1 /* 2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 3 * policies) 4 */ 5 6 #include "sched.h" 7 8 #include <linux/slab.h> 9 10 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 11 12 struct rt_bandwidth def_rt_bandwidth; 13 14 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 15 { 16 struct rt_bandwidth *rt_b = 17 container_of(timer, struct rt_bandwidth, rt_period_timer); 18 ktime_t now; 19 int overrun; 20 int idle = 0; 21 22 for (;;) { 23 now = hrtimer_cb_get_time(timer); 24 overrun = hrtimer_forward(timer, now, rt_b->rt_period); 25 26 if (!overrun) 27 break; 28 29 idle = do_sched_rt_period_timer(rt_b, overrun); 30 } 31 32 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 33 } 34 35 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 36 { 37 rt_b->rt_period = ns_to_ktime(period); 38 rt_b->rt_runtime = runtime; 39 40 raw_spin_lock_init(&rt_b->rt_runtime_lock); 41 42 hrtimer_init(&rt_b->rt_period_timer, 43 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 44 rt_b->rt_period_timer.function = sched_rt_period_timer; 45 } 46 47 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 48 { 49 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 50 return; 51 52 if (hrtimer_active(&rt_b->rt_period_timer)) 53 return; 54 55 raw_spin_lock(&rt_b->rt_runtime_lock); 56 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period); 57 raw_spin_unlock(&rt_b->rt_runtime_lock); 58 } 59 60 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) 61 { 62 struct rt_prio_array *array; 63 int i; 64 65 array = &rt_rq->active; 66 for (i = 0; i < MAX_RT_PRIO; i++) { 67 INIT_LIST_HEAD(array->queue + i); 68 __clear_bit(i, array->bitmap); 69 } 70 /* delimiter for bitsearch: */ 71 __set_bit(MAX_RT_PRIO, array->bitmap); 72 73 #if defined CONFIG_SMP 74 rt_rq->highest_prio.curr = MAX_RT_PRIO; 75 rt_rq->highest_prio.next = MAX_RT_PRIO; 76 rt_rq->rt_nr_migratory = 0; 77 rt_rq->overloaded = 0; 78 plist_head_init(&rt_rq->pushable_tasks); 79 #endif 80 81 rt_rq->rt_time = 0; 82 rt_rq->rt_throttled = 0; 83 rt_rq->rt_runtime = 0; 84 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 85 } 86 87 #ifdef CONFIG_RT_GROUP_SCHED 88 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 89 { 90 hrtimer_cancel(&rt_b->rt_period_timer); 91 } 92 93 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 94 95 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 96 { 97 #ifdef CONFIG_SCHED_DEBUG 98 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 99 #endif 100 return container_of(rt_se, struct task_struct, rt); 101 } 102 103 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 104 { 105 return rt_rq->rq; 106 } 107 108 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 109 { 110 return rt_se->rt_rq; 111 } 112 113 void free_rt_sched_group(struct task_group *tg) 114 { 115 int i; 116 117 if (tg->rt_se) 118 destroy_rt_bandwidth(&tg->rt_bandwidth); 119 120 for_each_possible_cpu(i) { 121 if (tg->rt_rq) 122 kfree(tg->rt_rq[i]); 123 if (tg->rt_se) 124 kfree(tg->rt_se[i]); 125 } 126 127 kfree(tg->rt_rq); 128 kfree(tg->rt_se); 129 } 130 131 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 132 struct sched_rt_entity *rt_se, int cpu, 133 struct sched_rt_entity *parent) 134 { 135 struct rq *rq = cpu_rq(cpu); 136 137 rt_rq->highest_prio.curr = MAX_RT_PRIO; 138 rt_rq->rt_nr_boosted = 0; 139 rt_rq->rq = rq; 140 rt_rq->tg = tg; 141 142 tg->rt_rq[cpu] = rt_rq; 143 tg->rt_se[cpu] = rt_se; 144 145 if (!rt_se) 146 return; 147 148 if (!parent) 149 rt_se->rt_rq = &rq->rt; 150 else 151 rt_se->rt_rq = parent->my_q; 152 153 rt_se->my_q = rt_rq; 154 rt_se->parent = parent; 155 INIT_LIST_HEAD(&rt_se->run_list); 156 } 157 158 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 159 { 160 struct rt_rq *rt_rq; 161 struct sched_rt_entity *rt_se; 162 int i; 163 164 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); 165 if (!tg->rt_rq) 166 goto err; 167 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); 168 if (!tg->rt_se) 169 goto err; 170 171 init_rt_bandwidth(&tg->rt_bandwidth, 172 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 173 174 for_each_possible_cpu(i) { 175 rt_rq = kzalloc_node(sizeof(struct rt_rq), 176 GFP_KERNEL, cpu_to_node(i)); 177 if (!rt_rq) 178 goto err; 179 180 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 181 GFP_KERNEL, cpu_to_node(i)); 182 if (!rt_se) 183 goto err_free_rq; 184 185 init_rt_rq(rt_rq, cpu_rq(i)); 186 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 187 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 188 } 189 190 return 1; 191 192 err_free_rq: 193 kfree(rt_rq); 194 err: 195 return 0; 196 } 197 198 #else /* CONFIG_RT_GROUP_SCHED */ 199 200 #define rt_entity_is_task(rt_se) (1) 201 202 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 203 { 204 return container_of(rt_se, struct task_struct, rt); 205 } 206 207 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 208 { 209 return container_of(rt_rq, struct rq, rt); 210 } 211 212 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 213 { 214 struct task_struct *p = rt_task_of(rt_se); 215 struct rq *rq = task_rq(p); 216 217 return &rq->rt; 218 } 219 220 void free_rt_sched_group(struct task_group *tg) { } 221 222 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 223 { 224 return 1; 225 } 226 #endif /* CONFIG_RT_GROUP_SCHED */ 227 228 #ifdef CONFIG_SMP 229 230 static inline int rt_overloaded(struct rq *rq) 231 { 232 return atomic_read(&rq->rd->rto_count); 233 } 234 235 static inline void rt_set_overload(struct rq *rq) 236 { 237 if (!rq->online) 238 return; 239 240 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 241 /* 242 * Make sure the mask is visible before we set 243 * the overload count. That is checked to determine 244 * if we should look at the mask. It would be a shame 245 * if we looked at the mask, but the mask was not 246 * updated yet. 247 */ 248 wmb(); 249 atomic_inc(&rq->rd->rto_count); 250 } 251 252 static inline void rt_clear_overload(struct rq *rq) 253 { 254 if (!rq->online) 255 return; 256 257 /* the order here really doesn't matter */ 258 atomic_dec(&rq->rd->rto_count); 259 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 260 } 261 262 static void update_rt_migration(struct rt_rq *rt_rq) 263 { 264 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 265 if (!rt_rq->overloaded) { 266 rt_set_overload(rq_of_rt_rq(rt_rq)); 267 rt_rq->overloaded = 1; 268 } 269 } else if (rt_rq->overloaded) { 270 rt_clear_overload(rq_of_rt_rq(rt_rq)); 271 rt_rq->overloaded = 0; 272 } 273 } 274 275 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 276 { 277 if (!rt_entity_is_task(rt_se)) 278 return; 279 280 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 281 282 rt_rq->rt_nr_total++; 283 if (rt_se->nr_cpus_allowed > 1) 284 rt_rq->rt_nr_migratory++; 285 286 update_rt_migration(rt_rq); 287 } 288 289 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 290 { 291 if (!rt_entity_is_task(rt_se)) 292 return; 293 294 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 295 296 rt_rq->rt_nr_total--; 297 if (rt_se->nr_cpus_allowed > 1) 298 rt_rq->rt_nr_migratory--; 299 300 update_rt_migration(rt_rq); 301 } 302 303 static inline int has_pushable_tasks(struct rq *rq) 304 { 305 return !plist_head_empty(&rq->rt.pushable_tasks); 306 } 307 308 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 309 { 310 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 311 plist_node_init(&p->pushable_tasks, p->prio); 312 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 313 314 /* Update the highest prio pushable task */ 315 if (p->prio < rq->rt.highest_prio.next) 316 rq->rt.highest_prio.next = p->prio; 317 } 318 319 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 320 { 321 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 322 323 /* Update the new highest prio pushable task */ 324 if (has_pushable_tasks(rq)) { 325 p = plist_first_entry(&rq->rt.pushable_tasks, 326 struct task_struct, pushable_tasks); 327 rq->rt.highest_prio.next = p->prio; 328 } else 329 rq->rt.highest_prio.next = MAX_RT_PRIO; 330 } 331 332 #else 333 334 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 335 { 336 } 337 338 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 339 { 340 } 341 342 static inline 343 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 344 { 345 } 346 347 static inline 348 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 349 { 350 } 351 352 #endif /* CONFIG_SMP */ 353 354 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 355 { 356 return !list_empty(&rt_se->run_list); 357 } 358 359 #ifdef CONFIG_RT_GROUP_SCHED 360 361 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 362 { 363 if (!rt_rq->tg) 364 return RUNTIME_INF; 365 366 return rt_rq->rt_runtime; 367 } 368 369 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 370 { 371 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 372 } 373 374 typedef struct task_group *rt_rq_iter_t; 375 376 static inline struct task_group *next_task_group(struct task_group *tg) 377 { 378 do { 379 tg = list_entry_rcu(tg->list.next, 380 typeof(struct task_group), list); 381 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 382 383 if (&tg->list == &task_groups) 384 tg = NULL; 385 386 return tg; 387 } 388 389 #define for_each_rt_rq(rt_rq, iter, rq) \ 390 for (iter = container_of(&task_groups, typeof(*iter), list); \ 391 (iter = next_task_group(iter)) && \ 392 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 393 394 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) 395 { 396 list_add_rcu(&rt_rq->leaf_rt_rq_list, 397 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list); 398 } 399 400 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) 401 { 402 list_del_rcu(&rt_rq->leaf_rt_rq_list); 403 } 404 405 #define for_each_leaf_rt_rq(rt_rq, rq) \ 406 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) 407 408 #define for_each_sched_rt_entity(rt_se) \ 409 for (; rt_se; rt_se = rt_se->parent) 410 411 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 412 { 413 return rt_se->my_q; 414 } 415 416 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); 417 static void dequeue_rt_entity(struct sched_rt_entity *rt_se); 418 419 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 420 { 421 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 422 struct sched_rt_entity *rt_se; 423 424 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 425 426 rt_se = rt_rq->tg->rt_se[cpu]; 427 428 if (rt_rq->rt_nr_running) { 429 if (rt_se && !on_rt_rq(rt_se)) 430 enqueue_rt_entity(rt_se, false); 431 if (rt_rq->highest_prio.curr < curr->prio) 432 resched_task(curr); 433 } 434 } 435 436 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 437 { 438 struct sched_rt_entity *rt_se; 439 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 440 441 rt_se = rt_rq->tg->rt_se[cpu]; 442 443 if (rt_se && on_rt_rq(rt_se)) 444 dequeue_rt_entity(rt_se); 445 } 446 447 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 448 { 449 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 450 } 451 452 static int rt_se_boosted(struct sched_rt_entity *rt_se) 453 { 454 struct rt_rq *rt_rq = group_rt_rq(rt_se); 455 struct task_struct *p; 456 457 if (rt_rq) 458 return !!rt_rq->rt_nr_boosted; 459 460 p = rt_task_of(rt_se); 461 return p->prio != p->normal_prio; 462 } 463 464 #ifdef CONFIG_SMP 465 static inline const struct cpumask *sched_rt_period_mask(void) 466 { 467 return cpu_rq(smp_processor_id())->rd->span; 468 } 469 #else 470 static inline const struct cpumask *sched_rt_period_mask(void) 471 { 472 return cpu_online_mask; 473 } 474 #endif 475 476 static inline 477 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 478 { 479 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 480 } 481 482 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 483 { 484 return &rt_rq->tg->rt_bandwidth; 485 } 486 487 #else /* !CONFIG_RT_GROUP_SCHED */ 488 489 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 490 { 491 return rt_rq->rt_runtime; 492 } 493 494 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 495 { 496 return ktime_to_ns(def_rt_bandwidth.rt_period); 497 } 498 499 typedef struct rt_rq *rt_rq_iter_t; 500 501 #define for_each_rt_rq(rt_rq, iter, rq) \ 502 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 503 504 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) 505 { 506 } 507 508 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) 509 { 510 } 511 512 #define for_each_leaf_rt_rq(rt_rq, rq) \ 513 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 514 515 #define for_each_sched_rt_entity(rt_se) \ 516 for (; rt_se; rt_se = NULL) 517 518 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 519 { 520 return NULL; 521 } 522 523 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 524 { 525 if (rt_rq->rt_nr_running) 526 resched_task(rq_of_rt_rq(rt_rq)->curr); 527 } 528 529 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 530 { 531 } 532 533 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 534 { 535 return rt_rq->rt_throttled; 536 } 537 538 static inline const struct cpumask *sched_rt_period_mask(void) 539 { 540 return cpu_online_mask; 541 } 542 543 static inline 544 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 545 { 546 return &cpu_rq(cpu)->rt; 547 } 548 549 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 550 { 551 return &def_rt_bandwidth; 552 } 553 554 #endif /* CONFIG_RT_GROUP_SCHED */ 555 556 #ifdef CONFIG_SMP 557 /* 558 * We ran out of runtime, see if we can borrow some from our neighbours. 559 */ 560 static int do_balance_runtime(struct rt_rq *rt_rq) 561 { 562 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 563 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 564 int i, weight, more = 0; 565 u64 rt_period; 566 567 weight = cpumask_weight(rd->span); 568 569 raw_spin_lock(&rt_b->rt_runtime_lock); 570 rt_period = ktime_to_ns(rt_b->rt_period); 571 for_each_cpu(i, rd->span) { 572 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 573 s64 diff; 574 575 if (iter == rt_rq) 576 continue; 577 578 raw_spin_lock(&iter->rt_runtime_lock); 579 /* 580 * Either all rqs have inf runtime and there's nothing to steal 581 * or __disable_runtime() below sets a specific rq to inf to 582 * indicate its been disabled and disalow stealing. 583 */ 584 if (iter->rt_runtime == RUNTIME_INF) 585 goto next; 586 587 /* 588 * From runqueues with spare time, take 1/n part of their 589 * spare time, but no more than our period. 590 */ 591 diff = iter->rt_runtime - iter->rt_time; 592 if (diff > 0) { 593 diff = div_u64((u64)diff, weight); 594 if (rt_rq->rt_runtime + diff > rt_period) 595 diff = rt_period - rt_rq->rt_runtime; 596 iter->rt_runtime -= diff; 597 rt_rq->rt_runtime += diff; 598 more = 1; 599 if (rt_rq->rt_runtime == rt_period) { 600 raw_spin_unlock(&iter->rt_runtime_lock); 601 break; 602 } 603 } 604 next: 605 raw_spin_unlock(&iter->rt_runtime_lock); 606 } 607 raw_spin_unlock(&rt_b->rt_runtime_lock); 608 609 return more; 610 } 611 612 /* 613 * Ensure this RQ takes back all the runtime it lend to its neighbours. 614 */ 615 static void __disable_runtime(struct rq *rq) 616 { 617 struct root_domain *rd = rq->rd; 618 rt_rq_iter_t iter; 619 struct rt_rq *rt_rq; 620 621 if (unlikely(!scheduler_running)) 622 return; 623 624 for_each_rt_rq(rt_rq, iter, rq) { 625 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 626 s64 want; 627 int i; 628 629 raw_spin_lock(&rt_b->rt_runtime_lock); 630 raw_spin_lock(&rt_rq->rt_runtime_lock); 631 /* 632 * Either we're all inf and nobody needs to borrow, or we're 633 * already disabled and thus have nothing to do, or we have 634 * exactly the right amount of runtime to take out. 635 */ 636 if (rt_rq->rt_runtime == RUNTIME_INF || 637 rt_rq->rt_runtime == rt_b->rt_runtime) 638 goto balanced; 639 raw_spin_unlock(&rt_rq->rt_runtime_lock); 640 641 /* 642 * Calculate the difference between what we started out with 643 * and what we current have, that's the amount of runtime 644 * we lend and now have to reclaim. 645 */ 646 want = rt_b->rt_runtime - rt_rq->rt_runtime; 647 648 /* 649 * Greedy reclaim, take back as much as we can. 650 */ 651 for_each_cpu(i, rd->span) { 652 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 653 s64 diff; 654 655 /* 656 * Can't reclaim from ourselves or disabled runqueues. 657 */ 658 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 659 continue; 660 661 raw_spin_lock(&iter->rt_runtime_lock); 662 if (want > 0) { 663 diff = min_t(s64, iter->rt_runtime, want); 664 iter->rt_runtime -= diff; 665 want -= diff; 666 } else { 667 iter->rt_runtime -= want; 668 want -= want; 669 } 670 raw_spin_unlock(&iter->rt_runtime_lock); 671 672 if (!want) 673 break; 674 } 675 676 raw_spin_lock(&rt_rq->rt_runtime_lock); 677 /* 678 * We cannot be left wanting - that would mean some runtime 679 * leaked out of the system. 680 */ 681 BUG_ON(want); 682 balanced: 683 /* 684 * Disable all the borrow logic by pretending we have inf 685 * runtime - in which case borrowing doesn't make sense. 686 */ 687 rt_rq->rt_runtime = RUNTIME_INF; 688 raw_spin_unlock(&rt_rq->rt_runtime_lock); 689 raw_spin_unlock(&rt_b->rt_runtime_lock); 690 } 691 } 692 693 static void disable_runtime(struct rq *rq) 694 { 695 unsigned long flags; 696 697 raw_spin_lock_irqsave(&rq->lock, flags); 698 __disable_runtime(rq); 699 raw_spin_unlock_irqrestore(&rq->lock, flags); 700 } 701 702 static void __enable_runtime(struct rq *rq) 703 { 704 rt_rq_iter_t iter; 705 struct rt_rq *rt_rq; 706 707 if (unlikely(!scheduler_running)) 708 return; 709 710 /* 711 * Reset each runqueue's bandwidth settings 712 */ 713 for_each_rt_rq(rt_rq, iter, rq) { 714 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 715 716 raw_spin_lock(&rt_b->rt_runtime_lock); 717 raw_spin_lock(&rt_rq->rt_runtime_lock); 718 rt_rq->rt_runtime = rt_b->rt_runtime; 719 rt_rq->rt_time = 0; 720 rt_rq->rt_throttled = 0; 721 raw_spin_unlock(&rt_rq->rt_runtime_lock); 722 raw_spin_unlock(&rt_b->rt_runtime_lock); 723 } 724 } 725 726 static void enable_runtime(struct rq *rq) 727 { 728 unsigned long flags; 729 730 raw_spin_lock_irqsave(&rq->lock, flags); 731 __enable_runtime(rq); 732 raw_spin_unlock_irqrestore(&rq->lock, flags); 733 } 734 735 int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu) 736 { 737 int cpu = (int)(long)hcpu; 738 739 switch (action) { 740 case CPU_DOWN_PREPARE: 741 case CPU_DOWN_PREPARE_FROZEN: 742 disable_runtime(cpu_rq(cpu)); 743 return NOTIFY_OK; 744 745 case CPU_DOWN_FAILED: 746 case CPU_DOWN_FAILED_FROZEN: 747 case CPU_ONLINE: 748 case CPU_ONLINE_FROZEN: 749 enable_runtime(cpu_rq(cpu)); 750 return NOTIFY_OK; 751 752 default: 753 return NOTIFY_DONE; 754 } 755 } 756 757 static int balance_runtime(struct rt_rq *rt_rq) 758 { 759 int more = 0; 760 761 if (!sched_feat(RT_RUNTIME_SHARE)) 762 return more; 763 764 if (rt_rq->rt_time > rt_rq->rt_runtime) { 765 raw_spin_unlock(&rt_rq->rt_runtime_lock); 766 more = do_balance_runtime(rt_rq); 767 raw_spin_lock(&rt_rq->rt_runtime_lock); 768 } 769 770 return more; 771 } 772 #else /* !CONFIG_SMP */ 773 static inline int balance_runtime(struct rt_rq *rt_rq) 774 { 775 return 0; 776 } 777 #endif /* CONFIG_SMP */ 778 779 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 780 { 781 int i, idle = 1, throttled = 0; 782 const struct cpumask *span; 783 784 span = sched_rt_period_mask(); 785 for_each_cpu(i, span) { 786 int enqueue = 0; 787 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 788 struct rq *rq = rq_of_rt_rq(rt_rq); 789 790 raw_spin_lock(&rq->lock); 791 if (rt_rq->rt_time) { 792 u64 runtime; 793 794 raw_spin_lock(&rt_rq->rt_runtime_lock); 795 if (rt_rq->rt_throttled) 796 balance_runtime(rt_rq); 797 runtime = rt_rq->rt_runtime; 798 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 799 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 800 rt_rq->rt_throttled = 0; 801 enqueue = 1; 802 803 /* 804 * Force a clock update if the CPU was idle, 805 * lest wakeup -> unthrottle time accumulate. 806 */ 807 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 808 rq->skip_clock_update = -1; 809 } 810 if (rt_rq->rt_time || rt_rq->rt_nr_running) 811 idle = 0; 812 raw_spin_unlock(&rt_rq->rt_runtime_lock); 813 } else if (rt_rq->rt_nr_running) { 814 idle = 0; 815 if (!rt_rq_throttled(rt_rq)) 816 enqueue = 1; 817 } 818 if (rt_rq->rt_throttled) 819 throttled = 1; 820 821 if (enqueue) 822 sched_rt_rq_enqueue(rt_rq); 823 raw_spin_unlock(&rq->lock); 824 } 825 826 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 827 return 1; 828 829 return idle; 830 } 831 832 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 833 { 834 #ifdef CONFIG_RT_GROUP_SCHED 835 struct rt_rq *rt_rq = group_rt_rq(rt_se); 836 837 if (rt_rq) 838 return rt_rq->highest_prio.curr; 839 #endif 840 841 return rt_task_of(rt_se)->prio; 842 } 843 844 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 845 { 846 u64 runtime = sched_rt_runtime(rt_rq); 847 848 if (rt_rq->rt_throttled) 849 return rt_rq_throttled(rt_rq); 850 851 if (runtime >= sched_rt_period(rt_rq)) 852 return 0; 853 854 balance_runtime(rt_rq); 855 runtime = sched_rt_runtime(rt_rq); 856 if (runtime == RUNTIME_INF) 857 return 0; 858 859 if (rt_rq->rt_time > runtime) { 860 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 861 862 /* 863 * Don't actually throttle groups that have no runtime assigned 864 * but accrue some time due to boosting. 865 */ 866 if (likely(rt_b->rt_runtime)) { 867 static bool once = false; 868 869 rt_rq->rt_throttled = 1; 870 871 if (!once) { 872 once = true; 873 printk_sched("sched: RT throttling activated\n"); 874 } 875 } else { 876 /* 877 * In case we did anyway, make it go away, 878 * replenishment is a joke, since it will replenish us 879 * with exactly 0 ns. 880 */ 881 rt_rq->rt_time = 0; 882 } 883 884 if (rt_rq_throttled(rt_rq)) { 885 sched_rt_rq_dequeue(rt_rq); 886 return 1; 887 } 888 } 889 890 return 0; 891 } 892 893 /* 894 * Update the current task's runtime statistics. Skip current tasks that 895 * are not in our scheduling class. 896 */ 897 static void update_curr_rt(struct rq *rq) 898 { 899 struct task_struct *curr = rq->curr; 900 struct sched_rt_entity *rt_se = &curr->rt; 901 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 902 u64 delta_exec; 903 904 if (curr->sched_class != &rt_sched_class) 905 return; 906 907 delta_exec = rq->clock_task - curr->se.exec_start; 908 if (unlikely((s64)delta_exec < 0)) 909 delta_exec = 0; 910 911 schedstat_set(curr->se.statistics.exec_max, 912 max(curr->se.statistics.exec_max, delta_exec)); 913 914 curr->se.sum_exec_runtime += delta_exec; 915 account_group_exec_runtime(curr, delta_exec); 916 917 curr->se.exec_start = rq->clock_task; 918 cpuacct_charge(curr, delta_exec); 919 920 sched_rt_avg_update(rq, delta_exec); 921 922 if (!rt_bandwidth_enabled()) 923 return; 924 925 for_each_sched_rt_entity(rt_se) { 926 rt_rq = rt_rq_of_se(rt_se); 927 928 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 929 raw_spin_lock(&rt_rq->rt_runtime_lock); 930 rt_rq->rt_time += delta_exec; 931 if (sched_rt_runtime_exceeded(rt_rq)) 932 resched_task(curr); 933 raw_spin_unlock(&rt_rq->rt_runtime_lock); 934 } 935 } 936 } 937 938 #if defined CONFIG_SMP 939 940 static void 941 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 942 { 943 struct rq *rq = rq_of_rt_rq(rt_rq); 944 945 if (rq->online && prio < prev_prio) 946 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 947 } 948 949 static void 950 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 951 { 952 struct rq *rq = rq_of_rt_rq(rt_rq); 953 954 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 955 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 956 } 957 958 #else /* CONFIG_SMP */ 959 960 static inline 961 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 962 static inline 963 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 964 965 #endif /* CONFIG_SMP */ 966 967 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 968 static void 969 inc_rt_prio(struct rt_rq *rt_rq, int prio) 970 { 971 int prev_prio = rt_rq->highest_prio.curr; 972 973 if (prio < prev_prio) 974 rt_rq->highest_prio.curr = prio; 975 976 inc_rt_prio_smp(rt_rq, prio, prev_prio); 977 } 978 979 static void 980 dec_rt_prio(struct rt_rq *rt_rq, int prio) 981 { 982 int prev_prio = rt_rq->highest_prio.curr; 983 984 if (rt_rq->rt_nr_running) { 985 986 WARN_ON(prio < prev_prio); 987 988 /* 989 * This may have been our highest task, and therefore 990 * we may have some recomputation to do 991 */ 992 if (prio == prev_prio) { 993 struct rt_prio_array *array = &rt_rq->active; 994 995 rt_rq->highest_prio.curr = 996 sched_find_first_bit(array->bitmap); 997 } 998 999 } else 1000 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1001 1002 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1003 } 1004 1005 #else 1006 1007 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1008 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1009 1010 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1011 1012 #ifdef CONFIG_RT_GROUP_SCHED 1013 1014 static void 1015 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1016 { 1017 if (rt_se_boosted(rt_se)) 1018 rt_rq->rt_nr_boosted++; 1019 1020 if (rt_rq->tg) 1021 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1022 } 1023 1024 static void 1025 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1026 { 1027 if (rt_se_boosted(rt_se)) 1028 rt_rq->rt_nr_boosted--; 1029 1030 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1031 } 1032 1033 #else /* CONFIG_RT_GROUP_SCHED */ 1034 1035 static void 1036 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1037 { 1038 start_rt_bandwidth(&def_rt_bandwidth); 1039 } 1040 1041 static inline 1042 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1043 1044 #endif /* CONFIG_RT_GROUP_SCHED */ 1045 1046 static inline 1047 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1048 { 1049 int prio = rt_se_prio(rt_se); 1050 1051 WARN_ON(!rt_prio(prio)); 1052 rt_rq->rt_nr_running++; 1053 1054 inc_rt_prio(rt_rq, prio); 1055 inc_rt_migration(rt_se, rt_rq); 1056 inc_rt_group(rt_se, rt_rq); 1057 } 1058 1059 static inline 1060 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1061 { 1062 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1063 WARN_ON(!rt_rq->rt_nr_running); 1064 rt_rq->rt_nr_running--; 1065 1066 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1067 dec_rt_migration(rt_se, rt_rq); 1068 dec_rt_group(rt_se, rt_rq); 1069 } 1070 1071 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) 1072 { 1073 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1074 struct rt_prio_array *array = &rt_rq->active; 1075 struct rt_rq *group_rq = group_rt_rq(rt_se); 1076 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1077 1078 /* 1079 * Don't enqueue the group if its throttled, or when empty. 1080 * The latter is a consequence of the former when a child group 1081 * get throttled and the current group doesn't have any other 1082 * active members. 1083 */ 1084 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) 1085 return; 1086 1087 if (!rt_rq->rt_nr_running) 1088 list_add_leaf_rt_rq(rt_rq); 1089 1090 if (head) 1091 list_add(&rt_se->run_list, queue); 1092 else 1093 list_add_tail(&rt_se->run_list, queue); 1094 __set_bit(rt_se_prio(rt_se), array->bitmap); 1095 1096 inc_rt_tasks(rt_se, rt_rq); 1097 } 1098 1099 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) 1100 { 1101 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1102 struct rt_prio_array *array = &rt_rq->active; 1103 1104 list_del_init(&rt_se->run_list); 1105 if (list_empty(array->queue + rt_se_prio(rt_se))) 1106 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1107 1108 dec_rt_tasks(rt_se, rt_rq); 1109 if (!rt_rq->rt_nr_running) 1110 list_del_leaf_rt_rq(rt_rq); 1111 } 1112 1113 /* 1114 * Because the prio of an upper entry depends on the lower 1115 * entries, we must remove entries top - down. 1116 */ 1117 static void dequeue_rt_stack(struct sched_rt_entity *rt_se) 1118 { 1119 struct sched_rt_entity *back = NULL; 1120 1121 for_each_sched_rt_entity(rt_se) { 1122 rt_se->back = back; 1123 back = rt_se; 1124 } 1125 1126 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1127 if (on_rt_rq(rt_se)) 1128 __dequeue_rt_entity(rt_se); 1129 } 1130 } 1131 1132 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) 1133 { 1134 dequeue_rt_stack(rt_se); 1135 for_each_sched_rt_entity(rt_se) 1136 __enqueue_rt_entity(rt_se, head); 1137 } 1138 1139 static void dequeue_rt_entity(struct sched_rt_entity *rt_se) 1140 { 1141 dequeue_rt_stack(rt_se); 1142 1143 for_each_sched_rt_entity(rt_se) { 1144 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1145 1146 if (rt_rq && rt_rq->rt_nr_running) 1147 __enqueue_rt_entity(rt_se, false); 1148 } 1149 } 1150 1151 /* 1152 * Adding/removing a task to/from a priority array: 1153 */ 1154 static void 1155 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1156 { 1157 struct sched_rt_entity *rt_se = &p->rt; 1158 1159 if (flags & ENQUEUE_WAKEUP) 1160 rt_se->timeout = 0; 1161 1162 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); 1163 1164 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) 1165 enqueue_pushable_task(rq, p); 1166 1167 inc_nr_running(rq); 1168 } 1169 1170 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1171 { 1172 struct sched_rt_entity *rt_se = &p->rt; 1173 1174 update_curr_rt(rq); 1175 dequeue_rt_entity(rt_se); 1176 1177 dequeue_pushable_task(rq, p); 1178 1179 dec_nr_running(rq); 1180 } 1181 1182 /* 1183 * Put task to the head or the end of the run list without the overhead of 1184 * dequeue followed by enqueue. 1185 */ 1186 static void 1187 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1188 { 1189 if (on_rt_rq(rt_se)) { 1190 struct rt_prio_array *array = &rt_rq->active; 1191 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1192 1193 if (head) 1194 list_move(&rt_se->run_list, queue); 1195 else 1196 list_move_tail(&rt_se->run_list, queue); 1197 } 1198 } 1199 1200 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1201 { 1202 struct sched_rt_entity *rt_se = &p->rt; 1203 struct rt_rq *rt_rq; 1204 1205 for_each_sched_rt_entity(rt_se) { 1206 rt_rq = rt_rq_of_se(rt_se); 1207 requeue_rt_entity(rt_rq, rt_se, head); 1208 } 1209 } 1210 1211 static void yield_task_rt(struct rq *rq) 1212 { 1213 requeue_task_rt(rq, rq->curr, 0); 1214 } 1215 1216 #ifdef CONFIG_SMP 1217 static int find_lowest_rq(struct task_struct *task); 1218 1219 static int 1220 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) 1221 { 1222 struct task_struct *curr; 1223 struct rq *rq; 1224 int cpu; 1225 1226 cpu = task_cpu(p); 1227 1228 if (p->rt.nr_cpus_allowed == 1) 1229 goto out; 1230 1231 /* For anything but wake ups, just return the task_cpu */ 1232 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1233 goto out; 1234 1235 rq = cpu_rq(cpu); 1236 1237 rcu_read_lock(); 1238 curr = ACCESS_ONCE(rq->curr); /* unlocked access */ 1239 1240 /* 1241 * If the current task on @p's runqueue is an RT task, then 1242 * try to see if we can wake this RT task up on another 1243 * runqueue. Otherwise simply start this RT task 1244 * on its current runqueue. 1245 * 1246 * We want to avoid overloading runqueues. If the woken 1247 * task is a higher priority, then it will stay on this CPU 1248 * and the lower prio task should be moved to another CPU. 1249 * Even though this will probably make the lower prio task 1250 * lose its cache, we do not want to bounce a higher task 1251 * around just because it gave up its CPU, perhaps for a 1252 * lock? 1253 * 1254 * For equal prio tasks, we just let the scheduler sort it out. 1255 * 1256 * Otherwise, just let it ride on the affined RQ and the 1257 * post-schedule router will push the preempted task away 1258 * 1259 * This test is optimistic, if we get it wrong the load-balancer 1260 * will have to sort it out. 1261 */ 1262 if (curr && unlikely(rt_task(curr)) && 1263 (curr->rt.nr_cpus_allowed < 2 || 1264 curr->prio <= p->prio) && 1265 (p->rt.nr_cpus_allowed > 1)) { 1266 int target = find_lowest_rq(p); 1267 1268 if (target != -1) 1269 cpu = target; 1270 } 1271 rcu_read_unlock(); 1272 1273 out: 1274 return cpu; 1275 } 1276 1277 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1278 { 1279 if (rq->curr->rt.nr_cpus_allowed == 1) 1280 return; 1281 1282 if (p->rt.nr_cpus_allowed != 1 1283 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1284 return; 1285 1286 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1287 return; 1288 1289 /* 1290 * There appears to be other cpus that can accept 1291 * current and none to run 'p', so lets reschedule 1292 * to try and push current away: 1293 */ 1294 requeue_task_rt(rq, p, 1); 1295 resched_task(rq->curr); 1296 } 1297 1298 #endif /* CONFIG_SMP */ 1299 1300 /* 1301 * Preempt the current task with a newly woken task if needed: 1302 */ 1303 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1304 { 1305 if (p->prio < rq->curr->prio) { 1306 resched_task(rq->curr); 1307 return; 1308 } 1309 1310 #ifdef CONFIG_SMP 1311 /* 1312 * If: 1313 * 1314 * - the newly woken task is of equal priority to the current task 1315 * - the newly woken task is non-migratable while current is migratable 1316 * - current will be preempted on the next reschedule 1317 * 1318 * we should check to see if current can readily move to a different 1319 * cpu. If so, we will reschedule to allow the push logic to try 1320 * to move current somewhere else, making room for our non-migratable 1321 * task. 1322 */ 1323 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1324 check_preempt_equal_prio(rq, p); 1325 #endif 1326 } 1327 1328 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1329 struct rt_rq *rt_rq) 1330 { 1331 struct rt_prio_array *array = &rt_rq->active; 1332 struct sched_rt_entity *next = NULL; 1333 struct list_head *queue; 1334 int idx; 1335 1336 idx = sched_find_first_bit(array->bitmap); 1337 BUG_ON(idx >= MAX_RT_PRIO); 1338 1339 queue = array->queue + idx; 1340 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1341 1342 return next; 1343 } 1344 1345 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1346 { 1347 struct sched_rt_entity *rt_se; 1348 struct task_struct *p; 1349 struct rt_rq *rt_rq; 1350 1351 rt_rq = &rq->rt; 1352 1353 if (!rt_rq->rt_nr_running) 1354 return NULL; 1355 1356 if (rt_rq_throttled(rt_rq)) 1357 return NULL; 1358 1359 do { 1360 rt_se = pick_next_rt_entity(rq, rt_rq); 1361 BUG_ON(!rt_se); 1362 rt_rq = group_rt_rq(rt_se); 1363 } while (rt_rq); 1364 1365 p = rt_task_of(rt_se); 1366 p->se.exec_start = rq->clock_task; 1367 1368 return p; 1369 } 1370 1371 static struct task_struct *pick_next_task_rt(struct rq *rq) 1372 { 1373 struct task_struct *p = _pick_next_task_rt(rq); 1374 1375 /* The running task is never eligible for pushing */ 1376 if (p) 1377 dequeue_pushable_task(rq, p); 1378 1379 #ifdef CONFIG_SMP 1380 /* 1381 * We detect this state here so that we can avoid taking the RQ 1382 * lock again later if there is no need to push 1383 */ 1384 rq->post_schedule = has_pushable_tasks(rq); 1385 #endif 1386 1387 return p; 1388 } 1389 1390 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1391 { 1392 update_curr_rt(rq); 1393 1394 /* 1395 * The previous task needs to be made eligible for pushing 1396 * if it is still active 1397 */ 1398 if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1) 1399 enqueue_pushable_task(rq, p); 1400 } 1401 1402 #ifdef CONFIG_SMP 1403 1404 /* Only try algorithms three times */ 1405 #define RT_MAX_TRIES 3 1406 1407 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1408 { 1409 if (!task_running(rq, p) && 1410 (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) && 1411 (p->rt.nr_cpus_allowed > 1)) 1412 return 1; 1413 return 0; 1414 } 1415 1416 /* Return the second highest RT task, NULL otherwise */ 1417 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) 1418 { 1419 struct task_struct *next = NULL; 1420 struct sched_rt_entity *rt_se; 1421 struct rt_prio_array *array; 1422 struct rt_rq *rt_rq; 1423 int idx; 1424 1425 for_each_leaf_rt_rq(rt_rq, rq) { 1426 array = &rt_rq->active; 1427 idx = sched_find_first_bit(array->bitmap); 1428 next_idx: 1429 if (idx >= MAX_RT_PRIO) 1430 continue; 1431 if (next && next->prio <= idx) 1432 continue; 1433 list_for_each_entry(rt_se, array->queue + idx, run_list) { 1434 struct task_struct *p; 1435 1436 if (!rt_entity_is_task(rt_se)) 1437 continue; 1438 1439 p = rt_task_of(rt_se); 1440 if (pick_rt_task(rq, p, cpu)) { 1441 next = p; 1442 break; 1443 } 1444 } 1445 if (!next) { 1446 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); 1447 goto next_idx; 1448 } 1449 } 1450 1451 return next; 1452 } 1453 1454 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1455 1456 static int find_lowest_rq(struct task_struct *task) 1457 { 1458 struct sched_domain *sd; 1459 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); 1460 int this_cpu = smp_processor_id(); 1461 int cpu = task_cpu(task); 1462 1463 /* Make sure the mask is initialized first */ 1464 if (unlikely(!lowest_mask)) 1465 return -1; 1466 1467 if (task->rt.nr_cpus_allowed == 1) 1468 return -1; /* No other targets possible */ 1469 1470 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1471 return -1; /* No targets found */ 1472 1473 /* 1474 * At this point we have built a mask of cpus representing the 1475 * lowest priority tasks in the system. Now we want to elect 1476 * the best one based on our affinity and topology. 1477 * 1478 * We prioritize the last cpu that the task executed on since 1479 * it is most likely cache-hot in that location. 1480 */ 1481 if (cpumask_test_cpu(cpu, lowest_mask)) 1482 return cpu; 1483 1484 /* 1485 * Otherwise, we consult the sched_domains span maps to figure 1486 * out which cpu is logically closest to our hot cache data. 1487 */ 1488 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1489 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1490 1491 rcu_read_lock(); 1492 for_each_domain(cpu, sd) { 1493 if (sd->flags & SD_WAKE_AFFINE) { 1494 int best_cpu; 1495 1496 /* 1497 * "this_cpu" is cheaper to preempt than a 1498 * remote processor. 1499 */ 1500 if (this_cpu != -1 && 1501 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1502 rcu_read_unlock(); 1503 return this_cpu; 1504 } 1505 1506 best_cpu = cpumask_first_and(lowest_mask, 1507 sched_domain_span(sd)); 1508 if (best_cpu < nr_cpu_ids) { 1509 rcu_read_unlock(); 1510 return best_cpu; 1511 } 1512 } 1513 } 1514 rcu_read_unlock(); 1515 1516 /* 1517 * And finally, if there were no matches within the domains 1518 * just give the caller *something* to work with from the compatible 1519 * locations. 1520 */ 1521 if (this_cpu != -1) 1522 return this_cpu; 1523 1524 cpu = cpumask_any(lowest_mask); 1525 if (cpu < nr_cpu_ids) 1526 return cpu; 1527 return -1; 1528 } 1529 1530 /* Will lock the rq it finds */ 1531 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1532 { 1533 struct rq *lowest_rq = NULL; 1534 int tries; 1535 int cpu; 1536 1537 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1538 cpu = find_lowest_rq(task); 1539 1540 if ((cpu == -1) || (cpu == rq->cpu)) 1541 break; 1542 1543 lowest_rq = cpu_rq(cpu); 1544 1545 /* if the prio of this runqueue changed, try again */ 1546 if (double_lock_balance(rq, lowest_rq)) { 1547 /* 1548 * We had to unlock the run queue. In 1549 * the mean time, task could have 1550 * migrated already or had its affinity changed. 1551 * Also make sure that it wasn't scheduled on its rq. 1552 */ 1553 if (unlikely(task_rq(task) != rq || 1554 !cpumask_test_cpu(lowest_rq->cpu, 1555 tsk_cpus_allowed(task)) || 1556 task_running(rq, task) || 1557 !task->on_rq)) { 1558 1559 raw_spin_unlock(&lowest_rq->lock); 1560 lowest_rq = NULL; 1561 break; 1562 } 1563 } 1564 1565 /* If this rq is still suitable use it. */ 1566 if (lowest_rq->rt.highest_prio.curr > task->prio) 1567 break; 1568 1569 /* try again */ 1570 double_unlock_balance(rq, lowest_rq); 1571 lowest_rq = NULL; 1572 } 1573 1574 return lowest_rq; 1575 } 1576 1577 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1578 { 1579 struct task_struct *p; 1580 1581 if (!has_pushable_tasks(rq)) 1582 return NULL; 1583 1584 p = plist_first_entry(&rq->rt.pushable_tasks, 1585 struct task_struct, pushable_tasks); 1586 1587 BUG_ON(rq->cpu != task_cpu(p)); 1588 BUG_ON(task_current(rq, p)); 1589 BUG_ON(p->rt.nr_cpus_allowed <= 1); 1590 1591 BUG_ON(!p->on_rq); 1592 BUG_ON(!rt_task(p)); 1593 1594 return p; 1595 } 1596 1597 /* 1598 * If the current CPU has more than one RT task, see if the non 1599 * running task can migrate over to a CPU that is running a task 1600 * of lesser priority. 1601 */ 1602 static int push_rt_task(struct rq *rq) 1603 { 1604 struct task_struct *next_task; 1605 struct rq *lowest_rq; 1606 int ret = 0; 1607 1608 if (!rq->rt.overloaded) 1609 return 0; 1610 1611 next_task = pick_next_pushable_task(rq); 1612 if (!next_task) 1613 return 0; 1614 1615 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1616 if (unlikely(task_running(rq, next_task))) 1617 return 0; 1618 #endif 1619 1620 retry: 1621 if (unlikely(next_task == rq->curr)) { 1622 WARN_ON(1); 1623 return 0; 1624 } 1625 1626 /* 1627 * It's possible that the next_task slipped in of 1628 * higher priority than current. If that's the case 1629 * just reschedule current. 1630 */ 1631 if (unlikely(next_task->prio < rq->curr->prio)) { 1632 resched_task(rq->curr); 1633 return 0; 1634 } 1635 1636 /* We might release rq lock */ 1637 get_task_struct(next_task); 1638 1639 /* find_lock_lowest_rq locks the rq if found */ 1640 lowest_rq = find_lock_lowest_rq(next_task, rq); 1641 if (!lowest_rq) { 1642 struct task_struct *task; 1643 /* 1644 * find_lock_lowest_rq releases rq->lock 1645 * so it is possible that next_task has migrated. 1646 * 1647 * We need to make sure that the task is still on the same 1648 * run-queue and is also still the next task eligible for 1649 * pushing. 1650 */ 1651 task = pick_next_pushable_task(rq); 1652 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1653 /* 1654 * The task hasn't migrated, and is still the next 1655 * eligible task, but we failed to find a run-queue 1656 * to push it to. Do not retry in this case, since 1657 * other cpus will pull from us when ready. 1658 */ 1659 goto out; 1660 } 1661 1662 if (!task) 1663 /* No more tasks, just exit */ 1664 goto out; 1665 1666 /* 1667 * Something has shifted, try again. 1668 */ 1669 put_task_struct(next_task); 1670 next_task = task; 1671 goto retry; 1672 } 1673 1674 deactivate_task(rq, next_task, 0); 1675 set_task_cpu(next_task, lowest_rq->cpu); 1676 activate_task(lowest_rq, next_task, 0); 1677 ret = 1; 1678 1679 resched_task(lowest_rq->curr); 1680 1681 double_unlock_balance(rq, lowest_rq); 1682 1683 out: 1684 put_task_struct(next_task); 1685 1686 return ret; 1687 } 1688 1689 static void push_rt_tasks(struct rq *rq) 1690 { 1691 /* push_rt_task will return true if it moved an RT */ 1692 while (push_rt_task(rq)) 1693 ; 1694 } 1695 1696 static int pull_rt_task(struct rq *this_rq) 1697 { 1698 int this_cpu = this_rq->cpu, ret = 0, cpu; 1699 struct task_struct *p; 1700 struct rq *src_rq; 1701 1702 if (likely(!rt_overloaded(this_rq))) 1703 return 0; 1704 1705 for_each_cpu(cpu, this_rq->rd->rto_mask) { 1706 if (this_cpu == cpu) 1707 continue; 1708 1709 src_rq = cpu_rq(cpu); 1710 1711 /* 1712 * Don't bother taking the src_rq->lock if the next highest 1713 * task is known to be lower-priority than our current task. 1714 * This may look racy, but if this value is about to go 1715 * logically higher, the src_rq will push this task away. 1716 * And if its going logically lower, we do not care 1717 */ 1718 if (src_rq->rt.highest_prio.next >= 1719 this_rq->rt.highest_prio.curr) 1720 continue; 1721 1722 /* 1723 * We can potentially drop this_rq's lock in 1724 * double_lock_balance, and another CPU could 1725 * alter this_rq 1726 */ 1727 double_lock_balance(this_rq, src_rq); 1728 1729 /* 1730 * Are there still pullable RT tasks? 1731 */ 1732 if (src_rq->rt.rt_nr_running <= 1) 1733 goto skip; 1734 1735 p = pick_next_highest_task_rt(src_rq, this_cpu); 1736 1737 /* 1738 * Do we have an RT task that preempts 1739 * the to-be-scheduled task? 1740 */ 1741 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 1742 WARN_ON(p == src_rq->curr); 1743 WARN_ON(!p->on_rq); 1744 1745 /* 1746 * There's a chance that p is higher in priority 1747 * than what's currently running on its cpu. 1748 * This is just that p is wakeing up and hasn't 1749 * had a chance to schedule. We only pull 1750 * p if it is lower in priority than the 1751 * current task on the run queue 1752 */ 1753 if (p->prio < src_rq->curr->prio) 1754 goto skip; 1755 1756 ret = 1; 1757 1758 deactivate_task(src_rq, p, 0); 1759 set_task_cpu(p, this_cpu); 1760 activate_task(this_rq, p, 0); 1761 /* 1762 * We continue with the search, just in 1763 * case there's an even higher prio task 1764 * in another runqueue. (low likelihood 1765 * but possible) 1766 */ 1767 } 1768 skip: 1769 double_unlock_balance(this_rq, src_rq); 1770 } 1771 1772 return ret; 1773 } 1774 1775 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) 1776 { 1777 /* Try to pull RT tasks here if we lower this rq's prio */ 1778 if (rq->rt.highest_prio.curr > prev->prio) 1779 pull_rt_task(rq); 1780 } 1781 1782 static void post_schedule_rt(struct rq *rq) 1783 { 1784 push_rt_tasks(rq); 1785 } 1786 1787 /* 1788 * If we are not running and we are not going to reschedule soon, we should 1789 * try to push tasks away now 1790 */ 1791 static void task_woken_rt(struct rq *rq, struct task_struct *p) 1792 { 1793 if (!task_running(rq, p) && 1794 !test_tsk_need_resched(rq->curr) && 1795 has_pushable_tasks(rq) && 1796 p->rt.nr_cpus_allowed > 1 && 1797 rt_task(rq->curr) && 1798 (rq->curr->rt.nr_cpus_allowed < 2 || 1799 rq->curr->prio <= p->prio)) 1800 push_rt_tasks(rq); 1801 } 1802 1803 static void set_cpus_allowed_rt(struct task_struct *p, 1804 const struct cpumask *new_mask) 1805 { 1806 int weight = cpumask_weight(new_mask); 1807 1808 BUG_ON(!rt_task(p)); 1809 1810 /* 1811 * Update the migration status of the RQ if we have an RT task 1812 * which is running AND changing its weight value. 1813 */ 1814 if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) { 1815 struct rq *rq = task_rq(p); 1816 1817 if (!task_current(rq, p)) { 1818 /* 1819 * Make sure we dequeue this task from the pushable list 1820 * before going further. It will either remain off of 1821 * the list because we are no longer pushable, or it 1822 * will be requeued. 1823 */ 1824 if (p->rt.nr_cpus_allowed > 1) 1825 dequeue_pushable_task(rq, p); 1826 1827 /* 1828 * Requeue if our weight is changing and still > 1 1829 */ 1830 if (weight > 1) 1831 enqueue_pushable_task(rq, p); 1832 1833 } 1834 1835 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { 1836 rq->rt.rt_nr_migratory++; 1837 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { 1838 BUG_ON(!rq->rt.rt_nr_migratory); 1839 rq->rt.rt_nr_migratory--; 1840 } 1841 1842 update_rt_migration(&rq->rt); 1843 } 1844 } 1845 1846 /* Assumes rq->lock is held */ 1847 static void rq_online_rt(struct rq *rq) 1848 { 1849 if (rq->rt.overloaded) 1850 rt_set_overload(rq); 1851 1852 __enable_runtime(rq); 1853 1854 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1855 } 1856 1857 /* Assumes rq->lock is held */ 1858 static void rq_offline_rt(struct rq *rq) 1859 { 1860 if (rq->rt.overloaded) 1861 rt_clear_overload(rq); 1862 1863 __disable_runtime(rq); 1864 1865 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 1866 } 1867 1868 /* 1869 * When switch from the rt queue, we bring ourselves to a position 1870 * that we might want to pull RT tasks from other runqueues. 1871 */ 1872 static void switched_from_rt(struct rq *rq, struct task_struct *p) 1873 { 1874 /* 1875 * If there are other RT tasks then we will reschedule 1876 * and the scheduling of the other RT tasks will handle 1877 * the balancing. But if we are the last RT task 1878 * we may need to handle the pulling of RT tasks 1879 * now. 1880 */ 1881 if (p->on_rq && !rq->rt.rt_nr_running) 1882 pull_rt_task(rq); 1883 } 1884 1885 void init_sched_rt_class(void) 1886 { 1887 unsigned int i; 1888 1889 for_each_possible_cpu(i) { 1890 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 1891 GFP_KERNEL, cpu_to_node(i)); 1892 } 1893 } 1894 #endif /* CONFIG_SMP */ 1895 1896 /* 1897 * When switching a task to RT, we may overload the runqueue 1898 * with RT tasks. In this case we try to push them off to 1899 * other runqueues. 1900 */ 1901 static void switched_to_rt(struct rq *rq, struct task_struct *p) 1902 { 1903 int check_resched = 1; 1904 1905 /* 1906 * If we are already running, then there's nothing 1907 * that needs to be done. But if we are not running 1908 * we may need to preempt the current running task. 1909 * If that current running task is also an RT task 1910 * then see if we can move to another run queue. 1911 */ 1912 if (p->on_rq && rq->curr != p) { 1913 #ifdef CONFIG_SMP 1914 if (rq->rt.overloaded && push_rt_task(rq) && 1915 /* Don't resched if we changed runqueues */ 1916 rq != task_rq(p)) 1917 check_resched = 0; 1918 #endif /* CONFIG_SMP */ 1919 if (check_resched && p->prio < rq->curr->prio) 1920 resched_task(rq->curr); 1921 } 1922 } 1923 1924 /* 1925 * Priority of the task has changed. This may cause 1926 * us to initiate a push or pull. 1927 */ 1928 static void 1929 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 1930 { 1931 if (!p->on_rq) 1932 return; 1933 1934 if (rq->curr == p) { 1935 #ifdef CONFIG_SMP 1936 /* 1937 * If our priority decreases while running, we 1938 * may need to pull tasks to this runqueue. 1939 */ 1940 if (oldprio < p->prio) 1941 pull_rt_task(rq); 1942 /* 1943 * If there's a higher priority task waiting to run 1944 * then reschedule. Note, the above pull_rt_task 1945 * can release the rq lock and p could migrate. 1946 * Only reschedule if p is still on the same runqueue. 1947 */ 1948 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) 1949 resched_task(p); 1950 #else 1951 /* For UP simply resched on drop of prio */ 1952 if (oldprio < p->prio) 1953 resched_task(p); 1954 #endif /* CONFIG_SMP */ 1955 } else { 1956 /* 1957 * This task is not running, but if it is 1958 * greater than the current running task 1959 * then reschedule. 1960 */ 1961 if (p->prio < rq->curr->prio) 1962 resched_task(rq->curr); 1963 } 1964 } 1965 1966 static void watchdog(struct rq *rq, struct task_struct *p) 1967 { 1968 unsigned long soft, hard; 1969 1970 /* max may change after cur was read, this will be fixed next tick */ 1971 soft = task_rlimit(p, RLIMIT_RTTIME); 1972 hard = task_rlimit_max(p, RLIMIT_RTTIME); 1973 1974 if (soft != RLIM_INFINITY) { 1975 unsigned long next; 1976 1977 p->rt.timeout++; 1978 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 1979 if (p->rt.timeout > next) 1980 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 1981 } 1982 } 1983 1984 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 1985 { 1986 update_curr_rt(rq); 1987 1988 watchdog(rq, p); 1989 1990 /* 1991 * RR tasks need a special form of timeslice management. 1992 * FIFO tasks have no timeslices. 1993 */ 1994 if (p->policy != SCHED_RR) 1995 return; 1996 1997 if (--p->rt.time_slice) 1998 return; 1999 2000 p->rt.time_slice = RR_TIMESLICE; 2001 2002 /* 2003 * Requeue to the end of queue if we are not the only element 2004 * on the queue: 2005 */ 2006 if (p->rt.run_list.prev != p->rt.run_list.next) { 2007 requeue_task_rt(rq, p, 0); 2008 set_tsk_need_resched(p); 2009 } 2010 } 2011 2012 static void set_curr_task_rt(struct rq *rq) 2013 { 2014 struct task_struct *p = rq->curr; 2015 2016 p->se.exec_start = rq->clock_task; 2017 2018 /* The running task is never eligible for pushing */ 2019 dequeue_pushable_task(rq, p); 2020 } 2021 2022 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2023 { 2024 /* 2025 * Time slice is 0 for SCHED_FIFO tasks 2026 */ 2027 if (task->policy == SCHED_RR) 2028 return RR_TIMESLICE; 2029 else 2030 return 0; 2031 } 2032 2033 const struct sched_class rt_sched_class = { 2034 .next = &fair_sched_class, 2035 .enqueue_task = enqueue_task_rt, 2036 .dequeue_task = dequeue_task_rt, 2037 .yield_task = yield_task_rt, 2038 2039 .check_preempt_curr = check_preempt_curr_rt, 2040 2041 .pick_next_task = pick_next_task_rt, 2042 .put_prev_task = put_prev_task_rt, 2043 2044 #ifdef CONFIG_SMP 2045 .select_task_rq = select_task_rq_rt, 2046 2047 .set_cpus_allowed = set_cpus_allowed_rt, 2048 .rq_online = rq_online_rt, 2049 .rq_offline = rq_offline_rt, 2050 .pre_schedule = pre_schedule_rt, 2051 .post_schedule = post_schedule_rt, 2052 .task_woken = task_woken_rt, 2053 .switched_from = switched_from_rt, 2054 #endif 2055 2056 .set_curr_task = set_curr_task_rt, 2057 .task_tick = task_tick_rt, 2058 2059 .get_rr_interval = get_rr_interval_rt, 2060 2061 .prio_changed = prio_changed_rt, 2062 .switched_to = switched_to_rt, 2063 }; 2064 2065 #ifdef CONFIG_SCHED_DEBUG 2066 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2067 2068 void print_rt_stats(struct seq_file *m, int cpu) 2069 { 2070 rt_rq_iter_t iter; 2071 struct rt_rq *rt_rq; 2072 2073 rcu_read_lock(); 2074 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2075 print_rt_rq(m, cpu, rt_rq); 2076 rcu_read_unlock(); 2077 } 2078 #endif /* CONFIG_SCHED_DEBUG */ 2079