1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 7 int sched_rr_timeslice = RR_TIMESLICE; 8 /* More than 4 hours if BW_SHIFT equals 20. */ 9 static const u64 max_rt_runtime = MAX_BW; 10 11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 12 13 struct rt_bandwidth def_rt_bandwidth; 14 15 /* 16 * period over which we measure -rt task CPU usage in us. 17 * default: 1s 18 */ 19 unsigned int sysctl_sched_rt_period = 1000000; 20 21 /* 22 * part of the period that we allow rt tasks to run in us. 23 * default: 0.95s 24 */ 25 int sysctl_sched_rt_runtime = 950000; 26 27 #ifdef CONFIG_SYSCTL 28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE; 29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer, 30 size_t *lenp, loff_t *ppos); 31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer, 32 size_t *lenp, loff_t *ppos); 33 static struct ctl_table sched_rt_sysctls[] = { 34 { 35 .procname = "sched_rt_period_us", 36 .data = &sysctl_sched_rt_period, 37 .maxlen = sizeof(unsigned int), 38 .mode = 0644, 39 .proc_handler = sched_rt_handler, 40 }, 41 { 42 .procname = "sched_rt_runtime_us", 43 .data = &sysctl_sched_rt_runtime, 44 .maxlen = sizeof(int), 45 .mode = 0644, 46 .proc_handler = sched_rt_handler, 47 }, 48 { 49 .procname = "sched_rr_timeslice_ms", 50 .data = &sysctl_sched_rr_timeslice, 51 .maxlen = sizeof(int), 52 .mode = 0644, 53 .proc_handler = sched_rr_handler, 54 }, 55 {} 56 }; 57 58 static int __init sched_rt_sysctl_init(void) 59 { 60 register_sysctl_init("kernel", sched_rt_sysctls); 61 return 0; 62 } 63 late_initcall(sched_rt_sysctl_init); 64 #endif 65 66 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 67 { 68 struct rt_bandwidth *rt_b = 69 container_of(timer, struct rt_bandwidth, rt_period_timer); 70 int idle = 0; 71 int overrun; 72 73 raw_spin_lock(&rt_b->rt_runtime_lock); 74 for (;;) { 75 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 76 if (!overrun) 77 break; 78 79 raw_spin_unlock(&rt_b->rt_runtime_lock); 80 idle = do_sched_rt_period_timer(rt_b, overrun); 81 raw_spin_lock(&rt_b->rt_runtime_lock); 82 } 83 if (idle) 84 rt_b->rt_period_active = 0; 85 raw_spin_unlock(&rt_b->rt_runtime_lock); 86 87 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 88 } 89 90 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 91 { 92 rt_b->rt_period = ns_to_ktime(period); 93 rt_b->rt_runtime = runtime; 94 95 raw_spin_lock_init(&rt_b->rt_runtime_lock); 96 97 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC, 98 HRTIMER_MODE_REL_HARD); 99 rt_b->rt_period_timer.function = sched_rt_period_timer; 100 } 101 102 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b) 103 { 104 raw_spin_lock(&rt_b->rt_runtime_lock); 105 if (!rt_b->rt_period_active) { 106 rt_b->rt_period_active = 1; 107 /* 108 * SCHED_DEADLINE updates the bandwidth, as a run away 109 * RT task with a DL task could hog a CPU. But DL does 110 * not reset the period. If a deadline task was running 111 * without an RT task running, it can cause RT tasks to 112 * throttle when they start up. Kick the timer right away 113 * to update the period. 114 */ 115 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 116 hrtimer_start_expires(&rt_b->rt_period_timer, 117 HRTIMER_MODE_ABS_PINNED_HARD); 118 } 119 raw_spin_unlock(&rt_b->rt_runtime_lock); 120 } 121 122 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 123 { 124 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 125 return; 126 127 do_start_rt_bandwidth(rt_b); 128 } 129 130 void init_rt_rq(struct rt_rq *rt_rq) 131 { 132 struct rt_prio_array *array; 133 int i; 134 135 array = &rt_rq->active; 136 for (i = 0; i < MAX_RT_PRIO; i++) { 137 INIT_LIST_HEAD(array->queue + i); 138 __clear_bit(i, array->bitmap); 139 } 140 /* delimiter for bitsearch: */ 141 __set_bit(MAX_RT_PRIO, array->bitmap); 142 143 #if defined CONFIG_SMP 144 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 145 rt_rq->highest_prio.next = MAX_RT_PRIO-1; 146 rt_rq->rt_nr_migratory = 0; 147 rt_rq->overloaded = 0; 148 plist_head_init(&rt_rq->pushable_tasks); 149 #endif /* CONFIG_SMP */ 150 /* We start is dequeued state, because no RT tasks are queued */ 151 rt_rq->rt_queued = 0; 152 153 rt_rq->rt_time = 0; 154 rt_rq->rt_throttled = 0; 155 rt_rq->rt_runtime = 0; 156 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 157 } 158 159 #ifdef CONFIG_RT_GROUP_SCHED 160 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 161 { 162 hrtimer_cancel(&rt_b->rt_period_timer); 163 } 164 165 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 166 167 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 168 { 169 #ifdef CONFIG_SCHED_DEBUG 170 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 171 #endif 172 return container_of(rt_se, struct task_struct, rt); 173 } 174 175 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 176 { 177 return rt_rq->rq; 178 } 179 180 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 181 { 182 return rt_se->rt_rq; 183 } 184 185 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 186 { 187 struct rt_rq *rt_rq = rt_se->rt_rq; 188 189 return rt_rq->rq; 190 } 191 192 void unregister_rt_sched_group(struct task_group *tg) 193 { 194 if (tg->rt_se) 195 destroy_rt_bandwidth(&tg->rt_bandwidth); 196 197 } 198 199 void free_rt_sched_group(struct task_group *tg) 200 { 201 int i; 202 203 for_each_possible_cpu(i) { 204 if (tg->rt_rq) 205 kfree(tg->rt_rq[i]); 206 if (tg->rt_se) 207 kfree(tg->rt_se[i]); 208 } 209 210 kfree(tg->rt_rq); 211 kfree(tg->rt_se); 212 } 213 214 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 215 struct sched_rt_entity *rt_se, int cpu, 216 struct sched_rt_entity *parent) 217 { 218 struct rq *rq = cpu_rq(cpu); 219 220 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 221 rt_rq->rt_nr_boosted = 0; 222 rt_rq->rq = rq; 223 rt_rq->tg = tg; 224 225 tg->rt_rq[cpu] = rt_rq; 226 tg->rt_se[cpu] = rt_se; 227 228 if (!rt_se) 229 return; 230 231 if (!parent) 232 rt_se->rt_rq = &rq->rt; 233 else 234 rt_se->rt_rq = parent->my_q; 235 236 rt_se->my_q = rt_rq; 237 rt_se->parent = parent; 238 INIT_LIST_HEAD(&rt_se->run_list); 239 } 240 241 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 242 { 243 struct rt_rq *rt_rq; 244 struct sched_rt_entity *rt_se; 245 int i; 246 247 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); 248 if (!tg->rt_rq) 249 goto err; 250 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); 251 if (!tg->rt_se) 252 goto err; 253 254 init_rt_bandwidth(&tg->rt_bandwidth, 255 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 256 257 for_each_possible_cpu(i) { 258 rt_rq = kzalloc_node(sizeof(struct rt_rq), 259 GFP_KERNEL, cpu_to_node(i)); 260 if (!rt_rq) 261 goto err; 262 263 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 264 GFP_KERNEL, cpu_to_node(i)); 265 if (!rt_se) 266 goto err_free_rq; 267 268 init_rt_rq(rt_rq); 269 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 270 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 271 } 272 273 return 1; 274 275 err_free_rq: 276 kfree(rt_rq); 277 err: 278 return 0; 279 } 280 281 #else /* CONFIG_RT_GROUP_SCHED */ 282 283 #define rt_entity_is_task(rt_se) (1) 284 285 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 286 { 287 return container_of(rt_se, struct task_struct, rt); 288 } 289 290 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 291 { 292 return container_of(rt_rq, struct rq, rt); 293 } 294 295 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 296 { 297 struct task_struct *p = rt_task_of(rt_se); 298 299 return task_rq(p); 300 } 301 302 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 303 { 304 struct rq *rq = rq_of_rt_se(rt_se); 305 306 return &rq->rt; 307 } 308 309 void unregister_rt_sched_group(struct task_group *tg) { } 310 311 void free_rt_sched_group(struct task_group *tg) { } 312 313 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 314 { 315 return 1; 316 } 317 #endif /* CONFIG_RT_GROUP_SCHED */ 318 319 #ifdef CONFIG_SMP 320 321 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 322 { 323 /* Try to pull RT tasks here if we lower this rq's prio */ 324 return rq->online && rq->rt.highest_prio.curr > prev->prio; 325 } 326 327 static inline int rt_overloaded(struct rq *rq) 328 { 329 return atomic_read(&rq->rd->rto_count); 330 } 331 332 static inline void rt_set_overload(struct rq *rq) 333 { 334 if (!rq->online) 335 return; 336 337 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 338 /* 339 * Make sure the mask is visible before we set 340 * the overload count. That is checked to determine 341 * if we should look at the mask. It would be a shame 342 * if we looked at the mask, but the mask was not 343 * updated yet. 344 * 345 * Matched by the barrier in pull_rt_task(). 346 */ 347 smp_wmb(); 348 atomic_inc(&rq->rd->rto_count); 349 } 350 351 static inline void rt_clear_overload(struct rq *rq) 352 { 353 if (!rq->online) 354 return; 355 356 /* the order here really doesn't matter */ 357 atomic_dec(&rq->rd->rto_count); 358 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 359 } 360 361 static void update_rt_migration(struct rt_rq *rt_rq) 362 { 363 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 364 if (!rt_rq->overloaded) { 365 rt_set_overload(rq_of_rt_rq(rt_rq)); 366 rt_rq->overloaded = 1; 367 } 368 } else if (rt_rq->overloaded) { 369 rt_clear_overload(rq_of_rt_rq(rt_rq)); 370 rt_rq->overloaded = 0; 371 } 372 } 373 374 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 375 { 376 struct task_struct *p; 377 378 if (!rt_entity_is_task(rt_se)) 379 return; 380 381 p = rt_task_of(rt_se); 382 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 383 384 rt_rq->rt_nr_total++; 385 if (p->nr_cpus_allowed > 1) 386 rt_rq->rt_nr_migratory++; 387 388 update_rt_migration(rt_rq); 389 } 390 391 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 392 { 393 struct task_struct *p; 394 395 if (!rt_entity_is_task(rt_se)) 396 return; 397 398 p = rt_task_of(rt_se); 399 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 400 401 rt_rq->rt_nr_total--; 402 if (p->nr_cpus_allowed > 1) 403 rt_rq->rt_nr_migratory--; 404 405 update_rt_migration(rt_rq); 406 } 407 408 static inline int has_pushable_tasks(struct rq *rq) 409 { 410 return !plist_head_empty(&rq->rt.pushable_tasks); 411 } 412 413 static DEFINE_PER_CPU(struct balance_callback, rt_push_head); 414 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head); 415 416 static void push_rt_tasks(struct rq *); 417 static void pull_rt_task(struct rq *); 418 419 static inline void rt_queue_push_tasks(struct rq *rq) 420 { 421 if (!has_pushable_tasks(rq)) 422 return; 423 424 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 425 } 426 427 static inline void rt_queue_pull_task(struct rq *rq) 428 { 429 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 430 } 431 432 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 433 { 434 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 435 plist_node_init(&p->pushable_tasks, p->prio); 436 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 437 438 /* Update the highest prio pushable task */ 439 if (p->prio < rq->rt.highest_prio.next) 440 rq->rt.highest_prio.next = p->prio; 441 } 442 443 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 444 { 445 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 446 447 /* Update the new highest prio pushable task */ 448 if (has_pushable_tasks(rq)) { 449 p = plist_first_entry(&rq->rt.pushable_tasks, 450 struct task_struct, pushable_tasks); 451 rq->rt.highest_prio.next = p->prio; 452 } else { 453 rq->rt.highest_prio.next = MAX_RT_PRIO-1; 454 } 455 } 456 457 #else 458 459 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 460 { 461 } 462 463 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 464 { 465 } 466 467 static inline 468 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 469 { 470 } 471 472 static inline 473 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 474 { 475 } 476 477 static inline void rt_queue_push_tasks(struct rq *rq) 478 { 479 } 480 #endif /* CONFIG_SMP */ 481 482 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 483 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count); 484 485 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 486 { 487 return rt_se->on_rq; 488 } 489 490 #ifdef CONFIG_UCLAMP_TASK 491 /* 492 * Verify the fitness of task @p to run on @cpu taking into account the uclamp 493 * settings. 494 * 495 * This check is only important for heterogeneous systems where uclamp_min value 496 * is higher than the capacity of a @cpu. For non-heterogeneous system this 497 * function will always return true. 498 * 499 * The function will return true if the capacity of the @cpu is >= the 500 * uclamp_min and false otherwise. 501 * 502 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min 503 * > uclamp_max. 504 */ 505 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 506 { 507 unsigned int min_cap; 508 unsigned int max_cap; 509 unsigned int cpu_cap; 510 511 /* Only heterogeneous systems can benefit from this check */ 512 if (!sched_asym_cpucap_active()) 513 return true; 514 515 min_cap = uclamp_eff_value(p, UCLAMP_MIN); 516 max_cap = uclamp_eff_value(p, UCLAMP_MAX); 517 518 cpu_cap = capacity_orig_of(cpu); 519 520 return cpu_cap >= min(min_cap, max_cap); 521 } 522 #else 523 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 524 { 525 return true; 526 } 527 #endif 528 529 #ifdef CONFIG_RT_GROUP_SCHED 530 531 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 532 { 533 if (!rt_rq->tg) 534 return RUNTIME_INF; 535 536 return rt_rq->rt_runtime; 537 } 538 539 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 540 { 541 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 542 } 543 544 typedef struct task_group *rt_rq_iter_t; 545 546 static inline struct task_group *next_task_group(struct task_group *tg) 547 { 548 do { 549 tg = list_entry_rcu(tg->list.next, 550 typeof(struct task_group), list); 551 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 552 553 if (&tg->list == &task_groups) 554 tg = NULL; 555 556 return tg; 557 } 558 559 #define for_each_rt_rq(rt_rq, iter, rq) \ 560 for (iter = container_of(&task_groups, typeof(*iter), list); \ 561 (iter = next_task_group(iter)) && \ 562 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 563 564 #define for_each_sched_rt_entity(rt_se) \ 565 for (; rt_se; rt_se = rt_se->parent) 566 567 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 568 { 569 return rt_se->my_q; 570 } 571 572 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 573 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 574 575 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 576 { 577 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 578 struct rq *rq = rq_of_rt_rq(rt_rq); 579 struct sched_rt_entity *rt_se; 580 581 int cpu = cpu_of(rq); 582 583 rt_se = rt_rq->tg->rt_se[cpu]; 584 585 if (rt_rq->rt_nr_running) { 586 if (!rt_se) 587 enqueue_top_rt_rq(rt_rq); 588 else if (!on_rt_rq(rt_se)) 589 enqueue_rt_entity(rt_se, 0); 590 591 if (rt_rq->highest_prio.curr < curr->prio) 592 resched_curr(rq); 593 } 594 } 595 596 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 597 { 598 struct sched_rt_entity *rt_se; 599 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 600 601 rt_se = rt_rq->tg->rt_se[cpu]; 602 603 if (!rt_se) { 604 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); 605 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 606 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); 607 } 608 else if (on_rt_rq(rt_se)) 609 dequeue_rt_entity(rt_se, 0); 610 } 611 612 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 613 { 614 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 615 } 616 617 static int rt_se_boosted(struct sched_rt_entity *rt_se) 618 { 619 struct rt_rq *rt_rq = group_rt_rq(rt_se); 620 struct task_struct *p; 621 622 if (rt_rq) 623 return !!rt_rq->rt_nr_boosted; 624 625 p = rt_task_of(rt_se); 626 return p->prio != p->normal_prio; 627 } 628 629 #ifdef CONFIG_SMP 630 static inline const struct cpumask *sched_rt_period_mask(void) 631 { 632 return this_rq()->rd->span; 633 } 634 #else 635 static inline const struct cpumask *sched_rt_period_mask(void) 636 { 637 return cpu_online_mask; 638 } 639 #endif 640 641 static inline 642 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 643 { 644 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 645 } 646 647 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 648 { 649 return &rt_rq->tg->rt_bandwidth; 650 } 651 652 #else /* !CONFIG_RT_GROUP_SCHED */ 653 654 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 655 { 656 return rt_rq->rt_runtime; 657 } 658 659 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 660 { 661 return ktime_to_ns(def_rt_bandwidth.rt_period); 662 } 663 664 typedef struct rt_rq *rt_rq_iter_t; 665 666 #define for_each_rt_rq(rt_rq, iter, rq) \ 667 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 668 669 #define for_each_sched_rt_entity(rt_se) \ 670 for (; rt_se; rt_se = NULL) 671 672 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 673 { 674 return NULL; 675 } 676 677 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 678 { 679 struct rq *rq = rq_of_rt_rq(rt_rq); 680 681 if (!rt_rq->rt_nr_running) 682 return; 683 684 enqueue_top_rt_rq(rt_rq); 685 resched_curr(rq); 686 } 687 688 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 689 { 690 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); 691 } 692 693 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 694 { 695 return rt_rq->rt_throttled; 696 } 697 698 static inline const struct cpumask *sched_rt_period_mask(void) 699 { 700 return cpu_online_mask; 701 } 702 703 static inline 704 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 705 { 706 return &cpu_rq(cpu)->rt; 707 } 708 709 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 710 { 711 return &def_rt_bandwidth; 712 } 713 714 #endif /* CONFIG_RT_GROUP_SCHED */ 715 716 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 717 { 718 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 719 720 return (hrtimer_active(&rt_b->rt_period_timer) || 721 rt_rq->rt_time < rt_b->rt_runtime); 722 } 723 724 #ifdef CONFIG_SMP 725 /* 726 * We ran out of runtime, see if we can borrow some from our neighbours. 727 */ 728 static void do_balance_runtime(struct rt_rq *rt_rq) 729 { 730 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 731 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 732 int i, weight; 733 u64 rt_period; 734 735 weight = cpumask_weight(rd->span); 736 737 raw_spin_lock(&rt_b->rt_runtime_lock); 738 rt_period = ktime_to_ns(rt_b->rt_period); 739 for_each_cpu(i, rd->span) { 740 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 741 s64 diff; 742 743 if (iter == rt_rq) 744 continue; 745 746 raw_spin_lock(&iter->rt_runtime_lock); 747 /* 748 * Either all rqs have inf runtime and there's nothing to steal 749 * or __disable_runtime() below sets a specific rq to inf to 750 * indicate its been disabled and disallow stealing. 751 */ 752 if (iter->rt_runtime == RUNTIME_INF) 753 goto next; 754 755 /* 756 * From runqueues with spare time, take 1/n part of their 757 * spare time, but no more than our period. 758 */ 759 diff = iter->rt_runtime - iter->rt_time; 760 if (diff > 0) { 761 diff = div_u64((u64)diff, weight); 762 if (rt_rq->rt_runtime + diff > rt_period) 763 diff = rt_period - rt_rq->rt_runtime; 764 iter->rt_runtime -= diff; 765 rt_rq->rt_runtime += diff; 766 if (rt_rq->rt_runtime == rt_period) { 767 raw_spin_unlock(&iter->rt_runtime_lock); 768 break; 769 } 770 } 771 next: 772 raw_spin_unlock(&iter->rt_runtime_lock); 773 } 774 raw_spin_unlock(&rt_b->rt_runtime_lock); 775 } 776 777 /* 778 * Ensure this RQ takes back all the runtime it lend to its neighbours. 779 */ 780 static void __disable_runtime(struct rq *rq) 781 { 782 struct root_domain *rd = rq->rd; 783 rt_rq_iter_t iter; 784 struct rt_rq *rt_rq; 785 786 if (unlikely(!scheduler_running)) 787 return; 788 789 for_each_rt_rq(rt_rq, iter, rq) { 790 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 791 s64 want; 792 int i; 793 794 raw_spin_lock(&rt_b->rt_runtime_lock); 795 raw_spin_lock(&rt_rq->rt_runtime_lock); 796 /* 797 * Either we're all inf and nobody needs to borrow, or we're 798 * already disabled and thus have nothing to do, or we have 799 * exactly the right amount of runtime to take out. 800 */ 801 if (rt_rq->rt_runtime == RUNTIME_INF || 802 rt_rq->rt_runtime == rt_b->rt_runtime) 803 goto balanced; 804 raw_spin_unlock(&rt_rq->rt_runtime_lock); 805 806 /* 807 * Calculate the difference between what we started out with 808 * and what we current have, that's the amount of runtime 809 * we lend and now have to reclaim. 810 */ 811 want = rt_b->rt_runtime - rt_rq->rt_runtime; 812 813 /* 814 * Greedy reclaim, take back as much as we can. 815 */ 816 for_each_cpu(i, rd->span) { 817 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 818 s64 diff; 819 820 /* 821 * Can't reclaim from ourselves or disabled runqueues. 822 */ 823 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 824 continue; 825 826 raw_spin_lock(&iter->rt_runtime_lock); 827 if (want > 0) { 828 diff = min_t(s64, iter->rt_runtime, want); 829 iter->rt_runtime -= diff; 830 want -= diff; 831 } else { 832 iter->rt_runtime -= want; 833 want -= want; 834 } 835 raw_spin_unlock(&iter->rt_runtime_lock); 836 837 if (!want) 838 break; 839 } 840 841 raw_spin_lock(&rt_rq->rt_runtime_lock); 842 /* 843 * We cannot be left wanting - that would mean some runtime 844 * leaked out of the system. 845 */ 846 WARN_ON_ONCE(want); 847 balanced: 848 /* 849 * Disable all the borrow logic by pretending we have inf 850 * runtime - in which case borrowing doesn't make sense. 851 */ 852 rt_rq->rt_runtime = RUNTIME_INF; 853 rt_rq->rt_throttled = 0; 854 raw_spin_unlock(&rt_rq->rt_runtime_lock); 855 raw_spin_unlock(&rt_b->rt_runtime_lock); 856 857 /* Make rt_rq available for pick_next_task() */ 858 sched_rt_rq_enqueue(rt_rq); 859 } 860 } 861 862 static void __enable_runtime(struct rq *rq) 863 { 864 rt_rq_iter_t iter; 865 struct rt_rq *rt_rq; 866 867 if (unlikely(!scheduler_running)) 868 return; 869 870 /* 871 * Reset each runqueue's bandwidth settings 872 */ 873 for_each_rt_rq(rt_rq, iter, rq) { 874 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 875 876 raw_spin_lock(&rt_b->rt_runtime_lock); 877 raw_spin_lock(&rt_rq->rt_runtime_lock); 878 rt_rq->rt_runtime = rt_b->rt_runtime; 879 rt_rq->rt_time = 0; 880 rt_rq->rt_throttled = 0; 881 raw_spin_unlock(&rt_rq->rt_runtime_lock); 882 raw_spin_unlock(&rt_b->rt_runtime_lock); 883 } 884 } 885 886 static void balance_runtime(struct rt_rq *rt_rq) 887 { 888 if (!sched_feat(RT_RUNTIME_SHARE)) 889 return; 890 891 if (rt_rq->rt_time > rt_rq->rt_runtime) { 892 raw_spin_unlock(&rt_rq->rt_runtime_lock); 893 do_balance_runtime(rt_rq); 894 raw_spin_lock(&rt_rq->rt_runtime_lock); 895 } 896 } 897 #else /* !CONFIG_SMP */ 898 static inline void balance_runtime(struct rt_rq *rt_rq) {} 899 #endif /* CONFIG_SMP */ 900 901 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 902 { 903 int i, idle = 1, throttled = 0; 904 const struct cpumask *span; 905 906 span = sched_rt_period_mask(); 907 #ifdef CONFIG_RT_GROUP_SCHED 908 /* 909 * FIXME: isolated CPUs should really leave the root task group, 910 * whether they are isolcpus or were isolated via cpusets, lest 911 * the timer run on a CPU which does not service all runqueues, 912 * potentially leaving other CPUs indefinitely throttled. If 913 * isolation is really required, the user will turn the throttle 914 * off to kill the perturbations it causes anyway. Meanwhile, 915 * this maintains functionality for boot and/or troubleshooting. 916 */ 917 if (rt_b == &root_task_group.rt_bandwidth) 918 span = cpu_online_mask; 919 #endif 920 for_each_cpu(i, span) { 921 int enqueue = 0; 922 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 923 struct rq *rq = rq_of_rt_rq(rt_rq); 924 struct rq_flags rf; 925 int skip; 926 927 /* 928 * When span == cpu_online_mask, taking each rq->lock 929 * can be time-consuming. Try to avoid it when possible. 930 */ 931 raw_spin_lock(&rt_rq->rt_runtime_lock); 932 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) 933 rt_rq->rt_runtime = rt_b->rt_runtime; 934 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 935 raw_spin_unlock(&rt_rq->rt_runtime_lock); 936 if (skip) 937 continue; 938 939 rq_lock(rq, &rf); 940 update_rq_clock(rq); 941 942 if (rt_rq->rt_time) { 943 u64 runtime; 944 945 raw_spin_lock(&rt_rq->rt_runtime_lock); 946 if (rt_rq->rt_throttled) 947 balance_runtime(rt_rq); 948 runtime = rt_rq->rt_runtime; 949 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 950 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 951 rt_rq->rt_throttled = 0; 952 enqueue = 1; 953 954 /* 955 * When we're idle and a woken (rt) task is 956 * throttled check_preempt_curr() will set 957 * skip_update and the time between the wakeup 958 * and this unthrottle will get accounted as 959 * 'runtime'. 960 */ 961 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 962 rq_clock_cancel_skipupdate(rq); 963 } 964 if (rt_rq->rt_time || rt_rq->rt_nr_running) 965 idle = 0; 966 raw_spin_unlock(&rt_rq->rt_runtime_lock); 967 } else if (rt_rq->rt_nr_running) { 968 idle = 0; 969 if (!rt_rq_throttled(rt_rq)) 970 enqueue = 1; 971 } 972 if (rt_rq->rt_throttled) 973 throttled = 1; 974 975 if (enqueue) 976 sched_rt_rq_enqueue(rt_rq); 977 rq_unlock(rq, &rf); 978 } 979 980 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 981 return 1; 982 983 return idle; 984 } 985 986 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 987 { 988 #ifdef CONFIG_RT_GROUP_SCHED 989 struct rt_rq *rt_rq = group_rt_rq(rt_se); 990 991 if (rt_rq) 992 return rt_rq->highest_prio.curr; 993 #endif 994 995 return rt_task_of(rt_se)->prio; 996 } 997 998 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 999 { 1000 u64 runtime = sched_rt_runtime(rt_rq); 1001 1002 if (rt_rq->rt_throttled) 1003 return rt_rq_throttled(rt_rq); 1004 1005 if (runtime >= sched_rt_period(rt_rq)) 1006 return 0; 1007 1008 balance_runtime(rt_rq); 1009 runtime = sched_rt_runtime(rt_rq); 1010 if (runtime == RUNTIME_INF) 1011 return 0; 1012 1013 if (rt_rq->rt_time > runtime) { 1014 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 1015 1016 /* 1017 * Don't actually throttle groups that have no runtime assigned 1018 * but accrue some time due to boosting. 1019 */ 1020 if (likely(rt_b->rt_runtime)) { 1021 rt_rq->rt_throttled = 1; 1022 printk_deferred_once("sched: RT throttling activated\n"); 1023 } else { 1024 /* 1025 * In case we did anyway, make it go away, 1026 * replenishment is a joke, since it will replenish us 1027 * with exactly 0 ns. 1028 */ 1029 rt_rq->rt_time = 0; 1030 } 1031 1032 if (rt_rq_throttled(rt_rq)) { 1033 sched_rt_rq_dequeue(rt_rq); 1034 return 1; 1035 } 1036 } 1037 1038 return 0; 1039 } 1040 1041 /* 1042 * Update the current task's runtime statistics. Skip current tasks that 1043 * are not in our scheduling class. 1044 */ 1045 static void update_curr_rt(struct rq *rq) 1046 { 1047 struct task_struct *curr = rq->curr; 1048 struct sched_rt_entity *rt_se = &curr->rt; 1049 u64 delta_exec; 1050 u64 now; 1051 1052 if (curr->sched_class != &rt_sched_class) 1053 return; 1054 1055 now = rq_clock_task(rq); 1056 delta_exec = now - curr->se.exec_start; 1057 if (unlikely((s64)delta_exec <= 0)) 1058 return; 1059 1060 schedstat_set(curr->stats.exec_max, 1061 max(curr->stats.exec_max, delta_exec)); 1062 1063 trace_sched_stat_runtime(curr, delta_exec, 0); 1064 1065 update_current_exec_runtime(curr, now, delta_exec); 1066 1067 if (!rt_bandwidth_enabled()) 1068 return; 1069 1070 for_each_sched_rt_entity(rt_se) { 1071 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1072 int exceeded; 1073 1074 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 1075 raw_spin_lock(&rt_rq->rt_runtime_lock); 1076 rt_rq->rt_time += delta_exec; 1077 exceeded = sched_rt_runtime_exceeded(rt_rq); 1078 if (exceeded) 1079 resched_curr(rq); 1080 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1081 if (exceeded) 1082 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq)); 1083 } 1084 } 1085 } 1086 1087 static void 1088 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count) 1089 { 1090 struct rq *rq = rq_of_rt_rq(rt_rq); 1091 1092 BUG_ON(&rq->rt != rt_rq); 1093 1094 if (!rt_rq->rt_queued) 1095 return; 1096 1097 BUG_ON(!rq->nr_running); 1098 1099 sub_nr_running(rq, count); 1100 rt_rq->rt_queued = 0; 1101 1102 } 1103 1104 static void 1105 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1106 { 1107 struct rq *rq = rq_of_rt_rq(rt_rq); 1108 1109 BUG_ON(&rq->rt != rt_rq); 1110 1111 if (rt_rq->rt_queued) 1112 return; 1113 1114 if (rt_rq_throttled(rt_rq)) 1115 return; 1116 1117 if (rt_rq->rt_nr_running) { 1118 add_nr_running(rq, rt_rq->rt_nr_running); 1119 rt_rq->rt_queued = 1; 1120 } 1121 1122 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 1123 cpufreq_update_util(rq, 0); 1124 } 1125 1126 #if defined CONFIG_SMP 1127 1128 static void 1129 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1130 { 1131 struct rq *rq = rq_of_rt_rq(rt_rq); 1132 1133 #ifdef CONFIG_RT_GROUP_SCHED 1134 /* 1135 * Change rq's cpupri only if rt_rq is the top queue. 1136 */ 1137 if (&rq->rt != rt_rq) 1138 return; 1139 #endif 1140 if (rq->online && prio < prev_prio) 1141 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1142 } 1143 1144 static void 1145 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1146 { 1147 struct rq *rq = rq_of_rt_rq(rt_rq); 1148 1149 #ifdef CONFIG_RT_GROUP_SCHED 1150 /* 1151 * Change rq's cpupri only if rt_rq is the top queue. 1152 */ 1153 if (&rq->rt != rt_rq) 1154 return; 1155 #endif 1156 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1157 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1158 } 1159 1160 #else /* CONFIG_SMP */ 1161 1162 static inline 1163 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1164 static inline 1165 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1166 1167 #endif /* CONFIG_SMP */ 1168 1169 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1170 static void 1171 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1172 { 1173 int prev_prio = rt_rq->highest_prio.curr; 1174 1175 if (prio < prev_prio) 1176 rt_rq->highest_prio.curr = prio; 1177 1178 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1179 } 1180 1181 static void 1182 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1183 { 1184 int prev_prio = rt_rq->highest_prio.curr; 1185 1186 if (rt_rq->rt_nr_running) { 1187 1188 WARN_ON(prio < prev_prio); 1189 1190 /* 1191 * This may have been our highest task, and therefore 1192 * we may have some recomputation to do 1193 */ 1194 if (prio == prev_prio) { 1195 struct rt_prio_array *array = &rt_rq->active; 1196 1197 rt_rq->highest_prio.curr = 1198 sched_find_first_bit(array->bitmap); 1199 } 1200 1201 } else { 1202 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 1203 } 1204 1205 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1206 } 1207 1208 #else 1209 1210 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1211 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1212 1213 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1214 1215 #ifdef CONFIG_RT_GROUP_SCHED 1216 1217 static void 1218 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1219 { 1220 if (rt_se_boosted(rt_se)) 1221 rt_rq->rt_nr_boosted++; 1222 1223 if (rt_rq->tg) 1224 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1225 } 1226 1227 static void 1228 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1229 { 1230 if (rt_se_boosted(rt_se)) 1231 rt_rq->rt_nr_boosted--; 1232 1233 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1234 } 1235 1236 #else /* CONFIG_RT_GROUP_SCHED */ 1237 1238 static void 1239 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1240 { 1241 start_rt_bandwidth(&def_rt_bandwidth); 1242 } 1243 1244 static inline 1245 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1246 1247 #endif /* CONFIG_RT_GROUP_SCHED */ 1248 1249 static inline 1250 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1251 { 1252 struct rt_rq *group_rq = group_rt_rq(rt_se); 1253 1254 if (group_rq) 1255 return group_rq->rt_nr_running; 1256 else 1257 return 1; 1258 } 1259 1260 static inline 1261 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1262 { 1263 struct rt_rq *group_rq = group_rt_rq(rt_se); 1264 struct task_struct *tsk; 1265 1266 if (group_rq) 1267 return group_rq->rr_nr_running; 1268 1269 tsk = rt_task_of(rt_se); 1270 1271 return (tsk->policy == SCHED_RR) ? 1 : 0; 1272 } 1273 1274 static inline 1275 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1276 { 1277 int prio = rt_se_prio(rt_se); 1278 1279 WARN_ON(!rt_prio(prio)); 1280 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1281 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1282 1283 inc_rt_prio(rt_rq, prio); 1284 inc_rt_migration(rt_se, rt_rq); 1285 inc_rt_group(rt_se, rt_rq); 1286 } 1287 1288 static inline 1289 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1290 { 1291 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1292 WARN_ON(!rt_rq->rt_nr_running); 1293 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1294 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1295 1296 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1297 dec_rt_migration(rt_se, rt_rq); 1298 dec_rt_group(rt_se, rt_rq); 1299 } 1300 1301 /* 1302 * Change rt_se->run_list location unless SAVE && !MOVE 1303 * 1304 * assumes ENQUEUE/DEQUEUE flags match 1305 */ 1306 static inline bool move_entity(unsigned int flags) 1307 { 1308 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1309 return false; 1310 1311 return true; 1312 } 1313 1314 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1315 { 1316 list_del_init(&rt_se->run_list); 1317 1318 if (list_empty(array->queue + rt_se_prio(rt_se))) 1319 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1320 1321 rt_se->on_list = 0; 1322 } 1323 1324 static inline struct sched_statistics * 1325 __schedstats_from_rt_se(struct sched_rt_entity *rt_se) 1326 { 1327 #ifdef CONFIG_RT_GROUP_SCHED 1328 /* schedstats is not supported for rt group. */ 1329 if (!rt_entity_is_task(rt_se)) 1330 return NULL; 1331 #endif 1332 1333 return &rt_task_of(rt_se)->stats; 1334 } 1335 1336 static inline void 1337 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1338 { 1339 struct sched_statistics *stats; 1340 struct task_struct *p = NULL; 1341 1342 if (!schedstat_enabled()) 1343 return; 1344 1345 if (rt_entity_is_task(rt_se)) 1346 p = rt_task_of(rt_se); 1347 1348 stats = __schedstats_from_rt_se(rt_se); 1349 if (!stats) 1350 return; 1351 1352 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats); 1353 } 1354 1355 static inline void 1356 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1357 { 1358 struct sched_statistics *stats; 1359 struct task_struct *p = NULL; 1360 1361 if (!schedstat_enabled()) 1362 return; 1363 1364 if (rt_entity_is_task(rt_se)) 1365 p = rt_task_of(rt_se); 1366 1367 stats = __schedstats_from_rt_se(rt_se); 1368 if (!stats) 1369 return; 1370 1371 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats); 1372 } 1373 1374 static inline void 1375 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, 1376 int flags) 1377 { 1378 if (!schedstat_enabled()) 1379 return; 1380 1381 if (flags & ENQUEUE_WAKEUP) 1382 update_stats_enqueue_sleeper_rt(rt_rq, rt_se); 1383 } 1384 1385 static inline void 1386 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1387 { 1388 struct sched_statistics *stats; 1389 struct task_struct *p = NULL; 1390 1391 if (!schedstat_enabled()) 1392 return; 1393 1394 if (rt_entity_is_task(rt_se)) 1395 p = rt_task_of(rt_se); 1396 1397 stats = __schedstats_from_rt_se(rt_se); 1398 if (!stats) 1399 return; 1400 1401 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats); 1402 } 1403 1404 static inline void 1405 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, 1406 int flags) 1407 { 1408 struct task_struct *p = NULL; 1409 1410 if (!schedstat_enabled()) 1411 return; 1412 1413 if (rt_entity_is_task(rt_se)) 1414 p = rt_task_of(rt_se); 1415 1416 if ((flags & DEQUEUE_SLEEP) && p) { 1417 unsigned int state; 1418 1419 state = READ_ONCE(p->__state); 1420 if (state & TASK_INTERRUPTIBLE) 1421 __schedstat_set(p->stats.sleep_start, 1422 rq_clock(rq_of_rt_rq(rt_rq))); 1423 1424 if (state & TASK_UNINTERRUPTIBLE) 1425 __schedstat_set(p->stats.block_start, 1426 rq_clock(rq_of_rt_rq(rt_rq))); 1427 } 1428 } 1429 1430 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1431 { 1432 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1433 struct rt_prio_array *array = &rt_rq->active; 1434 struct rt_rq *group_rq = group_rt_rq(rt_se); 1435 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1436 1437 /* 1438 * Don't enqueue the group if its throttled, or when empty. 1439 * The latter is a consequence of the former when a child group 1440 * get throttled and the current group doesn't have any other 1441 * active members. 1442 */ 1443 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1444 if (rt_se->on_list) 1445 __delist_rt_entity(rt_se, array); 1446 return; 1447 } 1448 1449 if (move_entity(flags)) { 1450 WARN_ON_ONCE(rt_se->on_list); 1451 if (flags & ENQUEUE_HEAD) 1452 list_add(&rt_se->run_list, queue); 1453 else 1454 list_add_tail(&rt_se->run_list, queue); 1455 1456 __set_bit(rt_se_prio(rt_se), array->bitmap); 1457 rt_se->on_list = 1; 1458 } 1459 rt_se->on_rq = 1; 1460 1461 inc_rt_tasks(rt_se, rt_rq); 1462 } 1463 1464 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1465 { 1466 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1467 struct rt_prio_array *array = &rt_rq->active; 1468 1469 if (move_entity(flags)) { 1470 WARN_ON_ONCE(!rt_se->on_list); 1471 __delist_rt_entity(rt_se, array); 1472 } 1473 rt_se->on_rq = 0; 1474 1475 dec_rt_tasks(rt_se, rt_rq); 1476 } 1477 1478 /* 1479 * Because the prio of an upper entry depends on the lower 1480 * entries, we must remove entries top - down. 1481 */ 1482 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1483 { 1484 struct sched_rt_entity *back = NULL; 1485 unsigned int rt_nr_running; 1486 1487 for_each_sched_rt_entity(rt_se) { 1488 rt_se->back = back; 1489 back = rt_se; 1490 } 1491 1492 rt_nr_running = rt_rq_of_se(back)->rt_nr_running; 1493 1494 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1495 if (on_rt_rq(rt_se)) 1496 __dequeue_rt_entity(rt_se, flags); 1497 } 1498 1499 dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running); 1500 } 1501 1502 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1503 { 1504 struct rq *rq = rq_of_rt_se(rt_se); 1505 1506 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags); 1507 1508 dequeue_rt_stack(rt_se, flags); 1509 for_each_sched_rt_entity(rt_se) 1510 __enqueue_rt_entity(rt_se, flags); 1511 enqueue_top_rt_rq(&rq->rt); 1512 } 1513 1514 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1515 { 1516 struct rq *rq = rq_of_rt_se(rt_se); 1517 1518 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags); 1519 1520 dequeue_rt_stack(rt_se, flags); 1521 1522 for_each_sched_rt_entity(rt_se) { 1523 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1524 1525 if (rt_rq && rt_rq->rt_nr_running) 1526 __enqueue_rt_entity(rt_se, flags); 1527 } 1528 enqueue_top_rt_rq(&rq->rt); 1529 } 1530 1531 /* 1532 * Adding/removing a task to/from a priority array: 1533 */ 1534 static void 1535 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1536 { 1537 struct sched_rt_entity *rt_se = &p->rt; 1538 1539 if (flags & ENQUEUE_WAKEUP) 1540 rt_se->timeout = 0; 1541 1542 check_schedstat_required(); 1543 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se); 1544 1545 enqueue_rt_entity(rt_se, flags); 1546 1547 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1548 enqueue_pushable_task(rq, p); 1549 } 1550 1551 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1552 { 1553 struct sched_rt_entity *rt_se = &p->rt; 1554 1555 update_curr_rt(rq); 1556 dequeue_rt_entity(rt_se, flags); 1557 1558 dequeue_pushable_task(rq, p); 1559 } 1560 1561 /* 1562 * Put task to the head or the end of the run list without the overhead of 1563 * dequeue followed by enqueue. 1564 */ 1565 static void 1566 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1567 { 1568 if (on_rt_rq(rt_se)) { 1569 struct rt_prio_array *array = &rt_rq->active; 1570 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1571 1572 if (head) 1573 list_move(&rt_se->run_list, queue); 1574 else 1575 list_move_tail(&rt_se->run_list, queue); 1576 } 1577 } 1578 1579 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1580 { 1581 struct sched_rt_entity *rt_se = &p->rt; 1582 struct rt_rq *rt_rq; 1583 1584 for_each_sched_rt_entity(rt_se) { 1585 rt_rq = rt_rq_of_se(rt_se); 1586 requeue_rt_entity(rt_rq, rt_se, head); 1587 } 1588 } 1589 1590 static void yield_task_rt(struct rq *rq) 1591 { 1592 requeue_task_rt(rq, rq->curr, 0); 1593 } 1594 1595 #ifdef CONFIG_SMP 1596 static int find_lowest_rq(struct task_struct *task); 1597 1598 static int 1599 select_task_rq_rt(struct task_struct *p, int cpu, int flags) 1600 { 1601 struct task_struct *curr; 1602 struct rq *rq; 1603 bool test; 1604 1605 /* For anything but wake ups, just return the task_cpu */ 1606 if (!(flags & (WF_TTWU | WF_FORK))) 1607 goto out; 1608 1609 rq = cpu_rq(cpu); 1610 1611 rcu_read_lock(); 1612 curr = READ_ONCE(rq->curr); /* unlocked access */ 1613 1614 /* 1615 * If the current task on @p's runqueue is an RT task, then 1616 * try to see if we can wake this RT task up on another 1617 * runqueue. Otherwise simply start this RT task 1618 * on its current runqueue. 1619 * 1620 * We want to avoid overloading runqueues. If the woken 1621 * task is a higher priority, then it will stay on this CPU 1622 * and the lower prio task should be moved to another CPU. 1623 * Even though this will probably make the lower prio task 1624 * lose its cache, we do not want to bounce a higher task 1625 * around just because it gave up its CPU, perhaps for a 1626 * lock? 1627 * 1628 * For equal prio tasks, we just let the scheduler sort it out. 1629 * 1630 * Otherwise, just let it ride on the affined RQ and the 1631 * post-schedule router will push the preempted task away 1632 * 1633 * This test is optimistic, if we get it wrong the load-balancer 1634 * will have to sort it out. 1635 * 1636 * We take into account the capacity of the CPU to ensure it fits the 1637 * requirement of the task - which is only important on heterogeneous 1638 * systems like big.LITTLE. 1639 */ 1640 test = curr && 1641 unlikely(rt_task(curr)) && 1642 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio); 1643 1644 if (test || !rt_task_fits_capacity(p, cpu)) { 1645 int target = find_lowest_rq(p); 1646 1647 /* 1648 * Bail out if we were forcing a migration to find a better 1649 * fitting CPU but our search failed. 1650 */ 1651 if (!test && target != -1 && !rt_task_fits_capacity(p, target)) 1652 goto out_unlock; 1653 1654 /* 1655 * Don't bother moving it if the destination CPU is 1656 * not running a lower priority task. 1657 */ 1658 if (target != -1 && 1659 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1660 cpu = target; 1661 } 1662 1663 out_unlock: 1664 rcu_read_unlock(); 1665 1666 out: 1667 return cpu; 1668 } 1669 1670 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1671 { 1672 /* 1673 * Current can't be migrated, useless to reschedule, 1674 * let's hope p can move out. 1675 */ 1676 if (rq->curr->nr_cpus_allowed == 1 || 1677 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1678 return; 1679 1680 /* 1681 * p is migratable, so let's not schedule it and 1682 * see if it is pushed or pulled somewhere else. 1683 */ 1684 if (p->nr_cpus_allowed != 1 && 1685 cpupri_find(&rq->rd->cpupri, p, NULL)) 1686 return; 1687 1688 /* 1689 * There appear to be other CPUs that can accept 1690 * the current task but none can run 'p', so lets reschedule 1691 * to try and push the current task away: 1692 */ 1693 requeue_task_rt(rq, p, 1); 1694 resched_curr(rq); 1695 } 1696 1697 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1698 { 1699 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) { 1700 /* 1701 * This is OK, because current is on_cpu, which avoids it being 1702 * picked for load-balance and preemption/IRQs are still 1703 * disabled avoiding further scheduler activity on it and we've 1704 * not yet started the picking loop. 1705 */ 1706 rq_unpin_lock(rq, rf); 1707 pull_rt_task(rq); 1708 rq_repin_lock(rq, rf); 1709 } 1710 1711 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq); 1712 } 1713 #endif /* CONFIG_SMP */ 1714 1715 /* 1716 * Preempt the current task with a newly woken task if needed: 1717 */ 1718 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1719 { 1720 if (p->prio < rq->curr->prio) { 1721 resched_curr(rq); 1722 return; 1723 } 1724 1725 #ifdef CONFIG_SMP 1726 /* 1727 * If: 1728 * 1729 * - the newly woken task is of equal priority to the current task 1730 * - the newly woken task is non-migratable while current is migratable 1731 * - current will be preempted on the next reschedule 1732 * 1733 * we should check to see if current can readily move to a different 1734 * cpu. If so, we will reschedule to allow the push logic to try 1735 * to move current somewhere else, making room for our non-migratable 1736 * task. 1737 */ 1738 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1739 check_preempt_equal_prio(rq, p); 1740 #endif 1741 } 1742 1743 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first) 1744 { 1745 struct sched_rt_entity *rt_se = &p->rt; 1746 struct rt_rq *rt_rq = &rq->rt; 1747 1748 p->se.exec_start = rq_clock_task(rq); 1749 if (on_rt_rq(&p->rt)) 1750 update_stats_wait_end_rt(rt_rq, rt_se); 1751 1752 /* The running task is never eligible for pushing */ 1753 dequeue_pushable_task(rq, p); 1754 1755 if (!first) 1756 return; 1757 1758 /* 1759 * If prev task was rt, put_prev_task() has already updated the 1760 * utilization. We only care of the case where we start to schedule a 1761 * rt task 1762 */ 1763 if (rq->curr->sched_class != &rt_sched_class) 1764 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1765 1766 rt_queue_push_tasks(rq); 1767 } 1768 1769 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq) 1770 { 1771 struct rt_prio_array *array = &rt_rq->active; 1772 struct sched_rt_entity *next = NULL; 1773 struct list_head *queue; 1774 int idx; 1775 1776 idx = sched_find_first_bit(array->bitmap); 1777 BUG_ON(idx >= MAX_RT_PRIO); 1778 1779 queue = array->queue + idx; 1780 if (SCHED_WARN_ON(list_empty(queue))) 1781 return NULL; 1782 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1783 1784 return next; 1785 } 1786 1787 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1788 { 1789 struct sched_rt_entity *rt_se; 1790 struct rt_rq *rt_rq = &rq->rt; 1791 1792 do { 1793 rt_se = pick_next_rt_entity(rt_rq); 1794 if (unlikely(!rt_se)) 1795 return NULL; 1796 rt_rq = group_rt_rq(rt_se); 1797 } while (rt_rq); 1798 1799 return rt_task_of(rt_se); 1800 } 1801 1802 static struct task_struct *pick_task_rt(struct rq *rq) 1803 { 1804 struct task_struct *p; 1805 1806 if (!sched_rt_runnable(rq)) 1807 return NULL; 1808 1809 p = _pick_next_task_rt(rq); 1810 1811 return p; 1812 } 1813 1814 static struct task_struct *pick_next_task_rt(struct rq *rq) 1815 { 1816 struct task_struct *p = pick_task_rt(rq); 1817 1818 if (p) 1819 set_next_task_rt(rq, p, true); 1820 1821 return p; 1822 } 1823 1824 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1825 { 1826 struct sched_rt_entity *rt_se = &p->rt; 1827 struct rt_rq *rt_rq = &rq->rt; 1828 1829 if (on_rt_rq(&p->rt)) 1830 update_stats_wait_start_rt(rt_rq, rt_se); 1831 1832 update_curr_rt(rq); 1833 1834 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1835 1836 /* 1837 * The previous task needs to be made eligible for pushing 1838 * if it is still active 1839 */ 1840 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1841 enqueue_pushable_task(rq, p); 1842 } 1843 1844 #ifdef CONFIG_SMP 1845 1846 /* Only try algorithms three times */ 1847 #define RT_MAX_TRIES 3 1848 1849 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1850 { 1851 if (!task_on_cpu(rq, p) && 1852 cpumask_test_cpu(cpu, &p->cpus_mask)) 1853 return 1; 1854 1855 return 0; 1856 } 1857 1858 /* 1859 * Return the highest pushable rq's task, which is suitable to be executed 1860 * on the CPU, NULL otherwise 1861 */ 1862 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1863 { 1864 struct plist_head *head = &rq->rt.pushable_tasks; 1865 struct task_struct *p; 1866 1867 if (!has_pushable_tasks(rq)) 1868 return NULL; 1869 1870 plist_for_each_entry(p, head, pushable_tasks) { 1871 if (pick_rt_task(rq, p, cpu)) 1872 return p; 1873 } 1874 1875 return NULL; 1876 } 1877 1878 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1879 1880 static int find_lowest_rq(struct task_struct *task) 1881 { 1882 struct sched_domain *sd; 1883 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1884 int this_cpu = smp_processor_id(); 1885 int cpu = task_cpu(task); 1886 int ret; 1887 1888 /* Make sure the mask is initialized first */ 1889 if (unlikely(!lowest_mask)) 1890 return -1; 1891 1892 if (task->nr_cpus_allowed == 1) 1893 return -1; /* No other targets possible */ 1894 1895 /* 1896 * If we're on asym system ensure we consider the different capacities 1897 * of the CPUs when searching for the lowest_mask. 1898 */ 1899 if (sched_asym_cpucap_active()) { 1900 1901 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri, 1902 task, lowest_mask, 1903 rt_task_fits_capacity); 1904 } else { 1905 1906 ret = cpupri_find(&task_rq(task)->rd->cpupri, 1907 task, lowest_mask); 1908 } 1909 1910 if (!ret) 1911 return -1; /* No targets found */ 1912 1913 /* 1914 * At this point we have built a mask of CPUs representing the 1915 * lowest priority tasks in the system. Now we want to elect 1916 * the best one based on our affinity and topology. 1917 * 1918 * We prioritize the last CPU that the task executed on since 1919 * it is most likely cache-hot in that location. 1920 */ 1921 if (cpumask_test_cpu(cpu, lowest_mask)) 1922 return cpu; 1923 1924 /* 1925 * Otherwise, we consult the sched_domains span maps to figure 1926 * out which CPU is logically closest to our hot cache data. 1927 */ 1928 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1929 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1930 1931 rcu_read_lock(); 1932 for_each_domain(cpu, sd) { 1933 if (sd->flags & SD_WAKE_AFFINE) { 1934 int best_cpu; 1935 1936 /* 1937 * "this_cpu" is cheaper to preempt than a 1938 * remote processor. 1939 */ 1940 if (this_cpu != -1 && 1941 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1942 rcu_read_unlock(); 1943 return this_cpu; 1944 } 1945 1946 best_cpu = cpumask_any_and_distribute(lowest_mask, 1947 sched_domain_span(sd)); 1948 if (best_cpu < nr_cpu_ids) { 1949 rcu_read_unlock(); 1950 return best_cpu; 1951 } 1952 } 1953 } 1954 rcu_read_unlock(); 1955 1956 /* 1957 * And finally, if there were no matches within the domains 1958 * just give the caller *something* to work with from the compatible 1959 * locations. 1960 */ 1961 if (this_cpu != -1) 1962 return this_cpu; 1963 1964 cpu = cpumask_any_distribute(lowest_mask); 1965 if (cpu < nr_cpu_ids) 1966 return cpu; 1967 1968 return -1; 1969 } 1970 1971 /* Will lock the rq it finds */ 1972 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1973 { 1974 struct rq *lowest_rq = NULL; 1975 int tries; 1976 int cpu; 1977 1978 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1979 cpu = find_lowest_rq(task); 1980 1981 if ((cpu == -1) || (cpu == rq->cpu)) 1982 break; 1983 1984 lowest_rq = cpu_rq(cpu); 1985 1986 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1987 /* 1988 * Target rq has tasks of equal or higher priority, 1989 * retrying does not release any lock and is unlikely 1990 * to yield a different result. 1991 */ 1992 lowest_rq = NULL; 1993 break; 1994 } 1995 1996 /* if the prio of this runqueue changed, try again */ 1997 if (double_lock_balance(rq, lowest_rq)) { 1998 /* 1999 * We had to unlock the run queue. In 2000 * the mean time, task could have 2001 * migrated already or had its affinity changed. 2002 * Also make sure that it wasn't scheduled on its rq. 2003 * It is possible the task was scheduled, set 2004 * "migrate_disabled" and then got preempted, so we must 2005 * check the task migration disable flag here too. 2006 */ 2007 if (unlikely(task_rq(task) != rq || 2008 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) || 2009 task_on_cpu(rq, task) || 2010 !rt_task(task) || 2011 is_migration_disabled(task) || 2012 !task_on_rq_queued(task))) { 2013 2014 double_unlock_balance(rq, lowest_rq); 2015 lowest_rq = NULL; 2016 break; 2017 } 2018 } 2019 2020 /* If this rq is still suitable use it. */ 2021 if (lowest_rq->rt.highest_prio.curr > task->prio) 2022 break; 2023 2024 /* try again */ 2025 double_unlock_balance(rq, lowest_rq); 2026 lowest_rq = NULL; 2027 } 2028 2029 return lowest_rq; 2030 } 2031 2032 static struct task_struct *pick_next_pushable_task(struct rq *rq) 2033 { 2034 struct task_struct *p; 2035 2036 if (!has_pushable_tasks(rq)) 2037 return NULL; 2038 2039 p = plist_first_entry(&rq->rt.pushable_tasks, 2040 struct task_struct, pushable_tasks); 2041 2042 BUG_ON(rq->cpu != task_cpu(p)); 2043 BUG_ON(task_current(rq, p)); 2044 BUG_ON(p->nr_cpus_allowed <= 1); 2045 2046 BUG_ON(!task_on_rq_queued(p)); 2047 BUG_ON(!rt_task(p)); 2048 2049 return p; 2050 } 2051 2052 /* 2053 * If the current CPU has more than one RT task, see if the non 2054 * running task can migrate over to a CPU that is running a task 2055 * of lesser priority. 2056 */ 2057 static int push_rt_task(struct rq *rq, bool pull) 2058 { 2059 struct task_struct *next_task; 2060 struct rq *lowest_rq; 2061 int ret = 0; 2062 2063 if (!rq->rt.overloaded) 2064 return 0; 2065 2066 next_task = pick_next_pushable_task(rq); 2067 if (!next_task) 2068 return 0; 2069 2070 retry: 2071 /* 2072 * It's possible that the next_task slipped in of 2073 * higher priority than current. If that's the case 2074 * just reschedule current. 2075 */ 2076 if (unlikely(next_task->prio < rq->curr->prio)) { 2077 resched_curr(rq); 2078 return 0; 2079 } 2080 2081 if (is_migration_disabled(next_task)) { 2082 struct task_struct *push_task = NULL; 2083 int cpu; 2084 2085 if (!pull || rq->push_busy) 2086 return 0; 2087 2088 /* 2089 * Invoking find_lowest_rq() on anything but an RT task doesn't 2090 * make sense. Per the above priority check, curr has to 2091 * be of higher priority than next_task, so no need to 2092 * reschedule when bailing out. 2093 * 2094 * Note that the stoppers are masqueraded as SCHED_FIFO 2095 * (cf. sched_set_stop_task()), so we can't rely on rt_task(). 2096 */ 2097 if (rq->curr->sched_class != &rt_sched_class) 2098 return 0; 2099 2100 cpu = find_lowest_rq(rq->curr); 2101 if (cpu == -1 || cpu == rq->cpu) 2102 return 0; 2103 2104 /* 2105 * Given we found a CPU with lower priority than @next_task, 2106 * therefore it should be running. However we cannot migrate it 2107 * to this other CPU, instead attempt to push the current 2108 * running task on this CPU away. 2109 */ 2110 push_task = get_push_task(rq); 2111 if (push_task) { 2112 raw_spin_rq_unlock(rq); 2113 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2114 push_task, &rq->push_work); 2115 raw_spin_rq_lock(rq); 2116 } 2117 2118 return 0; 2119 } 2120 2121 if (WARN_ON(next_task == rq->curr)) 2122 return 0; 2123 2124 /* We might release rq lock */ 2125 get_task_struct(next_task); 2126 2127 /* find_lock_lowest_rq locks the rq if found */ 2128 lowest_rq = find_lock_lowest_rq(next_task, rq); 2129 if (!lowest_rq) { 2130 struct task_struct *task; 2131 /* 2132 * find_lock_lowest_rq releases rq->lock 2133 * so it is possible that next_task has migrated. 2134 * 2135 * We need to make sure that the task is still on the same 2136 * run-queue and is also still the next task eligible for 2137 * pushing. 2138 */ 2139 task = pick_next_pushable_task(rq); 2140 if (task == next_task) { 2141 /* 2142 * The task hasn't migrated, and is still the next 2143 * eligible task, but we failed to find a run-queue 2144 * to push it to. Do not retry in this case, since 2145 * other CPUs will pull from us when ready. 2146 */ 2147 goto out; 2148 } 2149 2150 if (!task) 2151 /* No more tasks, just exit */ 2152 goto out; 2153 2154 /* 2155 * Something has shifted, try again. 2156 */ 2157 put_task_struct(next_task); 2158 next_task = task; 2159 goto retry; 2160 } 2161 2162 deactivate_task(rq, next_task, 0); 2163 set_task_cpu(next_task, lowest_rq->cpu); 2164 activate_task(lowest_rq, next_task, 0); 2165 resched_curr(lowest_rq); 2166 ret = 1; 2167 2168 double_unlock_balance(rq, lowest_rq); 2169 out: 2170 put_task_struct(next_task); 2171 2172 return ret; 2173 } 2174 2175 static void push_rt_tasks(struct rq *rq) 2176 { 2177 /* push_rt_task will return true if it moved an RT */ 2178 while (push_rt_task(rq, false)) 2179 ; 2180 } 2181 2182 #ifdef HAVE_RT_PUSH_IPI 2183 2184 /* 2185 * When a high priority task schedules out from a CPU and a lower priority 2186 * task is scheduled in, a check is made to see if there's any RT tasks 2187 * on other CPUs that are waiting to run because a higher priority RT task 2188 * is currently running on its CPU. In this case, the CPU with multiple RT 2189 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 2190 * up that may be able to run one of its non-running queued RT tasks. 2191 * 2192 * All CPUs with overloaded RT tasks need to be notified as there is currently 2193 * no way to know which of these CPUs have the highest priority task waiting 2194 * to run. Instead of trying to take a spinlock on each of these CPUs, 2195 * which has shown to cause large latency when done on machines with many 2196 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 2197 * RT tasks waiting to run. 2198 * 2199 * Just sending an IPI to each of the CPUs is also an issue, as on large 2200 * count CPU machines, this can cause an IPI storm on a CPU, especially 2201 * if its the only CPU with multiple RT tasks queued, and a large number 2202 * of CPUs scheduling a lower priority task at the same time. 2203 * 2204 * Each root domain has its own irq work function that can iterate over 2205 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 2206 * task must be checked if there's one or many CPUs that are lowering 2207 * their priority, there's a single irq work iterator that will try to 2208 * push off RT tasks that are waiting to run. 2209 * 2210 * When a CPU schedules a lower priority task, it will kick off the 2211 * irq work iterator that will jump to each CPU with overloaded RT tasks. 2212 * As it only takes the first CPU that schedules a lower priority task 2213 * to start the process, the rto_start variable is incremented and if 2214 * the atomic result is one, then that CPU will try to take the rto_lock. 2215 * This prevents high contention on the lock as the process handles all 2216 * CPUs scheduling lower priority tasks. 2217 * 2218 * All CPUs that are scheduling a lower priority task will increment the 2219 * rt_loop_next variable. This will make sure that the irq work iterator 2220 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 2221 * priority task, even if the iterator is in the middle of a scan. Incrementing 2222 * the rt_loop_next will cause the iterator to perform another scan. 2223 * 2224 */ 2225 static int rto_next_cpu(struct root_domain *rd) 2226 { 2227 int next; 2228 int cpu; 2229 2230 /* 2231 * When starting the IPI RT pushing, the rto_cpu is set to -1, 2232 * rt_next_cpu() will simply return the first CPU found in 2233 * the rto_mask. 2234 * 2235 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it 2236 * will return the next CPU found in the rto_mask. 2237 * 2238 * If there are no more CPUs left in the rto_mask, then a check is made 2239 * against rto_loop and rto_loop_next. rto_loop is only updated with 2240 * the rto_lock held, but any CPU may increment the rto_loop_next 2241 * without any locking. 2242 */ 2243 for (;;) { 2244 2245 /* When rto_cpu is -1 this acts like cpumask_first() */ 2246 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 2247 2248 rd->rto_cpu = cpu; 2249 2250 if (cpu < nr_cpu_ids) 2251 return cpu; 2252 2253 rd->rto_cpu = -1; 2254 2255 /* 2256 * ACQUIRE ensures we see the @rto_mask changes 2257 * made prior to the @next value observed. 2258 * 2259 * Matches WMB in rt_set_overload(). 2260 */ 2261 next = atomic_read_acquire(&rd->rto_loop_next); 2262 2263 if (rd->rto_loop == next) 2264 break; 2265 2266 rd->rto_loop = next; 2267 } 2268 2269 return -1; 2270 } 2271 2272 static inline bool rto_start_trylock(atomic_t *v) 2273 { 2274 return !atomic_cmpxchg_acquire(v, 0, 1); 2275 } 2276 2277 static inline void rto_start_unlock(atomic_t *v) 2278 { 2279 atomic_set_release(v, 0); 2280 } 2281 2282 static void tell_cpu_to_push(struct rq *rq) 2283 { 2284 int cpu = -1; 2285 2286 /* Keep the loop going if the IPI is currently active */ 2287 atomic_inc(&rq->rd->rto_loop_next); 2288 2289 /* Only one CPU can initiate a loop at a time */ 2290 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 2291 return; 2292 2293 raw_spin_lock(&rq->rd->rto_lock); 2294 2295 /* 2296 * The rto_cpu is updated under the lock, if it has a valid CPU 2297 * then the IPI is still running and will continue due to the 2298 * update to loop_next, and nothing needs to be done here. 2299 * Otherwise it is finishing up and an ipi needs to be sent. 2300 */ 2301 if (rq->rd->rto_cpu < 0) 2302 cpu = rto_next_cpu(rq->rd); 2303 2304 raw_spin_unlock(&rq->rd->rto_lock); 2305 2306 rto_start_unlock(&rq->rd->rto_loop_start); 2307 2308 if (cpu >= 0) { 2309 /* Make sure the rd does not get freed while pushing */ 2310 sched_get_rd(rq->rd); 2311 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 2312 } 2313 } 2314 2315 /* Called from hardirq context */ 2316 void rto_push_irq_work_func(struct irq_work *work) 2317 { 2318 struct root_domain *rd = 2319 container_of(work, struct root_domain, rto_push_work); 2320 struct rq *rq; 2321 int cpu; 2322 2323 rq = this_rq(); 2324 2325 /* 2326 * We do not need to grab the lock to check for has_pushable_tasks. 2327 * When it gets updated, a check is made if a push is possible. 2328 */ 2329 if (has_pushable_tasks(rq)) { 2330 raw_spin_rq_lock(rq); 2331 while (push_rt_task(rq, true)) 2332 ; 2333 raw_spin_rq_unlock(rq); 2334 } 2335 2336 raw_spin_lock(&rd->rto_lock); 2337 2338 /* Pass the IPI to the next rt overloaded queue */ 2339 cpu = rto_next_cpu(rd); 2340 2341 raw_spin_unlock(&rd->rto_lock); 2342 2343 if (cpu < 0) { 2344 sched_put_rd(rd); 2345 return; 2346 } 2347 2348 /* Try the next RT overloaded CPU */ 2349 irq_work_queue_on(&rd->rto_push_work, cpu); 2350 } 2351 #endif /* HAVE_RT_PUSH_IPI */ 2352 2353 static void pull_rt_task(struct rq *this_rq) 2354 { 2355 int this_cpu = this_rq->cpu, cpu; 2356 bool resched = false; 2357 struct task_struct *p, *push_task; 2358 struct rq *src_rq; 2359 int rt_overload_count = rt_overloaded(this_rq); 2360 2361 if (likely(!rt_overload_count)) 2362 return; 2363 2364 /* 2365 * Match the barrier from rt_set_overloaded; this guarantees that if we 2366 * see overloaded we must also see the rto_mask bit. 2367 */ 2368 smp_rmb(); 2369 2370 /* If we are the only overloaded CPU do nothing */ 2371 if (rt_overload_count == 1 && 2372 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2373 return; 2374 2375 #ifdef HAVE_RT_PUSH_IPI 2376 if (sched_feat(RT_PUSH_IPI)) { 2377 tell_cpu_to_push(this_rq); 2378 return; 2379 } 2380 #endif 2381 2382 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2383 if (this_cpu == cpu) 2384 continue; 2385 2386 src_rq = cpu_rq(cpu); 2387 2388 /* 2389 * Don't bother taking the src_rq->lock if the next highest 2390 * task is known to be lower-priority than our current task. 2391 * This may look racy, but if this value is about to go 2392 * logically higher, the src_rq will push this task away. 2393 * And if its going logically lower, we do not care 2394 */ 2395 if (src_rq->rt.highest_prio.next >= 2396 this_rq->rt.highest_prio.curr) 2397 continue; 2398 2399 /* 2400 * We can potentially drop this_rq's lock in 2401 * double_lock_balance, and another CPU could 2402 * alter this_rq 2403 */ 2404 push_task = NULL; 2405 double_lock_balance(this_rq, src_rq); 2406 2407 /* 2408 * We can pull only a task, which is pushable 2409 * on its rq, and no others. 2410 */ 2411 p = pick_highest_pushable_task(src_rq, this_cpu); 2412 2413 /* 2414 * Do we have an RT task that preempts 2415 * the to-be-scheduled task? 2416 */ 2417 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2418 WARN_ON(p == src_rq->curr); 2419 WARN_ON(!task_on_rq_queued(p)); 2420 2421 /* 2422 * There's a chance that p is higher in priority 2423 * than what's currently running on its CPU. 2424 * This is just that p is waking up and hasn't 2425 * had a chance to schedule. We only pull 2426 * p if it is lower in priority than the 2427 * current task on the run queue 2428 */ 2429 if (p->prio < src_rq->curr->prio) 2430 goto skip; 2431 2432 if (is_migration_disabled(p)) { 2433 push_task = get_push_task(src_rq); 2434 } else { 2435 deactivate_task(src_rq, p, 0); 2436 set_task_cpu(p, this_cpu); 2437 activate_task(this_rq, p, 0); 2438 resched = true; 2439 } 2440 /* 2441 * We continue with the search, just in 2442 * case there's an even higher prio task 2443 * in another runqueue. (low likelihood 2444 * but possible) 2445 */ 2446 } 2447 skip: 2448 double_unlock_balance(this_rq, src_rq); 2449 2450 if (push_task) { 2451 raw_spin_rq_unlock(this_rq); 2452 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2453 push_task, &src_rq->push_work); 2454 raw_spin_rq_lock(this_rq); 2455 } 2456 } 2457 2458 if (resched) 2459 resched_curr(this_rq); 2460 } 2461 2462 /* 2463 * If we are not running and we are not going to reschedule soon, we should 2464 * try to push tasks away now 2465 */ 2466 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2467 { 2468 bool need_to_push = !task_on_cpu(rq, p) && 2469 !test_tsk_need_resched(rq->curr) && 2470 p->nr_cpus_allowed > 1 && 2471 (dl_task(rq->curr) || rt_task(rq->curr)) && 2472 (rq->curr->nr_cpus_allowed < 2 || 2473 rq->curr->prio <= p->prio); 2474 2475 if (need_to_push) 2476 push_rt_tasks(rq); 2477 } 2478 2479 /* Assumes rq->lock is held */ 2480 static void rq_online_rt(struct rq *rq) 2481 { 2482 if (rq->rt.overloaded) 2483 rt_set_overload(rq); 2484 2485 __enable_runtime(rq); 2486 2487 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2488 } 2489 2490 /* Assumes rq->lock is held */ 2491 static void rq_offline_rt(struct rq *rq) 2492 { 2493 if (rq->rt.overloaded) 2494 rt_clear_overload(rq); 2495 2496 __disable_runtime(rq); 2497 2498 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2499 } 2500 2501 /* 2502 * When switch from the rt queue, we bring ourselves to a position 2503 * that we might want to pull RT tasks from other runqueues. 2504 */ 2505 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2506 { 2507 /* 2508 * If there are other RT tasks then we will reschedule 2509 * and the scheduling of the other RT tasks will handle 2510 * the balancing. But if we are the last RT task 2511 * we may need to handle the pulling of RT tasks 2512 * now. 2513 */ 2514 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2515 return; 2516 2517 rt_queue_pull_task(rq); 2518 } 2519 2520 void __init init_sched_rt_class(void) 2521 { 2522 unsigned int i; 2523 2524 for_each_possible_cpu(i) { 2525 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2526 GFP_KERNEL, cpu_to_node(i)); 2527 } 2528 } 2529 #endif /* CONFIG_SMP */ 2530 2531 /* 2532 * When switching a task to RT, we may overload the runqueue 2533 * with RT tasks. In this case we try to push them off to 2534 * other runqueues. 2535 */ 2536 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2537 { 2538 /* 2539 * If we are running, update the avg_rt tracking, as the running time 2540 * will now on be accounted into the latter. 2541 */ 2542 if (task_current(rq, p)) { 2543 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2544 return; 2545 } 2546 2547 /* 2548 * If we are not running we may need to preempt the current 2549 * running task. If that current running task is also an RT task 2550 * then see if we can move to another run queue. 2551 */ 2552 if (task_on_rq_queued(p)) { 2553 #ifdef CONFIG_SMP 2554 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2555 rt_queue_push_tasks(rq); 2556 #endif /* CONFIG_SMP */ 2557 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) 2558 resched_curr(rq); 2559 } 2560 } 2561 2562 /* 2563 * Priority of the task has changed. This may cause 2564 * us to initiate a push or pull. 2565 */ 2566 static void 2567 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2568 { 2569 if (!task_on_rq_queued(p)) 2570 return; 2571 2572 if (task_current(rq, p)) { 2573 #ifdef CONFIG_SMP 2574 /* 2575 * If our priority decreases while running, we 2576 * may need to pull tasks to this runqueue. 2577 */ 2578 if (oldprio < p->prio) 2579 rt_queue_pull_task(rq); 2580 2581 /* 2582 * If there's a higher priority task waiting to run 2583 * then reschedule. 2584 */ 2585 if (p->prio > rq->rt.highest_prio.curr) 2586 resched_curr(rq); 2587 #else 2588 /* For UP simply resched on drop of prio */ 2589 if (oldprio < p->prio) 2590 resched_curr(rq); 2591 #endif /* CONFIG_SMP */ 2592 } else { 2593 /* 2594 * This task is not running, but if it is 2595 * greater than the current running task 2596 * then reschedule. 2597 */ 2598 if (p->prio < rq->curr->prio) 2599 resched_curr(rq); 2600 } 2601 } 2602 2603 #ifdef CONFIG_POSIX_TIMERS 2604 static void watchdog(struct rq *rq, struct task_struct *p) 2605 { 2606 unsigned long soft, hard; 2607 2608 /* max may change after cur was read, this will be fixed next tick */ 2609 soft = task_rlimit(p, RLIMIT_RTTIME); 2610 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2611 2612 if (soft != RLIM_INFINITY) { 2613 unsigned long next; 2614 2615 if (p->rt.watchdog_stamp != jiffies) { 2616 p->rt.timeout++; 2617 p->rt.watchdog_stamp = jiffies; 2618 } 2619 2620 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2621 if (p->rt.timeout > next) { 2622 posix_cputimers_rt_watchdog(&p->posix_cputimers, 2623 p->se.sum_exec_runtime); 2624 } 2625 } 2626 } 2627 #else 2628 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2629 #endif 2630 2631 /* 2632 * scheduler tick hitting a task of our scheduling class. 2633 * 2634 * NOTE: This function can be called remotely by the tick offload that 2635 * goes along full dynticks. Therefore no local assumption can be made 2636 * and everything must be accessed through the @rq and @curr passed in 2637 * parameters. 2638 */ 2639 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2640 { 2641 struct sched_rt_entity *rt_se = &p->rt; 2642 2643 update_curr_rt(rq); 2644 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2645 2646 watchdog(rq, p); 2647 2648 /* 2649 * RR tasks need a special form of timeslice management. 2650 * FIFO tasks have no timeslices. 2651 */ 2652 if (p->policy != SCHED_RR) 2653 return; 2654 2655 if (--p->rt.time_slice) 2656 return; 2657 2658 p->rt.time_slice = sched_rr_timeslice; 2659 2660 /* 2661 * Requeue to the end of queue if we (and all of our ancestors) are not 2662 * the only element on the queue 2663 */ 2664 for_each_sched_rt_entity(rt_se) { 2665 if (rt_se->run_list.prev != rt_se->run_list.next) { 2666 requeue_task_rt(rq, p, 0); 2667 resched_curr(rq); 2668 return; 2669 } 2670 } 2671 } 2672 2673 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2674 { 2675 /* 2676 * Time slice is 0 for SCHED_FIFO tasks 2677 */ 2678 if (task->policy == SCHED_RR) 2679 return sched_rr_timeslice; 2680 else 2681 return 0; 2682 } 2683 2684 #ifdef CONFIG_SCHED_CORE 2685 static int task_is_throttled_rt(struct task_struct *p, int cpu) 2686 { 2687 struct rt_rq *rt_rq; 2688 2689 #ifdef CONFIG_RT_GROUP_SCHED 2690 rt_rq = task_group(p)->rt_rq[cpu]; 2691 #else 2692 rt_rq = &cpu_rq(cpu)->rt; 2693 #endif 2694 2695 return rt_rq_throttled(rt_rq); 2696 } 2697 #endif 2698 2699 DEFINE_SCHED_CLASS(rt) = { 2700 2701 .enqueue_task = enqueue_task_rt, 2702 .dequeue_task = dequeue_task_rt, 2703 .yield_task = yield_task_rt, 2704 2705 .check_preempt_curr = check_preempt_curr_rt, 2706 2707 .pick_next_task = pick_next_task_rt, 2708 .put_prev_task = put_prev_task_rt, 2709 .set_next_task = set_next_task_rt, 2710 2711 #ifdef CONFIG_SMP 2712 .balance = balance_rt, 2713 .pick_task = pick_task_rt, 2714 .select_task_rq = select_task_rq_rt, 2715 .set_cpus_allowed = set_cpus_allowed_common, 2716 .rq_online = rq_online_rt, 2717 .rq_offline = rq_offline_rt, 2718 .task_woken = task_woken_rt, 2719 .switched_from = switched_from_rt, 2720 .find_lock_rq = find_lock_lowest_rq, 2721 #endif 2722 2723 .task_tick = task_tick_rt, 2724 2725 .get_rr_interval = get_rr_interval_rt, 2726 2727 .prio_changed = prio_changed_rt, 2728 .switched_to = switched_to_rt, 2729 2730 .update_curr = update_curr_rt, 2731 2732 #ifdef CONFIG_SCHED_CORE 2733 .task_is_throttled = task_is_throttled_rt, 2734 #endif 2735 2736 #ifdef CONFIG_UCLAMP_TASK 2737 .uclamp_enabled = 1, 2738 #endif 2739 }; 2740 2741 #ifdef CONFIG_RT_GROUP_SCHED 2742 /* 2743 * Ensure that the real time constraints are schedulable. 2744 */ 2745 static DEFINE_MUTEX(rt_constraints_mutex); 2746 2747 static inline int tg_has_rt_tasks(struct task_group *tg) 2748 { 2749 struct task_struct *task; 2750 struct css_task_iter it; 2751 int ret = 0; 2752 2753 /* 2754 * Autogroups do not have RT tasks; see autogroup_create(). 2755 */ 2756 if (task_group_is_autogroup(tg)) 2757 return 0; 2758 2759 css_task_iter_start(&tg->css, 0, &it); 2760 while (!ret && (task = css_task_iter_next(&it))) 2761 ret |= rt_task(task); 2762 css_task_iter_end(&it); 2763 2764 return ret; 2765 } 2766 2767 struct rt_schedulable_data { 2768 struct task_group *tg; 2769 u64 rt_period; 2770 u64 rt_runtime; 2771 }; 2772 2773 static int tg_rt_schedulable(struct task_group *tg, void *data) 2774 { 2775 struct rt_schedulable_data *d = data; 2776 struct task_group *child; 2777 unsigned long total, sum = 0; 2778 u64 period, runtime; 2779 2780 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2781 runtime = tg->rt_bandwidth.rt_runtime; 2782 2783 if (tg == d->tg) { 2784 period = d->rt_period; 2785 runtime = d->rt_runtime; 2786 } 2787 2788 /* 2789 * Cannot have more runtime than the period. 2790 */ 2791 if (runtime > period && runtime != RUNTIME_INF) 2792 return -EINVAL; 2793 2794 /* 2795 * Ensure we don't starve existing RT tasks if runtime turns zero. 2796 */ 2797 if (rt_bandwidth_enabled() && !runtime && 2798 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg)) 2799 return -EBUSY; 2800 2801 total = to_ratio(period, runtime); 2802 2803 /* 2804 * Nobody can have more than the global setting allows. 2805 */ 2806 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2807 return -EINVAL; 2808 2809 /* 2810 * The sum of our children's runtime should not exceed our own. 2811 */ 2812 list_for_each_entry_rcu(child, &tg->children, siblings) { 2813 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2814 runtime = child->rt_bandwidth.rt_runtime; 2815 2816 if (child == d->tg) { 2817 period = d->rt_period; 2818 runtime = d->rt_runtime; 2819 } 2820 2821 sum += to_ratio(period, runtime); 2822 } 2823 2824 if (sum > total) 2825 return -EINVAL; 2826 2827 return 0; 2828 } 2829 2830 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2831 { 2832 int ret; 2833 2834 struct rt_schedulable_data data = { 2835 .tg = tg, 2836 .rt_period = period, 2837 .rt_runtime = runtime, 2838 }; 2839 2840 rcu_read_lock(); 2841 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2842 rcu_read_unlock(); 2843 2844 return ret; 2845 } 2846 2847 static int tg_set_rt_bandwidth(struct task_group *tg, 2848 u64 rt_period, u64 rt_runtime) 2849 { 2850 int i, err = 0; 2851 2852 /* 2853 * Disallowing the root group RT runtime is BAD, it would disallow the 2854 * kernel creating (and or operating) RT threads. 2855 */ 2856 if (tg == &root_task_group && rt_runtime == 0) 2857 return -EINVAL; 2858 2859 /* No period doesn't make any sense. */ 2860 if (rt_period == 0) 2861 return -EINVAL; 2862 2863 /* 2864 * Bound quota to defend quota against overflow during bandwidth shift. 2865 */ 2866 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime) 2867 return -EINVAL; 2868 2869 mutex_lock(&rt_constraints_mutex); 2870 err = __rt_schedulable(tg, rt_period, rt_runtime); 2871 if (err) 2872 goto unlock; 2873 2874 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2875 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2876 tg->rt_bandwidth.rt_runtime = rt_runtime; 2877 2878 for_each_possible_cpu(i) { 2879 struct rt_rq *rt_rq = tg->rt_rq[i]; 2880 2881 raw_spin_lock(&rt_rq->rt_runtime_lock); 2882 rt_rq->rt_runtime = rt_runtime; 2883 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2884 } 2885 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2886 unlock: 2887 mutex_unlock(&rt_constraints_mutex); 2888 2889 return err; 2890 } 2891 2892 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2893 { 2894 u64 rt_runtime, rt_period; 2895 2896 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2897 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2898 if (rt_runtime_us < 0) 2899 rt_runtime = RUNTIME_INF; 2900 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) 2901 return -EINVAL; 2902 2903 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2904 } 2905 2906 long sched_group_rt_runtime(struct task_group *tg) 2907 { 2908 u64 rt_runtime_us; 2909 2910 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2911 return -1; 2912 2913 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2914 do_div(rt_runtime_us, NSEC_PER_USEC); 2915 return rt_runtime_us; 2916 } 2917 2918 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2919 { 2920 u64 rt_runtime, rt_period; 2921 2922 if (rt_period_us > U64_MAX / NSEC_PER_USEC) 2923 return -EINVAL; 2924 2925 rt_period = rt_period_us * NSEC_PER_USEC; 2926 rt_runtime = tg->rt_bandwidth.rt_runtime; 2927 2928 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2929 } 2930 2931 long sched_group_rt_period(struct task_group *tg) 2932 { 2933 u64 rt_period_us; 2934 2935 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2936 do_div(rt_period_us, NSEC_PER_USEC); 2937 return rt_period_us; 2938 } 2939 2940 #ifdef CONFIG_SYSCTL 2941 static int sched_rt_global_constraints(void) 2942 { 2943 int ret = 0; 2944 2945 mutex_lock(&rt_constraints_mutex); 2946 ret = __rt_schedulable(NULL, 0, 0); 2947 mutex_unlock(&rt_constraints_mutex); 2948 2949 return ret; 2950 } 2951 #endif /* CONFIG_SYSCTL */ 2952 2953 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2954 { 2955 /* Don't accept realtime tasks when there is no way for them to run */ 2956 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2957 return 0; 2958 2959 return 1; 2960 } 2961 2962 #else /* !CONFIG_RT_GROUP_SCHED */ 2963 2964 #ifdef CONFIG_SYSCTL 2965 static int sched_rt_global_constraints(void) 2966 { 2967 unsigned long flags; 2968 int i; 2969 2970 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2971 for_each_possible_cpu(i) { 2972 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2973 2974 raw_spin_lock(&rt_rq->rt_runtime_lock); 2975 rt_rq->rt_runtime = global_rt_runtime(); 2976 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2977 } 2978 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2979 2980 return 0; 2981 } 2982 #endif /* CONFIG_SYSCTL */ 2983 #endif /* CONFIG_RT_GROUP_SCHED */ 2984 2985 #ifdef CONFIG_SYSCTL 2986 static int sched_rt_global_validate(void) 2987 { 2988 if (sysctl_sched_rt_period <= 0) 2989 return -EINVAL; 2990 2991 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2992 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) || 2993 ((u64)sysctl_sched_rt_runtime * 2994 NSEC_PER_USEC > max_rt_runtime))) 2995 return -EINVAL; 2996 2997 return 0; 2998 } 2999 3000 static void sched_rt_do_global(void) 3001 { 3002 unsigned long flags; 3003 3004 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 3005 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 3006 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 3007 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 3008 } 3009 3010 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer, 3011 size_t *lenp, loff_t *ppos) 3012 { 3013 int old_period, old_runtime; 3014 static DEFINE_MUTEX(mutex); 3015 int ret; 3016 3017 mutex_lock(&mutex); 3018 old_period = sysctl_sched_rt_period; 3019 old_runtime = sysctl_sched_rt_runtime; 3020 3021 ret = proc_dointvec(table, write, buffer, lenp, ppos); 3022 3023 if (!ret && write) { 3024 ret = sched_rt_global_validate(); 3025 if (ret) 3026 goto undo; 3027 3028 ret = sched_dl_global_validate(); 3029 if (ret) 3030 goto undo; 3031 3032 ret = sched_rt_global_constraints(); 3033 if (ret) 3034 goto undo; 3035 3036 sched_rt_do_global(); 3037 sched_dl_do_global(); 3038 } 3039 if (0) { 3040 undo: 3041 sysctl_sched_rt_period = old_period; 3042 sysctl_sched_rt_runtime = old_runtime; 3043 } 3044 mutex_unlock(&mutex); 3045 3046 return ret; 3047 } 3048 3049 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer, 3050 size_t *lenp, loff_t *ppos) 3051 { 3052 int ret; 3053 static DEFINE_MUTEX(mutex); 3054 3055 mutex_lock(&mutex); 3056 ret = proc_dointvec(table, write, buffer, lenp, ppos); 3057 /* 3058 * Make sure that internally we keep jiffies. 3059 * Also, writing zero resets the timeslice to default: 3060 */ 3061 if (!ret && write) { 3062 sched_rr_timeslice = 3063 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 3064 msecs_to_jiffies(sysctl_sched_rr_timeslice); 3065 } 3066 mutex_unlock(&mutex); 3067 3068 return ret; 3069 } 3070 #endif /* CONFIG_SYSCTL */ 3071 3072 #ifdef CONFIG_SCHED_DEBUG 3073 void print_rt_stats(struct seq_file *m, int cpu) 3074 { 3075 rt_rq_iter_t iter; 3076 struct rt_rq *rt_rq; 3077 3078 rcu_read_lock(); 3079 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 3080 print_rt_rq(m, cpu, rt_rq); 3081 rcu_read_unlock(); 3082 } 3083 #endif /* CONFIG_SCHED_DEBUG */ 3084