1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 7 int sched_rr_timeslice = RR_TIMESLICE; 8 /* More than 4 hours if BW_SHIFT equals 20. */ 9 static const u64 max_rt_runtime = MAX_BW; 10 11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 12 13 struct rt_bandwidth def_rt_bandwidth; 14 15 /* 16 * period over which we measure -rt task CPU usage in us. 17 * default: 1s 18 */ 19 unsigned int sysctl_sched_rt_period = 1000000; 20 21 /* 22 * part of the period that we allow rt tasks to run in us. 23 * default: 0.95s 24 */ 25 int sysctl_sched_rt_runtime = 950000; 26 27 #ifdef CONFIG_SYSCTL 28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE; 29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer, 30 size_t *lenp, loff_t *ppos); 31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer, 32 size_t *lenp, loff_t *ppos); 33 static struct ctl_table sched_rt_sysctls[] = { 34 { 35 .procname = "sched_rt_period_us", 36 .data = &sysctl_sched_rt_period, 37 .maxlen = sizeof(unsigned int), 38 .mode = 0644, 39 .proc_handler = sched_rt_handler, 40 }, 41 { 42 .procname = "sched_rt_runtime_us", 43 .data = &sysctl_sched_rt_runtime, 44 .maxlen = sizeof(int), 45 .mode = 0644, 46 .proc_handler = sched_rt_handler, 47 }, 48 { 49 .procname = "sched_rr_timeslice_ms", 50 .data = &sysctl_sched_rr_timeslice, 51 .maxlen = sizeof(int), 52 .mode = 0644, 53 .proc_handler = sched_rr_handler, 54 }, 55 {} 56 }; 57 58 static int __init sched_rt_sysctl_init(void) 59 { 60 register_sysctl_init("kernel", sched_rt_sysctls); 61 return 0; 62 } 63 late_initcall(sched_rt_sysctl_init); 64 #endif 65 66 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 67 { 68 struct rt_bandwidth *rt_b = 69 container_of(timer, struct rt_bandwidth, rt_period_timer); 70 int idle = 0; 71 int overrun; 72 73 raw_spin_lock(&rt_b->rt_runtime_lock); 74 for (;;) { 75 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 76 if (!overrun) 77 break; 78 79 raw_spin_unlock(&rt_b->rt_runtime_lock); 80 idle = do_sched_rt_period_timer(rt_b, overrun); 81 raw_spin_lock(&rt_b->rt_runtime_lock); 82 } 83 if (idle) 84 rt_b->rt_period_active = 0; 85 raw_spin_unlock(&rt_b->rt_runtime_lock); 86 87 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 88 } 89 90 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 91 { 92 rt_b->rt_period = ns_to_ktime(period); 93 rt_b->rt_runtime = runtime; 94 95 raw_spin_lock_init(&rt_b->rt_runtime_lock); 96 97 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC, 98 HRTIMER_MODE_REL_HARD); 99 rt_b->rt_period_timer.function = sched_rt_period_timer; 100 } 101 102 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b) 103 { 104 raw_spin_lock(&rt_b->rt_runtime_lock); 105 if (!rt_b->rt_period_active) { 106 rt_b->rt_period_active = 1; 107 /* 108 * SCHED_DEADLINE updates the bandwidth, as a run away 109 * RT task with a DL task could hog a CPU. But DL does 110 * not reset the period. If a deadline task was running 111 * without an RT task running, it can cause RT tasks to 112 * throttle when they start up. Kick the timer right away 113 * to update the period. 114 */ 115 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 116 hrtimer_start_expires(&rt_b->rt_period_timer, 117 HRTIMER_MODE_ABS_PINNED_HARD); 118 } 119 raw_spin_unlock(&rt_b->rt_runtime_lock); 120 } 121 122 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 123 { 124 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 125 return; 126 127 do_start_rt_bandwidth(rt_b); 128 } 129 130 void init_rt_rq(struct rt_rq *rt_rq) 131 { 132 struct rt_prio_array *array; 133 int i; 134 135 array = &rt_rq->active; 136 for (i = 0; i < MAX_RT_PRIO; i++) { 137 INIT_LIST_HEAD(array->queue + i); 138 __clear_bit(i, array->bitmap); 139 } 140 /* delimiter for bitsearch: */ 141 __set_bit(MAX_RT_PRIO, array->bitmap); 142 143 #if defined CONFIG_SMP 144 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 145 rt_rq->highest_prio.next = MAX_RT_PRIO-1; 146 rt_rq->rt_nr_migratory = 0; 147 rt_rq->overloaded = 0; 148 plist_head_init(&rt_rq->pushable_tasks); 149 #endif /* CONFIG_SMP */ 150 /* We start is dequeued state, because no RT tasks are queued */ 151 rt_rq->rt_queued = 0; 152 153 rt_rq->rt_time = 0; 154 rt_rq->rt_throttled = 0; 155 rt_rq->rt_runtime = 0; 156 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 157 } 158 159 #ifdef CONFIG_RT_GROUP_SCHED 160 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 161 { 162 hrtimer_cancel(&rt_b->rt_period_timer); 163 } 164 165 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 166 167 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 168 { 169 #ifdef CONFIG_SCHED_DEBUG 170 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 171 #endif 172 return container_of(rt_se, struct task_struct, rt); 173 } 174 175 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 176 { 177 return rt_rq->rq; 178 } 179 180 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 181 { 182 return rt_se->rt_rq; 183 } 184 185 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 186 { 187 struct rt_rq *rt_rq = rt_se->rt_rq; 188 189 return rt_rq->rq; 190 } 191 192 void unregister_rt_sched_group(struct task_group *tg) 193 { 194 if (tg->rt_se) 195 destroy_rt_bandwidth(&tg->rt_bandwidth); 196 197 } 198 199 void free_rt_sched_group(struct task_group *tg) 200 { 201 int i; 202 203 for_each_possible_cpu(i) { 204 if (tg->rt_rq) 205 kfree(tg->rt_rq[i]); 206 if (tg->rt_se) 207 kfree(tg->rt_se[i]); 208 } 209 210 kfree(tg->rt_rq); 211 kfree(tg->rt_se); 212 } 213 214 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 215 struct sched_rt_entity *rt_se, int cpu, 216 struct sched_rt_entity *parent) 217 { 218 struct rq *rq = cpu_rq(cpu); 219 220 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 221 rt_rq->rt_nr_boosted = 0; 222 rt_rq->rq = rq; 223 rt_rq->tg = tg; 224 225 tg->rt_rq[cpu] = rt_rq; 226 tg->rt_se[cpu] = rt_se; 227 228 if (!rt_se) 229 return; 230 231 if (!parent) 232 rt_se->rt_rq = &rq->rt; 233 else 234 rt_se->rt_rq = parent->my_q; 235 236 rt_se->my_q = rt_rq; 237 rt_se->parent = parent; 238 INIT_LIST_HEAD(&rt_se->run_list); 239 } 240 241 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 242 { 243 struct rt_rq *rt_rq; 244 struct sched_rt_entity *rt_se; 245 int i; 246 247 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); 248 if (!tg->rt_rq) 249 goto err; 250 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); 251 if (!tg->rt_se) 252 goto err; 253 254 init_rt_bandwidth(&tg->rt_bandwidth, 255 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 256 257 for_each_possible_cpu(i) { 258 rt_rq = kzalloc_node(sizeof(struct rt_rq), 259 GFP_KERNEL, cpu_to_node(i)); 260 if (!rt_rq) 261 goto err; 262 263 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 264 GFP_KERNEL, cpu_to_node(i)); 265 if (!rt_se) 266 goto err_free_rq; 267 268 init_rt_rq(rt_rq); 269 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 270 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 271 } 272 273 return 1; 274 275 err_free_rq: 276 kfree(rt_rq); 277 err: 278 return 0; 279 } 280 281 #else /* CONFIG_RT_GROUP_SCHED */ 282 283 #define rt_entity_is_task(rt_se) (1) 284 285 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 286 { 287 return container_of(rt_se, struct task_struct, rt); 288 } 289 290 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 291 { 292 return container_of(rt_rq, struct rq, rt); 293 } 294 295 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 296 { 297 struct task_struct *p = rt_task_of(rt_se); 298 299 return task_rq(p); 300 } 301 302 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 303 { 304 struct rq *rq = rq_of_rt_se(rt_se); 305 306 return &rq->rt; 307 } 308 309 void unregister_rt_sched_group(struct task_group *tg) { } 310 311 void free_rt_sched_group(struct task_group *tg) { } 312 313 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 314 { 315 return 1; 316 } 317 #endif /* CONFIG_RT_GROUP_SCHED */ 318 319 #ifdef CONFIG_SMP 320 321 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 322 { 323 /* Try to pull RT tasks here if we lower this rq's prio */ 324 return rq->online && rq->rt.highest_prio.curr > prev->prio; 325 } 326 327 static inline int rt_overloaded(struct rq *rq) 328 { 329 return atomic_read(&rq->rd->rto_count); 330 } 331 332 static inline void rt_set_overload(struct rq *rq) 333 { 334 if (!rq->online) 335 return; 336 337 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 338 /* 339 * Make sure the mask is visible before we set 340 * the overload count. That is checked to determine 341 * if we should look at the mask. It would be a shame 342 * if we looked at the mask, but the mask was not 343 * updated yet. 344 * 345 * Matched by the barrier in pull_rt_task(). 346 */ 347 smp_wmb(); 348 atomic_inc(&rq->rd->rto_count); 349 } 350 351 static inline void rt_clear_overload(struct rq *rq) 352 { 353 if (!rq->online) 354 return; 355 356 /* the order here really doesn't matter */ 357 atomic_dec(&rq->rd->rto_count); 358 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 359 } 360 361 static void update_rt_migration(struct rt_rq *rt_rq) 362 { 363 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 364 if (!rt_rq->overloaded) { 365 rt_set_overload(rq_of_rt_rq(rt_rq)); 366 rt_rq->overloaded = 1; 367 } 368 } else if (rt_rq->overloaded) { 369 rt_clear_overload(rq_of_rt_rq(rt_rq)); 370 rt_rq->overloaded = 0; 371 } 372 } 373 374 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 375 { 376 struct task_struct *p; 377 378 if (!rt_entity_is_task(rt_se)) 379 return; 380 381 p = rt_task_of(rt_se); 382 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 383 384 rt_rq->rt_nr_total++; 385 if (p->nr_cpus_allowed > 1) 386 rt_rq->rt_nr_migratory++; 387 388 update_rt_migration(rt_rq); 389 } 390 391 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 392 { 393 struct task_struct *p; 394 395 if (!rt_entity_is_task(rt_se)) 396 return; 397 398 p = rt_task_of(rt_se); 399 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 400 401 rt_rq->rt_nr_total--; 402 if (p->nr_cpus_allowed > 1) 403 rt_rq->rt_nr_migratory--; 404 405 update_rt_migration(rt_rq); 406 } 407 408 static inline int has_pushable_tasks(struct rq *rq) 409 { 410 return !plist_head_empty(&rq->rt.pushable_tasks); 411 } 412 413 static DEFINE_PER_CPU(struct callback_head, rt_push_head); 414 static DEFINE_PER_CPU(struct callback_head, rt_pull_head); 415 416 static void push_rt_tasks(struct rq *); 417 static void pull_rt_task(struct rq *); 418 419 static inline void rt_queue_push_tasks(struct rq *rq) 420 { 421 if (!has_pushable_tasks(rq)) 422 return; 423 424 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 425 } 426 427 static inline void rt_queue_pull_task(struct rq *rq) 428 { 429 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 430 } 431 432 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 433 { 434 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 435 plist_node_init(&p->pushable_tasks, p->prio); 436 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 437 438 /* Update the highest prio pushable task */ 439 if (p->prio < rq->rt.highest_prio.next) 440 rq->rt.highest_prio.next = p->prio; 441 } 442 443 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 444 { 445 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 446 447 /* Update the new highest prio pushable task */ 448 if (has_pushable_tasks(rq)) { 449 p = plist_first_entry(&rq->rt.pushable_tasks, 450 struct task_struct, pushable_tasks); 451 rq->rt.highest_prio.next = p->prio; 452 } else { 453 rq->rt.highest_prio.next = MAX_RT_PRIO-1; 454 } 455 } 456 457 #else 458 459 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 460 { 461 } 462 463 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 464 { 465 } 466 467 static inline 468 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 469 { 470 } 471 472 static inline 473 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 474 { 475 } 476 477 static inline void rt_queue_push_tasks(struct rq *rq) 478 { 479 } 480 #endif /* CONFIG_SMP */ 481 482 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 483 static void dequeue_top_rt_rq(struct rt_rq *rt_rq); 484 485 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 486 { 487 return rt_se->on_rq; 488 } 489 490 #ifdef CONFIG_UCLAMP_TASK 491 /* 492 * Verify the fitness of task @p to run on @cpu taking into account the uclamp 493 * settings. 494 * 495 * This check is only important for heterogeneous systems where uclamp_min value 496 * is higher than the capacity of a @cpu. For non-heterogeneous system this 497 * function will always return true. 498 * 499 * The function will return true if the capacity of the @cpu is >= the 500 * uclamp_min and false otherwise. 501 * 502 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min 503 * > uclamp_max. 504 */ 505 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 506 { 507 unsigned int min_cap; 508 unsigned int max_cap; 509 unsigned int cpu_cap; 510 511 /* Only heterogeneous systems can benefit from this check */ 512 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 513 return true; 514 515 min_cap = uclamp_eff_value(p, UCLAMP_MIN); 516 max_cap = uclamp_eff_value(p, UCLAMP_MAX); 517 518 cpu_cap = capacity_orig_of(cpu); 519 520 return cpu_cap >= min(min_cap, max_cap); 521 } 522 #else 523 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 524 { 525 return true; 526 } 527 #endif 528 529 #ifdef CONFIG_RT_GROUP_SCHED 530 531 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 532 { 533 if (!rt_rq->tg) 534 return RUNTIME_INF; 535 536 return rt_rq->rt_runtime; 537 } 538 539 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 540 { 541 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 542 } 543 544 typedef struct task_group *rt_rq_iter_t; 545 546 static inline struct task_group *next_task_group(struct task_group *tg) 547 { 548 do { 549 tg = list_entry_rcu(tg->list.next, 550 typeof(struct task_group), list); 551 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 552 553 if (&tg->list == &task_groups) 554 tg = NULL; 555 556 return tg; 557 } 558 559 #define for_each_rt_rq(rt_rq, iter, rq) \ 560 for (iter = container_of(&task_groups, typeof(*iter), list); \ 561 (iter = next_task_group(iter)) && \ 562 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 563 564 #define for_each_sched_rt_entity(rt_se) \ 565 for (; rt_se; rt_se = rt_se->parent) 566 567 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 568 { 569 return rt_se->my_q; 570 } 571 572 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 573 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 574 575 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 576 { 577 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 578 struct rq *rq = rq_of_rt_rq(rt_rq); 579 struct sched_rt_entity *rt_se; 580 581 int cpu = cpu_of(rq); 582 583 rt_se = rt_rq->tg->rt_se[cpu]; 584 585 if (rt_rq->rt_nr_running) { 586 if (!rt_se) 587 enqueue_top_rt_rq(rt_rq); 588 else if (!on_rt_rq(rt_se)) 589 enqueue_rt_entity(rt_se, 0); 590 591 if (rt_rq->highest_prio.curr < curr->prio) 592 resched_curr(rq); 593 } 594 } 595 596 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 597 { 598 struct sched_rt_entity *rt_se; 599 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 600 601 rt_se = rt_rq->tg->rt_se[cpu]; 602 603 if (!rt_se) { 604 dequeue_top_rt_rq(rt_rq); 605 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 606 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); 607 } 608 else if (on_rt_rq(rt_se)) 609 dequeue_rt_entity(rt_se, 0); 610 } 611 612 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 613 { 614 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 615 } 616 617 static int rt_se_boosted(struct sched_rt_entity *rt_se) 618 { 619 struct rt_rq *rt_rq = group_rt_rq(rt_se); 620 struct task_struct *p; 621 622 if (rt_rq) 623 return !!rt_rq->rt_nr_boosted; 624 625 p = rt_task_of(rt_se); 626 return p->prio != p->normal_prio; 627 } 628 629 #ifdef CONFIG_SMP 630 static inline const struct cpumask *sched_rt_period_mask(void) 631 { 632 return this_rq()->rd->span; 633 } 634 #else 635 static inline const struct cpumask *sched_rt_period_mask(void) 636 { 637 return cpu_online_mask; 638 } 639 #endif 640 641 static inline 642 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 643 { 644 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 645 } 646 647 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 648 { 649 return &rt_rq->tg->rt_bandwidth; 650 } 651 652 #else /* !CONFIG_RT_GROUP_SCHED */ 653 654 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 655 { 656 return rt_rq->rt_runtime; 657 } 658 659 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 660 { 661 return ktime_to_ns(def_rt_bandwidth.rt_period); 662 } 663 664 typedef struct rt_rq *rt_rq_iter_t; 665 666 #define for_each_rt_rq(rt_rq, iter, rq) \ 667 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 668 669 #define for_each_sched_rt_entity(rt_se) \ 670 for (; rt_se; rt_se = NULL) 671 672 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 673 { 674 return NULL; 675 } 676 677 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 678 { 679 struct rq *rq = rq_of_rt_rq(rt_rq); 680 681 if (!rt_rq->rt_nr_running) 682 return; 683 684 enqueue_top_rt_rq(rt_rq); 685 resched_curr(rq); 686 } 687 688 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 689 { 690 dequeue_top_rt_rq(rt_rq); 691 } 692 693 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 694 { 695 return rt_rq->rt_throttled; 696 } 697 698 static inline const struct cpumask *sched_rt_period_mask(void) 699 { 700 return cpu_online_mask; 701 } 702 703 static inline 704 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 705 { 706 return &cpu_rq(cpu)->rt; 707 } 708 709 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 710 { 711 return &def_rt_bandwidth; 712 } 713 714 #endif /* CONFIG_RT_GROUP_SCHED */ 715 716 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 717 { 718 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 719 720 return (hrtimer_active(&rt_b->rt_period_timer) || 721 rt_rq->rt_time < rt_b->rt_runtime); 722 } 723 724 #ifdef CONFIG_SMP 725 /* 726 * We ran out of runtime, see if we can borrow some from our neighbours. 727 */ 728 static void do_balance_runtime(struct rt_rq *rt_rq) 729 { 730 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 731 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 732 int i, weight; 733 u64 rt_period; 734 735 weight = cpumask_weight(rd->span); 736 737 raw_spin_lock(&rt_b->rt_runtime_lock); 738 rt_period = ktime_to_ns(rt_b->rt_period); 739 for_each_cpu(i, rd->span) { 740 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 741 s64 diff; 742 743 if (iter == rt_rq) 744 continue; 745 746 raw_spin_lock(&iter->rt_runtime_lock); 747 /* 748 * Either all rqs have inf runtime and there's nothing to steal 749 * or __disable_runtime() below sets a specific rq to inf to 750 * indicate its been disabled and disallow stealing. 751 */ 752 if (iter->rt_runtime == RUNTIME_INF) 753 goto next; 754 755 /* 756 * From runqueues with spare time, take 1/n part of their 757 * spare time, but no more than our period. 758 */ 759 diff = iter->rt_runtime - iter->rt_time; 760 if (diff > 0) { 761 diff = div_u64((u64)diff, weight); 762 if (rt_rq->rt_runtime + diff > rt_period) 763 diff = rt_period - rt_rq->rt_runtime; 764 iter->rt_runtime -= diff; 765 rt_rq->rt_runtime += diff; 766 if (rt_rq->rt_runtime == rt_period) { 767 raw_spin_unlock(&iter->rt_runtime_lock); 768 break; 769 } 770 } 771 next: 772 raw_spin_unlock(&iter->rt_runtime_lock); 773 } 774 raw_spin_unlock(&rt_b->rt_runtime_lock); 775 } 776 777 /* 778 * Ensure this RQ takes back all the runtime it lend to its neighbours. 779 */ 780 static void __disable_runtime(struct rq *rq) 781 { 782 struct root_domain *rd = rq->rd; 783 rt_rq_iter_t iter; 784 struct rt_rq *rt_rq; 785 786 if (unlikely(!scheduler_running)) 787 return; 788 789 for_each_rt_rq(rt_rq, iter, rq) { 790 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 791 s64 want; 792 int i; 793 794 raw_spin_lock(&rt_b->rt_runtime_lock); 795 raw_spin_lock(&rt_rq->rt_runtime_lock); 796 /* 797 * Either we're all inf and nobody needs to borrow, or we're 798 * already disabled and thus have nothing to do, or we have 799 * exactly the right amount of runtime to take out. 800 */ 801 if (rt_rq->rt_runtime == RUNTIME_INF || 802 rt_rq->rt_runtime == rt_b->rt_runtime) 803 goto balanced; 804 raw_spin_unlock(&rt_rq->rt_runtime_lock); 805 806 /* 807 * Calculate the difference between what we started out with 808 * and what we current have, that's the amount of runtime 809 * we lend and now have to reclaim. 810 */ 811 want = rt_b->rt_runtime - rt_rq->rt_runtime; 812 813 /* 814 * Greedy reclaim, take back as much as we can. 815 */ 816 for_each_cpu(i, rd->span) { 817 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 818 s64 diff; 819 820 /* 821 * Can't reclaim from ourselves or disabled runqueues. 822 */ 823 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 824 continue; 825 826 raw_spin_lock(&iter->rt_runtime_lock); 827 if (want > 0) { 828 diff = min_t(s64, iter->rt_runtime, want); 829 iter->rt_runtime -= diff; 830 want -= diff; 831 } else { 832 iter->rt_runtime -= want; 833 want -= want; 834 } 835 raw_spin_unlock(&iter->rt_runtime_lock); 836 837 if (!want) 838 break; 839 } 840 841 raw_spin_lock(&rt_rq->rt_runtime_lock); 842 /* 843 * We cannot be left wanting - that would mean some runtime 844 * leaked out of the system. 845 */ 846 BUG_ON(want); 847 balanced: 848 /* 849 * Disable all the borrow logic by pretending we have inf 850 * runtime - in which case borrowing doesn't make sense. 851 */ 852 rt_rq->rt_runtime = RUNTIME_INF; 853 rt_rq->rt_throttled = 0; 854 raw_spin_unlock(&rt_rq->rt_runtime_lock); 855 raw_spin_unlock(&rt_b->rt_runtime_lock); 856 857 /* Make rt_rq available for pick_next_task() */ 858 sched_rt_rq_enqueue(rt_rq); 859 } 860 } 861 862 static void __enable_runtime(struct rq *rq) 863 { 864 rt_rq_iter_t iter; 865 struct rt_rq *rt_rq; 866 867 if (unlikely(!scheduler_running)) 868 return; 869 870 /* 871 * Reset each runqueue's bandwidth settings 872 */ 873 for_each_rt_rq(rt_rq, iter, rq) { 874 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 875 876 raw_spin_lock(&rt_b->rt_runtime_lock); 877 raw_spin_lock(&rt_rq->rt_runtime_lock); 878 rt_rq->rt_runtime = rt_b->rt_runtime; 879 rt_rq->rt_time = 0; 880 rt_rq->rt_throttled = 0; 881 raw_spin_unlock(&rt_rq->rt_runtime_lock); 882 raw_spin_unlock(&rt_b->rt_runtime_lock); 883 } 884 } 885 886 static void balance_runtime(struct rt_rq *rt_rq) 887 { 888 if (!sched_feat(RT_RUNTIME_SHARE)) 889 return; 890 891 if (rt_rq->rt_time > rt_rq->rt_runtime) { 892 raw_spin_unlock(&rt_rq->rt_runtime_lock); 893 do_balance_runtime(rt_rq); 894 raw_spin_lock(&rt_rq->rt_runtime_lock); 895 } 896 } 897 #else /* !CONFIG_SMP */ 898 static inline void balance_runtime(struct rt_rq *rt_rq) {} 899 #endif /* CONFIG_SMP */ 900 901 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 902 { 903 int i, idle = 1, throttled = 0; 904 const struct cpumask *span; 905 906 span = sched_rt_period_mask(); 907 #ifdef CONFIG_RT_GROUP_SCHED 908 /* 909 * FIXME: isolated CPUs should really leave the root task group, 910 * whether they are isolcpus or were isolated via cpusets, lest 911 * the timer run on a CPU which does not service all runqueues, 912 * potentially leaving other CPUs indefinitely throttled. If 913 * isolation is really required, the user will turn the throttle 914 * off to kill the perturbations it causes anyway. Meanwhile, 915 * this maintains functionality for boot and/or troubleshooting. 916 */ 917 if (rt_b == &root_task_group.rt_bandwidth) 918 span = cpu_online_mask; 919 #endif 920 for_each_cpu(i, span) { 921 int enqueue = 0; 922 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 923 struct rq *rq = rq_of_rt_rq(rt_rq); 924 struct rq_flags rf; 925 int skip; 926 927 /* 928 * When span == cpu_online_mask, taking each rq->lock 929 * can be time-consuming. Try to avoid it when possible. 930 */ 931 raw_spin_lock(&rt_rq->rt_runtime_lock); 932 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) 933 rt_rq->rt_runtime = rt_b->rt_runtime; 934 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 935 raw_spin_unlock(&rt_rq->rt_runtime_lock); 936 if (skip) 937 continue; 938 939 rq_lock(rq, &rf); 940 update_rq_clock(rq); 941 942 if (rt_rq->rt_time) { 943 u64 runtime; 944 945 raw_spin_lock(&rt_rq->rt_runtime_lock); 946 if (rt_rq->rt_throttled) 947 balance_runtime(rt_rq); 948 runtime = rt_rq->rt_runtime; 949 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 950 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 951 rt_rq->rt_throttled = 0; 952 enqueue = 1; 953 954 /* 955 * When we're idle and a woken (rt) task is 956 * throttled check_preempt_curr() will set 957 * skip_update and the time between the wakeup 958 * and this unthrottle will get accounted as 959 * 'runtime'. 960 */ 961 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 962 rq_clock_cancel_skipupdate(rq); 963 } 964 if (rt_rq->rt_time || rt_rq->rt_nr_running) 965 idle = 0; 966 raw_spin_unlock(&rt_rq->rt_runtime_lock); 967 } else if (rt_rq->rt_nr_running) { 968 idle = 0; 969 if (!rt_rq_throttled(rt_rq)) 970 enqueue = 1; 971 } 972 if (rt_rq->rt_throttled) 973 throttled = 1; 974 975 if (enqueue) 976 sched_rt_rq_enqueue(rt_rq); 977 rq_unlock(rq, &rf); 978 } 979 980 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 981 return 1; 982 983 return idle; 984 } 985 986 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 987 { 988 #ifdef CONFIG_RT_GROUP_SCHED 989 struct rt_rq *rt_rq = group_rt_rq(rt_se); 990 991 if (rt_rq) 992 return rt_rq->highest_prio.curr; 993 #endif 994 995 return rt_task_of(rt_se)->prio; 996 } 997 998 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 999 { 1000 u64 runtime = sched_rt_runtime(rt_rq); 1001 1002 if (rt_rq->rt_throttled) 1003 return rt_rq_throttled(rt_rq); 1004 1005 if (runtime >= sched_rt_period(rt_rq)) 1006 return 0; 1007 1008 balance_runtime(rt_rq); 1009 runtime = sched_rt_runtime(rt_rq); 1010 if (runtime == RUNTIME_INF) 1011 return 0; 1012 1013 if (rt_rq->rt_time > runtime) { 1014 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 1015 1016 /* 1017 * Don't actually throttle groups that have no runtime assigned 1018 * but accrue some time due to boosting. 1019 */ 1020 if (likely(rt_b->rt_runtime)) { 1021 rt_rq->rt_throttled = 1; 1022 printk_deferred_once("sched: RT throttling activated\n"); 1023 } else { 1024 /* 1025 * In case we did anyway, make it go away, 1026 * replenishment is a joke, since it will replenish us 1027 * with exactly 0 ns. 1028 */ 1029 rt_rq->rt_time = 0; 1030 } 1031 1032 if (rt_rq_throttled(rt_rq)) { 1033 sched_rt_rq_dequeue(rt_rq); 1034 return 1; 1035 } 1036 } 1037 1038 return 0; 1039 } 1040 1041 /* 1042 * Update the current task's runtime statistics. Skip current tasks that 1043 * are not in our scheduling class. 1044 */ 1045 static void update_curr_rt(struct rq *rq) 1046 { 1047 struct task_struct *curr = rq->curr; 1048 struct sched_rt_entity *rt_se = &curr->rt; 1049 u64 delta_exec; 1050 u64 now; 1051 1052 if (curr->sched_class != &rt_sched_class) 1053 return; 1054 1055 now = rq_clock_task(rq); 1056 delta_exec = now - curr->se.exec_start; 1057 if (unlikely((s64)delta_exec <= 0)) 1058 return; 1059 1060 schedstat_set(curr->stats.exec_max, 1061 max(curr->stats.exec_max, delta_exec)); 1062 1063 trace_sched_stat_runtime(curr, delta_exec, 0); 1064 1065 curr->se.sum_exec_runtime += delta_exec; 1066 account_group_exec_runtime(curr, delta_exec); 1067 1068 curr->se.exec_start = now; 1069 cgroup_account_cputime(curr, delta_exec); 1070 1071 if (!rt_bandwidth_enabled()) 1072 return; 1073 1074 for_each_sched_rt_entity(rt_se) { 1075 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1076 int exceeded; 1077 1078 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 1079 raw_spin_lock(&rt_rq->rt_runtime_lock); 1080 rt_rq->rt_time += delta_exec; 1081 exceeded = sched_rt_runtime_exceeded(rt_rq); 1082 if (exceeded) 1083 resched_curr(rq); 1084 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1085 if (exceeded) 1086 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq)); 1087 } 1088 } 1089 } 1090 1091 static void 1092 dequeue_top_rt_rq(struct rt_rq *rt_rq) 1093 { 1094 struct rq *rq = rq_of_rt_rq(rt_rq); 1095 1096 BUG_ON(&rq->rt != rt_rq); 1097 1098 if (!rt_rq->rt_queued) 1099 return; 1100 1101 BUG_ON(!rq->nr_running); 1102 1103 sub_nr_running(rq, rt_rq->rt_nr_running); 1104 rt_rq->rt_queued = 0; 1105 1106 } 1107 1108 static void 1109 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1110 { 1111 struct rq *rq = rq_of_rt_rq(rt_rq); 1112 1113 BUG_ON(&rq->rt != rt_rq); 1114 1115 if (rt_rq->rt_queued) 1116 return; 1117 1118 if (rt_rq_throttled(rt_rq)) 1119 return; 1120 1121 if (rt_rq->rt_nr_running) { 1122 add_nr_running(rq, rt_rq->rt_nr_running); 1123 rt_rq->rt_queued = 1; 1124 } 1125 1126 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 1127 cpufreq_update_util(rq, 0); 1128 } 1129 1130 #if defined CONFIG_SMP 1131 1132 static void 1133 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1134 { 1135 struct rq *rq = rq_of_rt_rq(rt_rq); 1136 1137 #ifdef CONFIG_RT_GROUP_SCHED 1138 /* 1139 * Change rq's cpupri only if rt_rq is the top queue. 1140 */ 1141 if (&rq->rt != rt_rq) 1142 return; 1143 #endif 1144 if (rq->online && prio < prev_prio) 1145 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1146 } 1147 1148 static void 1149 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1150 { 1151 struct rq *rq = rq_of_rt_rq(rt_rq); 1152 1153 #ifdef CONFIG_RT_GROUP_SCHED 1154 /* 1155 * Change rq's cpupri only if rt_rq is the top queue. 1156 */ 1157 if (&rq->rt != rt_rq) 1158 return; 1159 #endif 1160 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1161 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1162 } 1163 1164 #else /* CONFIG_SMP */ 1165 1166 static inline 1167 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1168 static inline 1169 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1170 1171 #endif /* CONFIG_SMP */ 1172 1173 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1174 static void 1175 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1176 { 1177 int prev_prio = rt_rq->highest_prio.curr; 1178 1179 if (prio < prev_prio) 1180 rt_rq->highest_prio.curr = prio; 1181 1182 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1183 } 1184 1185 static void 1186 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1187 { 1188 int prev_prio = rt_rq->highest_prio.curr; 1189 1190 if (rt_rq->rt_nr_running) { 1191 1192 WARN_ON(prio < prev_prio); 1193 1194 /* 1195 * This may have been our highest task, and therefore 1196 * we may have some recomputation to do 1197 */ 1198 if (prio == prev_prio) { 1199 struct rt_prio_array *array = &rt_rq->active; 1200 1201 rt_rq->highest_prio.curr = 1202 sched_find_first_bit(array->bitmap); 1203 } 1204 1205 } else { 1206 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 1207 } 1208 1209 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1210 } 1211 1212 #else 1213 1214 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1215 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1216 1217 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1218 1219 #ifdef CONFIG_RT_GROUP_SCHED 1220 1221 static void 1222 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1223 { 1224 if (rt_se_boosted(rt_se)) 1225 rt_rq->rt_nr_boosted++; 1226 1227 if (rt_rq->tg) 1228 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1229 } 1230 1231 static void 1232 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1233 { 1234 if (rt_se_boosted(rt_se)) 1235 rt_rq->rt_nr_boosted--; 1236 1237 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1238 } 1239 1240 #else /* CONFIG_RT_GROUP_SCHED */ 1241 1242 static void 1243 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1244 { 1245 start_rt_bandwidth(&def_rt_bandwidth); 1246 } 1247 1248 static inline 1249 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1250 1251 #endif /* CONFIG_RT_GROUP_SCHED */ 1252 1253 static inline 1254 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1255 { 1256 struct rt_rq *group_rq = group_rt_rq(rt_se); 1257 1258 if (group_rq) 1259 return group_rq->rt_nr_running; 1260 else 1261 return 1; 1262 } 1263 1264 static inline 1265 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1266 { 1267 struct rt_rq *group_rq = group_rt_rq(rt_se); 1268 struct task_struct *tsk; 1269 1270 if (group_rq) 1271 return group_rq->rr_nr_running; 1272 1273 tsk = rt_task_of(rt_se); 1274 1275 return (tsk->policy == SCHED_RR) ? 1 : 0; 1276 } 1277 1278 static inline 1279 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1280 { 1281 int prio = rt_se_prio(rt_se); 1282 1283 WARN_ON(!rt_prio(prio)); 1284 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1285 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1286 1287 inc_rt_prio(rt_rq, prio); 1288 inc_rt_migration(rt_se, rt_rq); 1289 inc_rt_group(rt_se, rt_rq); 1290 } 1291 1292 static inline 1293 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1294 { 1295 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1296 WARN_ON(!rt_rq->rt_nr_running); 1297 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1298 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1299 1300 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1301 dec_rt_migration(rt_se, rt_rq); 1302 dec_rt_group(rt_se, rt_rq); 1303 } 1304 1305 /* 1306 * Change rt_se->run_list location unless SAVE && !MOVE 1307 * 1308 * assumes ENQUEUE/DEQUEUE flags match 1309 */ 1310 static inline bool move_entity(unsigned int flags) 1311 { 1312 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1313 return false; 1314 1315 return true; 1316 } 1317 1318 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1319 { 1320 list_del_init(&rt_se->run_list); 1321 1322 if (list_empty(array->queue + rt_se_prio(rt_se))) 1323 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1324 1325 rt_se->on_list = 0; 1326 } 1327 1328 static inline struct sched_statistics * 1329 __schedstats_from_rt_se(struct sched_rt_entity *rt_se) 1330 { 1331 #ifdef CONFIG_RT_GROUP_SCHED 1332 /* schedstats is not supported for rt group. */ 1333 if (!rt_entity_is_task(rt_se)) 1334 return NULL; 1335 #endif 1336 1337 return &rt_task_of(rt_se)->stats; 1338 } 1339 1340 static inline void 1341 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1342 { 1343 struct sched_statistics *stats; 1344 struct task_struct *p = NULL; 1345 1346 if (!schedstat_enabled()) 1347 return; 1348 1349 if (rt_entity_is_task(rt_se)) 1350 p = rt_task_of(rt_se); 1351 1352 stats = __schedstats_from_rt_se(rt_se); 1353 if (!stats) 1354 return; 1355 1356 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats); 1357 } 1358 1359 static inline void 1360 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1361 { 1362 struct sched_statistics *stats; 1363 struct task_struct *p = NULL; 1364 1365 if (!schedstat_enabled()) 1366 return; 1367 1368 if (rt_entity_is_task(rt_se)) 1369 p = rt_task_of(rt_se); 1370 1371 stats = __schedstats_from_rt_se(rt_se); 1372 if (!stats) 1373 return; 1374 1375 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats); 1376 } 1377 1378 static inline void 1379 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, 1380 int flags) 1381 { 1382 if (!schedstat_enabled()) 1383 return; 1384 1385 if (flags & ENQUEUE_WAKEUP) 1386 update_stats_enqueue_sleeper_rt(rt_rq, rt_se); 1387 } 1388 1389 static inline void 1390 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1391 { 1392 struct sched_statistics *stats; 1393 struct task_struct *p = NULL; 1394 1395 if (!schedstat_enabled()) 1396 return; 1397 1398 if (rt_entity_is_task(rt_se)) 1399 p = rt_task_of(rt_se); 1400 1401 stats = __schedstats_from_rt_se(rt_se); 1402 if (!stats) 1403 return; 1404 1405 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats); 1406 } 1407 1408 static inline void 1409 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, 1410 int flags) 1411 { 1412 struct task_struct *p = NULL; 1413 1414 if (!schedstat_enabled()) 1415 return; 1416 1417 if (rt_entity_is_task(rt_se)) 1418 p = rt_task_of(rt_se); 1419 1420 if ((flags & DEQUEUE_SLEEP) && p) { 1421 unsigned int state; 1422 1423 state = READ_ONCE(p->__state); 1424 if (state & TASK_INTERRUPTIBLE) 1425 __schedstat_set(p->stats.sleep_start, 1426 rq_clock(rq_of_rt_rq(rt_rq))); 1427 1428 if (state & TASK_UNINTERRUPTIBLE) 1429 __schedstat_set(p->stats.block_start, 1430 rq_clock(rq_of_rt_rq(rt_rq))); 1431 } 1432 } 1433 1434 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1435 { 1436 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1437 struct rt_prio_array *array = &rt_rq->active; 1438 struct rt_rq *group_rq = group_rt_rq(rt_se); 1439 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1440 1441 /* 1442 * Don't enqueue the group if its throttled, or when empty. 1443 * The latter is a consequence of the former when a child group 1444 * get throttled and the current group doesn't have any other 1445 * active members. 1446 */ 1447 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1448 if (rt_se->on_list) 1449 __delist_rt_entity(rt_se, array); 1450 return; 1451 } 1452 1453 if (move_entity(flags)) { 1454 WARN_ON_ONCE(rt_se->on_list); 1455 if (flags & ENQUEUE_HEAD) 1456 list_add(&rt_se->run_list, queue); 1457 else 1458 list_add_tail(&rt_se->run_list, queue); 1459 1460 __set_bit(rt_se_prio(rt_se), array->bitmap); 1461 rt_se->on_list = 1; 1462 } 1463 rt_se->on_rq = 1; 1464 1465 inc_rt_tasks(rt_se, rt_rq); 1466 } 1467 1468 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1469 { 1470 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1471 struct rt_prio_array *array = &rt_rq->active; 1472 1473 if (move_entity(flags)) { 1474 WARN_ON_ONCE(!rt_se->on_list); 1475 __delist_rt_entity(rt_se, array); 1476 } 1477 rt_se->on_rq = 0; 1478 1479 dec_rt_tasks(rt_se, rt_rq); 1480 } 1481 1482 /* 1483 * Because the prio of an upper entry depends on the lower 1484 * entries, we must remove entries top - down. 1485 */ 1486 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1487 { 1488 struct sched_rt_entity *back = NULL; 1489 1490 for_each_sched_rt_entity(rt_se) { 1491 rt_se->back = back; 1492 back = rt_se; 1493 } 1494 1495 dequeue_top_rt_rq(rt_rq_of_se(back)); 1496 1497 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1498 if (on_rt_rq(rt_se)) 1499 __dequeue_rt_entity(rt_se, flags); 1500 } 1501 } 1502 1503 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1504 { 1505 struct rq *rq = rq_of_rt_se(rt_se); 1506 1507 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags); 1508 1509 dequeue_rt_stack(rt_se, flags); 1510 for_each_sched_rt_entity(rt_se) 1511 __enqueue_rt_entity(rt_se, flags); 1512 enqueue_top_rt_rq(&rq->rt); 1513 } 1514 1515 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1516 { 1517 struct rq *rq = rq_of_rt_se(rt_se); 1518 1519 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags); 1520 1521 dequeue_rt_stack(rt_se, flags); 1522 1523 for_each_sched_rt_entity(rt_se) { 1524 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1525 1526 if (rt_rq && rt_rq->rt_nr_running) 1527 __enqueue_rt_entity(rt_se, flags); 1528 } 1529 enqueue_top_rt_rq(&rq->rt); 1530 } 1531 1532 /* 1533 * Adding/removing a task to/from a priority array: 1534 */ 1535 static void 1536 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1537 { 1538 struct sched_rt_entity *rt_se = &p->rt; 1539 1540 if (flags & ENQUEUE_WAKEUP) 1541 rt_se->timeout = 0; 1542 1543 check_schedstat_required(); 1544 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se); 1545 1546 enqueue_rt_entity(rt_se, flags); 1547 1548 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1549 enqueue_pushable_task(rq, p); 1550 } 1551 1552 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1553 { 1554 struct sched_rt_entity *rt_se = &p->rt; 1555 1556 update_curr_rt(rq); 1557 dequeue_rt_entity(rt_se, flags); 1558 1559 dequeue_pushable_task(rq, p); 1560 } 1561 1562 /* 1563 * Put task to the head or the end of the run list without the overhead of 1564 * dequeue followed by enqueue. 1565 */ 1566 static void 1567 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1568 { 1569 if (on_rt_rq(rt_se)) { 1570 struct rt_prio_array *array = &rt_rq->active; 1571 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1572 1573 if (head) 1574 list_move(&rt_se->run_list, queue); 1575 else 1576 list_move_tail(&rt_se->run_list, queue); 1577 } 1578 } 1579 1580 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1581 { 1582 struct sched_rt_entity *rt_se = &p->rt; 1583 struct rt_rq *rt_rq; 1584 1585 for_each_sched_rt_entity(rt_se) { 1586 rt_rq = rt_rq_of_se(rt_se); 1587 requeue_rt_entity(rt_rq, rt_se, head); 1588 } 1589 } 1590 1591 static void yield_task_rt(struct rq *rq) 1592 { 1593 requeue_task_rt(rq, rq->curr, 0); 1594 } 1595 1596 #ifdef CONFIG_SMP 1597 static int find_lowest_rq(struct task_struct *task); 1598 1599 static int 1600 select_task_rq_rt(struct task_struct *p, int cpu, int flags) 1601 { 1602 struct task_struct *curr; 1603 struct rq *rq; 1604 bool test; 1605 1606 /* For anything but wake ups, just return the task_cpu */ 1607 if (!(flags & (WF_TTWU | WF_FORK))) 1608 goto out; 1609 1610 rq = cpu_rq(cpu); 1611 1612 rcu_read_lock(); 1613 curr = READ_ONCE(rq->curr); /* unlocked access */ 1614 1615 /* 1616 * If the current task on @p's runqueue is an RT task, then 1617 * try to see if we can wake this RT task up on another 1618 * runqueue. Otherwise simply start this RT task 1619 * on its current runqueue. 1620 * 1621 * We want to avoid overloading runqueues. If the woken 1622 * task is a higher priority, then it will stay on this CPU 1623 * and the lower prio task should be moved to another CPU. 1624 * Even though this will probably make the lower prio task 1625 * lose its cache, we do not want to bounce a higher task 1626 * around just because it gave up its CPU, perhaps for a 1627 * lock? 1628 * 1629 * For equal prio tasks, we just let the scheduler sort it out. 1630 * 1631 * Otherwise, just let it ride on the affined RQ and the 1632 * post-schedule router will push the preempted task away 1633 * 1634 * This test is optimistic, if we get it wrong the load-balancer 1635 * will have to sort it out. 1636 * 1637 * We take into account the capacity of the CPU to ensure it fits the 1638 * requirement of the task - which is only important on heterogeneous 1639 * systems like big.LITTLE. 1640 */ 1641 test = curr && 1642 unlikely(rt_task(curr)) && 1643 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio); 1644 1645 if (test || !rt_task_fits_capacity(p, cpu)) { 1646 int target = find_lowest_rq(p); 1647 1648 /* 1649 * Bail out if we were forcing a migration to find a better 1650 * fitting CPU but our search failed. 1651 */ 1652 if (!test && target != -1 && !rt_task_fits_capacity(p, target)) 1653 goto out_unlock; 1654 1655 /* 1656 * Don't bother moving it if the destination CPU is 1657 * not running a lower priority task. 1658 */ 1659 if (target != -1 && 1660 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1661 cpu = target; 1662 } 1663 1664 out_unlock: 1665 rcu_read_unlock(); 1666 1667 out: 1668 return cpu; 1669 } 1670 1671 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1672 { 1673 /* 1674 * Current can't be migrated, useless to reschedule, 1675 * let's hope p can move out. 1676 */ 1677 if (rq->curr->nr_cpus_allowed == 1 || 1678 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1679 return; 1680 1681 /* 1682 * p is migratable, so let's not schedule it and 1683 * see if it is pushed or pulled somewhere else. 1684 */ 1685 if (p->nr_cpus_allowed != 1 && 1686 cpupri_find(&rq->rd->cpupri, p, NULL)) 1687 return; 1688 1689 /* 1690 * There appear to be other CPUs that can accept 1691 * the current task but none can run 'p', so lets reschedule 1692 * to try and push the current task away: 1693 */ 1694 requeue_task_rt(rq, p, 1); 1695 resched_curr(rq); 1696 } 1697 1698 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1699 { 1700 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) { 1701 /* 1702 * This is OK, because current is on_cpu, which avoids it being 1703 * picked for load-balance and preemption/IRQs are still 1704 * disabled avoiding further scheduler activity on it and we've 1705 * not yet started the picking loop. 1706 */ 1707 rq_unpin_lock(rq, rf); 1708 pull_rt_task(rq); 1709 rq_repin_lock(rq, rf); 1710 } 1711 1712 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq); 1713 } 1714 #endif /* CONFIG_SMP */ 1715 1716 /* 1717 * Preempt the current task with a newly woken task if needed: 1718 */ 1719 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1720 { 1721 if (p->prio < rq->curr->prio) { 1722 resched_curr(rq); 1723 return; 1724 } 1725 1726 #ifdef CONFIG_SMP 1727 /* 1728 * If: 1729 * 1730 * - the newly woken task is of equal priority to the current task 1731 * - the newly woken task is non-migratable while current is migratable 1732 * - current will be preempted on the next reschedule 1733 * 1734 * we should check to see if current can readily move to a different 1735 * cpu. If so, we will reschedule to allow the push logic to try 1736 * to move current somewhere else, making room for our non-migratable 1737 * task. 1738 */ 1739 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1740 check_preempt_equal_prio(rq, p); 1741 #endif 1742 } 1743 1744 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first) 1745 { 1746 struct sched_rt_entity *rt_se = &p->rt; 1747 struct rt_rq *rt_rq = &rq->rt; 1748 1749 p->se.exec_start = rq_clock_task(rq); 1750 if (on_rt_rq(&p->rt)) 1751 update_stats_wait_end_rt(rt_rq, rt_se); 1752 1753 /* The running task is never eligible for pushing */ 1754 dequeue_pushable_task(rq, p); 1755 1756 if (!first) 1757 return; 1758 1759 /* 1760 * If prev task was rt, put_prev_task() has already updated the 1761 * utilization. We only care of the case where we start to schedule a 1762 * rt task 1763 */ 1764 if (rq->curr->sched_class != &rt_sched_class) 1765 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1766 1767 rt_queue_push_tasks(rq); 1768 } 1769 1770 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq) 1771 { 1772 struct rt_prio_array *array = &rt_rq->active; 1773 struct sched_rt_entity *next = NULL; 1774 struct list_head *queue; 1775 int idx; 1776 1777 idx = sched_find_first_bit(array->bitmap); 1778 BUG_ON(idx >= MAX_RT_PRIO); 1779 1780 queue = array->queue + idx; 1781 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1782 1783 return next; 1784 } 1785 1786 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1787 { 1788 struct sched_rt_entity *rt_se; 1789 struct rt_rq *rt_rq = &rq->rt; 1790 1791 do { 1792 rt_se = pick_next_rt_entity(rt_rq); 1793 BUG_ON(!rt_se); 1794 rt_rq = group_rt_rq(rt_se); 1795 } while (rt_rq); 1796 1797 return rt_task_of(rt_se); 1798 } 1799 1800 static struct task_struct *pick_task_rt(struct rq *rq) 1801 { 1802 struct task_struct *p; 1803 1804 if (!sched_rt_runnable(rq)) 1805 return NULL; 1806 1807 p = _pick_next_task_rt(rq); 1808 1809 return p; 1810 } 1811 1812 static struct task_struct *pick_next_task_rt(struct rq *rq) 1813 { 1814 struct task_struct *p = pick_task_rt(rq); 1815 1816 if (p) 1817 set_next_task_rt(rq, p, true); 1818 1819 return p; 1820 } 1821 1822 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1823 { 1824 struct sched_rt_entity *rt_se = &p->rt; 1825 struct rt_rq *rt_rq = &rq->rt; 1826 1827 if (on_rt_rq(&p->rt)) 1828 update_stats_wait_start_rt(rt_rq, rt_se); 1829 1830 update_curr_rt(rq); 1831 1832 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1833 1834 /* 1835 * The previous task needs to be made eligible for pushing 1836 * if it is still active 1837 */ 1838 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1839 enqueue_pushable_task(rq, p); 1840 } 1841 1842 #ifdef CONFIG_SMP 1843 1844 /* Only try algorithms three times */ 1845 #define RT_MAX_TRIES 3 1846 1847 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1848 { 1849 if (!task_running(rq, p) && 1850 cpumask_test_cpu(cpu, &p->cpus_mask)) 1851 return 1; 1852 1853 return 0; 1854 } 1855 1856 /* 1857 * Return the highest pushable rq's task, which is suitable to be executed 1858 * on the CPU, NULL otherwise 1859 */ 1860 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1861 { 1862 struct plist_head *head = &rq->rt.pushable_tasks; 1863 struct task_struct *p; 1864 1865 if (!has_pushable_tasks(rq)) 1866 return NULL; 1867 1868 plist_for_each_entry(p, head, pushable_tasks) { 1869 if (pick_rt_task(rq, p, cpu)) 1870 return p; 1871 } 1872 1873 return NULL; 1874 } 1875 1876 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1877 1878 static int find_lowest_rq(struct task_struct *task) 1879 { 1880 struct sched_domain *sd; 1881 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1882 int this_cpu = smp_processor_id(); 1883 int cpu = task_cpu(task); 1884 int ret; 1885 1886 /* Make sure the mask is initialized first */ 1887 if (unlikely(!lowest_mask)) 1888 return -1; 1889 1890 if (task->nr_cpus_allowed == 1) 1891 return -1; /* No other targets possible */ 1892 1893 /* 1894 * If we're on asym system ensure we consider the different capacities 1895 * of the CPUs when searching for the lowest_mask. 1896 */ 1897 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 1898 1899 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri, 1900 task, lowest_mask, 1901 rt_task_fits_capacity); 1902 } else { 1903 1904 ret = cpupri_find(&task_rq(task)->rd->cpupri, 1905 task, lowest_mask); 1906 } 1907 1908 if (!ret) 1909 return -1; /* No targets found */ 1910 1911 /* 1912 * At this point we have built a mask of CPUs representing the 1913 * lowest priority tasks in the system. Now we want to elect 1914 * the best one based on our affinity and topology. 1915 * 1916 * We prioritize the last CPU that the task executed on since 1917 * it is most likely cache-hot in that location. 1918 */ 1919 if (cpumask_test_cpu(cpu, lowest_mask)) 1920 return cpu; 1921 1922 /* 1923 * Otherwise, we consult the sched_domains span maps to figure 1924 * out which CPU is logically closest to our hot cache data. 1925 */ 1926 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1927 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1928 1929 rcu_read_lock(); 1930 for_each_domain(cpu, sd) { 1931 if (sd->flags & SD_WAKE_AFFINE) { 1932 int best_cpu; 1933 1934 /* 1935 * "this_cpu" is cheaper to preempt than a 1936 * remote processor. 1937 */ 1938 if (this_cpu != -1 && 1939 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1940 rcu_read_unlock(); 1941 return this_cpu; 1942 } 1943 1944 best_cpu = cpumask_any_and_distribute(lowest_mask, 1945 sched_domain_span(sd)); 1946 if (best_cpu < nr_cpu_ids) { 1947 rcu_read_unlock(); 1948 return best_cpu; 1949 } 1950 } 1951 } 1952 rcu_read_unlock(); 1953 1954 /* 1955 * And finally, if there were no matches within the domains 1956 * just give the caller *something* to work with from the compatible 1957 * locations. 1958 */ 1959 if (this_cpu != -1) 1960 return this_cpu; 1961 1962 cpu = cpumask_any_distribute(lowest_mask); 1963 if (cpu < nr_cpu_ids) 1964 return cpu; 1965 1966 return -1; 1967 } 1968 1969 /* Will lock the rq it finds */ 1970 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1971 { 1972 struct rq *lowest_rq = NULL; 1973 int tries; 1974 int cpu; 1975 1976 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1977 cpu = find_lowest_rq(task); 1978 1979 if ((cpu == -1) || (cpu == rq->cpu)) 1980 break; 1981 1982 lowest_rq = cpu_rq(cpu); 1983 1984 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1985 /* 1986 * Target rq has tasks of equal or higher priority, 1987 * retrying does not release any lock and is unlikely 1988 * to yield a different result. 1989 */ 1990 lowest_rq = NULL; 1991 break; 1992 } 1993 1994 /* if the prio of this runqueue changed, try again */ 1995 if (double_lock_balance(rq, lowest_rq)) { 1996 /* 1997 * We had to unlock the run queue. In 1998 * the mean time, task could have 1999 * migrated already or had its affinity changed. 2000 * Also make sure that it wasn't scheduled on its rq. 2001 */ 2002 if (unlikely(task_rq(task) != rq || 2003 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) || 2004 task_running(rq, task) || 2005 !rt_task(task) || 2006 !task_on_rq_queued(task))) { 2007 2008 double_unlock_balance(rq, lowest_rq); 2009 lowest_rq = NULL; 2010 break; 2011 } 2012 } 2013 2014 /* If this rq is still suitable use it. */ 2015 if (lowest_rq->rt.highest_prio.curr > task->prio) 2016 break; 2017 2018 /* try again */ 2019 double_unlock_balance(rq, lowest_rq); 2020 lowest_rq = NULL; 2021 } 2022 2023 return lowest_rq; 2024 } 2025 2026 static struct task_struct *pick_next_pushable_task(struct rq *rq) 2027 { 2028 struct task_struct *p; 2029 2030 if (!has_pushable_tasks(rq)) 2031 return NULL; 2032 2033 p = plist_first_entry(&rq->rt.pushable_tasks, 2034 struct task_struct, pushable_tasks); 2035 2036 BUG_ON(rq->cpu != task_cpu(p)); 2037 BUG_ON(task_current(rq, p)); 2038 BUG_ON(p->nr_cpus_allowed <= 1); 2039 2040 BUG_ON(!task_on_rq_queued(p)); 2041 BUG_ON(!rt_task(p)); 2042 2043 return p; 2044 } 2045 2046 /* 2047 * If the current CPU has more than one RT task, see if the non 2048 * running task can migrate over to a CPU that is running a task 2049 * of lesser priority. 2050 */ 2051 static int push_rt_task(struct rq *rq, bool pull) 2052 { 2053 struct task_struct *next_task; 2054 struct rq *lowest_rq; 2055 int ret = 0; 2056 2057 if (!rq->rt.overloaded) 2058 return 0; 2059 2060 next_task = pick_next_pushable_task(rq); 2061 if (!next_task) 2062 return 0; 2063 2064 retry: 2065 /* 2066 * It's possible that the next_task slipped in of 2067 * higher priority than current. If that's the case 2068 * just reschedule current. 2069 */ 2070 if (unlikely(next_task->prio < rq->curr->prio)) { 2071 resched_curr(rq); 2072 return 0; 2073 } 2074 2075 if (is_migration_disabled(next_task)) { 2076 struct task_struct *push_task = NULL; 2077 int cpu; 2078 2079 if (!pull || rq->push_busy) 2080 return 0; 2081 2082 /* 2083 * Invoking find_lowest_rq() on anything but an RT task doesn't 2084 * make sense. Per the above priority check, curr has to 2085 * be of higher priority than next_task, so no need to 2086 * reschedule when bailing out. 2087 * 2088 * Note that the stoppers are masqueraded as SCHED_FIFO 2089 * (cf. sched_set_stop_task()), so we can't rely on rt_task(). 2090 */ 2091 if (rq->curr->sched_class != &rt_sched_class) 2092 return 0; 2093 2094 cpu = find_lowest_rq(rq->curr); 2095 if (cpu == -1 || cpu == rq->cpu) 2096 return 0; 2097 2098 /* 2099 * Given we found a CPU with lower priority than @next_task, 2100 * therefore it should be running. However we cannot migrate it 2101 * to this other CPU, instead attempt to push the current 2102 * running task on this CPU away. 2103 */ 2104 push_task = get_push_task(rq); 2105 if (push_task) { 2106 raw_spin_rq_unlock(rq); 2107 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2108 push_task, &rq->push_work); 2109 raw_spin_rq_lock(rq); 2110 } 2111 2112 return 0; 2113 } 2114 2115 if (WARN_ON(next_task == rq->curr)) 2116 return 0; 2117 2118 /* We might release rq lock */ 2119 get_task_struct(next_task); 2120 2121 /* find_lock_lowest_rq locks the rq if found */ 2122 lowest_rq = find_lock_lowest_rq(next_task, rq); 2123 if (!lowest_rq) { 2124 struct task_struct *task; 2125 /* 2126 * find_lock_lowest_rq releases rq->lock 2127 * so it is possible that next_task has migrated. 2128 * 2129 * We need to make sure that the task is still on the same 2130 * run-queue and is also still the next task eligible for 2131 * pushing. 2132 */ 2133 task = pick_next_pushable_task(rq); 2134 if (task == next_task) { 2135 /* 2136 * The task hasn't migrated, and is still the next 2137 * eligible task, but we failed to find a run-queue 2138 * to push it to. Do not retry in this case, since 2139 * other CPUs will pull from us when ready. 2140 */ 2141 goto out; 2142 } 2143 2144 if (!task) 2145 /* No more tasks, just exit */ 2146 goto out; 2147 2148 /* 2149 * Something has shifted, try again. 2150 */ 2151 put_task_struct(next_task); 2152 next_task = task; 2153 goto retry; 2154 } 2155 2156 deactivate_task(rq, next_task, 0); 2157 set_task_cpu(next_task, lowest_rq->cpu); 2158 activate_task(lowest_rq, next_task, 0); 2159 resched_curr(lowest_rq); 2160 ret = 1; 2161 2162 double_unlock_balance(rq, lowest_rq); 2163 out: 2164 put_task_struct(next_task); 2165 2166 return ret; 2167 } 2168 2169 static void push_rt_tasks(struct rq *rq) 2170 { 2171 /* push_rt_task will return true if it moved an RT */ 2172 while (push_rt_task(rq, false)) 2173 ; 2174 } 2175 2176 #ifdef HAVE_RT_PUSH_IPI 2177 2178 /* 2179 * When a high priority task schedules out from a CPU and a lower priority 2180 * task is scheduled in, a check is made to see if there's any RT tasks 2181 * on other CPUs that are waiting to run because a higher priority RT task 2182 * is currently running on its CPU. In this case, the CPU with multiple RT 2183 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 2184 * up that may be able to run one of its non-running queued RT tasks. 2185 * 2186 * All CPUs with overloaded RT tasks need to be notified as there is currently 2187 * no way to know which of these CPUs have the highest priority task waiting 2188 * to run. Instead of trying to take a spinlock on each of these CPUs, 2189 * which has shown to cause large latency when done on machines with many 2190 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 2191 * RT tasks waiting to run. 2192 * 2193 * Just sending an IPI to each of the CPUs is also an issue, as on large 2194 * count CPU machines, this can cause an IPI storm on a CPU, especially 2195 * if its the only CPU with multiple RT tasks queued, and a large number 2196 * of CPUs scheduling a lower priority task at the same time. 2197 * 2198 * Each root domain has its own irq work function that can iterate over 2199 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 2200 * task must be checked if there's one or many CPUs that are lowering 2201 * their priority, there's a single irq work iterator that will try to 2202 * push off RT tasks that are waiting to run. 2203 * 2204 * When a CPU schedules a lower priority task, it will kick off the 2205 * irq work iterator that will jump to each CPU with overloaded RT tasks. 2206 * As it only takes the first CPU that schedules a lower priority task 2207 * to start the process, the rto_start variable is incremented and if 2208 * the atomic result is one, then that CPU will try to take the rto_lock. 2209 * This prevents high contention on the lock as the process handles all 2210 * CPUs scheduling lower priority tasks. 2211 * 2212 * All CPUs that are scheduling a lower priority task will increment the 2213 * rt_loop_next variable. This will make sure that the irq work iterator 2214 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 2215 * priority task, even if the iterator is in the middle of a scan. Incrementing 2216 * the rt_loop_next will cause the iterator to perform another scan. 2217 * 2218 */ 2219 static int rto_next_cpu(struct root_domain *rd) 2220 { 2221 int next; 2222 int cpu; 2223 2224 /* 2225 * When starting the IPI RT pushing, the rto_cpu is set to -1, 2226 * rt_next_cpu() will simply return the first CPU found in 2227 * the rto_mask. 2228 * 2229 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it 2230 * will return the next CPU found in the rto_mask. 2231 * 2232 * If there are no more CPUs left in the rto_mask, then a check is made 2233 * against rto_loop and rto_loop_next. rto_loop is only updated with 2234 * the rto_lock held, but any CPU may increment the rto_loop_next 2235 * without any locking. 2236 */ 2237 for (;;) { 2238 2239 /* When rto_cpu is -1 this acts like cpumask_first() */ 2240 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 2241 2242 rd->rto_cpu = cpu; 2243 2244 if (cpu < nr_cpu_ids) 2245 return cpu; 2246 2247 rd->rto_cpu = -1; 2248 2249 /* 2250 * ACQUIRE ensures we see the @rto_mask changes 2251 * made prior to the @next value observed. 2252 * 2253 * Matches WMB in rt_set_overload(). 2254 */ 2255 next = atomic_read_acquire(&rd->rto_loop_next); 2256 2257 if (rd->rto_loop == next) 2258 break; 2259 2260 rd->rto_loop = next; 2261 } 2262 2263 return -1; 2264 } 2265 2266 static inline bool rto_start_trylock(atomic_t *v) 2267 { 2268 return !atomic_cmpxchg_acquire(v, 0, 1); 2269 } 2270 2271 static inline void rto_start_unlock(atomic_t *v) 2272 { 2273 atomic_set_release(v, 0); 2274 } 2275 2276 static void tell_cpu_to_push(struct rq *rq) 2277 { 2278 int cpu = -1; 2279 2280 /* Keep the loop going if the IPI is currently active */ 2281 atomic_inc(&rq->rd->rto_loop_next); 2282 2283 /* Only one CPU can initiate a loop at a time */ 2284 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 2285 return; 2286 2287 raw_spin_lock(&rq->rd->rto_lock); 2288 2289 /* 2290 * The rto_cpu is updated under the lock, if it has a valid CPU 2291 * then the IPI is still running and will continue due to the 2292 * update to loop_next, and nothing needs to be done here. 2293 * Otherwise it is finishing up and an ipi needs to be sent. 2294 */ 2295 if (rq->rd->rto_cpu < 0) 2296 cpu = rto_next_cpu(rq->rd); 2297 2298 raw_spin_unlock(&rq->rd->rto_lock); 2299 2300 rto_start_unlock(&rq->rd->rto_loop_start); 2301 2302 if (cpu >= 0) { 2303 /* Make sure the rd does not get freed while pushing */ 2304 sched_get_rd(rq->rd); 2305 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 2306 } 2307 } 2308 2309 /* Called from hardirq context */ 2310 void rto_push_irq_work_func(struct irq_work *work) 2311 { 2312 struct root_domain *rd = 2313 container_of(work, struct root_domain, rto_push_work); 2314 struct rq *rq; 2315 int cpu; 2316 2317 rq = this_rq(); 2318 2319 /* 2320 * We do not need to grab the lock to check for has_pushable_tasks. 2321 * When it gets updated, a check is made if a push is possible. 2322 */ 2323 if (has_pushable_tasks(rq)) { 2324 raw_spin_rq_lock(rq); 2325 while (push_rt_task(rq, true)) 2326 ; 2327 raw_spin_rq_unlock(rq); 2328 } 2329 2330 raw_spin_lock(&rd->rto_lock); 2331 2332 /* Pass the IPI to the next rt overloaded queue */ 2333 cpu = rto_next_cpu(rd); 2334 2335 raw_spin_unlock(&rd->rto_lock); 2336 2337 if (cpu < 0) { 2338 sched_put_rd(rd); 2339 return; 2340 } 2341 2342 /* Try the next RT overloaded CPU */ 2343 irq_work_queue_on(&rd->rto_push_work, cpu); 2344 } 2345 #endif /* HAVE_RT_PUSH_IPI */ 2346 2347 static void pull_rt_task(struct rq *this_rq) 2348 { 2349 int this_cpu = this_rq->cpu, cpu; 2350 bool resched = false; 2351 struct task_struct *p, *push_task; 2352 struct rq *src_rq; 2353 int rt_overload_count = rt_overloaded(this_rq); 2354 2355 if (likely(!rt_overload_count)) 2356 return; 2357 2358 /* 2359 * Match the barrier from rt_set_overloaded; this guarantees that if we 2360 * see overloaded we must also see the rto_mask bit. 2361 */ 2362 smp_rmb(); 2363 2364 /* If we are the only overloaded CPU do nothing */ 2365 if (rt_overload_count == 1 && 2366 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2367 return; 2368 2369 #ifdef HAVE_RT_PUSH_IPI 2370 if (sched_feat(RT_PUSH_IPI)) { 2371 tell_cpu_to_push(this_rq); 2372 return; 2373 } 2374 #endif 2375 2376 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2377 if (this_cpu == cpu) 2378 continue; 2379 2380 src_rq = cpu_rq(cpu); 2381 2382 /* 2383 * Don't bother taking the src_rq->lock if the next highest 2384 * task is known to be lower-priority than our current task. 2385 * This may look racy, but if this value is about to go 2386 * logically higher, the src_rq will push this task away. 2387 * And if its going logically lower, we do not care 2388 */ 2389 if (src_rq->rt.highest_prio.next >= 2390 this_rq->rt.highest_prio.curr) 2391 continue; 2392 2393 /* 2394 * We can potentially drop this_rq's lock in 2395 * double_lock_balance, and another CPU could 2396 * alter this_rq 2397 */ 2398 push_task = NULL; 2399 double_lock_balance(this_rq, src_rq); 2400 2401 /* 2402 * We can pull only a task, which is pushable 2403 * on its rq, and no others. 2404 */ 2405 p = pick_highest_pushable_task(src_rq, this_cpu); 2406 2407 /* 2408 * Do we have an RT task that preempts 2409 * the to-be-scheduled task? 2410 */ 2411 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2412 WARN_ON(p == src_rq->curr); 2413 WARN_ON(!task_on_rq_queued(p)); 2414 2415 /* 2416 * There's a chance that p is higher in priority 2417 * than what's currently running on its CPU. 2418 * This is just that p is waking up and hasn't 2419 * had a chance to schedule. We only pull 2420 * p if it is lower in priority than the 2421 * current task on the run queue 2422 */ 2423 if (p->prio < src_rq->curr->prio) 2424 goto skip; 2425 2426 if (is_migration_disabled(p)) { 2427 push_task = get_push_task(src_rq); 2428 } else { 2429 deactivate_task(src_rq, p, 0); 2430 set_task_cpu(p, this_cpu); 2431 activate_task(this_rq, p, 0); 2432 resched = true; 2433 } 2434 /* 2435 * We continue with the search, just in 2436 * case there's an even higher prio task 2437 * in another runqueue. (low likelihood 2438 * but possible) 2439 */ 2440 } 2441 skip: 2442 double_unlock_balance(this_rq, src_rq); 2443 2444 if (push_task) { 2445 raw_spin_rq_unlock(this_rq); 2446 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2447 push_task, &src_rq->push_work); 2448 raw_spin_rq_lock(this_rq); 2449 } 2450 } 2451 2452 if (resched) 2453 resched_curr(this_rq); 2454 } 2455 2456 /* 2457 * If we are not running and we are not going to reschedule soon, we should 2458 * try to push tasks away now 2459 */ 2460 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2461 { 2462 bool need_to_push = !task_running(rq, p) && 2463 !test_tsk_need_resched(rq->curr) && 2464 p->nr_cpus_allowed > 1 && 2465 (dl_task(rq->curr) || rt_task(rq->curr)) && 2466 (rq->curr->nr_cpus_allowed < 2 || 2467 rq->curr->prio <= p->prio); 2468 2469 if (need_to_push) 2470 push_rt_tasks(rq); 2471 } 2472 2473 /* Assumes rq->lock is held */ 2474 static void rq_online_rt(struct rq *rq) 2475 { 2476 if (rq->rt.overloaded) 2477 rt_set_overload(rq); 2478 2479 __enable_runtime(rq); 2480 2481 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2482 } 2483 2484 /* Assumes rq->lock is held */ 2485 static void rq_offline_rt(struct rq *rq) 2486 { 2487 if (rq->rt.overloaded) 2488 rt_clear_overload(rq); 2489 2490 __disable_runtime(rq); 2491 2492 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2493 } 2494 2495 /* 2496 * When switch from the rt queue, we bring ourselves to a position 2497 * that we might want to pull RT tasks from other runqueues. 2498 */ 2499 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2500 { 2501 /* 2502 * If there are other RT tasks then we will reschedule 2503 * and the scheduling of the other RT tasks will handle 2504 * the balancing. But if we are the last RT task 2505 * we may need to handle the pulling of RT tasks 2506 * now. 2507 */ 2508 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2509 return; 2510 2511 rt_queue_pull_task(rq); 2512 } 2513 2514 void __init init_sched_rt_class(void) 2515 { 2516 unsigned int i; 2517 2518 for_each_possible_cpu(i) { 2519 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2520 GFP_KERNEL, cpu_to_node(i)); 2521 } 2522 } 2523 #endif /* CONFIG_SMP */ 2524 2525 /* 2526 * When switching a task to RT, we may overload the runqueue 2527 * with RT tasks. In this case we try to push them off to 2528 * other runqueues. 2529 */ 2530 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2531 { 2532 /* 2533 * If we are running, update the avg_rt tracking, as the running time 2534 * will now on be accounted into the latter. 2535 */ 2536 if (task_current(rq, p)) { 2537 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2538 return; 2539 } 2540 2541 /* 2542 * If we are not running we may need to preempt the current 2543 * running task. If that current running task is also an RT task 2544 * then see if we can move to another run queue. 2545 */ 2546 if (task_on_rq_queued(p)) { 2547 #ifdef CONFIG_SMP 2548 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2549 rt_queue_push_tasks(rq); 2550 #endif /* CONFIG_SMP */ 2551 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) 2552 resched_curr(rq); 2553 } 2554 } 2555 2556 /* 2557 * Priority of the task has changed. This may cause 2558 * us to initiate a push or pull. 2559 */ 2560 static void 2561 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2562 { 2563 if (!task_on_rq_queued(p)) 2564 return; 2565 2566 if (task_current(rq, p)) { 2567 #ifdef CONFIG_SMP 2568 /* 2569 * If our priority decreases while running, we 2570 * may need to pull tasks to this runqueue. 2571 */ 2572 if (oldprio < p->prio) 2573 rt_queue_pull_task(rq); 2574 2575 /* 2576 * If there's a higher priority task waiting to run 2577 * then reschedule. 2578 */ 2579 if (p->prio > rq->rt.highest_prio.curr) 2580 resched_curr(rq); 2581 #else 2582 /* For UP simply resched on drop of prio */ 2583 if (oldprio < p->prio) 2584 resched_curr(rq); 2585 #endif /* CONFIG_SMP */ 2586 } else { 2587 /* 2588 * This task is not running, but if it is 2589 * greater than the current running task 2590 * then reschedule. 2591 */ 2592 if (p->prio < rq->curr->prio) 2593 resched_curr(rq); 2594 } 2595 } 2596 2597 #ifdef CONFIG_POSIX_TIMERS 2598 static void watchdog(struct rq *rq, struct task_struct *p) 2599 { 2600 unsigned long soft, hard; 2601 2602 /* max may change after cur was read, this will be fixed next tick */ 2603 soft = task_rlimit(p, RLIMIT_RTTIME); 2604 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2605 2606 if (soft != RLIM_INFINITY) { 2607 unsigned long next; 2608 2609 if (p->rt.watchdog_stamp != jiffies) { 2610 p->rt.timeout++; 2611 p->rt.watchdog_stamp = jiffies; 2612 } 2613 2614 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2615 if (p->rt.timeout > next) { 2616 posix_cputimers_rt_watchdog(&p->posix_cputimers, 2617 p->se.sum_exec_runtime); 2618 } 2619 } 2620 } 2621 #else 2622 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2623 #endif 2624 2625 /* 2626 * scheduler tick hitting a task of our scheduling class. 2627 * 2628 * NOTE: This function can be called remotely by the tick offload that 2629 * goes along full dynticks. Therefore no local assumption can be made 2630 * and everything must be accessed through the @rq and @curr passed in 2631 * parameters. 2632 */ 2633 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2634 { 2635 struct sched_rt_entity *rt_se = &p->rt; 2636 2637 update_curr_rt(rq); 2638 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2639 2640 watchdog(rq, p); 2641 2642 /* 2643 * RR tasks need a special form of timeslice management. 2644 * FIFO tasks have no timeslices. 2645 */ 2646 if (p->policy != SCHED_RR) 2647 return; 2648 2649 if (--p->rt.time_slice) 2650 return; 2651 2652 p->rt.time_slice = sched_rr_timeslice; 2653 2654 /* 2655 * Requeue to the end of queue if we (and all of our ancestors) are not 2656 * the only element on the queue 2657 */ 2658 for_each_sched_rt_entity(rt_se) { 2659 if (rt_se->run_list.prev != rt_se->run_list.next) { 2660 requeue_task_rt(rq, p, 0); 2661 resched_curr(rq); 2662 return; 2663 } 2664 } 2665 } 2666 2667 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2668 { 2669 /* 2670 * Time slice is 0 for SCHED_FIFO tasks 2671 */ 2672 if (task->policy == SCHED_RR) 2673 return sched_rr_timeslice; 2674 else 2675 return 0; 2676 } 2677 2678 DEFINE_SCHED_CLASS(rt) = { 2679 2680 .enqueue_task = enqueue_task_rt, 2681 .dequeue_task = dequeue_task_rt, 2682 .yield_task = yield_task_rt, 2683 2684 .check_preempt_curr = check_preempt_curr_rt, 2685 2686 .pick_next_task = pick_next_task_rt, 2687 .put_prev_task = put_prev_task_rt, 2688 .set_next_task = set_next_task_rt, 2689 2690 #ifdef CONFIG_SMP 2691 .balance = balance_rt, 2692 .pick_task = pick_task_rt, 2693 .select_task_rq = select_task_rq_rt, 2694 .set_cpus_allowed = set_cpus_allowed_common, 2695 .rq_online = rq_online_rt, 2696 .rq_offline = rq_offline_rt, 2697 .task_woken = task_woken_rt, 2698 .switched_from = switched_from_rt, 2699 .find_lock_rq = find_lock_lowest_rq, 2700 #endif 2701 2702 .task_tick = task_tick_rt, 2703 2704 .get_rr_interval = get_rr_interval_rt, 2705 2706 .prio_changed = prio_changed_rt, 2707 .switched_to = switched_to_rt, 2708 2709 .update_curr = update_curr_rt, 2710 2711 #ifdef CONFIG_UCLAMP_TASK 2712 .uclamp_enabled = 1, 2713 #endif 2714 }; 2715 2716 #ifdef CONFIG_RT_GROUP_SCHED 2717 /* 2718 * Ensure that the real time constraints are schedulable. 2719 */ 2720 static DEFINE_MUTEX(rt_constraints_mutex); 2721 2722 static inline int tg_has_rt_tasks(struct task_group *tg) 2723 { 2724 struct task_struct *task; 2725 struct css_task_iter it; 2726 int ret = 0; 2727 2728 /* 2729 * Autogroups do not have RT tasks; see autogroup_create(). 2730 */ 2731 if (task_group_is_autogroup(tg)) 2732 return 0; 2733 2734 css_task_iter_start(&tg->css, 0, &it); 2735 while (!ret && (task = css_task_iter_next(&it))) 2736 ret |= rt_task(task); 2737 css_task_iter_end(&it); 2738 2739 return ret; 2740 } 2741 2742 struct rt_schedulable_data { 2743 struct task_group *tg; 2744 u64 rt_period; 2745 u64 rt_runtime; 2746 }; 2747 2748 static int tg_rt_schedulable(struct task_group *tg, void *data) 2749 { 2750 struct rt_schedulable_data *d = data; 2751 struct task_group *child; 2752 unsigned long total, sum = 0; 2753 u64 period, runtime; 2754 2755 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2756 runtime = tg->rt_bandwidth.rt_runtime; 2757 2758 if (tg == d->tg) { 2759 period = d->rt_period; 2760 runtime = d->rt_runtime; 2761 } 2762 2763 /* 2764 * Cannot have more runtime than the period. 2765 */ 2766 if (runtime > period && runtime != RUNTIME_INF) 2767 return -EINVAL; 2768 2769 /* 2770 * Ensure we don't starve existing RT tasks if runtime turns zero. 2771 */ 2772 if (rt_bandwidth_enabled() && !runtime && 2773 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg)) 2774 return -EBUSY; 2775 2776 total = to_ratio(period, runtime); 2777 2778 /* 2779 * Nobody can have more than the global setting allows. 2780 */ 2781 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2782 return -EINVAL; 2783 2784 /* 2785 * The sum of our children's runtime should not exceed our own. 2786 */ 2787 list_for_each_entry_rcu(child, &tg->children, siblings) { 2788 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2789 runtime = child->rt_bandwidth.rt_runtime; 2790 2791 if (child == d->tg) { 2792 period = d->rt_period; 2793 runtime = d->rt_runtime; 2794 } 2795 2796 sum += to_ratio(period, runtime); 2797 } 2798 2799 if (sum > total) 2800 return -EINVAL; 2801 2802 return 0; 2803 } 2804 2805 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2806 { 2807 int ret; 2808 2809 struct rt_schedulable_data data = { 2810 .tg = tg, 2811 .rt_period = period, 2812 .rt_runtime = runtime, 2813 }; 2814 2815 rcu_read_lock(); 2816 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2817 rcu_read_unlock(); 2818 2819 return ret; 2820 } 2821 2822 static int tg_set_rt_bandwidth(struct task_group *tg, 2823 u64 rt_period, u64 rt_runtime) 2824 { 2825 int i, err = 0; 2826 2827 /* 2828 * Disallowing the root group RT runtime is BAD, it would disallow the 2829 * kernel creating (and or operating) RT threads. 2830 */ 2831 if (tg == &root_task_group && rt_runtime == 0) 2832 return -EINVAL; 2833 2834 /* No period doesn't make any sense. */ 2835 if (rt_period == 0) 2836 return -EINVAL; 2837 2838 /* 2839 * Bound quota to defend quota against overflow during bandwidth shift. 2840 */ 2841 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime) 2842 return -EINVAL; 2843 2844 mutex_lock(&rt_constraints_mutex); 2845 err = __rt_schedulable(tg, rt_period, rt_runtime); 2846 if (err) 2847 goto unlock; 2848 2849 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2850 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2851 tg->rt_bandwidth.rt_runtime = rt_runtime; 2852 2853 for_each_possible_cpu(i) { 2854 struct rt_rq *rt_rq = tg->rt_rq[i]; 2855 2856 raw_spin_lock(&rt_rq->rt_runtime_lock); 2857 rt_rq->rt_runtime = rt_runtime; 2858 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2859 } 2860 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2861 unlock: 2862 mutex_unlock(&rt_constraints_mutex); 2863 2864 return err; 2865 } 2866 2867 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2868 { 2869 u64 rt_runtime, rt_period; 2870 2871 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2872 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2873 if (rt_runtime_us < 0) 2874 rt_runtime = RUNTIME_INF; 2875 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) 2876 return -EINVAL; 2877 2878 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2879 } 2880 2881 long sched_group_rt_runtime(struct task_group *tg) 2882 { 2883 u64 rt_runtime_us; 2884 2885 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2886 return -1; 2887 2888 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2889 do_div(rt_runtime_us, NSEC_PER_USEC); 2890 return rt_runtime_us; 2891 } 2892 2893 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2894 { 2895 u64 rt_runtime, rt_period; 2896 2897 if (rt_period_us > U64_MAX / NSEC_PER_USEC) 2898 return -EINVAL; 2899 2900 rt_period = rt_period_us * NSEC_PER_USEC; 2901 rt_runtime = tg->rt_bandwidth.rt_runtime; 2902 2903 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2904 } 2905 2906 long sched_group_rt_period(struct task_group *tg) 2907 { 2908 u64 rt_period_us; 2909 2910 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2911 do_div(rt_period_us, NSEC_PER_USEC); 2912 return rt_period_us; 2913 } 2914 2915 #ifdef CONFIG_SYSCTL 2916 static int sched_rt_global_constraints(void) 2917 { 2918 int ret = 0; 2919 2920 mutex_lock(&rt_constraints_mutex); 2921 ret = __rt_schedulable(NULL, 0, 0); 2922 mutex_unlock(&rt_constraints_mutex); 2923 2924 return ret; 2925 } 2926 #endif /* CONFIG_SYSCTL */ 2927 2928 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2929 { 2930 /* Don't accept realtime tasks when there is no way for them to run */ 2931 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2932 return 0; 2933 2934 return 1; 2935 } 2936 2937 #else /* !CONFIG_RT_GROUP_SCHED */ 2938 2939 #ifdef CONFIG_SYSCTL 2940 static int sched_rt_global_constraints(void) 2941 { 2942 unsigned long flags; 2943 int i; 2944 2945 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2946 for_each_possible_cpu(i) { 2947 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2948 2949 raw_spin_lock(&rt_rq->rt_runtime_lock); 2950 rt_rq->rt_runtime = global_rt_runtime(); 2951 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2952 } 2953 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2954 2955 return 0; 2956 } 2957 #endif /* CONFIG_SYSCTL */ 2958 #endif /* CONFIG_RT_GROUP_SCHED */ 2959 2960 #ifdef CONFIG_SYSCTL 2961 static int sched_rt_global_validate(void) 2962 { 2963 if (sysctl_sched_rt_period <= 0) 2964 return -EINVAL; 2965 2966 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2967 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) || 2968 ((u64)sysctl_sched_rt_runtime * 2969 NSEC_PER_USEC > max_rt_runtime))) 2970 return -EINVAL; 2971 2972 return 0; 2973 } 2974 2975 static void sched_rt_do_global(void) 2976 { 2977 unsigned long flags; 2978 2979 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2980 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 2981 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 2982 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2983 } 2984 2985 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer, 2986 size_t *lenp, loff_t *ppos) 2987 { 2988 int old_period, old_runtime; 2989 static DEFINE_MUTEX(mutex); 2990 int ret; 2991 2992 mutex_lock(&mutex); 2993 old_period = sysctl_sched_rt_period; 2994 old_runtime = sysctl_sched_rt_runtime; 2995 2996 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2997 2998 if (!ret && write) { 2999 ret = sched_rt_global_validate(); 3000 if (ret) 3001 goto undo; 3002 3003 ret = sched_dl_global_validate(); 3004 if (ret) 3005 goto undo; 3006 3007 ret = sched_rt_global_constraints(); 3008 if (ret) 3009 goto undo; 3010 3011 sched_rt_do_global(); 3012 sched_dl_do_global(); 3013 } 3014 if (0) { 3015 undo: 3016 sysctl_sched_rt_period = old_period; 3017 sysctl_sched_rt_runtime = old_runtime; 3018 } 3019 mutex_unlock(&mutex); 3020 3021 return ret; 3022 } 3023 3024 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer, 3025 size_t *lenp, loff_t *ppos) 3026 { 3027 int ret; 3028 static DEFINE_MUTEX(mutex); 3029 3030 mutex_lock(&mutex); 3031 ret = proc_dointvec(table, write, buffer, lenp, ppos); 3032 /* 3033 * Make sure that internally we keep jiffies. 3034 * Also, writing zero resets the timeslice to default: 3035 */ 3036 if (!ret && write) { 3037 sched_rr_timeslice = 3038 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 3039 msecs_to_jiffies(sysctl_sched_rr_timeslice); 3040 } 3041 mutex_unlock(&mutex); 3042 3043 return ret; 3044 } 3045 #endif /* CONFIG_SYSCTL */ 3046 3047 #ifdef CONFIG_SCHED_DEBUG 3048 void print_rt_stats(struct seq_file *m, int cpu) 3049 { 3050 rt_rq_iter_t iter; 3051 struct rt_rq *rt_rq; 3052 3053 rcu_read_lock(); 3054 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 3055 print_rt_rq(m, cpu, rt_rq); 3056 rcu_read_unlock(); 3057 } 3058 #endif /* CONFIG_SCHED_DEBUG */ 3059