1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 7 #include "sched.h" 8 9 #include <linux/slab.h> 10 #include <linux/irq_work.h> 11 12 int sched_rr_timeslice = RR_TIMESLICE; 13 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE; 14 15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 16 17 struct rt_bandwidth def_rt_bandwidth; 18 19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 20 { 21 struct rt_bandwidth *rt_b = 22 container_of(timer, struct rt_bandwidth, rt_period_timer); 23 int idle = 0; 24 int overrun; 25 26 raw_spin_lock(&rt_b->rt_runtime_lock); 27 for (;;) { 28 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 29 if (!overrun) 30 break; 31 32 raw_spin_unlock(&rt_b->rt_runtime_lock); 33 idle = do_sched_rt_period_timer(rt_b, overrun); 34 raw_spin_lock(&rt_b->rt_runtime_lock); 35 } 36 if (idle) 37 rt_b->rt_period_active = 0; 38 raw_spin_unlock(&rt_b->rt_runtime_lock); 39 40 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 41 } 42 43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 44 { 45 rt_b->rt_period = ns_to_ktime(period); 46 rt_b->rt_runtime = runtime; 47 48 raw_spin_lock_init(&rt_b->rt_runtime_lock); 49 50 hrtimer_init(&rt_b->rt_period_timer, 51 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 52 rt_b->rt_period_timer.function = sched_rt_period_timer; 53 } 54 55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 56 { 57 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 58 return; 59 60 raw_spin_lock(&rt_b->rt_runtime_lock); 61 if (!rt_b->rt_period_active) { 62 rt_b->rt_period_active = 1; 63 /* 64 * SCHED_DEADLINE updates the bandwidth, as a run away 65 * RT task with a DL task could hog a CPU. But DL does 66 * not reset the period. If a deadline task was running 67 * without an RT task running, it can cause RT tasks to 68 * throttle when they start up. Kick the timer right away 69 * to update the period. 70 */ 71 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 72 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED); 73 } 74 raw_spin_unlock(&rt_b->rt_runtime_lock); 75 } 76 77 void init_rt_rq(struct rt_rq *rt_rq) 78 { 79 struct rt_prio_array *array; 80 int i; 81 82 array = &rt_rq->active; 83 for (i = 0; i < MAX_RT_PRIO; i++) { 84 INIT_LIST_HEAD(array->queue + i); 85 __clear_bit(i, array->bitmap); 86 } 87 /* delimiter for bitsearch: */ 88 __set_bit(MAX_RT_PRIO, array->bitmap); 89 90 #if defined CONFIG_SMP 91 rt_rq->highest_prio.curr = MAX_RT_PRIO; 92 rt_rq->highest_prio.next = MAX_RT_PRIO; 93 rt_rq->rt_nr_migratory = 0; 94 rt_rq->overloaded = 0; 95 plist_head_init(&rt_rq->pushable_tasks); 96 #endif /* CONFIG_SMP */ 97 /* We start is dequeued state, because no RT tasks are queued */ 98 rt_rq->rt_queued = 0; 99 100 rt_rq->rt_time = 0; 101 rt_rq->rt_throttled = 0; 102 rt_rq->rt_runtime = 0; 103 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 104 } 105 106 #ifdef CONFIG_RT_GROUP_SCHED 107 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 108 { 109 hrtimer_cancel(&rt_b->rt_period_timer); 110 } 111 112 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 113 114 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 115 { 116 #ifdef CONFIG_SCHED_DEBUG 117 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 118 #endif 119 return container_of(rt_se, struct task_struct, rt); 120 } 121 122 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 123 { 124 return rt_rq->rq; 125 } 126 127 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 128 { 129 return rt_se->rt_rq; 130 } 131 132 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 133 { 134 struct rt_rq *rt_rq = rt_se->rt_rq; 135 136 return rt_rq->rq; 137 } 138 139 void free_rt_sched_group(struct task_group *tg) 140 { 141 int i; 142 143 if (tg->rt_se) 144 destroy_rt_bandwidth(&tg->rt_bandwidth); 145 146 for_each_possible_cpu(i) { 147 if (tg->rt_rq) 148 kfree(tg->rt_rq[i]); 149 if (tg->rt_se) 150 kfree(tg->rt_se[i]); 151 } 152 153 kfree(tg->rt_rq); 154 kfree(tg->rt_se); 155 } 156 157 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 158 struct sched_rt_entity *rt_se, int cpu, 159 struct sched_rt_entity *parent) 160 { 161 struct rq *rq = cpu_rq(cpu); 162 163 rt_rq->highest_prio.curr = MAX_RT_PRIO; 164 rt_rq->rt_nr_boosted = 0; 165 rt_rq->rq = rq; 166 rt_rq->tg = tg; 167 168 tg->rt_rq[cpu] = rt_rq; 169 tg->rt_se[cpu] = rt_se; 170 171 if (!rt_se) 172 return; 173 174 if (!parent) 175 rt_se->rt_rq = &rq->rt; 176 else 177 rt_se->rt_rq = parent->my_q; 178 179 rt_se->my_q = rt_rq; 180 rt_se->parent = parent; 181 INIT_LIST_HEAD(&rt_se->run_list); 182 } 183 184 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 185 { 186 struct rt_rq *rt_rq; 187 struct sched_rt_entity *rt_se; 188 int i; 189 190 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); 191 if (!tg->rt_rq) 192 goto err; 193 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); 194 if (!tg->rt_se) 195 goto err; 196 197 init_rt_bandwidth(&tg->rt_bandwidth, 198 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 199 200 for_each_possible_cpu(i) { 201 rt_rq = kzalloc_node(sizeof(struct rt_rq), 202 GFP_KERNEL, cpu_to_node(i)); 203 if (!rt_rq) 204 goto err; 205 206 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 207 GFP_KERNEL, cpu_to_node(i)); 208 if (!rt_se) 209 goto err_free_rq; 210 211 init_rt_rq(rt_rq); 212 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 213 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 214 } 215 216 return 1; 217 218 err_free_rq: 219 kfree(rt_rq); 220 err: 221 return 0; 222 } 223 224 #else /* CONFIG_RT_GROUP_SCHED */ 225 226 #define rt_entity_is_task(rt_se) (1) 227 228 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 229 { 230 return container_of(rt_se, struct task_struct, rt); 231 } 232 233 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 234 { 235 return container_of(rt_rq, struct rq, rt); 236 } 237 238 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 239 { 240 struct task_struct *p = rt_task_of(rt_se); 241 242 return task_rq(p); 243 } 244 245 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 246 { 247 struct rq *rq = rq_of_rt_se(rt_se); 248 249 return &rq->rt; 250 } 251 252 void free_rt_sched_group(struct task_group *tg) { } 253 254 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 255 { 256 return 1; 257 } 258 #endif /* CONFIG_RT_GROUP_SCHED */ 259 260 #ifdef CONFIG_SMP 261 262 static void pull_rt_task(struct rq *this_rq); 263 264 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 265 { 266 /* Try to pull RT tasks here if we lower this rq's prio */ 267 return rq->rt.highest_prio.curr > prev->prio; 268 } 269 270 static inline int rt_overloaded(struct rq *rq) 271 { 272 return atomic_read(&rq->rd->rto_count); 273 } 274 275 static inline void rt_set_overload(struct rq *rq) 276 { 277 if (!rq->online) 278 return; 279 280 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 281 /* 282 * Make sure the mask is visible before we set 283 * the overload count. That is checked to determine 284 * if we should look at the mask. It would be a shame 285 * if we looked at the mask, but the mask was not 286 * updated yet. 287 * 288 * Matched by the barrier in pull_rt_task(). 289 */ 290 smp_wmb(); 291 atomic_inc(&rq->rd->rto_count); 292 } 293 294 static inline void rt_clear_overload(struct rq *rq) 295 { 296 if (!rq->online) 297 return; 298 299 /* the order here really doesn't matter */ 300 atomic_dec(&rq->rd->rto_count); 301 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 302 } 303 304 static void update_rt_migration(struct rt_rq *rt_rq) 305 { 306 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 307 if (!rt_rq->overloaded) { 308 rt_set_overload(rq_of_rt_rq(rt_rq)); 309 rt_rq->overloaded = 1; 310 } 311 } else if (rt_rq->overloaded) { 312 rt_clear_overload(rq_of_rt_rq(rt_rq)); 313 rt_rq->overloaded = 0; 314 } 315 } 316 317 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 318 { 319 struct task_struct *p; 320 321 if (!rt_entity_is_task(rt_se)) 322 return; 323 324 p = rt_task_of(rt_se); 325 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 326 327 rt_rq->rt_nr_total++; 328 if (p->nr_cpus_allowed > 1) 329 rt_rq->rt_nr_migratory++; 330 331 update_rt_migration(rt_rq); 332 } 333 334 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 335 { 336 struct task_struct *p; 337 338 if (!rt_entity_is_task(rt_se)) 339 return; 340 341 p = rt_task_of(rt_se); 342 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 343 344 rt_rq->rt_nr_total--; 345 if (p->nr_cpus_allowed > 1) 346 rt_rq->rt_nr_migratory--; 347 348 update_rt_migration(rt_rq); 349 } 350 351 static inline int has_pushable_tasks(struct rq *rq) 352 { 353 return !plist_head_empty(&rq->rt.pushable_tasks); 354 } 355 356 static DEFINE_PER_CPU(struct callback_head, rt_push_head); 357 static DEFINE_PER_CPU(struct callback_head, rt_pull_head); 358 359 static void push_rt_tasks(struct rq *); 360 static void pull_rt_task(struct rq *); 361 362 static inline void queue_push_tasks(struct rq *rq) 363 { 364 if (!has_pushable_tasks(rq)) 365 return; 366 367 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 368 } 369 370 static inline void queue_pull_task(struct rq *rq) 371 { 372 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 373 } 374 375 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 376 { 377 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 378 plist_node_init(&p->pushable_tasks, p->prio); 379 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 380 381 /* Update the highest prio pushable task */ 382 if (p->prio < rq->rt.highest_prio.next) 383 rq->rt.highest_prio.next = p->prio; 384 } 385 386 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 387 { 388 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 389 390 /* Update the new highest prio pushable task */ 391 if (has_pushable_tasks(rq)) { 392 p = plist_first_entry(&rq->rt.pushable_tasks, 393 struct task_struct, pushable_tasks); 394 rq->rt.highest_prio.next = p->prio; 395 } else 396 rq->rt.highest_prio.next = MAX_RT_PRIO; 397 } 398 399 #else 400 401 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 402 { 403 } 404 405 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 406 { 407 } 408 409 static inline 410 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 411 { 412 } 413 414 static inline 415 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 416 { 417 } 418 419 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 420 { 421 return false; 422 } 423 424 static inline void pull_rt_task(struct rq *this_rq) 425 { 426 } 427 428 static inline void queue_push_tasks(struct rq *rq) 429 { 430 } 431 #endif /* CONFIG_SMP */ 432 433 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 434 static void dequeue_top_rt_rq(struct rt_rq *rt_rq); 435 436 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 437 { 438 return rt_se->on_rq; 439 } 440 441 #ifdef CONFIG_RT_GROUP_SCHED 442 443 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 444 { 445 if (!rt_rq->tg) 446 return RUNTIME_INF; 447 448 return rt_rq->rt_runtime; 449 } 450 451 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 452 { 453 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 454 } 455 456 typedef struct task_group *rt_rq_iter_t; 457 458 static inline struct task_group *next_task_group(struct task_group *tg) 459 { 460 do { 461 tg = list_entry_rcu(tg->list.next, 462 typeof(struct task_group), list); 463 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 464 465 if (&tg->list == &task_groups) 466 tg = NULL; 467 468 return tg; 469 } 470 471 #define for_each_rt_rq(rt_rq, iter, rq) \ 472 for (iter = container_of(&task_groups, typeof(*iter), list); \ 473 (iter = next_task_group(iter)) && \ 474 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 475 476 #define for_each_sched_rt_entity(rt_se) \ 477 for (; rt_se; rt_se = rt_se->parent) 478 479 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 480 { 481 return rt_se->my_q; 482 } 483 484 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 485 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 486 487 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 488 { 489 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 490 struct rq *rq = rq_of_rt_rq(rt_rq); 491 struct sched_rt_entity *rt_se; 492 493 int cpu = cpu_of(rq); 494 495 rt_se = rt_rq->tg->rt_se[cpu]; 496 497 if (rt_rq->rt_nr_running) { 498 if (!rt_se) 499 enqueue_top_rt_rq(rt_rq); 500 else if (!on_rt_rq(rt_se)) 501 enqueue_rt_entity(rt_se, 0); 502 503 if (rt_rq->highest_prio.curr < curr->prio) 504 resched_curr(rq); 505 } 506 } 507 508 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 509 { 510 struct sched_rt_entity *rt_se; 511 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 512 513 rt_se = rt_rq->tg->rt_se[cpu]; 514 515 if (!rt_se) 516 dequeue_top_rt_rq(rt_rq); 517 else if (on_rt_rq(rt_se)) 518 dequeue_rt_entity(rt_se, 0); 519 } 520 521 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 522 { 523 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 524 } 525 526 static int rt_se_boosted(struct sched_rt_entity *rt_se) 527 { 528 struct rt_rq *rt_rq = group_rt_rq(rt_se); 529 struct task_struct *p; 530 531 if (rt_rq) 532 return !!rt_rq->rt_nr_boosted; 533 534 p = rt_task_of(rt_se); 535 return p->prio != p->normal_prio; 536 } 537 538 #ifdef CONFIG_SMP 539 static inline const struct cpumask *sched_rt_period_mask(void) 540 { 541 return this_rq()->rd->span; 542 } 543 #else 544 static inline const struct cpumask *sched_rt_period_mask(void) 545 { 546 return cpu_online_mask; 547 } 548 #endif 549 550 static inline 551 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 552 { 553 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 554 } 555 556 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 557 { 558 return &rt_rq->tg->rt_bandwidth; 559 } 560 561 #else /* !CONFIG_RT_GROUP_SCHED */ 562 563 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 564 { 565 return rt_rq->rt_runtime; 566 } 567 568 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 569 { 570 return ktime_to_ns(def_rt_bandwidth.rt_period); 571 } 572 573 typedef struct rt_rq *rt_rq_iter_t; 574 575 #define for_each_rt_rq(rt_rq, iter, rq) \ 576 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 577 578 #define for_each_sched_rt_entity(rt_se) \ 579 for (; rt_se; rt_se = NULL) 580 581 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 582 { 583 return NULL; 584 } 585 586 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 587 { 588 struct rq *rq = rq_of_rt_rq(rt_rq); 589 590 if (!rt_rq->rt_nr_running) 591 return; 592 593 enqueue_top_rt_rq(rt_rq); 594 resched_curr(rq); 595 } 596 597 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 598 { 599 dequeue_top_rt_rq(rt_rq); 600 } 601 602 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 603 { 604 return rt_rq->rt_throttled; 605 } 606 607 static inline const struct cpumask *sched_rt_period_mask(void) 608 { 609 return cpu_online_mask; 610 } 611 612 static inline 613 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 614 { 615 return &cpu_rq(cpu)->rt; 616 } 617 618 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 619 { 620 return &def_rt_bandwidth; 621 } 622 623 #endif /* CONFIG_RT_GROUP_SCHED */ 624 625 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 626 { 627 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 628 629 return (hrtimer_active(&rt_b->rt_period_timer) || 630 rt_rq->rt_time < rt_b->rt_runtime); 631 } 632 633 #ifdef CONFIG_SMP 634 /* 635 * We ran out of runtime, see if we can borrow some from our neighbours. 636 */ 637 static void do_balance_runtime(struct rt_rq *rt_rq) 638 { 639 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 640 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 641 int i, weight; 642 u64 rt_period; 643 644 weight = cpumask_weight(rd->span); 645 646 raw_spin_lock(&rt_b->rt_runtime_lock); 647 rt_period = ktime_to_ns(rt_b->rt_period); 648 for_each_cpu(i, rd->span) { 649 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 650 s64 diff; 651 652 if (iter == rt_rq) 653 continue; 654 655 raw_spin_lock(&iter->rt_runtime_lock); 656 /* 657 * Either all rqs have inf runtime and there's nothing to steal 658 * or __disable_runtime() below sets a specific rq to inf to 659 * indicate its been disabled and disalow stealing. 660 */ 661 if (iter->rt_runtime == RUNTIME_INF) 662 goto next; 663 664 /* 665 * From runqueues with spare time, take 1/n part of their 666 * spare time, but no more than our period. 667 */ 668 diff = iter->rt_runtime - iter->rt_time; 669 if (diff > 0) { 670 diff = div_u64((u64)diff, weight); 671 if (rt_rq->rt_runtime + diff > rt_period) 672 diff = rt_period - rt_rq->rt_runtime; 673 iter->rt_runtime -= diff; 674 rt_rq->rt_runtime += diff; 675 if (rt_rq->rt_runtime == rt_period) { 676 raw_spin_unlock(&iter->rt_runtime_lock); 677 break; 678 } 679 } 680 next: 681 raw_spin_unlock(&iter->rt_runtime_lock); 682 } 683 raw_spin_unlock(&rt_b->rt_runtime_lock); 684 } 685 686 /* 687 * Ensure this RQ takes back all the runtime it lend to its neighbours. 688 */ 689 static void __disable_runtime(struct rq *rq) 690 { 691 struct root_domain *rd = rq->rd; 692 rt_rq_iter_t iter; 693 struct rt_rq *rt_rq; 694 695 if (unlikely(!scheduler_running)) 696 return; 697 698 for_each_rt_rq(rt_rq, iter, rq) { 699 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 700 s64 want; 701 int i; 702 703 raw_spin_lock(&rt_b->rt_runtime_lock); 704 raw_spin_lock(&rt_rq->rt_runtime_lock); 705 /* 706 * Either we're all inf and nobody needs to borrow, or we're 707 * already disabled and thus have nothing to do, or we have 708 * exactly the right amount of runtime to take out. 709 */ 710 if (rt_rq->rt_runtime == RUNTIME_INF || 711 rt_rq->rt_runtime == rt_b->rt_runtime) 712 goto balanced; 713 raw_spin_unlock(&rt_rq->rt_runtime_lock); 714 715 /* 716 * Calculate the difference between what we started out with 717 * and what we current have, that's the amount of runtime 718 * we lend and now have to reclaim. 719 */ 720 want = rt_b->rt_runtime - rt_rq->rt_runtime; 721 722 /* 723 * Greedy reclaim, take back as much as we can. 724 */ 725 for_each_cpu(i, rd->span) { 726 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 727 s64 diff; 728 729 /* 730 * Can't reclaim from ourselves or disabled runqueues. 731 */ 732 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 733 continue; 734 735 raw_spin_lock(&iter->rt_runtime_lock); 736 if (want > 0) { 737 diff = min_t(s64, iter->rt_runtime, want); 738 iter->rt_runtime -= diff; 739 want -= diff; 740 } else { 741 iter->rt_runtime -= want; 742 want -= want; 743 } 744 raw_spin_unlock(&iter->rt_runtime_lock); 745 746 if (!want) 747 break; 748 } 749 750 raw_spin_lock(&rt_rq->rt_runtime_lock); 751 /* 752 * We cannot be left wanting - that would mean some runtime 753 * leaked out of the system. 754 */ 755 BUG_ON(want); 756 balanced: 757 /* 758 * Disable all the borrow logic by pretending we have inf 759 * runtime - in which case borrowing doesn't make sense. 760 */ 761 rt_rq->rt_runtime = RUNTIME_INF; 762 rt_rq->rt_throttled = 0; 763 raw_spin_unlock(&rt_rq->rt_runtime_lock); 764 raw_spin_unlock(&rt_b->rt_runtime_lock); 765 766 /* Make rt_rq available for pick_next_task() */ 767 sched_rt_rq_enqueue(rt_rq); 768 } 769 } 770 771 static void __enable_runtime(struct rq *rq) 772 { 773 rt_rq_iter_t iter; 774 struct rt_rq *rt_rq; 775 776 if (unlikely(!scheduler_running)) 777 return; 778 779 /* 780 * Reset each runqueue's bandwidth settings 781 */ 782 for_each_rt_rq(rt_rq, iter, rq) { 783 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 784 785 raw_spin_lock(&rt_b->rt_runtime_lock); 786 raw_spin_lock(&rt_rq->rt_runtime_lock); 787 rt_rq->rt_runtime = rt_b->rt_runtime; 788 rt_rq->rt_time = 0; 789 rt_rq->rt_throttled = 0; 790 raw_spin_unlock(&rt_rq->rt_runtime_lock); 791 raw_spin_unlock(&rt_b->rt_runtime_lock); 792 } 793 } 794 795 static void balance_runtime(struct rt_rq *rt_rq) 796 { 797 if (!sched_feat(RT_RUNTIME_SHARE)) 798 return; 799 800 if (rt_rq->rt_time > rt_rq->rt_runtime) { 801 raw_spin_unlock(&rt_rq->rt_runtime_lock); 802 do_balance_runtime(rt_rq); 803 raw_spin_lock(&rt_rq->rt_runtime_lock); 804 } 805 } 806 #else /* !CONFIG_SMP */ 807 static inline void balance_runtime(struct rt_rq *rt_rq) {} 808 #endif /* CONFIG_SMP */ 809 810 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 811 { 812 int i, idle = 1, throttled = 0; 813 const struct cpumask *span; 814 815 span = sched_rt_period_mask(); 816 #ifdef CONFIG_RT_GROUP_SCHED 817 /* 818 * FIXME: isolated CPUs should really leave the root task group, 819 * whether they are isolcpus or were isolated via cpusets, lest 820 * the timer run on a CPU which does not service all runqueues, 821 * potentially leaving other CPUs indefinitely throttled. If 822 * isolation is really required, the user will turn the throttle 823 * off to kill the perturbations it causes anyway. Meanwhile, 824 * this maintains functionality for boot and/or troubleshooting. 825 */ 826 if (rt_b == &root_task_group.rt_bandwidth) 827 span = cpu_online_mask; 828 #endif 829 for_each_cpu(i, span) { 830 int enqueue = 0; 831 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 832 struct rq *rq = rq_of_rt_rq(rt_rq); 833 int skip; 834 835 /* 836 * When span == cpu_online_mask, taking each rq->lock 837 * can be time-consuming. Try to avoid it when possible. 838 */ 839 raw_spin_lock(&rt_rq->rt_runtime_lock); 840 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 841 raw_spin_unlock(&rt_rq->rt_runtime_lock); 842 if (skip) 843 continue; 844 845 raw_spin_lock(&rq->lock); 846 if (rt_rq->rt_time) { 847 u64 runtime; 848 849 raw_spin_lock(&rt_rq->rt_runtime_lock); 850 if (rt_rq->rt_throttled) 851 balance_runtime(rt_rq); 852 runtime = rt_rq->rt_runtime; 853 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 854 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 855 rt_rq->rt_throttled = 0; 856 enqueue = 1; 857 858 /* 859 * When we're idle and a woken (rt) task is 860 * throttled check_preempt_curr() will set 861 * skip_update and the time between the wakeup 862 * and this unthrottle will get accounted as 863 * 'runtime'. 864 */ 865 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 866 rq_clock_skip_update(rq, false); 867 } 868 if (rt_rq->rt_time || rt_rq->rt_nr_running) 869 idle = 0; 870 raw_spin_unlock(&rt_rq->rt_runtime_lock); 871 } else if (rt_rq->rt_nr_running) { 872 idle = 0; 873 if (!rt_rq_throttled(rt_rq)) 874 enqueue = 1; 875 } 876 if (rt_rq->rt_throttled) 877 throttled = 1; 878 879 if (enqueue) 880 sched_rt_rq_enqueue(rt_rq); 881 raw_spin_unlock(&rq->lock); 882 } 883 884 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 885 return 1; 886 887 return idle; 888 } 889 890 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 891 { 892 #ifdef CONFIG_RT_GROUP_SCHED 893 struct rt_rq *rt_rq = group_rt_rq(rt_se); 894 895 if (rt_rq) 896 return rt_rq->highest_prio.curr; 897 #endif 898 899 return rt_task_of(rt_se)->prio; 900 } 901 902 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 903 { 904 u64 runtime = sched_rt_runtime(rt_rq); 905 906 if (rt_rq->rt_throttled) 907 return rt_rq_throttled(rt_rq); 908 909 if (runtime >= sched_rt_period(rt_rq)) 910 return 0; 911 912 balance_runtime(rt_rq); 913 runtime = sched_rt_runtime(rt_rq); 914 if (runtime == RUNTIME_INF) 915 return 0; 916 917 if (rt_rq->rt_time > runtime) { 918 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 919 920 /* 921 * Don't actually throttle groups that have no runtime assigned 922 * but accrue some time due to boosting. 923 */ 924 if (likely(rt_b->rt_runtime)) { 925 rt_rq->rt_throttled = 1; 926 printk_deferred_once("sched: RT throttling activated\n"); 927 } else { 928 /* 929 * In case we did anyway, make it go away, 930 * replenishment is a joke, since it will replenish us 931 * with exactly 0 ns. 932 */ 933 rt_rq->rt_time = 0; 934 } 935 936 if (rt_rq_throttled(rt_rq)) { 937 sched_rt_rq_dequeue(rt_rq); 938 return 1; 939 } 940 } 941 942 return 0; 943 } 944 945 /* 946 * Update the current task's runtime statistics. Skip current tasks that 947 * are not in our scheduling class. 948 */ 949 static void update_curr_rt(struct rq *rq) 950 { 951 struct task_struct *curr = rq->curr; 952 struct sched_rt_entity *rt_se = &curr->rt; 953 u64 delta_exec; 954 955 if (curr->sched_class != &rt_sched_class) 956 return; 957 958 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 959 if (unlikely((s64)delta_exec <= 0)) 960 return; 961 962 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 963 cpufreq_update_util(rq, SCHED_CPUFREQ_RT); 964 965 schedstat_set(curr->se.statistics.exec_max, 966 max(curr->se.statistics.exec_max, delta_exec)); 967 968 curr->se.sum_exec_runtime += delta_exec; 969 account_group_exec_runtime(curr, delta_exec); 970 971 curr->se.exec_start = rq_clock_task(rq); 972 cgroup_account_cputime(curr, delta_exec); 973 974 sched_rt_avg_update(rq, delta_exec); 975 976 if (!rt_bandwidth_enabled()) 977 return; 978 979 for_each_sched_rt_entity(rt_se) { 980 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 981 982 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 983 raw_spin_lock(&rt_rq->rt_runtime_lock); 984 rt_rq->rt_time += delta_exec; 985 if (sched_rt_runtime_exceeded(rt_rq)) 986 resched_curr(rq); 987 raw_spin_unlock(&rt_rq->rt_runtime_lock); 988 } 989 } 990 } 991 992 static void 993 dequeue_top_rt_rq(struct rt_rq *rt_rq) 994 { 995 struct rq *rq = rq_of_rt_rq(rt_rq); 996 997 BUG_ON(&rq->rt != rt_rq); 998 999 if (!rt_rq->rt_queued) 1000 return; 1001 1002 BUG_ON(!rq->nr_running); 1003 1004 sub_nr_running(rq, rt_rq->rt_nr_running); 1005 rt_rq->rt_queued = 0; 1006 } 1007 1008 static void 1009 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1010 { 1011 struct rq *rq = rq_of_rt_rq(rt_rq); 1012 1013 BUG_ON(&rq->rt != rt_rq); 1014 1015 if (rt_rq->rt_queued) 1016 return; 1017 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running) 1018 return; 1019 1020 add_nr_running(rq, rt_rq->rt_nr_running); 1021 rt_rq->rt_queued = 1; 1022 } 1023 1024 #if defined CONFIG_SMP 1025 1026 static void 1027 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1028 { 1029 struct rq *rq = rq_of_rt_rq(rt_rq); 1030 1031 #ifdef CONFIG_RT_GROUP_SCHED 1032 /* 1033 * Change rq's cpupri only if rt_rq is the top queue. 1034 */ 1035 if (&rq->rt != rt_rq) 1036 return; 1037 #endif 1038 if (rq->online && prio < prev_prio) 1039 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1040 } 1041 1042 static void 1043 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1044 { 1045 struct rq *rq = rq_of_rt_rq(rt_rq); 1046 1047 #ifdef CONFIG_RT_GROUP_SCHED 1048 /* 1049 * Change rq's cpupri only if rt_rq is the top queue. 1050 */ 1051 if (&rq->rt != rt_rq) 1052 return; 1053 #endif 1054 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1055 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1056 } 1057 1058 #else /* CONFIG_SMP */ 1059 1060 static inline 1061 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1062 static inline 1063 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1064 1065 #endif /* CONFIG_SMP */ 1066 1067 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1068 static void 1069 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1070 { 1071 int prev_prio = rt_rq->highest_prio.curr; 1072 1073 if (prio < prev_prio) 1074 rt_rq->highest_prio.curr = prio; 1075 1076 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1077 } 1078 1079 static void 1080 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1081 { 1082 int prev_prio = rt_rq->highest_prio.curr; 1083 1084 if (rt_rq->rt_nr_running) { 1085 1086 WARN_ON(prio < prev_prio); 1087 1088 /* 1089 * This may have been our highest task, and therefore 1090 * we may have some recomputation to do 1091 */ 1092 if (prio == prev_prio) { 1093 struct rt_prio_array *array = &rt_rq->active; 1094 1095 rt_rq->highest_prio.curr = 1096 sched_find_first_bit(array->bitmap); 1097 } 1098 1099 } else 1100 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1101 1102 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1103 } 1104 1105 #else 1106 1107 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1108 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1109 1110 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1111 1112 #ifdef CONFIG_RT_GROUP_SCHED 1113 1114 static void 1115 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1116 { 1117 if (rt_se_boosted(rt_se)) 1118 rt_rq->rt_nr_boosted++; 1119 1120 if (rt_rq->tg) 1121 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1122 } 1123 1124 static void 1125 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1126 { 1127 if (rt_se_boosted(rt_se)) 1128 rt_rq->rt_nr_boosted--; 1129 1130 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1131 } 1132 1133 #else /* CONFIG_RT_GROUP_SCHED */ 1134 1135 static void 1136 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1137 { 1138 start_rt_bandwidth(&def_rt_bandwidth); 1139 } 1140 1141 static inline 1142 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1143 1144 #endif /* CONFIG_RT_GROUP_SCHED */ 1145 1146 static inline 1147 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1148 { 1149 struct rt_rq *group_rq = group_rt_rq(rt_se); 1150 1151 if (group_rq) 1152 return group_rq->rt_nr_running; 1153 else 1154 return 1; 1155 } 1156 1157 static inline 1158 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1159 { 1160 struct rt_rq *group_rq = group_rt_rq(rt_se); 1161 struct task_struct *tsk; 1162 1163 if (group_rq) 1164 return group_rq->rr_nr_running; 1165 1166 tsk = rt_task_of(rt_se); 1167 1168 return (tsk->policy == SCHED_RR) ? 1 : 0; 1169 } 1170 1171 static inline 1172 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1173 { 1174 int prio = rt_se_prio(rt_se); 1175 1176 WARN_ON(!rt_prio(prio)); 1177 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1178 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1179 1180 inc_rt_prio(rt_rq, prio); 1181 inc_rt_migration(rt_se, rt_rq); 1182 inc_rt_group(rt_se, rt_rq); 1183 } 1184 1185 static inline 1186 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1187 { 1188 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1189 WARN_ON(!rt_rq->rt_nr_running); 1190 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1191 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1192 1193 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1194 dec_rt_migration(rt_se, rt_rq); 1195 dec_rt_group(rt_se, rt_rq); 1196 } 1197 1198 /* 1199 * Change rt_se->run_list location unless SAVE && !MOVE 1200 * 1201 * assumes ENQUEUE/DEQUEUE flags match 1202 */ 1203 static inline bool move_entity(unsigned int flags) 1204 { 1205 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1206 return false; 1207 1208 return true; 1209 } 1210 1211 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1212 { 1213 list_del_init(&rt_se->run_list); 1214 1215 if (list_empty(array->queue + rt_se_prio(rt_se))) 1216 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1217 1218 rt_se->on_list = 0; 1219 } 1220 1221 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1222 { 1223 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1224 struct rt_prio_array *array = &rt_rq->active; 1225 struct rt_rq *group_rq = group_rt_rq(rt_se); 1226 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1227 1228 /* 1229 * Don't enqueue the group if its throttled, or when empty. 1230 * The latter is a consequence of the former when a child group 1231 * get throttled and the current group doesn't have any other 1232 * active members. 1233 */ 1234 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1235 if (rt_se->on_list) 1236 __delist_rt_entity(rt_se, array); 1237 return; 1238 } 1239 1240 if (move_entity(flags)) { 1241 WARN_ON_ONCE(rt_se->on_list); 1242 if (flags & ENQUEUE_HEAD) 1243 list_add(&rt_se->run_list, queue); 1244 else 1245 list_add_tail(&rt_se->run_list, queue); 1246 1247 __set_bit(rt_se_prio(rt_se), array->bitmap); 1248 rt_se->on_list = 1; 1249 } 1250 rt_se->on_rq = 1; 1251 1252 inc_rt_tasks(rt_se, rt_rq); 1253 } 1254 1255 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1256 { 1257 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1258 struct rt_prio_array *array = &rt_rq->active; 1259 1260 if (move_entity(flags)) { 1261 WARN_ON_ONCE(!rt_se->on_list); 1262 __delist_rt_entity(rt_se, array); 1263 } 1264 rt_se->on_rq = 0; 1265 1266 dec_rt_tasks(rt_se, rt_rq); 1267 } 1268 1269 /* 1270 * Because the prio of an upper entry depends on the lower 1271 * entries, we must remove entries top - down. 1272 */ 1273 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1274 { 1275 struct sched_rt_entity *back = NULL; 1276 1277 for_each_sched_rt_entity(rt_se) { 1278 rt_se->back = back; 1279 back = rt_se; 1280 } 1281 1282 dequeue_top_rt_rq(rt_rq_of_se(back)); 1283 1284 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1285 if (on_rt_rq(rt_se)) 1286 __dequeue_rt_entity(rt_se, flags); 1287 } 1288 } 1289 1290 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1291 { 1292 struct rq *rq = rq_of_rt_se(rt_se); 1293 1294 dequeue_rt_stack(rt_se, flags); 1295 for_each_sched_rt_entity(rt_se) 1296 __enqueue_rt_entity(rt_se, flags); 1297 enqueue_top_rt_rq(&rq->rt); 1298 } 1299 1300 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1301 { 1302 struct rq *rq = rq_of_rt_se(rt_se); 1303 1304 dequeue_rt_stack(rt_se, flags); 1305 1306 for_each_sched_rt_entity(rt_se) { 1307 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1308 1309 if (rt_rq && rt_rq->rt_nr_running) 1310 __enqueue_rt_entity(rt_se, flags); 1311 } 1312 enqueue_top_rt_rq(&rq->rt); 1313 } 1314 1315 /* 1316 * Adding/removing a task to/from a priority array: 1317 */ 1318 static void 1319 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1320 { 1321 struct sched_rt_entity *rt_se = &p->rt; 1322 1323 if (flags & ENQUEUE_WAKEUP) 1324 rt_se->timeout = 0; 1325 1326 enqueue_rt_entity(rt_se, flags); 1327 1328 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1329 enqueue_pushable_task(rq, p); 1330 } 1331 1332 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1333 { 1334 struct sched_rt_entity *rt_se = &p->rt; 1335 1336 update_curr_rt(rq); 1337 dequeue_rt_entity(rt_se, flags); 1338 1339 dequeue_pushable_task(rq, p); 1340 } 1341 1342 /* 1343 * Put task to the head or the end of the run list without the overhead of 1344 * dequeue followed by enqueue. 1345 */ 1346 static void 1347 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1348 { 1349 if (on_rt_rq(rt_se)) { 1350 struct rt_prio_array *array = &rt_rq->active; 1351 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1352 1353 if (head) 1354 list_move(&rt_se->run_list, queue); 1355 else 1356 list_move_tail(&rt_se->run_list, queue); 1357 } 1358 } 1359 1360 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1361 { 1362 struct sched_rt_entity *rt_se = &p->rt; 1363 struct rt_rq *rt_rq; 1364 1365 for_each_sched_rt_entity(rt_se) { 1366 rt_rq = rt_rq_of_se(rt_se); 1367 requeue_rt_entity(rt_rq, rt_se, head); 1368 } 1369 } 1370 1371 static void yield_task_rt(struct rq *rq) 1372 { 1373 requeue_task_rt(rq, rq->curr, 0); 1374 } 1375 1376 #ifdef CONFIG_SMP 1377 static int find_lowest_rq(struct task_struct *task); 1378 1379 static int 1380 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1381 { 1382 struct task_struct *curr; 1383 struct rq *rq; 1384 1385 /* For anything but wake ups, just return the task_cpu */ 1386 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1387 goto out; 1388 1389 rq = cpu_rq(cpu); 1390 1391 rcu_read_lock(); 1392 curr = READ_ONCE(rq->curr); /* unlocked access */ 1393 1394 /* 1395 * If the current task on @p's runqueue is an RT task, then 1396 * try to see if we can wake this RT task up on another 1397 * runqueue. Otherwise simply start this RT task 1398 * on its current runqueue. 1399 * 1400 * We want to avoid overloading runqueues. If the woken 1401 * task is a higher priority, then it will stay on this CPU 1402 * and the lower prio task should be moved to another CPU. 1403 * Even though this will probably make the lower prio task 1404 * lose its cache, we do not want to bounce a higher task 1405 * around just because it gave up its CPU, perhaps for a 1406 * lock? 1407 * 1408 * For equal prio tasks, we just let the scheduler sort it out. 1409 * 1410 * Otherwise, just let it ride on the affined RQ and the 1411 * post-schedule router will push the preempted task away 1412 * 1413 * This test is optimistic, if we get it wrong the load-balancer 1414 * will have to sort it out. 1415 */ 1416 if (curr && unlikely(rt_task(curr)) && 1417 (curr->nr_cpus_allowed < 2 || 1418 curr->prio <= p->prio)) { 1419 int target = find_lowest_rq(p); 1420 1421 /* 1422 * Don't bother moving it if the destination CPU is 1423 * not running a lower priority task. 1424 */ 1425 if (target != -1 && 1426 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1427 cpu = target; 1428 } 1429 rcu_read_unlock(); 1430 1431 out: 1432 return cpu; 1433 } 1434 1435 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1436 { 1437 /* 1438 * Current can't be migrated, useless to reschedule, 1439 * let's hope p can move out. 1440 */ 1441 if (rq->curr->nr_cpus_allowed == 1 || 1442 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1443 return; 1444 1445 /* 1446 * p is migratable, so let's not schedule it and 1447 * see if it is pushed or pulled somewhere else. 1448 */ 1449 if (p->nr_cpus_allowed != 1 1450 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1451 return; 1452 1453 /* 1454 * There appears to be other cpus that can accept 1455 * current and none to run 'p', so lets reschedule 1456 * to try and push current away: 1457 */ 1458 requeue_task_rt(rq, p, 1); 1459 resched_curr(rq); 1460 } 1461 1462 #endif /* CONFIG_SMP */ 1463 1464 /* 1465 * Preempt the current task with a newly woken task if needed: 1466 */ 1467 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1468 { 1469 if (p->prio < rq->curr->prio) { 1470 resched_curr(rq); 1471 return; 1472 } 1473 1474 #ifdef CONFIG_SMP 1475 /* 1476 * If: 1477 * 1478 * - the newly woken task is of equal priority to the current task 1479 * - the newly woken task is non-migratable while current is migratable 1480 * - current will be preempted on the next reschedule 1481 * 1482 * we should check to see if current can readily move to a different 1483 * cpu. If so, we will reschedule to allow the push logic to try 1484 * to move current somewhere else, making room for our non-migratable 1485 * task. 1486 */ 1487 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1488 check_preempt_equal_prio(rq, p); 1489 #endif 1490 } 1491 1492 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1493 struct rt_rq *rt_rq) 1494 { 1495 struct rt_prio_array *array = &rt_rq->active; 1496 struct sched_rt_entity *next = NULL; 1497 struct list_head *queue; 1498 int idx; 1499 1500 idx = sched_find_first_bit(array->bitmap); 1501 BUG_ON(idx >= MAX_RT_PRIO); 1502 1503 queue = array->queue + idx; 1504 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1505 1506 return next; 1507 } 1508 1509 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1510 { 1511 struct sched_rt_entity *rt_se; 1512 struct task_struct *p; 1513 struct rt_rq *rt_rq = &rq->rt; 1514 1515 do { 1516 rt_se = pick_next_rt_entity(rq, rt_rq); 1517 BUG_ON(!rt_se); 1518 rt_rq = group_rt_rq(rt_se); 1519 } while (rt_rq); 1520 1521 p = rt_task_of(rt_se); 1522 p->se.exec_start = rq_clock_task(rq); 1523 1524 return p; 1525 } 1526 1527 static struct task_struct * 1528 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 1529 { 1530 struct task_struct *p; 1531 struct rt_rq *rt_rq = &rq->rt; 1532 1533 if (need_pull_rt_task(rq, prev)) { 1534 /* 1535 * This is OK, because current is on_cpu, which avoids it being 1536 * picked for load-balance and preemption/IRQs are still 1537 * disabled avoiding further scheduler activity on it and we're 1538 * being very careful to re-start the picking loop. 1539 */ 1540 rq_unpin_lock(rq, rf); 1541 pull_rt_task(rq); 1542 rq_repin_lock(rq, rf); 1543 /* 1544 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1545 * means a dl or stop task can slip in, in which case we need 1546 * to re-start task selection. 1547 */ 1548 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) || 1549 rq->dl.dl_nr_running)) 1550 return RETRY_TASK; 1551 } 1552 1553 /* 1554 * We may dequeue prev's rt_rq in put_prev_task(). 1555 * So, we update time before rt_nr_running check. 1556 */ 1557 if (prev->sched_class == &rt_sched_class) 1558 update_curr_rt(rq); 1559 1560 if (!rt_rq->rt_queued) 1561 return NULL; 1562 1563 put_prev_task(rq, prev); 1564 1565 p = _pick_next_task_rt(rq); 1566 1567 /* The running task is never eligible for pushing */ 1568 dequeue_pushable_task(rq, p); 1569 1570 queue_push_tasks(rq); 1571 1572 return p; 1573 } 1574 1575 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1576 { 1577 update_curr_rt(rq); 1578 1579 /* 1580 * The previous task needs to be made eligible for pushing 1581 * if it is still active 1582 */ 1583 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1584 enqueue_pushable_task(rq, p); 1585 } 1586 1587 #ifdef CONFIG_SMP 1588 1589 /* Only try algorithms three times */ 1590 #define RT_MAX_TRIES 3 1591 1592 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1593 { 1594 if (!task_running(rq, p) && 1595 cpumask_test_cpu(cpu, &p->cpus_allowed)) 1596 return 1; 1597 return 0; 1598 } 1599 1600 /* 1601 * Return the highest pushable rq's task, which is suitable to be executed 1602 * on the cpu, NULL otherwise 1603 */ 1604 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1605 { 1606 struct plist_head *head = &rq->rt.pushable_tasks; 1607 struct task_struct *p; 1608 1609 if (!has_pushable_tasks(rq)) 1610 return NULL; 1611 1612 plist_for_each_entry(p, head, pushable_tasks) { 1613 if (pick_rt_task(rq, p, cpu)) 1614 return p; 1615 } 1616 1617 return NULL; 1618 } 1619 1620 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1621 1622 static int find_lowest_rq(struct task_struct *task) 1623 { 1624 struct sched_domain *sd; 1625 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1626 int this_cpu = smp_processor_id(); 1627 int cpu = task_cpu(task); 1628 1629 /* Make sure the mask is initialized first */ 1630 if (unlikely(!lowest_mask)) 1631 return -1; 1632 1633 if (task->nr_cpus_allowed == 1) 1634 return -1; /* No other targets possible */ 1635 1636 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1637 return -1; /* No targets found */ 1638 1639 /* 1640 * At this point we have built a mask of cpus representing the 1641 * lowest priority tasks in the system. Now we want to elect 1642 * the best one based on our affinity and topology. 1643 * 1644 * We prioritize the last cpu that the task executed on since 1645 * it is most likely cache-hot in that location. 1646 */ 1647 if (cpumask_test_cpu(cpu, lowest_mask)) 1648 return cpu; 1649 1650 /* 1651 * Otherwise, we consult the sched_domains span maps to figure 1652 * out which cpu is logically closest to our hot cache data. 1653 */ 1654 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1655 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1656 1657 rcu_read_lock(); 1658 for_each_domain(cpu, sd) { 1659 if (sd->flags & SD_WAKE_AFFINE) { 1660 int best_cpu; 1661 1662 /* 1663 * "this_cpu" is cheaper to preempt than a 1664 * remote processor. 1665 */ 1666 if (this_cpu != -1 && 1667 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1668 rcu_read_unlock(); 1669 return this_cpu; 1670 } 1671 1672 best_cpu = cpumask_first_and(lowest_mask, 1673 sched_domain_span(sd)); 1674 if (best_cpu < nr_cpu_ids) { 1675 rcu_read_unlock(); 1676 return best_cpu; 1677 } 1678 } 1679 } 1680 rcu_read_unlock(); 1681 1682 /* 1683 * And finally, if there were no matches within the domains 1684 * just give the caller *something* to work with from the compatible 1685 * locations. 1686 */ 1687 if (this_cpu != -1) 1688 return this_cpu; 1689 1690 cpu = cpumask_any(lowest_mask); 1691 if (cpu < nr_cpu_ids) 1692 return cpu; 1693 return -1; 1694 } 1695 1696 /* Will lock the rq it finds */ 1697 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1698 { 1699 struct rq *lowest_rq = NULL; 1700 int tries; 1701 int cpu; 1702 1703 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1704 cpu = find_lowest_rq(task); 1705 1706 if ((cpu == -1) || (cpu == rq->cpu)) 1707 break; 1708 1709 lowest_rq = cpu_rq(cpu); 1710 1711 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1712 /* 1713 * Target rq has tasks of equal or higher priority, 1714 * retrying does not release any lock and is unlikely 1715 * to yield a different result. 1716 */ 1717 lowest_rq = NULL; 1718 break; 1719 } 1720 1721 /* if the prio of this runqueue changed, try again */ 1722 if (double_lock_balance(rq, lowest_rq)) { 1723 /* 1724 * We had to unlock the run queue. In 1725 * the mean time, task could have 1726 * migrated already or had its affinity changed. 1727 * Also make sure that it wasn't scheduled on its rq. 1728 */ 1729 if (unlikely(task_rq(task) != rq || 1730 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) || 1731 task_running(rq, task) || 1732 !rt_task(task) || 1733 !task_on_rq_queued(task))) { 1734 1735 double_unlock_balance(rq, lowest_rq); 1736 lowest_rq = NULL; 1737 break; 1738 } 1739 } 1740 1741 /* If this rq is still suitable use it. */ 1742 if (lowest_rq->rt.highest_prio.curr > task->prio) 1743 break; 1744 1745 /* try again */ 1746 double_unlock_balance(rq, lowest_rq); 1747 lowest_rq = NULL; 1748 } 1749 1750 return lowest_rq; 1751 } 1752 1753 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1754 { 1755 struct task_struct *p; 1756 1757 if (!has_pushable_tasks(rq)) 1758 return NULL; 1759 1760 p = plist_first_entry(&rq->rt.pushable_tasks, 1761 struct task_struct, pushable_tasks); 1762 1763 BUG_ON(rq->cpu != task_cpu(p)); 1764 BUG_ON(task_current(rq, p)); 1765 BUG_ON(p->nr_cpus_allowed <= 1); 1766 1767 BUG_ON(!task_on_rq_queued(p)); 1768 BUG_ON(!rt_task(p)); 1769 1770 return p; 1771 } 1772 1773 /* 1774 * If the current CPU has more than one RT task, see if the non 1775 * running task can migrate over to a CPU that is running a task 1776 * of lesser priority. 1777 */ 1778 static int push_rt_task(struct rq *rq) 1779 { 1780 struct task_struct *next_task; 1781 struct rq *lowest_rq; 1782 int ret = 0; 1783 1784 if (!rq->rt.overloaded) 1785 return 0; 1786 1787 next_task = pick_next_pushable_task(rq); 1788 if (!next_task) 1789 return 0; 1790 1791 retry: 1792 if (unlikely(next_task == rq->curr)) { 1793 WARN_ON(1); 1794 return 0; 1795 } 1796 1797 /* 1798 * It's possible that the next_task slipped in of 1799 * higher priority than current. If that's the case 1800 * just reschedule current. 1801 */ 1802 if (unlikely(next_task->prio < rq->curr->prio)) { 1803 resched_curr(rq); 1804 return 0; 1805 } 1806 1807 /* We might release rq lock */ 1808 get_task_struct(next_task); 1809 1810 /* find_lock_lowest_rq locks the rq if found */ 1811 lowest_rq = find_lock_lowest_rq(next_task, rq); 1812 if (!lowest_rq) { 1813 struct task_struct *task; 1814 /* 1815 * find_lock_lowest_rq releases rq->lock 1816 * so it is possible that next_task has migrated. 1817 * 1818 * We need to make sure that the task is still on the same 1819 * run-queue and is also still the next task eligible for 1820 * pushing. 1821 */ 1822 task = pick_next_pushable_task(rq); 1823 if (task == next_task) { 1824 /* 1825 * The task hasn't migrated, and is still the next 1826 * eligible task, but we failed to find a run-queue 1827 * to push it to. Do not retry in this case, since 1828 * other cpus will pull from us when ready. 1829 */ 1830 goto out; 1831 } 1832 1833 if (!task) 1834 /* No more tasks, just exit */ 1835 goto out; 1836 1837 /* 1838 * Something has shifted, try again. 1839 */ 1840 put_task_struct(next_task); 1841 next_task = task; 1842 goto retry; 1843 } 1844 1845 deactivate_task(rq, next_task, 0); 1846 set_task_cpu(next_task, lowest_rq->cpu); 1847 activate_task(lowest_rq, next_task, 0); 1848 ret = 1; 1849 1850 resched_curr(lowest_rq); 1851 1852 double_unlock_balance(rq, lowest_rq); 1853 1854 out: 1855 put_task_struct(next_task); 1856 1857 return ret; 1858 } 1859 1860 static void push_rt_tasks(struct rq *rq) 1861 { 1862 /* push_rt_task will return true if it moved an RT */ 1863 while (push_rt_task(rq)) 1864 ; 1865 } 1866 1867 #ifdef HAVE_RT_PUSH_IPI 1868 1869 /* 1870 * When a high priority task schedules out from a CPU and a lower priority 1871 * task is scheduled in, a check is made to see if there's any RT tasks 1872 * on other CPUs that are waiting to run because a higher priority RT task 1873 * is currently running on its CPU. In this case, the CPU with multiple RT 1874 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 1875 * up that may be able to run one of its non-running queued RT tasks. 1876 * 1877 * All CPUs with overloaded RT tasks need to be notified as there is currently 1878 * no way to know which of these CPUs have the highest priority task waiting 1879 * to run. Instead of trying to take a spinlock on each of these CPUs, 1880 * which has shown to cause large latency when done on machines with many 1881 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 1882 * RT tasks waiting to run. 1883 * 1884 * Just sending an IPI to each of the CPUs is also an issue, as on large 1885 * count CPU machines, this can cause an IPI storm on a CPU, especially 1886 * if its the only CPU with multiple RT tasks queued, and a large number 1887 * of CPUs scheduling a lower priority task at the same time. 1888 * 1889 * Each root domain has its own irq work function that can iterate over 1890 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 1891 * tassk must be checked if there's one or many CPUs that are lowering 1892 * their priority, there's a single irq work iterator that will try to 1893 * push off RT tasks that are waiting to run. 1894 * 1895 * When a CPU schedules a lower priority task, it will kick off the 1896 * irq work iterator that will jump to each CPU with overloaded RT tasks. 1897 * As it only takes the first CPU that schedules a lower priority task 1898 * to start the process, the rto_start variable is incremented and if 1899 * the atomic result is one, then that CPU will try to take the rto_lock. 1900 * This prevents high contention on the lock as the process handles all 1901 * CPUs scheduling lower priority tasks. 1902 * 1903 * All CPUs that are scheduling a lower priority task will increment the 1904 * rt_loop_next variable. This will make sure that the irq work iterator 1905 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 1906 * priority task, even if the iterator is in the middle of a scan. Incrementing 1907 * the rt_loop_next will cause the iterator to perform another scan. 1908 * 1909 */ 1910 static int rto_next_cpu(struct rq *rq) 1911 { 1912 struct root_domain *rd = rq->rd; 1913 int next; 1914 int cpu; 1915 1916 /* 1917 * When starting the IPI RT pushing, the rto_cpu is set to -1, 1918 * rt_next_cpu() will simply return the first CPU found in 1919 * the rto_mask. 1920 * 1921 * If rto_next_cpu() is called with rto_cpu is a valid cpu, it 1922 * will return the next CPU found in the rto_mask. 1923 * 1924 * If there are no more CPUs left in the rto_mask, then a check is made 1925 * against rto_loop and rto_loop_next. rto_loop is only updated with 1926 * the rto_lock held, but any CPU may increment the rto_loop_next 1927 * without any locking. 1928 */ 1929 for (;;) { 1930 1931 /* When rto_cpu is -1 this acts like cpumask_first() */ 1932 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 1933 1934 rd->rto_cpu = cpu; 1935 1936 if (cpu < nr_cpu_ids) 1937 return cpu; 1938 1939 rd->rto_cpu = -1; 1940 1941 /* 1942 * ACQUIRE ensures we see the @rto_mask changes 1943 * made prior to the @next value observed. 1944 * 1945 * Matches WMB in rt_set_overload(). 1946 */ 1947 next = atomic_read_acquire(&rd->rto_loop_next); 1948 1949 if (rd->rto_loop == next) 1950 break; 1951 1952 rd->rto_loop = next; 1953 } 1954 1955 return -1; 1956 } 1957 1958 static inline bool rto_start_trylock(atomic_t *v) 1959 { 1960 return !atomic_cmpxchg_acquire(v, 0, 1); 1961 } 1962 1963 static inline void rto_start_unlock(atomic_t *v) 1964 { 1965 atomic_set_release(v, 0); 1966 } 1967 1968 static void tell_cpu_to_push(struct rq *rq) 1969 { 1970 int cpu = -1; 1971 1972 /* Keep the loop going if the IPI is currently active */ 1973 atomic_inc(&rq->rd->rto_loop_next); 1974 1975 /* Only one CPU can initiate a loop at a time */ 1976 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 1977 return; 1978 1979 raw_spin_lock(&rq->rd->rto_lock); 1980 1981 /* 1982 * The rto_cpu is updated under the lock, if it has a valid cpu 1983 * then the IPI is still running and will continue due to the 1984 * update to loop_next, and nothing needs to be done here. 1985 * Otherwise it is finishing up and an ipi needs to be sent. 1986 */ 1987 if (rq->rd->rto_cpu < 0) 1988 cpu = rto_next_cpu(rq); 1989 1990 raw_spin_unlock(&rq->rd->rto_lock); 1991 1992 rto_start_unlock(&rq->rd->rto_loop_start); 1993 1994 if (cpu >= 0) 1995 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 1996 } 1997 1998 /* Called from hardirq context */ 1999 void rto_push_irq_work_func(struct irq_work *work) 2000 { 2001 struct rq *rq; 2002 int cpu; 2003 2004 rq = this_rq(); 2005 2006 /* 2007 * We do not need to grab the lock to check for has_pushable_tasks. 2008 * When it gets updated, a check is made if a push is possible. 2009 */ 2010 if (has_pushable_tasks(rq)) { 2011 raw_spin_lock(&rq->lock); 2012 push_rt_tasks(rq); 2013 raw_spin_unlock(&rq->lock); 2014 } 2015 2016 raw_spin_lock(&rq->rd->rto_lock); 2017 2018 /* Pass the IPI to the next rt overloaded queue */ 2019 cpu = rto_next_cpu(rq); 2020 2021 raw_spin_unlock(&rq->rd->rto_lock); 2022 2023 if (cpu < 0) 2024 return; 2025 2026 /* Try the next RT overloaded CPU */ 2027 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 2028 } 2029 #endif /* HAVE_RT_PUSH_IPI */ 2030 2031 static void pull_rt_task(struct rq *this_rq) 2032 { 2033 int this_cpu = this_rq->cpu, cpu; 2034 bool resched = false; 2035 struct task_struct *p; 2036 struct rq *src_rq; 2037 int rt_overload_count = rt_overloaded(this_rq); 2038 2039 if (likely(!rt_overload_count)) 2040 return; 2041 2042 /* 2043 * Match the barrier from rt_set_overloaded; this guarantees that if we 2044 * see overloaded we must also see the rto_mask bit. 2045 */ 2046 smp_rmb(); 2047 2048 /* If we are the only overloaded CPU do nothing */ 2049 if (rt_overload_count == 1 && 2050 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2051 return; 2052 2053 #ifdef HAVE_RT_PUSH_IPI 2054 if (sched_feat(RT_PUSH_IPI)) { 2055 tell_cpu_to_push(this_rq); 2056 return; 2057 } 2058 #endif 2059 2060 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2061 if (this_cpu == cpu) 2062 continue; 2063 2064 src_rq = cpu_rq(cpu); 2065 2066 /* 2067 * Don't bother taking the src_rq->lock if the next highest 2068 * task is known to be lower-priority than our current task. 2069 * This may look racy, but if this value is about to go 2070 * logically higher, the src_rq will push this task away. 2071 * And if its going logically lower, we do not care 2072 */ 2073 if (src_rq->rt.highest_prio.next >= 2074 this_rq->rt.highest_prio.curr) 2075 continue; 2076 2077 /* 2078 * We can potentially drop this_rq's lock in 2079 * double_lock_balance, and another CPU could 2080 * alter this_rq 2081 */ 2082 double_lock_balance(this_rq, src_rq); 2083 2084 /* 2085 * We can pull only a task, which is pushable 2086 * on its rq, and no others. 2087 */ 2088 p = pick_highest_pushable_task(src_rq, this_cpu); 2089 2090 /* 2091 * Do we have an RT task that preempts 2092 * the to-be-scheduled task? 2093 */ 2094 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2095 WARN_ON(p == src_rq->curr); 2096 WARN_ON(!task_on_rq_queued(p)); 2097 2098 /* 2099 * There's a chance that p is higher in priority 2100 * than what's currently running on its cpu. 2101 * This is just that p is wakeing up and hasn't 2102 * had a chance to schedule. We only pull 2103 * p if it is lower in priority than the 2104 * current task on the run queue 2105 */ 2106 if (p->prio < src_rq->curr->prio) 2107 goto skip; 2108 2109 resched = true; 2110 2111 deactivate_task(src_rq, p, 0); 2112 set_task_cpu(p, this_cpu); 2113 activate_task(this_rq, p, 0); 2114 /* 2115 * We continue with the search, just in 2116 * case there's an even higher prio task 2117 * in another runqueue. (low likelihood 2118 * but possible) 2119 */ 2120 } 2121 skip: 2122 double_unlock_balance(this_rq, src_rq); 2123 } 2124 2125 if (resched) 2126 resched_curr(this_rq); 2127 } 2128 2129 /* 2130 * If we are not running and we are not going to reschedule soon, we should 2131 * try to push tasks away now 2132 */ 2133 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2134 { 2135 if (!task_running(rq, p) && 2136 !test_tsk_need_resched(rq->curr) && 2137 p->nr_cpus_allowed > 1 && 2138 (dl_task(rq->curr) || rt_task(rq->curr)) && 2139 (rq->curr->nr_cpus_allowed < 2 || 2140 rq->curr->prio <= p->prio)) 2141 push_rt_tasks(rq); 2142 } 2143 2144 /* Assumes rq->lock is held */ 2145 static void rq_online_rt(struct rq *rq) 2146 { 2147 if (rq->rt.overloaded) 2148 rt_set_overload(rq); 2149 2150 __enable_runtime(rq); 2151 2152 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2153 } 2154 2155 /* Assumes rq->lock is held */ 2156 static void rq_offline_rt(struct rq *rq) 2157 { 2158 if (rq->rt.overloaded) 2159 rt_clear_overload(rq); 2160 2161 __disable_runtime(rq); 2162 2163 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2164 } 2165 2166 /* 2167 * When switch from the rt queue, we bring ourselves to a position 2168 * that we might want to pull RT tasks from other runqueues. 2169 */ 2170 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2171 { 2172 /* 2173 * If there are other RT tasks then we will reschedule 2174 * and the scheduling of the other RT tasks will handle 2175 * the balancing. But if we are the last RT task 2176 * we may need to handle the pulling of RT tasks 2177 * now. 2178 */ 2179 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2180 return; 2181 2182 queue_pull_task(rq); 2183 } 2184 2185 void __init init_sched_rt_class(void) 2186 { 2187 unsigned int i; 2188 2189 for_each_possible_cpu(i) { 2190 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2191 GFP_KERNEL, cpu_to_node(i)); 2192 } 2193 } 2194 #endif /* CONFIG_SMP */ 2195 2196 /* 2197 * When switching a task to RT, we may overload the runqueue 2198 * with RT tasks. In this case we try to push them off to 2199 * other runqueues. 2200 */ 2201 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2202 { 2203 /* 2204 * If we are already running, then there's nothing 2205 * that needs to be done. But if we are not running 2206 * we may need to preempt the current running task. 2207 * If that current running task is also an RT task 2208 * then see if we can move to another run queue. 2209 */ 2210 if (task_on_rq_queued(p) && rq->curr != p) { 2211 #ifdef CONFIG_SMP 2212 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2213 queue_push_tasks(rq); 2214 #endif /* CONFIG_SMP */ 2215 if (p->prio < rq->curr->prio) 2216 resched_curr(rq); 2217 } 2218 } 2219 2220 /* 2221 * Priority of the task has changed. This may cause 2222 * us to initiate a push or pull. 2223 */ 2224 static void 2225 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2226 { 2227 if (!task_on_rq_queued(p)) 2228 return; 2229 2230 if (rq->curr == p) { 2231 #ifdef CONFIG_SMP 2232 /* 2233 * If our priority decreases while running, we 2234 * may need to pull tasks to this runqueue. 2235 */ 2236 if (oldprio < p->prio) 2237 queue_pull_task(rq); 2238 2239 /* 2240 * If there's a higher priority task waiting to run 2241 * then reschedule. 2242 */ 2243 if (p->prio > rq->rt.highest_prio.curr) 2244 resched_curr(rq); 2245 #else 2246 /* For UP simply resched on drop of prio */ 2247 if (oldprio < p->prio) 2248 resched_curr(rq); 2249 #endif /* CONFIG_SMP */ 2250 } else { 2251 /* 2252 * This task is not running, but if it is 2253 * greater than the current running task 2254 * then reschedule. 2255 */ 2256 if (p->prio < rq->curr->prio) 2257 resched_curr(rq); 2258 } 2259 } 2260 2261 #ifdef CONFIG_POSIX_TIMERS 2262 static void watchdog(struct rq *rq, struct task_struct *p) 2263 { 2264 unsigned long soft, hard; 2265 2266 /* max may change after cur was read, this will be fixed next tick */ 2267 soft = task_rlimit(p, RLIMIT_RTTIME); 2268 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2269 2270 if (soft != RLIM_INFINITY) { 2271 unsigned long next; 2272 2273 if (p->rt.watchdog_stamp != jiffies) { 2274 p->rt.timeout++; 2275 p->rt.watchdog_stamp = jiffies; 2276 } 2277 2278 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2279 if (p->rt.timeout > next) 2280 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 2281 } 2282 } 2283 #else 2284 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2285 #endif 2286 2287 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2288 { 2289 struct sched_rt_entity *rt_se = &p->rt; 2290 2291 update_curr_rt(rq); 2292 2293 watchdog(rq, p); 2294 2295 /* 2296 * RR tasks need a special form of timeslice management. 2297 * FIFO tasks have no timeslices. 2298 */ 2299 if (p->policy != SCHED_RR) 2300 return; 2301 2302 if (--p->rt.time_slice) 2303 return; 2304 2305 p->rt.time_slice = sched_rr_timeslice; 2306 2307 /* 2308 * Requeue to the end of queue if we (and all of our ancestors) are not 2309 * the only element on the queue 2310 */ 2311 for_each_sched_rt_entity(rt_se) { 2312 if (rt_se->run_list.prev != rt_se->run_list.next) { 2313 requeue_task_rt(rq, p, 0); 2314 resched_curr(rq); 2315 return; 2316 } 2317 } 2318 } 2319 2320 static void set_curr_task_rt(struct rq *rq) 2321 { 2322 struct task_struct *p = rq->curr; 2323 2324 p->se.exec_start = rq_clock_task(rq); 2325 2326 /* The running task is never eligible for pushing */ 2327 dequeue_pushable_task(rq, p); 2328 } 2329 2330 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2331 { 2332 /* 2333 * Time slice is 0 for SCHED_FIFO tasks 2334 */ 2335 if (task->policy == SCHED_RR) 2336 return sched_rr_timeslice; 2337 else 2338 return 0; 2339 } 2340 2341 const struct sched_class rt_sched_class = { 2342 .next = &fair_sched_class, 2343 .enqueue_task = enqueue_task_rt, 2344 .dequeue_task = dequeue_task_rt, 2345 .yield_task = yield_task_rt, 2346 2347 .check_preempt_curr = check_preempt_curr_rt, 2348 2349 .pick_next_task = pick_next_task_rt, 2350 .put_prev_task = put_prev_task_rt, 2351 2352 #ifdef CONFIG_SMP 2353 .select_task_rq = select_task_rq_rt, 2354 2355 .set_cpus_allowed = set_cpus_allowed_common, 2356 .rq_online = rq_online_rt, 2357 .rq_offline = rq_offline_rt, 2358 .task_woken = task_woken_rt, 2359 .switched_from = switched_from_rt, 2360 #endif 2361 2362 .set_curr_task = set_curr_task_rt, 2363 .task_tick = task_tick_rt, 2364 2365 .get_rr_interval = get_rr_interval_rt, 2366 2367 .prio_changed = prio_changed_rt, 2368 .switched_to = switched_to_rt, 2369 2370 .update_curr = update_curr_rt, 2371 }; 2372 2373 #ifdef CONFIG_RT_GROUP_SCHED 2374 /* 2375 * Ensure that the real time constraints are schedulable. 2376 */ 2377 static DEFINE_MUTEX(rt_constraints_mutex); 2378 2379 /* Must be called with tasklist_lock held */ 2380 static inline int tg_has_rt_tasks(struct task_group *tg) 2381 { 2382 struct task_struct *g, *p; 2383 2384 /* 2385 * Autogroups do not have RT tasks; see autogroup_create(). 2386 */ 2387 if (task_group_is_autogroup(tg)) 2388 return 0; 2389 2390 for_each_process_thread(g, p) { 2391 if (rt_task(p) && task_group(p) == tg) 2392 return 1; 2393 } 2394 2395 return 0; 2396 } 2397 2398 struct rt_schedulable_data { 2399 struct task_group *tg; 2400 u64 rt_period; 2401 u64 rt_runtime; 2402 }; 2403 2404 static int tg_rt_schedulable(struct task_group *tg, void *data) 2405 { 2406 struct rt_schedulable_data *d = data; 2407 struct task_group *child; 2408 unsigned long total, sum = 0; 2409 u64 period, runtime; 2410 2411 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2412 runtime = tg->rt_bandwidth.rt_runtime; 2413 2414 if (tg == d->tg) { 2415 period = d->rt_period; 2416 runtime = d->rt_runtime; 2417 } 2418 2419 /* 2420 * Cannot have more runtime than the period. 2421 */ 2422 if (runtime > period && runtime != RUNTIME_INF) 2423 return -EINVAL; 2424 2425 /* 2426 * Ensure we don't starve existing RT tasks. 2427 */ 2428 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 2429 return -EBUSY; 2430 2431 total = to_ratio(period, runtime); 2432 2433 /* 2434 * Nobody can have more than the global setting allows. 2435 */ 2436 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2437 return -EINVAL; 2438 2439 /* 2440 * The sum of our children's runtime should not exceed our own. 2441 */ 2442 list_for_each_entry_rcu(child, &tg->children, siblings) { 2443 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2444 runtime = child->rt_bandwidth.rt_runtime; 2445 2446 if (child == d->tg) { 2447 period = d->rt_period; 2448 runtime = d->rt_runtime; 2449 } 2450 2451 sum += to_ratio(period, runtime); 2452 } 2453 2454 if (sum > total) 2455 return -EINVAL; 2456 2457 return 0; 2458 } 2459 2460 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2461 { 2462 int ret; 2463 2464 struct rt_schedulable_data data = { 2465 .tg = tg, 2466 .rt_period = period, 2467 .rt_runtime = runtime, 2468 }; 2469 2470 rcu_read_lock(); 2471 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2472 rcu_read_unlock(); 2473 2474 return ret; 2475 } 2476 2477 static int tg_set_rt_bandwidth(struct task_group *tg, 2478 u64 rt_period, u64 rt_runtime) 2479 { 2480 int i, err = 0; 2481 2482 /* 2483 * Disallowing the root group RT runtime is BAD, it would disallow the 2484 * kernel creating (and or operating) RT threads. 2485 */ 2486 if (tg == &root_task_group && rt_runtime == 0) 2487 return -EINVAL; 2488 2489 /* No period doesn't make any sense. */ 2490 if (rt_period == 0) 2491 return -EINVAL; 2492 2493 mutex_lock(&rt_constraints_mutex); 2494 read_lock(&tasklist_lock); 2495 err = __rt_schedulable(tg, rt_period, rt_runtime); 2496 if (err) 2497 goto unlock; 2498 2499 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2500 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2501 tg->rt_bandwidth.rt_runtime = rt_runtime; 2502 2503 for_each_possible_cpu(i) { 2504 struct rt_rq *rt_rq = tg->rt_rq[i]; 2505 2506 raw_spin_lock(&rt_rq->rt_runtime_lock); 2507 rt_rq->rt_runtime = rt_runtime; 2508 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2509 } 2510 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2511 unlock: 2512 read_unlock(&tasklist_lock); 2513 mutex_unlock(&rt_constraints_mutex); 2514 2515 return err; 2516 } 2517 2518 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2519 { 2520 u64 rt_runtime, rt_period; 2521 2522 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2523 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2524 if (rt_runtime_us < 0) 2525 rt_runtime = RUNTIME_INF; 2526 2527 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2528 } 2529 2530 long sched_group_rt_runtime(struct task_group *tg) 2531 { 2532 u64 rt_runtime_us; 2533 2534 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2535 return -1; 2536 2537 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2538 do_div(rt_runtime_us, NSEC_PER_USEC); 2539 return rt_runtime_us; 2540 } 2541 2542 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2543 { 2544 u64 rt_runtime, rt_period; 2545 2546 rt_period = rt_period_us * NSEC_PER_USEC; 2547 rt_runtime = tg->rt_bandwidth.rt_runtime; 2548 2549 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2550 } 2551 2552 long sched_group_rt_period(struct task_group *tg) 2553 { 2554 u64 rt_period_us; 2555 2556 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2557 do_div(rt_period_us, NSEC_PER_USEC); 2558 return rt_period_us; 2559 } 2560 2561 static int sched_rt_global_constraints(void) 2562 { 2563 int ret = 0; 2564 2565 mutex_lock(&rt_constraints_mutex); 2566 read_lock(&tasklist_lock); 2567 ret = __rt_schedulable(NULL, 0, 0); 2568 read_unlock(&tasklist_lock); 2569 mutex_unlock(&rt_constraints_mutex); 2570 2571 return ret; 2572 } 2573 2574 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2575 { 2576 /* Don't accept realtime tasks when there is no way for them to run */ 2577 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2578 return 0; 2579 2580 return 1; 2581 } 2582 2583 #else /* !CONFIG_RT_GROUP_SCHED */ 2584 static int sched_rt_global_constraints(void) 2585 { 2586 unsigned long flags; 2587 int i; 2588 2589 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2590 for_each_possible_cpu(i) { 2591 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2592 2593 raw_spin_lock(&rt_rq->rt_runtime_lock); 2594 rt_rq->rt_runtime = global_rt_runtime(); 2595 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2596 } 2597 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2598 2599 return 0; 2600 } 2601 #endif /* CONFIG_RT_GROUP_SCHED */ 2602 2603 static int sched_rt_global_validate(void) 2604 { 2605 if (sysctl_sched_rt_period <= 0) 2606 return -EINVAL; 2607 2608 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2609 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 2610 return -EINVAL; 2611 2612 return 0; 2613 } 2614 2615 static void sched_rt_do_global(void) 2616 { 2617 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 2618 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 2619 } 2620 2621 int sched_rt_handler(struct ctl_table *table, int write, 2622 void __user *buffer, size_t *lenp, 2623 loff_t *ppos) 2624 { 2625 int old_period, old_runtime; 2626 static DEFINE_MUTEX(mutex); 2627 int ret; 2628 2629 mutex_lock(&mutex); 2630 old_period = sysctl_sched_rt_period; 2631 old_runtime = sysctl_sched_rt_runtime; 2632 2633 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2634 2635 if (!ret && write) { 2636 ret = sched_rt_global_validate(); 2637 if (ret) 2638 goto undo; 2639 2640 ret = sched_dl_global_validate(); 2641 if (ret) 2642 goto undo; 2643 2644 ret = sched_rt_global_constraints(); 2645 if (ret) 2646 goto undo; 2647 2648 sched_rt_do_global(); 2649 sched_dl_do_global(); 2650 } 2651 if (0) { 2652 undo: 2653 sysctl_sched_rt_period = old_period; 2654 sysctl_sched_rt_runtime = old_runtime; 2655 } 2656 mutex_unlock(&mutex); 2657 2658 return ret; 2659 } 2660 2661 int sched_rr_handler(struct ctl_table *table, int write, 2662 void __user *buffer, size_t *lenp, 2663 loff_t *ppos) 2664 { 2665 int ret; 2666 static DEFINE_MUTEX(mutex); 2667 2668 mutex_lock(&mutex); 2669 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2670 /* 2671 * Make sure that internally we keep jiffies. 2672 * Also, writing zero resets the timeslice to default: 2673 */ 2674 if (!ret && write) { 2675 sched_rr_timeslice = 2676 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 2677 msecs_to_jiffies(sysctl_sched_rr_timeslice); 2678 } 2679 mutex_unlock(&mutex); 2680 return ret; 2681 } 2682 2683 #ifdef CONFIG_SCHED_DEBUG 2684 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2685 2686 void print_rt_stats(struct seq_file *m, int cpu) 2687 { 2688 rt_rq_iter_t iter; 2689 struct rt_rq *rt_rq; 2690 2691 rcu_read_lock(); 2692 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2693 print_rt_rq(m, cpu, rt_rq); 2694 rcu_read_unlock(); 2695 } 2696 #endif /* CONFIG_SCHED_DEBUG */ 2697