 2290 } 2291 2292 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2293 if (p->rt.timeout > next) { 2294 posix_cputimers_rt_watchdog(&p->posix_cputimers, 2295 p->se.sum_exec_runtime); 2296 } 2297 } 2298 } 2299 #else 2300 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2301 #endif 2302 2303 /* 2304 * scheduler tick hitting a task of our scheduling class. 2305 * 2306 * NOTE: This function can be called remotely by the tick offload that 2307 * goes along full dynticks. Therefore no local assumption can be made 2308 * and everything must be accessed through the @rq and @curr passed in 2309 * parameters. 2310 */ 2311 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2312 { 2313 struct sched_rt_entity *rt_se = &p->rt; 2314 2315 update_curr_rt(rq); 2316 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2317 2318 watchdog(rq, p); 2319 2320 /* 2321 * RR tasks need a special form of timeslice management. 2322 * FIFO tasks have no timeslices. 2323 */ 2324 if (p->policy != SCHED_RR) 2325 return; 2326 2327 if (--p->rt.time_slice) 2328 return; 2329 2330 p->rt.time_slice = sched_rr_timeslice; 2331 2332 /* 2333 * Requeue to the end of queue if we (and all of our ancestors) are not 2334 * the only element on the queue 2335 */ 2336 for_each_sched_rt_entity(rt_se) { 2337 if (rt_se->run_list.prev != rt_se->run_list.next) { 2338 requeue_task_rt(rq, p, 0); 2339 resched_curr(rq); 2340 return; 2341 } 2342 } 2343 } 2344 2345 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2346 { 2347 /* 2348 * Time slice is 0 for SCHED_FIFO tasks 2349 */ 2350 if (task->policy == SCHED_RR) 2351 return sched_rr_timeslice; 2352 else 2353 return 0; 2354 } 2355 2356 const struct sched_class rt_sched_class = { 2357 .next = &fair_sched_class, 2358 .enqueue_task = enqueue_task_rt, 2359 .dequeue_task = dequeue_task_rt, 2360 .yield_task = yield_task_rt, 2361 2362 .check_preempt_curr = check_preempt_curr_rt, 2363 2364 .pick_next_task = pick_next_task_rt, 2365 .put_prev_task = put_prev_task_rt, 2366 .set_next_task = set_next_task_rt, 2367 2368 #ifdef CONFIG_SMP 2369 .select_task_rq = select_task_rq_rt, 2370 2371 .set_cpus_allowed = set_cpus_allowed_common, 2372 .rq_online = rq_online_rt, 2373 .rq_offline = rq_offline_rt, 2374 .task_woken = task_woken_rt, 2375 .switched_from = switched_from_rt, 2376 #endif 2377 2378 .task_tick = task_tick_rt, 2379 2380 .get_rr_interval = get_rr_interval_rt, 2381 2382 .prio_changed = prio_changed_rt, 2383 .switched_to = switched_to_rt, 2384 2385 .update_curr = update_curr_rt, 2386 2387 #ifdef CONFIG_UCLAMP_TASK 2388 .uclamp_enabled = 1, 2389 #endif 2390 }; 2391 2392 #ifdef CONFIG_RT_GROUP_SCHED 2393 /* 2394 * Ensure that the real time constraints are schedulable. 2395 */ 2396 static DEFINE_MUTEX(rt_constraints_mutex); 2397 2398 /* Must be called with tasklist_lock held */ 2399 static inline int tg_has_rt_tasks(struct task_group *tg) 2400 { 2401 struct task_struct *g, *p; 2402 2403 /* 2404 * Autogroups do not have RT tasks; see autogroup_create(). 2405 */ 2406 if (task_group_is_autogroup(tg)) 2407 return 0; 2408 2409 for_each_process_thread(g, p) { 2410 if (rt_task(p) && task_group(p) == tg) 2411 return 1; 2412 } 2413 2414 return 0; 2415 } 2416 2417 struct rt_schedulable_data { 2418 struct task_group *tg; 2419 u64 rt_period; 2420 u64 rt_runtime; 2421 }; 2422 2423 static int tg_rt_schedulable(struct task_group *tg, void *data) 2424 { 2425 struct rt_schedulable_data *d = data; 2426 struct task_group *child; 2427 unsigned long total, sum = 0; 2428 u64 period, runtime; 2429 2430 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2431 runtime = tg->rt_bandwidth.rt_runtime; 2432 2433 if (tg == d->tg) { 2434 period = d->rt_period; 2435 runtime = d->rt_runtime; 2436 } 2437 2438 /* 2439 * Cannot have more runtime than the period. 2440 */ 2441 if (runtime > period && runtime != RUNTIME_INF) 2442 return -EINVAL; 2443 2444 /* 2445 * Ensure we don't starve existing RT tasks. 2446 */ 2447 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 2448 return -EBUSY; 2449 2450 total = to_ratio(period, runtime); 2451 2452 /* 2453 * Nobody can have more than the global setting allows. 2454 */ 2455 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2456 return -EINVAL; 2457 2458 /* 2459 * The sum of our children's runtime should not exceed our own. 2460 */ 2461 list_for_each_entry_rcu(child, &tg->children, siblings) { 2462 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2463 runtime = child->rt_bandwidth.rt_runtime; 2464 2465 if (child == d->tg) { 2466 period = d->rt_period; 2467 runtime = d->rt_runtime; 2468 } 2469 2470 sum += to_ratio(period, runtime); 2471 } 2472 2473 if (sum > total) 2474 return -EINVAL; 2475 2476 return 0; 2477 } 2478 2479 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2480 { 2481 int ret; 2482 2483 struct rt_schedulable_data data = { 2484 .tg = tg, 2485 .rt_period = period, 2486 .rt_runtime = runtime, 2487 }; 2488 2489 rcu_read_lock(); 2490 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2491 rcu_read_unlock(); 2492 2493 return ret; 2494 } 2495 2496 static int tg_set_rt_bandwidth(struct task_group *tg, 2497 u64 rt_period, u64 rt_runtime) 2498 { 2499 int i, err = 0; 2500 2501 /* 2502 * Disallowing the root group RT runtime is BAD, it would disallow the 2503 * kernel creating (and or operating) RT threads. 2504 */ 2505 if (tg == &root_task_group && rt_runtime == 0) 2506 return -EINVAL; 2507 2508 /* No period doesn't make any sense. */ 2509 if (rt_period == 0) 2510 return -EINVAL; 2511 2512 mutex_lock(&rt_constraints_mutex); 2513 read_lock(&tasklist_lock); 2514 err = __rt_schedulable(tg, rt_period, rt_runtime); 2515 if (err) 2516 goto unlock; 2517 2518 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2519 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2520 tg->rt_bandwidth.rt_runtime = rt_runtime; 2521 2522 for_each_possible_cpu(i) { 2523 struct rt_rq *rt_rq = tg->rt_rq[i]; 2524 2525 raw_spin_lock(&rt_rq->rt_runtime_lock); 2526 rt_rq->rt_runtime = rt_runtime; 2527 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2528 } 2529 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2530 unlock: 2531 read_unlock(&tasklist_lock); 2532 mutex_unlock(&rt_constraints_mutex); 2533 2534 return err; 2535 } 2536 2537 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2538 { 2539 u64 rt_runtime, rt_period; 2540 2541 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2542 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2543 if (rt_runtime_us < 0) 2544 rt_runtime = RUNTIME_INF; 2545 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) 2546 return -EINVAL; 2547 2548 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2549 } 2550 2551 long sched_group_rt_runtime(struct task_group *tg) 2552 { 2553 u64 rt_runtime_us; 2554 2555 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2556 return -1; 2557 2558 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2559 do_div(rt_runtime_us, NSEC_PER_USEC); 2560 return rt_runtime_us; 2561 } 2562 2563 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2564 { 2565 u64 rt_runtime, rt_period; 2566 2567 if (rt_period_us > U64_MAX / NSEC_PER_USEC) 2568 return -EINVAL; 2569 2570 rt_period = rt_period_us * NSEC_PER_USEC; 2571 rt_runtime = tg->rt_bandwidth.rt_runtime; 2572 2573 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2574 } 2575 2576 long sched_group_rt_period(struct task_group *tg) 2577 { 2578 u64 rt_period_us; 2579 2580 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2581 do_div(rt_period_us, NSEC_PER_USEC); 2582 return rt_period_us; 2583 } 2584 2585 static int sched_rt_global_constraints(void) 2586 { 2587 int ret = 0; 2588 2589 mutex_lock(&rt_constraints_mutex); 2590 read_lock(&tasklist_lock); 2591 ret = __rt_schedulable(NULL, 0, 0); 2592 read_unlock(&tasklist_lock); 2593 mutex_unlock(&rt_constraints_mutex); 2594 2595 return ret; 2596 } 2597 2598 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2599 { 2600 /* Don't accept realtime tasks when there is no way for them to run */ 2601 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2602 return 0; 2603 2604 return 1; 2605 } 2606 2607 #else /* !CONFIG_RT_GROUP_SCHED */ 2608 static int sched_rt_global_constraints(void) 2609 { 2610 unsigned long flags; 2611 int i; 2612 2613 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2614 for_each_possible_cpu(i) { 2615 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2616 2617 raw_spin_lock(&rt_rq->rt_runtime_lock); 2618 rt_rq->rt_runtime = global_rt_runtime(); 2619 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2620 } 2621 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2622 2623 return 0; 2624 } 2625 #endif /* CONFIG_RT_GROUP_SCHED */ 2626 2627 static int sched_rt_global_validate(void) 2628 { 2629 if (sysctl_sched_rt_period <= 0) 2630 return -EINVAL; 2631 2632 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2633 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 2634 return -EINVAL; 2635 2636 return 0; 2637 } 2638 2639 static void sched_rt_do_global(void) 2640 { 2641 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 2642 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 2643 } 2644 2645 int sched_rt_handler(struct ctl_table *table, int write, 2646 void __user *buffer, size_t *lenp, 2647 loff_t *ppos) 2648 { 2649 int old_period, old_runtime; 2650 static DEFINE_MUTEX(mutex); 2651 int ret; 2652 2653 mutex_lock(&mutex); 2654 old_period = sysctl_sched_rt_period; 2655 old_runtime = sysctl_sched_rt_runtime; 2656 2657 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2658 2659 if (!ret && write) { 2660 ret = sched_rt_global_validate(); 2661 if (ret) 2662 goto undo; 2663 2664 ret = sched_dl_global_validate(); 2665 if (ret) 2666 goto undo; 2667 2668 ret = sched_rt_global_constraints(); 2669 if (ret) 2670 goto undo; 2671 2672 sched_rt_do_global(); 2673 sched_dl_do_global(); 2674 } 2675 if (0) { 2676 undo: 2677 sysctl_sched_rt_period = old_period; 2678 sysctl_sched_rt_runtime = old_runtime; 2679 } 2680 mutex_unlock(&mutex); 2681 2682 return ret; 2683 } 2684 2685 int sched_rr_handler(struct ctl_table *table, int write, 2686 void __user *buffer, size_t *lenp, 2687 loff_t *ppos) 2688 { 2689 int ret; 2690 static DEFINE_MUTEX(mutex); 2691 2692 mutex_lock(&mutex); 2693 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2694 /* 2695 * Make sure that internally we keep jiffies. 2696 * Also, writing zero resets the timeslice to default: 2697 */ 2698 if (!ret && write) { 2699 sched_rr_timeslice = 2700 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 2701 msecs_to_jiffies(sysctl_sched_rr_timeslice); 2702 } 2703 mutex_unlock(&mutex); 2704 2705 return ret; 2706 } 2707 2708 #ifdef CONFIG_SCHED_DEBUG 2709 void print_rt_stats(struct seq_file *m, int cpu) 2710 { 2711 rt_rq_iter_t iter; 2712 struct rt_rq *rt_rq; 2713 2714 rcu_read_lock(); 2715 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2716 print_rt_rq(m, cpu, rt_rq); 2717 rcu_read_unlock(); 2718 } 2719 #endif /* CONFIG_SCHED_DEBUG */ 2720