1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 #include "sched.h" 7 8 #include "pelt.h" 9 10 int sched_rr_timeslice = RR_TIMESLICE; 11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE; 12 13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 14 15 struct rt_bandwidth def_rt_bandwidth; 16 17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 18 { 19 struct rt_bandwidth *rt_b = 20 container_of(timer, struct rt_bandwidth, rt_period_timer); 21 int idle = 0; 22 int overrun; 23 24 raw_spin_lock(&rt_b->rt_runtime_lock); 25 for (;;) { 26 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 27 if (!overrun) 28 break; 29 30 raw_spin_unlock(&rt_b->rt_runtime_lock); 31 idle = do_sched_rt_period_timer(rt_b, overrun); 32 raw_spin_lock(&rt_b->rt_runtime_lock); 33 } 34 if (idle) 35 rt_b->rt_period_active = 0; 36 raw_spin_unlock(&rt_b->rt_runtime_lock); 37 38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 39 } 40 41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 42 { 43 rt_b->rt_period = ns_to_ktime(period); 44 rt_b->rt_runtime = runtime; 45 46 raw_spin_lock_init(&rt_b->rt_runtime_lock); 47 48 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC, 49 HRTIMER_MODE_REL_HARD); 50 rt_b->rt_period_timer.function = sched_rt_period_timer; 51 } 52 53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 54 { 55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 56 return; 57 58 raw_spin_lock(&rt_b->rt_runtime_lock); 59 if (!rt_b->rt_period_active) { 60 rt_b->rt_period_active = 1; 61 /* 62 * SCHED_DEADLINE updates the bandwidth, as a run away 63 * RT task with a DL task could hog a CPU. But DL does 64 * not reset the period. If a deadline task was running 65 * without an RT task running, it can cause RT tasks to 66 * throttle when they start up. Kick the timer right away 67 * to update the period. 68 */ 69 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 70 hrtimer_start_expires(&rt_b->rt_period_timer, 71 HRTIMER_MODE_ABS_PINNED_HARD); 72 } 73 raw_spin_unlock(&rt_b->rt_runtime_lock); 74 } 75 76 void init_rt_rq(struct rt_rq *rt_rq) 77 { 78 struct rt_prio_array *array; 79 int i; 80 81 array = &rt_rq->active; 82 for (i = 0; i < MAX_RT_PRIO; i++) { 83 INIT_LIST_HEAD(array->queue + i); 84 __clear_bit(i, array->bitmap); 85 } 86 /* delimiter for bitsearch: */ 87 __set_bit(MAX_RT_PRIO, array->bitmap); 88 89 #if defined CONFIG_SMP 90 rt_rq->highest_prio.curr = MAX_RT_PRIO; 91 rt_rq->highest_prio.next = MAX_RT_PRIO; 92 rt_rq->rt_nr_migratory = 0; 93 rt_rq->overloaded = 0; 94 plist_head_init(&rt_rq->pushable_tasks); 95 #endif /* CONFIG_SMP */ 96 /* We start is dequeued state, because no RT tasks are queued */ 97 rt_rq->rt_queued = 0; 98 99 rt_rq->rt_time = 0; 100 rt_rq->rt_throttled = 0; 101 rt_rq->rt_runtime = 0; 102 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 103 } 104 105 #ifdef CONFIG_RT_GROUP_SCHED 106 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 107 { 108 hrtimer_cancel(&rt_b->rt_period_timer); 109 } 110 111 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 112 113 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 114 { 115 #ifdef CONFIG_SCHED_DEBUG 116 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 117 #endif 118 return container_of(rt_se, struct task_struct, rt); 119 } 120 121 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 122 { 123 return rt_rq->rq; 124 } 125 126 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 127 { 128 return rt_se->rt_rq; 129 } 130 131 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 132 { 133 struct rt_rq *rt_rq = rt_se->rt_rq; 134 135 return rt_rq->rq; 136 } 137 138 void free_rt_sched_group(struct task_group *tg) 139 { 140 int i; 141 142 if (tg->rt_se) 143 destroy_rt_bandwidth(&tg->rt_bandwidth); 144 145 for_each_possible_cpu(i) { 146 if (tg->rt_rq) 147 kfree(tg->rt_rq[i]); 148 if (tg->rt_se) 149 kfree(tg->rt_se[i]); 150 } 151 152 kfree(tg->rt_rq); 153 kfree(tg->rt_se); 154 } 155 156 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 157 struct sched_rt_entity *rt_se, int cpu, 158 struct sched_rt_entity *parent) 159 { 160 struct rq *rq = cpu_rq(cpu); 161 162 rt_rq->highest_prio.curr = MAX_RT_PRIO; 163 rt_rq->rt_nr_boosted = 0; 164 rt_rq->rq = rq; 165 rt_rq->tg = tg; 166 167 tg->rt_rq[cpu] = rt_rq; 168 tg->rt_se[cpu] = rt_se; 169 170 if (!rt_se) 171 return; 172 173 if (!parent) 174 rt_se->rt_rq = &rq->rt; 175 else 176 rt_se->rt_rq = parent->my_q; 177 178 rt_se->my_q = rt_rq; 179 rt_se->parent = parent; 180 INIT_LIST_HEAD(&rt_se->run_list); 181 } 182 183 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 184 { 185 struct rt_rq *rt_rq; 186 struct sched_rt_entity *rt_se; 187 int i; 188 189 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); 190 if (!tg->rt_rq) 191 goto err; 192 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); 193 if (!tg->rt_se) 194 goto err; 195 196 init_rt_bandwidth(&tg->rt_bandwidth, 197 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 198 199 for_each_possible_cpu(i) { 200 rt_rq = kzalloc_node(sizeof(struct rt_rq), 201 GFP_KERNEL, cpu_to_node(i)); 202 if (!rt_rq) 203 goto err; 204 205 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 206 GFP_KERNEL, cpu_to_node(i)); 207 if (!rt_se) 208 goto err_free_rq; 209 210 init_rt_rq(rt_rq); 211 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 212 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 213 } 214 215 return 1; 216 217 err_free_rq: 218 kfree(rt_rq); 219 err: 220 return 0; 221 } 222 223 #else /* CONFIG_RT_GROUP_SCHED */ 224 225 #define rt_entity_is_task(rt_se) (1) 226 227 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 228 { 229 return container_of(rt_se, struct task_struct, rt); 230 } 231 232 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 233 { 234 return container_of(rt_rq, struct rq, rt); 235 } 236 237 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 238 { 239 struct task_struct *p = rt_task_of(rt_se); 240 241 return task_rq(p); 242 } 243 244 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 245 { 246 struct rq *rq = rq_of_rt_se(rt_se); 247 248 return &rq->rt; 249 } 250 251 void free_rt_sched_group(struct task_group *tg) { } 252 253 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 254 { 255 return 1; 256 } 257 #endif /* CONFIG_RT_GROUP_SCHED */ 258 259 #ifdef CONFIG_SMP 260 261 static void pull_rt_task(struct rq *this_rq); 262 263 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 264 { 265 /* Try to pull RT tasks here if we lower this rq's prio */ 266 return rq->rt.highest_prio.curr > prev->prio; 267 } 268 269 static inline int rt_overloaded(struct rq *rq) 270 { 271 return atomic_read(&rq->rd->rto_count); 272 } 273 274 static inline void rt_set_overload(struct rq *rq) 275 { 276 if (!rq->online) 277 return; 278 279 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 280 /* 281 * Make sure the mask is visible before we set 282 * the overload count. That is checked to determine 283 * if we should look at the mask. It would be a shame 284 * if we looked at the mask, but the mask was not 285 * updated yet. 286 * 287 * Matched by the barrier in pull_rt_task(). 288 */ 289 smp_wmb(); 290 atomic_inc(&rq->rd->rto_count); 291 } 292 293 static inline void rt_clear_overload(struct rq *rq) 294 { 295 if (!rq->online) 296 return; 297 298 /* the order here really doesn't matter */ 299 atomic_dec(&rq->rd->rto_count); 300 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 301 } 302 303 static void update_rt_migration(struct rt_rq *rt_rq) 304 { 305 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 306 if (!rt_rq->overloaded) { 307 rt_set_overload(rq_of_rt_rq(rt_rq)); 308 rt_rq->overloaded = 1; 309 } 310 } else if (rt_rq->overloaded) { 311 rt_clear_overload(rq_of_rt_rq(rt_rq)); 312 rt_rq->overloaded = 0; 313 } 314 } 315 316 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 317 { 318 struct task_struct *p; 319 320 if (!rt_entity_is_task(rt_se)) 321 return; 322 323 p = rt_task_of(rt_se); 324 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 325 326 rt_rq->rt_nr_total++; 327 if (p->nr_cpus_allowed > 1) 328 rt_rq->rt_nr_migratory++; 329 330 update_rt_migration(rt_rq); 331 } 332 333 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 334 { 335 struct task_struct *p; 336 337 if (!rt_entity_is_task(rt_se)) 338 return; 339 340 p = rt_task_of(rt_se); 341 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 342 343 rt_rq->rt_nr_total--; 344 if (p->nr_cpus_allowed > 1) 345 rt_rq->rt_nr_migratory--; 346 347 update_rt_migration(rt_rq); 348 } 349 350 static inline int has_pushable_tasks(struct rq *rq) 351 { 352 return !plist_head_empty(&rq->rt.pushable_tasks); 353 } 354 355 static DEFINE_PER_CPU(struct callback_head, rt_push_head); 356 static DEFINE_PER_CPU(struct callback_head, rt_pull_head); 357 358 static void push_rt_tasks(struct rq *); 359 static void pull_rt_task(struct rq *); 360 361 static inline void rt_queue_push_tasks(struct rq *rq) 362 { 363 if (!has_pushable_tasks(rq)) 364 return; 365 366 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 367 } 368 369 static inline void rt_queue_pull_task(struct rq *rq) 370 { 371 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 372 } 373 374 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 375 { 376 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 377 plist_node_init(&p->pushable_tasks, p->prio); 378 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 379 380 /* Update the highest prio pushable task */ 381 if (p->prio < rq->rt.highest_prio.next) 382 rq->rt.highest_prio.next = p->prio; 383 } 384 385 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 386 { 387 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 388 389 /* Update the new highest prio pushable task */ 390 if (has_pushable_tasks(rq)) { 391 p = plist_first_entry(&rq->rt.pushable_tasks, 392 struct task_struct, pushable_tasks); 393 rq->rt.highest_prio.next = p->prio; 394 } else 395 rq->rt.highest_prio.next = MAX_RT_PRIO; 396 } 397 398 #else 399 400 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 401 { 402 } 403 404 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 405 { 406 } 407 408 static inline 409 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 410 { 411 } 412 413 static inline 414 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 415 { 416 } 417 418 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 419 { 420 return false; 421 } 422 423 static inline void pull_rt_task(struct rq *this_rq) 424 { 425 } 426 427 static inline void rt_queue_push_tasks(struct rq *rq) 428 { 429 } 430 #endif /* CONFIG_SMP */ 431 432 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 433 static void dequeue_top_rt_rq(struct rt_rq *rt_rq); 434 435 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 436 { 437 return rt_se->on_rq; 438 } 439 440 #ifdef CONFIG_UCLAMP_TASK 441 /* 442 * Verify the fitness of task @p to run on @cpu taking into account the uclamp 443 * settings. 444 * 445 * This check is only important for heterogeneous systems where uclamp_min value 446 * is higher than the capacity of a @cpu. For non-heterogeneous system this 447 * function will always return true. 448 * 449 * The function will return true if the capacity of the @cpu is >= the 450 * uclamp_min and false otherwise. 451 * 452 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min 453 * > uclamp_max. 454 */ 455 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 456 { 457 unsigned int min_cap; 458 unsigned int max_cap; 459 unsigned int cpu_cap; 460 461 /* Only heterogeneous systems can benefit from this check */ 462 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 463 return true; 464 465 min_cap = uclamp_eff_value(p, UCLAMP_MIN); 466 max_cap = uclamp_eff_value(p, UCLAMP_MAX); 467 468 cpu_cap = capacity_orig_of(cpu); 469 470 return cpu_cap >= min(min_cap, max_cap); 471 } 472 #else 473 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 474 { 475 return true; 476 } 477 #endif 478 479 #ifdef CONFIG_RT_GROUP_SCHED 480 481 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 482 { 483 if (!rt_rq->tg) 484 return RUNTIME_INF; 485 486 return rt_rq->rt_runtime; 487 } 488 489 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 490 { 491 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 492 } 493 494 typedef struct task_group *rt_rq_iter_t; 495 496 static inline struct task_group *next_task_group(struct task_group *tg) 497 { 498 do { 499 tg = list_entry_rcu(tg->list.next, 500 typeof(struct task_group), list); 501 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 502 503 if (&tg->list == &task_groups) 504 tg = NULL; 505 506 return tg; 507 } 508 509 #define for_each_rt_rq(rt_rq, iter, rq) \ 510 for (iter = container_of(&task_groups, typeof(*iter), list); \ 511 (iter = next_task_group(iter)) && \ 512 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 513 514 #define for_each_sched_rt_entity(rt_se) \ 515 for (; rt_se; rt_se = rt_se->parent) 516 517 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 518 { 519 return rt_se->my_q; 520 } 521 522 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 523 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 524 525 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 526 { 527 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 528 struct rq *rq = rq_of_rt_rq(rt_rq); 529 struct sched_rt_entity *rt_se; 530 531 int cpu = cpu_of(rq); 532 533 rt_se = rt_rq->tg->rt_se[cpu]; 534 535 if (rt_rq->rt_nr_running) { 536 if (!rt_se) 537 enqueue_top_rt_rq(rt_rq); 538 else if (!on_rt_rq(rt_se)) 539 enqueue_rt_entity(rt_se, 0); 540 541 if (rt_rq->highest_prio.curr < curr->prio) 542 resched_curr(rq); 543 } 544 } 545 546 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 547 { 548 struct sched_rt_entity *rt_se; 549 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 550 551 rt_se = rt_rq->tg->rt_se[cpu]; 552 553 if (!rt_se) { 554 dequeue_top_rt_rq(rt_rq); 555 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 556 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); 557 } 558 else if (on_rt_rq(rt_se)) 559 dequeue_rt_entity(rt_se, 0); 560 } 561 562 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 563 { 564 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 565 } 566 567 static int rt_se_boosted(struct sched_rt_entity *rt_se) 568 { 569 struct rt_rq *rt_rq = group_rt_rq(rt_se); 570 struct task_struct *p; 571 572 if (rt_rq) 573 return !!rt_rq->rt_nr_boosted; 574 575 p = rt_task_of(rt_se); 576 return p->prio != p->normal_prio; 577 } 578 579 #ifdef CONFIG_SMP 580 static inline const struct cpumask *sched_rt_period_mask(void) 581 { 582 return this_rq()->rd->span; 583 } 584 #else 585 static inline const struct cpumask *sched_rt_period_mask(void) 586 { 587 return cpu_online_mask; 588 } 589 #endif 590 591 static inline 592 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 593 { 594 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 595 } 596 597 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 598 { 599 return &rt_rq->tg->rt_bandwidth; 600 } 601 602 #else /* !CONFIG_RT_GROUP_SCHED */ 603 604 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 605 { 606 return rt_rq->rt_runtime; 607 } 608 609 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 610 { 611 return ktime_to_ns(def_rt_bandwidth.rt_period); 612 } 613 614 typedef struct rt_rq *rt_rq_iter_t; 615 616 #define for_each_rt_rq(rt_rq, iter, rq) \ 617 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 618 619 #define for_each_sched_rt_entity(rt_se) \ 620 for (; rt_se; rt_se = NULL) 621 622 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 623 { 624 return NULL; 625 } 626 627 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 628 { 629 struct rq *rq = rq_of_rt_rq(rt_rq); 630 631 if (!rt_rq->rt_nr_running) 632 return; 633 634 enqueue_top_rt_rq(rt_rq); 635 resched_curr(rq); 636 } 637 638 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 639 { 640 dequeue_top_rt_rq(rt_rq); 641 } 642 643 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 644 { 645 return rt_rq->rt_throttled; 646 } 647 648 static inline const struct cpumask *sched_rt_period_mask(void) 649 { 650 return cpu_online_mask; 651 } 652 653 static inline 654 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 655 { 656 return &cpu_rq(cpu)->rt; 657 } 658 659 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 660 { 661 return &def_rt_bandwidth; 662 } 663 664 #endif /* CONFIG_RT_GROUP_SCHED */ 665 666 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 667 { 668 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 669 670 return (hrtimer_active(&rt_b->rt_period_timer) || 671 rt_rq->rt_time < rt_b->rt_runtime); 672 } 673 674 #ifdef CONFIG_SMP 675 /* 676 * We ran out of runtime, see if we can borrow some from our neighbours. 677 */ 678 static void do_balance_runtime(struct rt_rq *rt_rq) 679 { 680 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 681 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 682 int i, weight; 683 u64 rt_period; 684 685 weight = cpumask_weight(rd->span); 686 687 raw_spin_lock(&rt_b->rt_runtime_lock); 688 rt_period = ktime_to_ns(rt_b->rt_period); 689 for_each_cpu(i, rd->span) { 690 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 691 s64 diff; 692 693 if (iter == rt_rq) 694 continue; 695 696 raw_spin_lock(&iter->rt_runtime_lock); 697 /* 698 * Either all rqs have inf runtime and there's nothing to steal 699 * or __disable_runtime() below sets a specific rq to inf to 700 * indicate its been disabled and disalow stealing. 701 */ 702 if (iter->rt_runtime == RUNTIME_INF) 703 goto next; 704 705 /* 706 * From runqueues with spare time, take 1/n part of their 707 * spare time, but no more than our period. 708 */ 709 diff = iter->rt_runtime - iter->rt_time; 710 if (diff > 0) { 711 diff = div_u64((u64)diff, weight); 712 if (rt_rq->rt_runtime + diff > rt_period) 713 diff = rt_period - rt_rq->rt_runtime; 714 iter->rt_runtime -= diff; 715 rt_rq->rt_runtime += diff; 716 if (rt_rq->rt_runtime == rt_period) { 717 raw_spin_unlock(&iter->rt_runtime_lock); 718 break; 719 } 720 } 721 next: 722 raw_spin_unlock(&iter->rt_runtime_lock); 723 } 724 raw_spin_unlock(&rt_b->rt_runtime_lock); 725 } 726 727 /* 728 * Ensure this RQ takes back all the runtime it lend to its neighbours. 729 */ 730 static void __disable_runtime(struct rq *rq) 731 { 732 struct root_domain *rd = rq->rd; 733 rt_rq_iter_t iter; 734 struct rt_rq *rt_rq; 735 736 if (unlikely(!scheduler_running)) 737 return; 738 739 for_each_rt_rq(rt_rq, iter, rq) { 740 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 741 s64 want; 742 int i; 743 744 raw_spin_lock(&rt_b->rt_runtime_lock); 745 raw_spin_lock(&rt_rq->rt_runtime_lock); 746 /* 747 * Either we're all inf and nobody needs to borrow, or we're 748 * already disabled and thus have nothing to do, or we have 749 * exactly the right amount of runtime to take out. 750 */ 751 if (rt_rq->rt_runtime == RUNTIME_INF || 752 rt_rq->rt_runtime == rt_b->rt_runtime) 753 goto balanced; 754 raw_spin_unlock(&rt_rq->rt_runtime_lock); 755 756 /* 757 * Calculate the difference between what we started out with 758 * and what we current have, that's the amount of runtime 759 * we lend and now have to reclaim. 760 */ 761 want = rt_b->rt_runtime - rt_rq->rt_runtime; 762 763 /* 764 * Greedy reclaim, take back as much as we can. 765 */ 766 for_each_cpu(i, rd->span) { 767 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 768 s64 diff; 769 770 /* 771 * Can't reclaim from ourselves or disabled runqueues. 772 */ 773 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 774 continue; 775 776 raw_spin_lock(&iter->rt_runtime_lock); 777 if (want > 0) { 778 diff = min_t(s64, iter->rt_runtime, want); 779 iter->rt_runtime -= diff; 780 want -= diff; 781 } else { 782 iter->rt_runtime -= want; 783 want -= want; 784 } 785 raw_spin_unlock(&iter->rt_runtime_lock); 786 787 if (!want) 788 break; 789 } 790 791 raw_spin_lock(&rt_rq->rt_runtime_lock); 792 /* 793 * We cannot be left wanting - that would mean some runtime 794 * leaked out of the system. 795 */ 796 BUG_ON(want); 797 balanced: 798 /* 799 * Disable all the borrow logic by pretending we have inf 800 * runtime - in which case borrowing doesn't make sense. 801 */ 802 rt_rq->rt_runtime = RUNTIME_INF; 803 rt_rq->rt_throttled = 0; 804 raw_spin_unlock(&rt_rq->rt_runtime_lock); 805 raw_spin_unlock(&rt_b->rt_runtime_lock); 806 807 /* Make rt_rq available for pick_next_task() */ 808 sched_rt_rq_enqueue(rt_rq); 809 } 810 } 811 812 static void __enable_runtime(struct rq *rq) 813 { 814 rt_rq_iter_t iter; 815 struct rt_rq *rt_rq; 816 817 if (unlikely(!scheduler_running)) 818 return; 819 820 /* 821 * Reset each runqueue's bandwidth settings 822 */ 823 for_each_rt_rq(rt_rq, iter, rq) { 824 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 825 826 raw_spin_lock(&rt_b->rt_runtime_lock); 827 raw_spin_lock(&rt_rq->rt_runtime_lock); 828 rt_rq->rt_runtime = rt_b->rt_runtime; 829 rt_rq->rt_time = 0; 830 rt_rq->rt_throttled = 0; 831 raw_spin_unlock(&rt_rq->rt_runtime_lock); 832 raw_spin_unlock(&rt_b->rt_runtime_lock); 833 } 834 } 835 836 static void balance_runtime(struct rt_rq *rt_rq) 837 { 838 if (!sched_feat(RT_RUNTIME_SHARE)) 839 return; 840 841 if (rt_rq->rt_time > rt_rq->rt_runtime) { 842 raw_spin_unlock(&rt_rq->rt_runtime_lock); 843 do_balance_runtime(rt_rq); 844 raw_spin_lock(&rt_rq->rt_runtime_lock); 845 } 846 } 847 #else /* !CONFIG_SMP */ 848 static inline void balance_runtime(struct rt_rq *rt_rq) {} 849 #endif /* CONFIG_SMP */ 850 851 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 852 { 853 int i, idle = 1, throttled = 0; 854 const struct cpumask *span; 855 856 span = sched_rt_period_mask(); 857 #ifdef CONFIG_RT_GROUP_SCHED 858 /* 859 * FIXME: isolated CPUs should really leave the root task group, 860 * whether they are isolcpus or were isolated via cpusets, lest 861 * the timer run on a CPU which does not service all runqueues, 862 * potentially leaving other CPUs indefinitely throttled. If 863 * isolation is really required, the user will turn the throttle 864 * off to kill the perturbations it causes anyway. Meanwhile, 865 * this maintains functionality for boot and/or troubleshooting. 866 */ 867 if (rt_b == &root_task_group.rt_bandwidth) 868 span = cpu_online_mask; 869 #endif 870 for_each_cpu(i, span) { 871 int enqueue = 0; 872 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 873 struct rq *rq = rq_of_rt_rq(rt_rq); 874 int skip; 875 876 /* 877 * When span == cpu_online_mask, taking each rq->lock 878 * can be time-consuming. Try to avoid it when possible. 879 */ 880 raw_spin_lock(&rt_rq->rt_runtime_lock); 881 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) 882 rt_rq->rt_runtime = rt_b->rt_runtime; 883 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 884 raw_spin_unlock(&rt_rq->rt_runtime_lock); 885 if (skip) 886 continue; 887 888 raw_spin_lock(&rq->lock); 889 update_rq_clock(rq); 890 891 if (rt_rq->rt_time) { 892 u64 runtime; 893 894 raw_spin_lock(&rt_rq->rt_runtime_lock); 895 if (rt_rq->rt_throttled) 896 balance_runtime(rt_rq); 897 runtime = rt_rq->rt_runtime; 898 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 899 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 900 rt_rq->rt_throttled = 0; 901 enqueue = 1; 902 903 /* 904 * When we're idle and a woken (rt) task is 905 * throttled check_preempt_curr() will set 906 * skip_update and the time between the wakeup 907 * and this unthrottle will get accounted as 908 * 'runtime'. 909 */ 910 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 911 rq_clock_cancel_skipupdate(rq); 912 } 913 if (rt_rq->rt_time || rt_rq->rt_nr_running) 914 idle = 0; 915 raw_spin_unlock(&rt_rq->rt_runtime_lock); 916 } else if (rt_rq->rt_nr_running) { 917 idle = 0; 918 if (!rt_rq_throttled(rt_rq)) 919 enqueue = 1; 920 } 921 if (rt_rq->rt_throttled) 922 throttled = 1; 923 924 if (enqueue) 925 sched_rt_rq_enqueue(rt_rq); 926 raw_spin_unlock(&rq->lock); 927 } 928 929 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 930 return 1; 931 932 return idle; 933 } 934 935 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 936 { 937 #ifdef CONFIG_RT_GROUP_SCHED 938 struct rt_rq *rt_rq = group_rt_rq(rt_se); 939 940 if (rt_rq) 941 return rt_rq->highest_prio.curr; 942 #endif 943 944 return rt_task_of(rt_se)->prio; 945 } 946 947 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 948 { 949 u64 runtime = sched_rt_runtime(rt_rq); 950 951 if (rt_rq->rt_throttled) 952 return rt_rq_throttled(rt_rq); 953 954 if (runtime >= sched_rt_period(rt_rq)) 955 return 0; 956 957 balance_runtime(rt_rq); 958 runtime = sched_rt_runtime(rt_rq); 959 if (runtime == RUNTIME_INF) 960 return 0; 961 962 if (rt_rq->rt_time > runtime) { 963 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 964 965 /* 966 * Don't actually throttle groups that have no runtime assigned 967 * but accrue some time due to boosting. 968 */ 969 if (likely(rt_b->rt_runtime)) { 970 rt_rq->rt_throttled = 1; 971 printk_deferred_once("sched: RT throttling activated\n"); 972 } else { 973 /* 974 * In case we did anyway, make it go away, 975 * replenishment is a joke, since it will replenish us 976 * with exactly 0 ns. 977 */ 978 rt_rq->rt_time = 0; 979 } 980 981 if (rt_rq_throttled(rt_rq)) { 982 sched_rt_rq_dequeue(rt_rq); 983 return 1; 984 } 985 } 986 987 return 0; 988 } 989 990 /* 991 * Update the current task's runtime statistics. Skip current tasks that 992 * are not in our scheduling class. 993 */ 994 static void update_curr_rt(struct rq *rq) 995 { 996 struct task_struct *curr = rq->curr; 997 struct sched_rt_entity *rt_se = &curr->rt; 998 u64 delta_exec; 999 u64 now; 1000 1001 if (curr->sched_class != &rt_sched_class) 1002 return; 1003 1004 now = rq_clock_task(rq); 1005 delta_exec = now - curr->se.exec_start; 1006 if (unlikely((s64)delta_exec <= 0)) 1007 return; 1008 1009 schedstat_set(curr->se.statistics.exec_max, 1010 max(curr->se.statistics.exec_max, delta_exec)); 1011 1012 curr->se.sum_exec_runtime += delta_exec; 1013 account_group_exec_runtime(curr, delta_exec); 1014 1015 curr->se.exec_start = now; 1016 cgroup_account_cputime(curr, delta_exec); 1017 1018 if (!rt_bandwidth_enabled()) 1019 return; 1020 1021 for_each_sched_rt_entity(rt_se) { 1022 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1023 1024 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 1025 raw_spin_lock(&rt_rq->rt_runtime_lock); 1026 rt_rq->rt_time += delta_exec; 1027 if (sched_rt_runtime_exceeded(rt_rq)) 1028 resched_curr(rq); 1029 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1030 } 1031 } 1032 } 1033 1034 static void 1035 dequeue_top_rt_rq(struct rt_rq *rt_rq) 1036 { 1037 struct rq *rq = rq_of_rt_rq(rt_rq); 1038 1039 BUG_ON(&rq->rt != rt_rq); 1040 1041 if (!rt_rq->rt_queued) 1042 return; 1043 1044 BUG_ON(!rq->nr_running); 1045 1046 sub_nr_running(rq, rt_rq->rt_nr_running); 1047 rt_rq->rt_queued = 0; 1048 1049 } 1050 1051 static void 1052 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1053 { 1054 struct rq *rq = rq_of_rt_rq(rt_rq); 1055 1056 BUG_ON(&rq->rt != rt_rq); 1057 1058 if (rt_rq->rt_queued) 1059 return; 1060 1061 if (rt_rq_throttled(rt_rq)) 1062 return; 1063 1064 if (rt_rq->rt_nr_running) { 1065 add_nr_running(rq, rt_rq->rt_nr_running); 1066 rt_rq->rt_queued = 1; 1067 } 1068 1069 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 1070 cpufreq_update_util(rq, 0); 1071 } 1072 1073 #if defined CONFIG_SMP 1074 1075 static void 1076 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1077 { 1078 struct rq *rq = rq_of_rt_rq(rt_rq); 1079 1080 #ifdef CONFIG_RT_GROUP_SCHED 1081 /* 1082 * Change rq's cpupri only if rt_rq is the top queue. 1083 */ 1084 if (&rq->rt != rt_rq) 1085 return; 1086 #endif 1087 if (rq->online && prio < prev_prio) 1088 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1089 } 1090 1091 static void 1092 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1093 { 1094 struct rq *rq = rq_of_rt_rq(rt_rq); 1095 1096 #ifdef CONFIG_RT_GROUP_SCHED 1097 /* 1098 * Change rq's cpupri only if rt_rq is the top queue. 1099 */ 1100 if (&rq->rt != rt_rq) 1101 return; 1102 #endif 1103 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1104 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1105 } 1106 1107 #else /* CONFIG_SMP */ 1108 1109 static inline 1110 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1111 static inline 1112 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1113 1114 #endif /* CONFIG_SMP */ 1115 1116 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1117 static void 1118 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1119 { 1120 int prev_prio = rt_rq->highest_prio.curr; 1121 1122 if (prio < prev_prio) 1123 rt_rq->highest_prio.curr = prio; 1124 1125 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1126 } 1127 1128 static void 1129 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1130 { 1131 int prev_prio = rt_rq->highest_prio.curr; 1132 1133 if (rt_rq->rt_nr_running) { 1134 1135 WARN_ON(prio < prev_prio); 1136 1137 /* 1138 * This may have been our highest task, and therefore 1139 * we may have some recomputation to do 1140 */ 1141 if (prio == prev_prio) { 1142 struct rt_prio_array *array = &rt_rq->active; 1143 1144 rt_rq->highest_prio.curr = 1145 sched_find_first_bit(array->bitmap); 1146 } 1147 1148 } else 1149 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1150 1151 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1152 } 1153 1154 #else 1155 1156 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1157 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1158 1159 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1160 1161 #ifdef CONFIG_RT_GROUP_SCHED 1162 1163 static void 1164 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1165 { 1166 if (rt_se_boosted(rt_se)) 1167 rt_rq->rt_nr_boosted++; 1168 1169 if (rt_rq->tg) 1170 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1171 } 1172 1173 static void 1174 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1175 { 1176 if (rt_se_boosted(rt_se)) 1177 rt_rq->rt_nr_boosted--; 1178 1179 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1180 } 1181 1182 #else /* CONFIG_RT_GROUP_SCHED */ 1183 1184 static void 1185 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1186 { 1187 start_rt_bandwidth(&def_rt_bandwidth); 1188 } 1189 1190 static inline 1191 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1192 1193 #endif /* CONFIG_RT_GROUP_SCHED */ 1194 1195 static inline 1196 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1197 { 1198 struct rt_rq *group_rq = group_rt_rq(rt_se); 1199 1200 if (group_rq) 1201 return group_rq->rt_nr_running; 1202 else 1203 return 1; 1204 } 1205 1206 static inline 1207 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1208 { 1209 struct rt_rq *group_rq = group_rt_rq(rt_se); 1210 struct task_struct *tsk; 1211 1212 if (group_rq) 1213 return group_rq->rr_nr_running; 1214 1215 tsk = rt_task_of(rt_se); 1216 1217 return (tsk->policy == SCHED_RR) ? 1 : 0; 1218 } 1219 1220 static inline 1221 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1222 { 1223 int prio = rt_se_prio(rt_se); 1224 1225 WARN_ON(!rt_prio(prio)); 1226 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1227 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1228 1229 inc_rt_prio(rt_rq, prio); 1230 inc_rt_migration(rt_se, rt_rq); 1231 inc_rt_group(rt_se, rt_rq); 1232 } 1233 1234 static inline 1235 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1236 { 1237 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1238 WARN_ON(!rt_rq->rt_nr_running); 1239 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1240 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1241 1242 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1243 dec_rt_migration(rt_se, rt_rq); 1244 dec_rt_group(rt_se, rt_rq); 1245 } 1246 1247 /* 1248 * Change rt_se->run_list location unless SAVE && !MOVE 1249 * 1250 * assumes ENQUEUE/DEQUEUE flags match 1251 */ 1252 static inline bool move_entity(unsigned int flags) 1253 { 1254 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1255 return false; 1256 1257 return true; 1258 } 1259 1260 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1261 { 1262 list_del_init(&rt_se->run_list); 1263 1264 if (list_empty(array->queue + rt_se_prio(rt_se))) 1265 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1266 1267 rt_se->on_list = 0; 1268 } 1269 1270 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1271 { 1272 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1273 struct rt_prio_array *array = &rt_rq->active; 1274 struct rt_rq *group_rq = group_rt_rq(rt_se); 1275 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1276 1277 /* 1278 * Don't enqueue the group if its throttled, or when empty. 1279 * The latter is a consequence of the former when a child group 1280 * get throttled and the current group doesn't have any other 1281 * active members. 1282 */ 1283 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1284 if (rt_se->on_list) 1285 __delist_rt_entity(rt_se, array); 1286 return; 1287 } 1288 1289 if (move_entity(flags)) { 1290 WARN_ON_ONCE(rt_se->on_list); 1291 if (flags & ENQUEUE_HEAD) 1292 list_add(&rt_se->run_list, queue); 1293 else 1294 list_add_tail(&rt_se->run_list, queue); 1295 1296 __set_bit(rt_se_prio(rt_se), array->bitmap); 1297 rt_se->on_list = 1; 1298 } 1299 rt_se->on_rq = 1; 1300 1301 inc_rt_tasks(rt_se, rt_rq); 1302 } 1303 1304 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1305 { 1306 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1307 struct rt_prio_array *array = &rt_rq->active; 1308 1309 if (move_entity(flags)) { 1310 WARN_ON_ONCE(!rt_se->on_list); 1311 __delist_rt_entity(rt_se, array); 1312 } 1313 rt_se->on_rq = 0; 1314 1315 dec_rt_tasks(rt_se, rt_rq); 1316 } 1317 1318 /* 1319 * Because the prio of an upper entry depends on the lower 1320 * entries, we must remove entries top - down. 1321 */ 1322 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1323 { 1324 struct sched_rt_entity *back = NULL; 1325 1326 for_each_sched_rt_entity(rt_se) { 1327 rt_se->back = back; 1328 back = rt_se; 1329 } 1330 1331 dequeue_top_rt_rq(rt_rq_of_se(back)); 1332 1333 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1334 if (on_rt_rq(rt_se)) 1335 __dequeue_rt_entity(rt_se, flags); 1336 } 1337 } 1338 1339 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1340 { 1341 struct rq *rq = rq_of_rt_se(rt_se); 1342 1343 dequeue_rt_stack(rt_se, flags); 1344 for_each_sched_rt_entity(rt_se) 1345 __enqueue_rt_entity(rt_se, flags); 1346 enqueue_top_rt_rq(&rq->rt); 1347 } 1348 1349 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1350 { 1351 struct rq *rq = rq_of_rt_se(rt_se); 1352 1353 dequeue_rt_stack(rt_se, flags); 1354 1355 for_each_sched_rt_entity(rt_se) { 1356 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1357 1358 if (rt_rq && rt_rq->rt_nr_running) 1359 __enqueue_rt_entity(rt_se, flags); 1360 } 1361 enqueue_top_rt_rq(&rq->rt); 1362 } 1363 1364 /* 1365 * Adding/removing a task to/from a priority array: 1366 */ 1367 static void 1368 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1369 { 1370 struct sched_rt_entity *rt_se = &p->rt; 1371 1372 if (flags & ENQUEUE_WAKEUP) 1373 rt_se->timeout = 0; 1374 1375 enqueue_rt_entity(rt_se, flags); 1376 1377 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1378 enqueue_pushable_task(rq, p); 1379 } 1380 1381 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1382 { 1383 struct sched_rt_entity *rt_se = &p->rt; 1384 1385 update_curr_rt(rq); 1386 dequeue_rt_entity(rt_se, flags); 1387 1388 dequeue_pushable_task(rq, p); 1389 } 1390 1391 /* 1392 * Put task to the head or the end of the run list without the overhead of 1393 * dequeue followed by enqueue. 1394 */ 1395 static void 1396 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1397 { 1398 if (on_rt_rq(rt_se)) { 1399 struct rt_prio_array *array = &rt_rq->active; 1400 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1401 1402 if (head) 1403 list_move(&rt_se->run_list, queue); 1404 else 1405 list_move_tail(&rt_se->run_list, queue); 1406 } 1407 } 1408 1409 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1410 { 1411 struct sched_rt_entity *rt_se = &p->rt; 1412 struct rt_rq *rt_rq; 1413 1414 for_each_sched_rt_entity(rt_se) { 1415 rt_rq = rt_rq_of_se(rt_se); 1416 requeue_rt_entity(rt_rq, rt_se, head); 1417 } 1418 } 1419 1420 static void yield_task_rt(struct rq *rq) 1421 { 1422 requeue_task_rt(rq, rq->curr, 0); 1423 } 1424 1425 #ifdef CONFIG_SMP 1426 static int find_lowest_rq(struct task_struct *task); 1427 1428 static int 1429 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1430 { 1431 struct task_struct *curr; 1432 struct rq *rq; 1433 bool test; 1434 1435 /* For anything but wake ups, just return the task_cpu */ 1436 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1437 goto out; 1438 1439 rq = cpu_rq(cpu); 1440 1441 rcu_read_lock(); 1442 curr = READ_ONCE(rq->curr); /* unlocked access */ 1443 1444 /* 1445 * If the current task on @p's runqueue is an RT task, then 1446 * try to see if we can wake this RT task up on another 1447 * runqueue. Otherwise simply start this RT task 1448 * on its current runqueue. 1449 * 1450 * We want to avoid overloading runqueues. If the woken 1451 * task is a higher priority, then it will stay on this CPU 1452 * and the lower prio task should be moved to another CPU. 1453 * Even though this will probably make the lower prio task 1454 * lose its cache, we do not want to bounce a higher task 1455 * around just because it gave up its CPU, perhaps for a 1456 * lock? 1457 * 1458 * For equal prio tasks, we just let the scheduler sort it out. 1459 * 1460 * Otherwise, just let it ride on the affined RQ and the 1461 * post-schedule router will push the preempted task away 1462 * 1463 * This test is optimistic, if we get it wrong the load-balancer 1464 * will have to sort it out. 1465 * 1466 * We take into account the capacity of the CPU to ensure it fits the 1467 * requirement of the task - which is only important on heterogeneous 1468 * systems like big.LITTLE. 1469 */ 1470 test = curr && 1471 unlikely(rt_task(curr)) && 1472 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio); 1473 1474 if (test || !rt_task_fits_capacity(p, cpu)) { 1475 int target = find_lowest_rq(p); 1476 1477 /* 1478 * Bail out if we were forcing a migration to find a better 1479 * fitting CPU but our search failed. 1480 */ 1481 if (!test && target != -1 && !rt_task_fits_capacity(p, target)) 1482 goto out_unlock; 1483 1484 /* 1485 * Don't bother moving it if the destination CPU is 1486 * not running a lower priority task. 1487 */ 1488 if (target != -1 && 1489 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1490 cpu = target; 1491 } 1492 1493 out_unlock: 1494 rcu_read_unlock(); 1495 1496 out: 1497 return cpu; 1498 } 1499 1500 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1501 { 1502 /* 1503 * Current can't be migrated, useless to reschedule, 1504 * let's hope p can move out. 1505 */ 1506 if (rq->curr->nr_cpus_allowed == 1 || 1507 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1508 return; 1509 1510 /* 1511 * p is migratable, so let's not schedule it and 1512 * see if it is pushed or pulled somewhere else. 1513 */ 1514 if (p->nr_cpus_allowed != 1 && 1515 cpupri_find(&rq->rd->cpupri, p, NULL)) 1516 return; 1517 1518 /* 1519 * There appear to be other CPUs that can accept 1520 * the current task but none can run 'p', so lets reschedule 1521 * to try and push the current task away: 1522 */ 1523 requeue_task_rt(rq, p, 1); 1524 resched_curr(rq); 1525 } 1526 1527 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1528 { 1529 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) { 1530 /* 1531 * This is OK, because current is on_cpu, which avoids it being 1532 * picked for load-balance and preemption/IRQs are still 1533 * disabled avoiding further scheduler activity on it and we've 1534 * not yet started the picking loop. 1535 */ 1536 rq_unpin_lock(rq, rf); 1537 pull_rt_task(rq); 1538 rq_repin_lock(rq, rf); 1539 } 1540 1541 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq); 1542 } 1543 #endif /* CONFIG_SMP */ 1544 1545 /* 1546 * Preempt the current task with a newly woken task if needed: 1547 */ 1548 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1549 { 1550 if (p->prio < rq->curr->prio) { 1551 resched_curr(rq); 1552 return; 1553 } 1554 1555 #ifdef CONFIG_SMP 1556 /* 1557 * If: 1558 * 1559 * - the newly woken task is of equal priority to the current task 1560 * - the newly woken task is non-migratable while current is migratable 1561 * - current will be preempted on the next reschedule 1562 * 1563 * we should check to see if current can readily move to a different 1564 * cpu. If so, we will reschedule to allow the push logic to try 1565 * to move current somewhere else, making room for our non-migratable 1566 * task. 1567 */ 1568 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1569 check_preempt_equal_prio(rq, p); 1570 #endif 1571 } 1572 1573 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first) 1574 { 1575 p->se.exec_start = rq_clock_task(rq); 1576 1577 /* The running task is never eligible for pushing */ 1578 dequeue_pushable_task(rq, p); 1579 1580 if (!first) 1581 return; 1582 1583 /* 1584 * If prev task was rt, put_prev_task() has already updated the 1585 * utilization. We only care of the case where we start to schedule a 1586 * rt task 1587 */ 1588 if (rq->curr->sched_class != &rt_sched_class) 1589 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1590 1591 rt_queue_push_tasks(rq); 1592 } 1593 1594 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1595 struct rt_rq *rt_rq) 1596 { 1597 struct rt_prio_array *array = &rt_rq->active; 1598 struct sched_rt_entity *next = NULL; 1599 struct list_head *queue; 1600 int idx; 1601 1602 idx = sched_find_first_bit(array->bitmap); 1603 BUG_ON(idx >= MAX_RT_PRIO); 1604 1605 queue = array->queue + idx; 1606 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1607 1608 return next; 1609 } 1610 1611 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1612 { 1613 struct sched_rt_entity *rt_se; 1614 struct rt_rq *rt_rq = &rq->rt; 1615 1616 do { 1617 rt_se = pick_next_rt_entity(rq, rt_rq); 1618 BUG_ON(!rt_se); 1619 rt_rq = group_rt_rq(rt_se); 1620 } while (rt_rq); 1621 1622 return rt_task_of(rt_se); 1623 } 1624 1625 static struct task_struct *pick_next_task_rt(struct rq *rq) 1626 { 1627 struct task_struct *p; 1628 1629 if (!sched_rt_runnable(rq)) 1630 return NULL; 1631 1632 p = _pick_next_task_rt(rq); 1633 set_next_task_rt(rq, p, true); 1634 return p; 1635 } 1636 1637 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1638 { 1639 update_curr_rt(rq); 1640 1641 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1642 1643 /* 1644 * The previous task needs to be made eligible for pushing 1645 * if it is still active 1646 */ 1647 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1648 enqueue_pushable_task(rq, p); 1649 } 1650 1651 #ifdef CONFIG_SMP 1652 1653 /* Only try algorithms three times */ 1654 #define RT_MAX_TRIES 3 1655 1656 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1657 { 1658 if (!task_running(rq, p) && 1659 cpumask_test_cpu(cpu, p->cpus_ptr)) 1660 return 1; 1661 1662 return 0; 1663 } 1664 1665 /* 1666 * Return the highest pushable rq's task, which is suitable to be executed 1667 * on the CPU, NULL otherwise 1668 */ 1669 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1670 { 1671 struct plist_head *head = &rq->rt.pushable_tasks; 1672 struct task_struct *p; 1673 1674 if (!has_pushable_tasks(rq)) 1675 return NULL; 1676 1677 plist_for_each_entry(p, head, pushable_tasks) { 1678 if (pick_rt_task(rq, p, cpu)) 1679 return p; 1680 } 1681 1682 return NULL; 1683 } 1684 1685 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1686 1687 static int find_lowest_rq(struct task_struct *task) 1688 { 1689 struct sched_domain *sd; 1690 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1691 int this_cpu = smp_processor_id(); 1692 int cpu = task_cpu(task); 1693 int ret; 1694 1695 /* Make sure the mask is initialized first */ 1696 if (unlikely(!lowest_mask)) 1697 return -1; 1698 1699 if (task->nr_cpus_allowed == 1) 1700 return -1; /* No other targets possible */ 1701 1702 /* 1703 * If we're on asym system ensure we consider the different capacities 1704 * of the CPUs when searching for the lowest_mask. 1705 */ 1706 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 1707 1708 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri, 1709 task, lowest_mask, 1710 rt_task_fits_capacity); 1711 } else { 1712 1713 ret = cpupri_find(&task_rq(task)->rd->cpupri, 1714 task, lowest_mask); 1715 } 1716 1717 if (!ret) 1718 return -1; /* No targets found */ 1719 1720 /* 1721 * At this point we have built a mask of CPUs representing the 1722 * lowest priority tasks in the system. Now we want to elect 1723 * the best one based on our affinity and topology. 1724 * 1725 * We prioritize the last CPU that the task executed on since 1726 * it is most likely cache-hot in that location. 1727 */ 1728 if (cpumask_test_cpu(cpu, lowest_mask)) 1729 return cpu; 1730 1731 /* 1732 * Otherwise, we consult the sched_domains span maps to figure 1733 * out which CPU is logically closest to our hot cache data. 1734 */ 1735 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1736 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1737 1738 rcu_read_lock(); 1739 for_each_domain(cpu, sd) { 1740 if (sd->flags & SD_WAKE_AFFINE) { 1741 int best_cpu; 1742 1743 /* 1744 * "this_cpu" is cheaper to preempt than a 1745 * remote processor. 1746 */ 1747 if (this_cpu != -1 && 1748 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1749 rcu_read_unlock(); 1750 return this_cpu; 1751 } 1752 1753 best_cpu = cpumask_first_and(lowest_mask, 1754 sched_domain_span(sd)); 1755 if (best_cpu < nr_cpu_ids) { 1756 rcu_read_unlock(); 1757 return best_cpu; 1758 } 1759 } 1760 } 1761 rcu_read_unlock(); 1762 1763 /* 1764 * And finally, if there were no matches within the domains 1765 * just give the caller *something* to work with from the compatible 1766 * locations. 1767 */ 1768 if (this_cpu != -1) 1769 return this_cpu; 1770 1771 cpu = cpumask_any(lowest_mask); 1772 if (cpu < nr_cpu_ids) 1773 return cpu; 1774 1775 return -1; 1776 } 1777 1778 /* Will lock the rq it finds */ 1779 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1780 { 1781 struct rq *lowest_rq = NULL; 1782 int tries; 1783 int cpu; 1784 1785 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1786 cpu = find_lowest_rq(task); 1787 1788 if ((cpu == -1) || (cpu == rq->cpu)) 1789 break; 1790 1791 lowest_rq = cpu_rq(cpu); 1792 1793 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1794 /* 1795 * Target rq has tasks of equal or higher priority, 1796 * retrying does not release any lock and is unlikely 1797 * to yield a different result. 1798 */ 1799 lowest_rq = NULL; 1800 break; 1801 } 1802 1803 /* if the prio of this runqueue changed, try again */ 1804 if (double_lock_balance(rq, lowest_rq)) { 1805 /* 1806 * We had to unlock the run queue. In 1807 * the mean time, task could have 1808 * migrated already or had its affinity changed. 1809 * Also make sure that it wasn't scheduled on its rq. 1810 */ 1811 if (unlikely(task_rq(task) != rq || 1812 !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) || 1813 task_running(rq, task) || 1814 !rt_task(task) || 1815 !task_on_rq_queued(task))) { 1816 1817 double_unlock_balance(rq, lowest_rq); 1818 lowest_rq = NULL; 1819 break; 1820 } 1821 } 1822 1823 /* If this rq is still suitable use it. */ 1824 if (lowest_rq->rt.highest_prio.curr > task->prio) 1825 break; 1826 1827 /* try again */ 1828 double_unlock_balance(rq, lowest_rq); 1829 lowest_rq = NULL; 1830 } 1831 1832 return lowest_rq; 1833 } 1834 1835 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1836 { 1837 struct task_struct *p; 1838 1839 if (!has_pushable_tasks(rq)) 1840 return NULL; 1841 1842 p = plist_first_entry(&rq->rt.pushable_tasks, 1843 struct task_struct, pushable_tasks); 1844 1845 BUG_ON(rq->cpu != task_cpu(p)); 1846 BUG_ON(task_current(rq, p)); 1847 BUG_ON(p->nr_cpus_allowed <= 1); 1848 1849 BUG_ON(!task_on_rq_queued(p)); 1850 BUG_ON(!rt_task(p)); 1851 1852 return p; 1853 } 1854 1855 /* 1856 * If the current CPU has more than one RT task, see if the non 1857 * running task can migrate over to a CPU that is running a task 1858 * of lesser priority. 1859 */ 1860 static int push_rt_task(struct rq *rq) 1861 { 1862 struct task_struct *next_task; 1863 struct rq *lowest_rq; 1864 int ret = 0; 1865 1866 if (!rq->rt.overloaded) 1867 return 0; 1868 1869 next_task = pick_next_pushable_task(rq); 1870 if (!next_task) 1871 return 0; 1872 1873 retry: 1874 if (WARN_ON(next_task == rq->curr)) 1875 return 0; 1876 1877 /* 1878 * It's possible that the next_task slipped in of 1879 * higher priority than current. If that's the case 1880 * just reschedule current. 1881 */ 1882 if (unlikely(next_task->prio < rq->curr->prio)) { 1883 resched_curr(rq); 1884 return 0; 1885 } 1886 1887 /* We might release rq lock */ 1888 get_task_struct(next_task); 1889 1890 /* find_lock_lowest_rq locks the rq if found */ 1891 lowest_rq = find_lock_lowest_rq(next_task, rq); 1892 if (!lowest_rq) { 1893 struct task_struct *task; 1894 /* 1895 * find_lock_lowest_rq releases rq->lock 1896 * so it is possible that next_task has migrated. 1897 * 1898 * We need to make sure that the task is still on the same 1899 * run-queue and is also still the next task eligible for 1900 * pushing. 1901 */ 1902 task = pick_next_pushable_task(rq); 1903 if (task == next_task) { 1904 /* 1905 * The task hasn't migrated, and is still the next 1906 * eligible task, but we failed to find a run-queue 1907 * to push it to. Do not retry in this case, since 1908 * other CPUs will pull from us when ready. 1909 */ 1910 goto out; 1911 } 1912 1913 if (!task) 1914 /* No more tasks, just exit */ 1915 goto out; 1916 1917 /* 1918 * Something has shifted, try again. 1919 */ 1920 put_task_struct(next_task); 1921 next_task = task; 1922 goto retry; 1923 } 1924 1925 deactivate_task(rq, next_task, 0); 1926 set_task_cpu(next_task, lowest_rq->cpu); 1927 activate_task(lowest_rq, next_task, 0); 1928 ret = 1; 1929 1930 resched_curr(lowest_rq); 1931 1932 double_unlock_balance(rq, lowest_rq); 1933 1934 out: 1935 put_task_struct(next_task); 1936 1937 return ret; 1938 } 1939 1940 static void push_rt_tasks(struct rq *rq) 1941 { 1942 /* push_rt_task will return true if it moved an RT */ 1943 while (push_rt_task(rq)) 1944 ; 1945 } 1946 1947 #ifdef HAVE_RT_PUSH_IPI 1948 1949 /* 1950 * When a high priority task schedules out from a CPU and a lower priority 1951 * task is scheduled in, a check is made to see if there's any RT tasks 1952 * on other CPUs that are waiting to run because a higher priority RT task 1953 * is currently running on its CPU. In this case, the CPU with multiple RT 1954 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 1955 * up that may be able to run one of its non-running queued RT tasks. 1956 * 1957 * All CPUs with overloaded RT tasks need to be notified as there is currently 1958 * no way to know which of these CPUs have the highest priority task waiting 1959 * to run. Instead of trying to take a spinlock on each of these CPUs, 1960 * which has shown to cause large latency when done on machines with many 1961 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 1962 * RT tasks waiting to run. 1963 * 1964 * Just sending an IPI to each of the CPUs is also an issue, as on large 1965 * count CPU machines, this can cause an IPI storm on a CPU, especially 1966 * if its the only CPU with multiple RT tasks queued, and a large number 1967 * of CPUs scheduling a lower priority task at the same time. 1968 * 1969 * Each root domain has its own irq work function that can iterate over 1970 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 1971 * tassk must be checked if there's one or many CPUs that are lowering 1972 * their priority, there's a single irq work iterator that will try to 1973 * push off RT tasks that are waiting to run. 1974 * 1975 * When a CPU schedules a lower priority task, it will kick off the 1976 * irq work iterator that will jump to each CPU with overloaded RT tasks. 1977 * As it only takes the first CPU that schedules a lower priority task 1978 * to start the process, the rto_start variable is incremented and if 1979 * the atomic result is one, then that CPU will try to take the rto_lock. 1980 * This prevents high contention on the lock as the process handles all 1981 * CPUs scheduling lower priority tasks. 1982 * 1983 * All CPUs that are scheduling a lower priority task will increment the 1984 * rt_loop_next variable. This will make sure that the irq work iterator 1985 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 1986 * priority task, even if the iterator is in the middle of a scan. Incrementing 1987 * the rt_loop_next will cause the iterator to perform another scan. 1988 * 1989 */ 1990 static int rto_next_cpu(struct root_domain *rd) 1991 { 1992 int next; 1993 int cpu; 1994 1995 /* 1996 * When starting the IPI RT pushing, the rto_cpu is set to -1, 1997 * rt_next_cpu() will simply return the first CPU found in 1998 * the rto_mask. 1999 * 2000 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it 2001 * will return the next CPU found in the rto_mask. 2002 * 2003 * If there are no more CPUs left in the rto_mask, then a check is made 2004 * against rto_loop and rto_loop_next. rto_loop is only updated with 2005 * the rto_lock held, but any CPU may increment the rto_loop_next 2006 * without any locking. 2007 */ 2008 for (;;) { 2009 2010 /* When rto_cpu is -1 this acts like cpumask_first() */ 2011 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 2012 2013 rd->rto_cpu = cpu; 2014 2015 if (cpu < nr_cpu_ids) 2016 return cpu; 2017 2018 rd->rto_cpu = -1; 2019 2020 /* 2021 * ACQUIRE ensures we see the @rto_mask changes 2022 * made prior to the @next value observed. 2023 * 2024 * Matches WMB in rt_set_overload(). 2025 */ 2026 next = atomic_read_acquire(&rd->rto_loop_next); 2027 2028 if (rd->rto_loop == next) 2029 break; 2030 2031 rd->rto_loop = next; 2032 } 2033 2034 return -1; 2035 } 2036 2037 static inline bool rto_start_trylock(atomic_t *v) 2038 { 2039 return !atomic_cmpxchg_acquire(v, 0, 1); 2040 } 2041 2042 static inline void rto_start_unlock(atomic_t *v) 2043 { 2044 atomic_set_release(v, 0); 2045 } 2046 2047 static void tell_cpu_to_push(struct rq *rq) 2048 { 2049 int cpu = -1; 2050 2051 /* Keep the loop going if the IPI is currently active */ 2052 atomic_inc(&rq->rd->rto_loop_next); 2053 2054 /* Only one CPU can initiate a loop at a time */ 2055 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 2056 return; 2057 2058 raw_spin_lock(&rq->rd->rto_lock); 2059 2060 /* 2061 * The rto_cpu is updated under the lock, if it has a valid CPU 2062 * then the IPI is still running and will continue due to the 2063 * update to loop_next, and nothing needs to be done here. 2064 * Otherwise it is finishing up and an ipi needs to be sent. 2065 */ 2066 if (rq->rd->rto_cpu < 0) 2067 cpu = rto_next_cpu(rq->rd); 2068 2069 raw_spin_unlock(&rq->rd->rto_lock); 2070 2071 rto_start_unlock(&rq->rd->rto_loop_start); 2072 2073 if (cpu >= 0) { 2074 /* Make sure the rd does not get freed while pushing */ 2075 sched_get_rd(rq->rd); 2076 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 2077 } 2078 } 2079 2080 /* Called from hardirq context */ 2081 void rto_push_irq_work_func(struct irq_work *work) 2082 { 2083 struct root_domain *rd = 2084 container_of(work, struct root_domain, rto_push_work); 2085 struct rq *rq; 2086 int cpu; 2087 2088 rq = this_rq(); 2089 2090 /* 2091 * We do not need to grab the lock to check for has_pushable_tasks. 2092 * When it gets updated, a check is made if a push is possible. 2093 */ 2094 if (has_pushable_tasks(rq)) { 2095 raw_spin_lock(&rq->lock); 2096 push_rt_tasks(rq); 2097 raw_spin_unlock(&rq->lock); 2098 } 2099 2100 raw_spin_lock(&rd->rto_lock); 2101 2102 /* Pass the IPI to the next rt overloaded queue */ 2103 cpu = rto_next_cpu(rd); 2104 2105 raw_spin_unlock(&rd->rto_lock); 2106 2107 if (cpu < 0) { 2108 sched_put_rd(rd); 2109 return; 2110 } 2111 2112 /* Try the next RT overloaded CPU */ 2113 irq_work_queue_on(&rd->rto_push_work, cpu); 2114 } 2115 #endif /* HAVE_RT_PUSH_IPI */ 2116 2117 static void pull_rt_task(struct rq *this_rq) 2118 { 2119 int this_cpu = this_rq->cpu, cpu; 2120 bool resched = false; 2121 struct task_struct *p; 2122 struct rq *src_rq; 2123 int rt_overload_count = rt_overloaded(this_rq); 2124 2125 if (likely(!rt_overload_count)) 2126 return; 2127 2128 /* 2129 * Match the barrier from rt_set_overloaded; this guarantees that if we 2130 * see overloaded we must also see the rto_mask bit. 2131 */ 2132 smp_rmb(); 2133 2134 /* If we are the only overloaded CPU do nothing */ 2135 if (rt_overload_count == 1 && 2136 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2137 return; 2138 2139 #ifdef HAVE_RT_PUSH_IPI 2140 if (sched_feat(RT_PUSH_IPI)) { 2141 tell_cpu_to_push(this_rq); 2142 return; 2143 } 2144 #endif 2145 2146 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2147 if (this_cpu == cpu) 2148 continue; 2149 2150 src_rq = cpu_rq(cpu); 2151 2152 /* 2153 * Don't bother taking the src_rq->lock if the next highest 2154 * task is known to be lower-priority than our current task. 2155 * This may look racy, but if this value is about to go 2156 * logically higher, the src_rq will push this task away. 2157 * And if its going logically lower, we do not care 2158 */ 2159 if (src_rq->rt.highest_prio.next >= 2160 this_rq->rt.highest_prio.curr) 2161 continue; 2162 2163 /* 2164 * We can potentially drop this_rq's lock in 2165 * double_lock_balance, and another CPU could 2166 * alter this_rq 2167 */ 2168 double_lock_balance(this_rq, src_rq); 2169 2170 /* 2171 * We can pull only a task, which is pushable 2172 * on its rq, and no others. 2173 */ 2174 p = pick_highest_pushable_task(src_rq, this_cpu); 2175 2176 /* 2177 * Do we have an RT task that preempts 2178 * the to-be-scheduled task? 2179 */ 2180 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2181 WARN_ON(p == src_rq->curr); 2182 WARN_ON(!task_on_rq_queued(p)); 2183 2184 /* 2185 * There's a chance that p is higher in priority 2186 * than what's currently running on its CPU. 2187 * This is just that p is wakeing up and hasn't 2188 * had a chance to schedule. We only pull 2189 * p if it is lower in priority than the 2190 * current task on the run queue 2191 */ 2192 if (p->prio < src_rq->curr->prio) 2193 goto skip; 2194 2195 resched = true; 2196 2197 deactivate_task(src_rq, p, 0); 2198 set_task_cpu(p, this_cpu); 2199 activate_task(this_rq, p, 0); 2200 /* 2201 * We continue with the search, just in 2202 * case there's an even higher prio task 2203 * in another runqueue. (low likelihood 2204 * but possible) 2205 */ 2206 } 2207 skip: 2208 double_unlock_balance(this_rq, src_rq); 2209 } 2210 2211 if (resched) 2212 resched_curr(this_rq); 2213 } 2214 2215 /* 2216 * If we are not running and we are not going to reschedule soon, we should 2217 * try to push tasks away now 2218 */ 2219 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2220 { 2221 bool need_to_push = !task_running(rq, p) && 2222 !test_tsk_need_resched(rq->curr) && 2223 p->nr_cpus_allowed > 1 && 2224 (dl_task(rq->curr) || rt_task(rq->curr)) && 2225 (rq->curr->nr_cpus_allowed < 2 || 2226 rq->curr->prio <= p->prio); 2227 2228 if (need_to_push) 2229 push_rt_tasks(rq); 2230 } 2231 2232 /* Assumes rq->lock is held */ 2233 static void rq_online_rt(struct rq *rq) 2234 { 2235 if (rq->rt.overloaded) 2236 rt_set_overload(rq); 2237 2238 __enable_runtime(rq); 2239 2240 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2241 } 2242 2243 /* Assumes rq->lock is held */ 2244 static void rq_offline_rt(struct rq *rq) 2245 { 2246 if (rq->rt.overloaded) 2247 rt_clear_overload(rq); 2248 2249 __disable_runtime(rq); 2250 2251 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2252 } 2253 2254 /* 2255 * When switch from the rt queue, we bring ourselves to a position 2256 * that we might want to pull RT tasks from other runqueues. 2257 */ 2258 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2259 { 2260 /* 2261 * If there are other RT tasks then we will reschedule 2262 * and the scheduling of the other RT tasks will handle 2263 * the balancing. But if we are the last RT task 2264 * we may need to handle the pulling of RT tasks 2265 * now. 2266 */ 2267 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2268 return; 2269 2270 rt_queue_pull_task(rq); 2271 } 2272 2273 void __init init_sched_rt_class(void) 2274 { 2275 unsigned int i; 2276 2277 for_each_possible_cpu(i) { 2278 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2279 GFP_KERNEL, cpu_to_node(i)); 2280 } 2281 } 2282 #endif /* CONFIG_SMP */ 2283 2284 /* 2285 * When switching a task to RT, we may overload the runqueue 2286 * with RT tasks. In this case we try to push them off to 2287 * other runqueues. 2288 */ 2289 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2290 { 2291 /* 2292 * If we are already running, then there's nothing 2293 * that needs to be done. But if we are not running 2294 * we may need to preempt the current running task. 2295 * If that current running task is also an RT task 2296 * then see if we can move to another run queue. 2297 */ 2298 if (task_on_rq_queued(p) && rq->curr != p) { 2299 #ifdef CONFIG_SMP 2300 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2301 rt_queue_push_tasks(rq); 2302 #endif /* CONFIG_SMP */ 2303 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) 2304 resched_curr(rq); 2305 } 2306 } 2307 2308 /* 2309 * Priority of the task has changed. This may cause 2310 * us to initiate a push or pull. 2311 */ 2312 static void 2313 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2314 { 2315 if (!task_on_rq_queued(p)) 2316 return; 2317 2318 if (rq->curr == p) { 2319 #ifdef CONFIG_SMP 2320 /* 2321 * If our priority decreases while running, we 2322 * may need to pull tasks to this runqueue. 2323 */ 2324 if (oldprio < p->prio) 2325 rt_queue_pull_task(rq); 2326 2327 /* 2328 * If there's a higher priority task waiting to run 2329 * then reschedule. 2330 */ 2331 if (p->prio > rq->rt.highest_prio.curr) 2332 resched_curr(rq); 2333 #else 2334 /* For UP simply resched on drop of prio */ 2335 if (oldprio < p->prio) 2336 resched_curr(rq); 2337 #endif /* CONFIG_SMP */ 2338 } else { 2339 /* 2340 * This task is not running, but if it is 2341 * greater than the current running task 2342 * then reschedule. 2343 */ 2344 if (p->prio < rq->curr->prio) 2345 resched_curr(rq); 2346 } 2347 } 2348 2349 #ifdef CONFIG_POSIX_TIMERS 2350 static void watchdog(struct rq *rq, struct task_struct *p) 2351 { 2352 unsigned long soft, hard; 2353 2354 /* max may change after cur was read, this will be fixed next tick */ 2355 soft = task_rlimit(p, RLIMIT_RTTIME); 2356 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2357 2358 if (soft != RLIM_INFINITY) { 2359 unsigned long next; 2360 2361 if (p->rt.watchdog_stamp != jiffies) { 2362 p->rt.timeout++; 2363 p->rt.watchdog_stamp = jiffies; 2364 } 2365 2366 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2367 if (p->rt.timeout > next) { 2368 posix_cputimers_rt_watchdog(&p->posix_cputimers, 2369 p->se.sum_exec_runtime); 2370 } 2371 } 2372 } 2373 #else 2374 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2375 #endif 2376 2377 /* 2378 * scheduler tick hitting a task of our scheduling class. 2379 * 2380 * NOTE: This function can be called remotely by the tick offload that 2381 * goes along full dynticks. Therefore no local assumption can be made 2382 * and everything must be accessed through the @rq and @curr passed in 2383 * parameters. 2384 */ 2385 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2386 { 2387 struct sched_rt_entity *rt_se = &p->rt; 2388 2389 update_curr_rt(rq); 2390 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2391 2392 watchdog(rq, p); 2393 2394 /* 2395 * RR tasks need a special form of timeslice management. 2396 * FIFO tasks have no timeslices. 2397 */ 2398 if (p->policy != SCHED_RR) 2399 return; 2400 2401 if (--p->rt.time_slice) 2402 return; 2403 2404 p->rt.time_slice = sched_rr_timeslice; 2405 2406 /* 2407 * Requeue to the end of queue if we (and all of our ancestors) are not 2408 * the only element on the queue 2409 */ 2410 for_each_sched_rt_entity(rt_se) { 2411 if (rt_se->run_list.prev != rt_se->run_list.next) { 2412 requeue_task_rt(rq, p, 0); 2413 resched_curr(rq); 2414 return; 2415 } 2416 } 2417 } 2418 2419 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2420 { 2421 /* 2422 * Time slice is 0 for SCHED_FIFO tasks 2423 */ 2424 if (task->policy == SCHED_RR) 2425 return sched_rr_timeslice; 2426 else 2427 return 0; 2428 } 2429 2430 const struct sched_class rt_sched_class = { 2431 .next = &fair_sched_class, 2432 .enqueue_task = enqueue_task_rt, 2433 .dequeue_task = dequeue_task_rt, 2434 .yield_task = yield_task_rt, 2435 2436 .check_preempt_curr = check_preempt_curr_rt, 2437 2438 .pick_next_task = pick_next_task_rt, 2439 .put_prev_task = put_prev_task_rt, 2440 .set_next_task = set_next_task_rt, 2441 2442 #ifdef CONFIG_SMP 2443 .balance = balance_rt, 2444 .select_task_rq = select_task_rq_rt, 2445 .set_cpus_allowed = set_cpus_allowed_common, 2446 .rq_online = rq_online_rt, 2447 .rq_offline = rq_offline_rt, 2448 .task_woken = task_woken_rt, 2449 .switched_from = switched_from_rt, 2450 #endif 2451 2452 .task_tick = task_tick_rt, 2453 2454 .get_rr_interval = get_rr_interval_rt, 2455 2456 .prio_changed = prio_changed_rt, 2457 .switched_to = switched_to_rt, 2458 2459 .update_curr = update_curr_rt, 2460 2461 #ifdef CONFIG_UCLAMP_TASK 2462 .uclamp_enabled = 1, 2463 #endif 2464 }; 2465 2466 #ifdef CONFIG_RT_GROUP_SCHED 2467 /* 2468 * Ensure that the real time constraints are schedulable. 2469 */ 2470 static DEFINE_MUTEX(rt_constraints_mutex); 2471 2472 static inline int tg_has_rt_tasks(struct task_group *tg) 2473 { 2474 struct task_struct *task; 2475 struct css_task_iter it; 2476 int ret = 0; 2477 2478 /* 2479 * Autogroups do not have RT tasks; see autogroup_create(). 2480 */ 2481 if (task_group_is_autogroup(tg)) 2482 return 0; 2483 2484 css_task_iter_start(&tg->css, 0, &it); 2485 while (!ret && (task = css_task_iter_next(&it))) 2486 ret |= rt_task(task); 2487 css_task_iter_end(&it); 2488 2489 return ret; 2490 } 2491 2492 struct rt_schedulable_data { 2493 struct task_group *tg; 2494 u64 rt_period; 2495 u64 rt_runtime; 2496 }; 2497 2498 static int tg_rt_schedulable(struct task_group *tg, void *data) 2499 { 2500 struct rt_schedulable_data *d = data; 2501 struct task_group *child; 2502 unsigned long total, sum = 0; 2503 u64 period, runtime; 2504 2505 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2506 runtime = tg->rt_bandwidth.rt_runtime; 2507 2508 if (tg == d->tg) { 2509 period = d->rt_period; 2510 runtime = d->rt_runtime; 2511 } 2512 2513 /* 2514 * Cannot have more runtime than the period. 2515 */ 2516 if (runtime > period && runtime != RUNTIME_INF) 2517 return -EINVAL; 2518 2519 /* 2520 * Ensure we don't starve existing RT tasks if runtime turns zero. 2521 */ 2522 if (rt_bandwidth_enabled() && !runtime && 2523 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg)) 2524 return -EBUSY; 2525 2526 total = to_ratio(period, runtime); 2527 2528 /* 2529 * Nobody can have more than the global setting allows. 2530 */ 2531 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2532 return -EINVAL; 2533 2534 /* 2535 * The sum of our children's runtime should not exceed our own. 2536 */ 2537 list_for_each_entry_rcu(child, &tg->children, siblings) { 2538 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2539 runtime = child->rt_bandwidth.rt_runtime; 2540 2541 if (child == d->tg) { 2542 period = d->rt_period; 2543 runtime = d->rt_runtime; 2544 } 2545 2546 sum += to_ratio(period, runtime); 2547 } 2548 2549 if (sum > total) 2550 return -EINVAL; 2551 2552 return 0; 2553 } 2554 2555 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2556 { 2557 int ret; 2558 2559 struct rt_schedulable_data data = { 2560 .tg = tg, 2561 .rt_period = period, 2562 .rt_runtime = runtime, 2563 }; 2564 2565 rcu_read_lock(); 2566 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2567 rcu_read_unlock(); 2568 2569 return ret; 2570 } 2571 2572 static int tg_set_rt_bandwidth(struct task_group *tg, 2573 u64 rt_period, u64 rt_runtime) 2574 { 2575 int i, err = 0; 2576 2577 /* 2578 * Disallowing the root group RT runtime is BAD, it would disallow the 2579 * kernel creating (and or operating) RT threads. 2580 */ 2581 if (tg == &root_task_group && rt_runtime == 0) 2582 return -EINVAL; 2583 2584 /* No period doesn't make any sense. */ 2585 if (rt_period == 0) 2586 return -EINVAL; 2587 2588 mutex_lock(&rt_constraints_mutex); 2589 err = __rt_schedulable(tg, rt_period, rt_runtime); 2590 if (err) 2591 goto unlock; 2592 2593 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2594 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2595 tg->rt_bandwidth.rt_runtime = rt_runtime; 2596 2597 for_each_possible_cpu(i) { 2598 struct rt_rq *rt_rq = tg->rt_rq[i]; 2599 2600 raw_spin_lock(&rt_rq->rt_runtime_lock); 2601 rt_rq->rt_runtime = rt_runtime; 2602 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2603 } 2604 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2605 unlock: 2606 mutex_unlock(&rt_constraints_mutex); 2607 2608 return err; 2609 } 2610 2611 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2612 { 2613 u64 rt_runtime, rt_period; 2614 2615 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2616 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2617 if (rt_runtime_us < 0) 2618 rt_runtime = RUNTIME_INF; 2619 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) 2620 return -EINVAL; 2621 2622 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2623 } 2624 2625 long sched_group_rt_runtime(struct task_group *tg) 2626 { 2627 u64 rt_runtime_us; 2628 2629 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2630 return -1; 2631 2632 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2633 do_div(rt_runtime_us, NSEC_PER_USEC); 2634 return rt_runtime_us; 2635 } 2636 2637 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2638 { 2639 u64 rt_runtime, rt_period; 2640 2641 if (rt_period_us > U64_MAX / NSEC_PER_USEC) 2642 return -EINVAL; 2643 2644 rt_period = rt_period_us * NSEC_PER_USEC; 2645 rt_runtime = tg->rt_bandwidth.rt_runtime; 2646 2647 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2648 } 2649 2650 long sched_group_rt_period(struct task_group *tg) 2651 { 2652 u64 rt_period_us; 2653 2654 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2655 do_div(rt_period_us, NSEC_PER_USEC); 2656 return rt_period_us; 2657 } 2658 2659 static int sched_rt_global_constraints(void) 2660 { 2661 int ret = 0; 2662 2663 mutex_lock(&rt_constraints_mutex); 2664 ret = __rt_schedulable(NULL, 0, 0); 2665 mutex_unlock(&rt_constraints_mutex); 2666 2667 return ret; 2668 } 2669 2670 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2671 { 2672 /* Don't accept realtime tasks when there is no way for them to run */ 2673 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2674 return 0; 2675 2676 return 1; 2677 } 2678 2679 #else /* !CONFIG_RT_GROUP_SCHED */ 2680 static int sched_rt_global_constraints(void) 2681 { 2682 unsigned long flags; 2683 int i; 2684 2685 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2686 for_each_possible_cpu(i) { 2687 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2688 2689 raw_spin_lock(&rt_rq->rt_runtime_lock); 2690 rt_rq->rt_runtime = global_rt_runtime(); 2691 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2692 } 2693 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2694 2695 return 0; 2696 } 2697 #endif /* CONFIG_RT_GROUP_SCHED */ 2698 2699 static int sched_rt_global_validate(void) 2700 { 2701 if (sysctl_sched_rt_period <= 0) 2702 return -EINVAL; 2703 2704 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2705 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 2706 return -EINVAL; 2707 2708 return 0; 2709 } 2710 2711 static void sched_rt_do_global(void) 2712 { 2713 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 2714 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 2715 } 2716 2717 int sched_rt_handler(struct ctl_table *table, int write, 2718 void __user *buffer, size_t *lenp, 2719 loff_t *ppos) 2720 { 2721 int old_period, old_runtime; 2722 static DEFINE_MUTEX(mutex); 2723 int ret; 2724 2725 mutex_lock(&mutex); 2726 old_period = sysctl_sched_rt_period; 2727 old_runtime = sysctl_sched_rt_runtime; 2728 2729 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2730 2731 if (!ret && write) { 2732 ret = sched_rt_global_validate(); 2733 if (ret) 2734 goto undo; 2735 2736 ret = sched_dl_global_validate(); 2737 if (ret) 2738 goto undo; 2739 2740 ret = sched_rt_global_constraints(); 2741 if (ret) 2742 goto undo; 2743 2744 sched_rt_do_global(); 2745 sched_dl_do_global(); 2746 } 2747 if (0) { 2748 undo: 2749 sysctl_sched_rt_period = old_period; 2750 sysctl_sched_rt_runtime = old_runtime; 2751 } 2752 mutex_unlock(&mutex); 2753 2754 return ret; 2755 } 2756 2757 int sched_rr_handler(struct ctl_table *table, int write, 2758 void __user *buffer, size_t *lenp, 2759 loff_t *ppos) 2760 { 2761 int ret; 2762 static DEFINE_MUTEX(mutex); 2763 2764 mutex_lock(&mutex); 2765 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2766 /* 2767 * Make sure that internally we keep jiffies. 2768 * Also, writing zero resets the timeslice to default: 2769 */ 2770 if (!ret && write) { 2771 sched_rr_timeslice = 2772 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 2773 msecs_to_jiffies(sysctl_sched_rr_timeslice); 2774 } 2775 mutex_unlock(&mutex); 2776 2777 return ret; 2778 } 2779 2780 #ifdef CONFIG_SCHED_DEBUG 2781 void print_rt_stats(struct seq_file *m, int cpu) 2782 { 2783 rt_rq_iter_t iter; 2784 struct rt_rq *rt_rq; 2785 2786 rcu_read_lock(); 2787 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2788 print_rt_rq(m, cpu, rt_rq); 2789 rcu_read_unlock(); 2790 } 2791 #endif /* CONFIG_SCHED_DEBUG */ 2792