1 /* 2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 3 * policies) 4 */ 5 6 #include "sched.h" 7 8 #include <linux/slab.h> 9 10 int sched_rr_timeslice = RR_TIMESLICE; 11 12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 13 14 struct rt_bandwidth def_rt_bandwidth; 15 16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 17 { 18 struct rt_bandwidth *rt_b = 19 container_of(timer, struct rt_bandwidth, rt_period_timer); 20 ktime_t now; 21 int overrun; 22 int idle = 0; 23 24 for (;;) { 25 now = hrtimer_cb_get_time(timer); 26 overrun = hrtimer_forward(timer, now, rt_b->rt_period); 27 28 if (!overrun) 29 break; 30 31 idle = do_sched_rt_period_timer(rt_b, overrun); 32 } 33 34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 35 } 36 37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 38 { 39 rt_b->rt_period = ns_to_ktime(period); 40 rt_b->rt_runtime = runtime; 41 42 raw_spin_lock_init(&rt_b->rt_runtime_lock); 43 44 hrtimer_init(&rt_b->rt_period_timer, 45 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 46 rt_b->rt_period_timer.function = sched_rt_period_timer; 47 } 48 49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 50 { 51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 52 return; 53 54 if (hrtimer_active(&rt_b->rt_period_timer)) 55 return; 56 57 raw_spin_lock(&rt_b->rt_runtime_lock); 58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period); 59 raw_spin_unlock(&rt_b->rt_runtime_lock); 60 } 61 62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) 63 { 64 struct rt_prio_array *array; 65 int i; 66 67 array = &rt_rq->active; 68 for (i = 0; i < MAX_RT_PRIO; i++) { 69 INIT_LIST_HEAD(array->queue + i); 70 __clear_bit(i, array->bitmap); 71 } 72 /* delimiter for bitsearch: */ 73 __set_bit(MAX_RT_PRIO, array->bitmap); 74 75 #if defined CONFIG_SMP 76 rt_rq->highest_prio.curr = MAX_RT_PRIO; 77 rt_rq->highest_prio.next = MAX_RT_PRIO; 78 rt_rq->rt_nr_migratory = 0; 79 rt_rq->overloaded = 0; 80 plist_head_init(&rt_rq->pushable_tasks); 81 #endif 82 /* We start is dequeued state, because no RT tasks are queued */ 83 rt_rq->rt_queued = 0; 84 85 rt_rq->rt_time = 0; 86 rt_rq->rt_throttled = 0; 87 rt_rq->rt_runtime = 0; 88 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 89 } 90 91 #ifdef CONFIG_RT_GROUP_SCHED 92 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 93 { 94 hrtimer_cancel(&rt_b->rt_period_timer); 95 } 96 97 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 98 99 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 100 { 101 #ifdef CONFIG_SCHED_DEBUG 102 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 103 #endif 104 return container_of(rt_se, struct task_struct, rt); 105 } 106 107 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 108 { 109 return rt_rq->rq; 110 } 111 112 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 113 { 114 return rt_se->rt_rq; 115 } 116 117 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 118 { 119 struct rt_rq *rt_rq = rt_se->rt_rq; 120 121 return rt_rq->rq; 122 } 123 124 void free_rt_sched_group(struct task_group *tg) 125 { 126 int i; 127 128 if (tg->rt_se) 129 destroy_rt_bandwidth(&tg->rt_bandwidth); 130 131 for_each_possible_cpu(i) { 132 if (tg->rt_rq) 133 kfree(tg->rt_rq[i]); 134 if (tg->rt_se) 135 kfree(tg->rt_se[i]); 136 } 137 138 kfree(tg->rt_rq); 139 kfree(tg->rt_se); 140 } 141 142 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 143 struct sched_rt_entity *rt_se, int cpu, 144 struct sched_rt_entity *parent) 145 { 146 struct rq *rq = cpu_rq(cpu); 147 148 rt_rq->highest_prio.curr = MAX_RT_PRIO; 149 rt_rq->rt_nr_boosted = 0; 150 rt_rq->rq = rq; 151 rt_rq->tg = tg; 152 153 tg->rt_rq[cpu] = rt_rq; 154 tg->rt_se[cpu] = rt_se; 155 156 if (!rt_se) 157 return; 158 159 if (!parent) 160 rt_se->rt_rq = &rq->rt; 161 else 162 rt_se->rt_rq = parent->my_q; 163 164 rt_se->my_q = rt_rq; 165 rt_se->parent = parent; 166 INIT_LIST_HEAD(&rt_se->run_list); 167 } 168 169 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 170 { 171 struct rt_rq *rt_rq; 172 struct sched_rt_entity *rt_se; 173 int i; 174 175 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); 176 if (!tg->rt_rq) 177 goto err; 178 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); 179 if (!tg->rt_se) 180 goto err; 181 182 init_rt_bandwidth(&tg->rt_bandwidth, 183 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 184 185 for_each_possible_cpu(i) { 186 rt_rq = kzalloc_node(sizeof(struct rt_rq), 187 GFP_KERNEL, cpu_to_node(i)); 188 if (!rt_rq) 189 goto err; 190 191 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 192 GFP_KERNEL, cpu_to_node(i)); 193 if (!rt_se) 194 goto err_free_rq; 195 196 init_rt_rq(rt_rq, cpu_rq(i)); 197 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 198 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 199 } 200 201 return 1; 202 203 err_free_rq: 204 kfree(rt_rq); 205 err: 206 return 0; 207 } 208 209 #else /* CONFIG_RT_GROUP_SCHED */ 210 211 #define rt_entity_is_task(rt_se) (1) 212 213 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 214 { 215 return container_of(rt_se, struct task_struct, rt); 216 } 217 218 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 219 { 220 return container_of(rt_rq, struct rq, rt); 221 } 222 223 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 224 { 225 struct task_struct *p = rt_task_of(rt_se); 226 227 return task_rq(p); 228 } 229 230 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 231 { 232 struct rq *rq = rq_of_rt_se(rt_se); 233 234 return &rq->rt; 235 } 236 237 void free_rt_sched_group(struct task_group *tg) { } 238 239 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 240 { 241 return 1; 242 } 243 #endif /* CONFIG_RT_GROUP_SCHED */ 244 245 #ifdef CONFIG_SMP 246 247 static int pull_rt_task(struct rq *this_rq); 248 249 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 250 { 251 /* Try to pull RT tasks here if we lower this rq's prio */ 252 return rq->rt.highest_prio.curr > prev->prio; 253 } 254 255 static inline int rt_overloaded(struct rq *rq) 256 { 257 return atomic_read(&rq->rd->rto_count); 258 } 259 260 static inline void rt_set_overload(struct rq *rq) 261 { 262 if (!rq->online) 263 return; 264 265 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 266 /* 267 * Make sure the mask is visible before we set 268 * the overload count. That is checked to determine 269 * if we should look at the mask. It would be a shame 270 * if we looked at the mask, but the mask was not 271 * updated yet. 272 * 273 * Matched by the barrier in pull_rt_task(). 274 */ 275 smp_wmb(); 276 atomic_inc(&rq->rd->rto_count); 277 } 278 279 static inline void rt_clear_overload(struct rq *rq) 280 { 281 if (!rq->online) 282 return; 283 284 /* the order here really doesn't matter */ 285 atomic_dec(&rq->rd->rto_count); 286 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 287 } 288 289 static void update_rt_migration(struct rt_rq *rt_rq) 290 { 291 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 292 if (!rt_rq->overloaded) { 293 rt_set_overload(rq_of_rt_rq(rt_rq)); 294 rt_rq->overloaded = 1; 295 } 296 } else if (rt_rq->overloaded) { 297 rt_clear_overload(rq_of_rt_rq(rt_rq)); 298 rt_rq->overloaded = 0; 299 } 300 } 301 302 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 303 { 304 struct task_struct *p; 305 306 if (!rt_entity_is_task(rt_se)) 307 return; 308 309 p = rt_task_of(rt_se); 310 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 311 312 rt_rq->rt_nr_total++; 313 if (p->nr_cpus_allowed > 1) 314 rt_rq->rt_nr_migratory++; 315 316 update_rt_migration(rt_rq); 317 } 318 319 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 320 { 321 struct task_struct *p; 322 323 if (!rt_entity_is_task(rt_se)) 324 return; 325 326 p = rt_task_of(rt_se); 327 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 328 329 rt_rq->rt_nr_total--; 330 if (p->nr_cpus_allowed > 1) 331 rt_rq->rt_nr_migratory--; 332 333 update_rt_migration(rt_rq); 334 } 335 336 static inline int has_pushable_tasks(struct rq *rq) 337 { 338 return !plist_head_empty(&rq->rt.pushable_tasks); 339 } 340 341 static inline void set_post_schedule(struct rq *rq) 342 { 343 /* 344 * We detect this state here so that we can avoid taking the RQ 345 * lock again later if there is no need to push 346 */ 347 rq->post_schedule = has_pushable_tasks(rq); 348 } 349 350 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 351 { 352 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 353 plist_node_init(&p->pushable_tasks, p->prio); 354 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 355 356 /* Update the highest prio pushable task */ 357 if (p->prio < rq->rt.highest_prio.next) 358 rq->rt.highest_prio.next = p->prio; 359 } 360 361 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 362 { 363 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 364 365 /* Update the new highest prio pushable task */ 366 if (has_pushable_tasks(rq)) { 367 p = plist_first_entry(&rq->rt.pushable_tasks, 368 struct task_struct, pushable_tasks); 369 rq->rt.highest_prio.next = p->prio; 370 } else 371 rq->rt.highest_prio.next = MAX_RT_PRIO; 372 } 373 374 #else 375 376 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 377 { 378 } 379 380 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 381 { 382 } 383 384 static inline 385 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 386 { 387 } 388 389 static inline 390 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 391 { 392 } 393 394 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 395 { 396 return false; 397 } 398 399 static inline int pull_rt_task(struct rq *this_rq) 400 { 401 return 0; 402 } 403 404 static inline void set_post_schedule(struct rq *rq) 405 { 406 } 407 #endif /* CONFIG_SMP */ 408 409 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 410 static void dequeue_top_rt_rq(struct rt_rq *rt_rq); 411 412 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 413 { 414 return !list_empty(&rt_se->run_list); 415 } 416 417 #ifdef CONFIG_RT_GROUP_SCHED 418 419 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 420 { 421 if (!rt_rq->tg) 422 return RUNTIME_INF; 423 424 return rt_rq->rt_runtime; 425 } 426 427 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 428 { 429 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 430 } 431 432 typedef struct task_group *rt_rq_iter_t; 433 434 static inline struct task_group *next_task_group(struct task_group *tg) 435 { 436 do { 437 tg = list_entry_rcu(tg->list.next, 438 typeof(struct task_group), list); 439 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 440 441 if (&tg->list == &task_groups) 442 tg = NULL; 443 444 return tg; 445 } 446 447 #define for_each_rt_rq(rt_rq, iter, rq) \ 448 for (iter = container_of(&task_groups, typeof(*iter), list); \ 449 (iter = next_task_group(iter)) && \ 450 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 451 452 #define for_each_sched_rt_entity(rt_se) \ 453 for (; rt_se; rt_se = rt_se->parent) 454 455 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 456 { 457 return rt_se->my_q; 458 } 459 460 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); 461 static void dequeue_rt_entity(struct sched_rt_entity *rt_se); 462 463 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 464 { 465 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 466 struct rq *rq = rq_of_rt_rq(rt_rq); 467 struct sched_rt_entity *rt_se; 468 469 int cpu = cpu_of(rq); 470 471 rt_se = rt_rq->tg->rt_se[cpu]; 472 473 if (rt_rq->rt_nr_running) { 474 if (!rt_se) 475 enqueue_top_rt_rq(rt_rq); 476 else if (!on_rt_rq(rt_se)) 477 enqueue_rt_entity(rt_se, false); 478 479 if (rt_rq->highest_prio.curr < curr->prio) 480 resched_curr(rq); 481 } 482 } 483 484 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 485 { 486 struct sched_rt_entity *rt_se; 487 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 488 489 rt_se = rt_rq->tg->rt_se[cpu]; 490 491 if (!rt_se) 492 dequeue_top_rt_rq(rt_rq); 493 else if (on_rt_rq(rt_se)) 494 dequeue_rt_entity(rt_se); 495 } 496 497 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 498 { 499 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 500 } 501 502 static int rt_se_boosted(struct sched_rt_entity *rt_se) 503 { 504 struct rt_rq *rt_rq = group_rt_rq(rt_se); 505 struct task_struct *p; 506 507 if (rt_rq) 508 return !!rt_rq->rt_nr_boosted; 509 510 p = rt_task_of(rt_se); 511 return p->prio != p->normal_prio; 512 } 513 514 #ifdef CONFIG_SMP 515 static inline const struct cpumask *sched_rt_period_mask(void) 516 { 517 return this_rq()->rd->span; 518 } 519 #else 520 static inline const struct cpumask *sched_rt_period_mask(void) 521 { 522 return cpu_online_mask; 523 } 524 #endif 525 526 static inline 527 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 528 { 529 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 530 } 531 532 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 533 { 534 return &rt_rq->tg->rt_bandwidth; 535 } 536 537 #else /* !CONFIG_RT_GROUP_SCHED */ 538 539 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 540 { 541 return rt_rq->rt_runtime; 542 } 543 544 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 545 { 546 return ktime_to_ns(def_rt_bandwidth.rt_period); 547 } 548 549 typedef struct rt_rq *rt_rq_iter_t; 550 551 #define for_each_rt_rq(rt_rq, iter, rq) \ 552 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 553 554 #define for_each_sched_rt_entity(rt_se) \ 555 for (; rt_se; rt_se = NULL) 556 557 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 558 { 559 return NULL; 560 } 561 562 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 563 { 564 struct rq *rq = rq_of_rt_rq(rt_rq); 565 566 if (!rt_rq->rt_nr_running) 567 return; 568 569 enqueue_top_rt_rq(rt_rq); 570 resched_curr(rq); 571 } 572 573 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 574 { 575 dequeue_top_rt_rq(rt_rq); 576 } 577 578 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 579 { 580 return rt_rq->rt_throttled; 581 } 582 583 static inline const struct cpumask *sched_rt_period_mask(void) 584 { 585 return cpu_online_mask; 586 } 587 588 static inline 589 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 590 { 591 return &cpu_rq(cpu)->rt; 592 } 593 594 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 595 { 596 return &def_rt_bandwidth; 597 } 598 599 #endif /* CONFIG_RT_GROUP_SCHED */ 600 601 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 602 { 603 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 604 605 return (hrtimer_active(&rt_b->rt_period_timer) || 606 rt_rq->rt_time < rt_b->rt_runtime); 607 } 608 609 #ifdef CONFIG_SMP 610 /* 611 * We ran out of runtime, see if we can borrow some from our neighbours. 612 */ 613 static int do_balance_runtime(struct rt_rq *rt_rq) 614 { 615 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 616 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 617 int i, weight, more = 0; 618 u64 rt_period; 619 620 weight = cpumask_weight(rd->span); 621 622 raw_spin_lock(&rt_b->rt_runtime_lock); 623 rt_period = ktime_to_ns(rt_b->rt_period); 624 for_each_cpu(i, rd->span) { 625 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 626 s64 diff; 627 628 if (iter == rt_rq) 629 continue; 630 631 raw_spin_lock(&iter->rt_runtime_lock); 632 /* 633 * Either all rqs have inf runtime and there's nothing to steal 634 * or __disable_runtime() below sets a specific rq to inf to 635 * indicate its been disabled and disalow stealing. 636 */ 637 if (iter->rt_runtime == RUNTIME_INF) 638 goto next; 639 640 /* 641 * From runqueues with spare time, take 1/n part of their 642 * spare time, but no more than our period. 643 */ 644 diff = iter->rt_runtime - iter->rt_time; 645 if (diff > 0) { 646 diff = div_u64((u64)diff, weight); 647 if (rt_rq->rt_runtime + diff > rt_period) 648 diff = rt_period - rt_rq->rt_runtime; 649 iter->rt_runtime -= diff; 650 rt_rq->rt_runtime += diff; 651 more = 1; 652 if (rt_rq->rt_runtime == rt_period) { 653 raw_spin_unlock(&iter->rt_runtime_lock); 654 break; 655 } 656 } 657 next: 658 raw_spin_unlock(&iter->rt_runtime_lock); 659 } 660 raw_spin_unlock(&rt_b->rt_runtime_lock); 661 662 return more; 663 } 664 665 /* 666 * Ensure this RQ takes back all the runtime it lend to its neighbours. 667 */ 668 static void __disable_runtime(struct rq *rq) 669 { 670 struct root_domain *rd = rq->rd; 671 rt_rq_iter_t iter; 672 struct rt_rq *rt_rq; 673 674 if (unlikely(!scheduler_running)) 675 return; 676 677 for_each_rt_rq(rt_rq, iter, rq) { 678 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 679 s64 want; 680 int i; 681 682 raw_spin_lock(&rt_b->rt_runtime_lock); 683 raw_spin_lock(&rt_rq->rt_runtime_lock); 684 /* 685 * Either we're all inf and nobody needs to borrow, or we're 686 * already disabled and thus have nothing to do, or we have 687 * exactly the right amount of runtime to take out. 688 */ 689 if (rt_rq->rt_runtime == RUNTIME_INF || 690 rt_rq->rt_runtime == rt_b->rt_runtime) 691 goto balanced; 692 raw_spin_unlock(&rt_rq->rt_runtime_lock); 693 694 /* 695 * Calculate the difference between what we started out with 696 * and what we current have, that's the amount of runtime 697 * we lend and now have to reclaim. 698 */ 699 want = rt_b->rt_runtime - rt_rq->rt_runtime; 700 701 /* 702 * Greedy reclaim, take back as much as we can. 703 */ 704 for_each_cpu(i, rd->span) { 705 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 706 s64 diff; 707 708 /* 709 * Can't reclaim from ourselves or disabled runqueues. 710 */ 711 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 712 continue; 713 714 raw_spin_lock(&iter->rt_runtime_lock); 715 if (want > 0) { 716 diff = min_t(s64, iter->rt_runtime, want); 717 iter->rt_runtime -= diff; 718 want -= diff; 719 } else { 720 iter->rt_runtime -= want; 721 want -= want; 722 } 723 raw_spin_unlock(&iter->rt_runtime_lock); 724 725 if (!want) 726 break; 727 } 728 729 raw_spin_lock(&rt_rq->rt_runtime_lock); 730 /* 731 * We cannot be left wanting - that would mean some runtime 732 * leaked out of the system. 733 */ 734 BUG_ON(want); 735 balanced: 736 /* 737 * Disable all the borrow logic by pretending we have inf 738 * runtime - in which case borrowing doesn't make sense. 739 */ 740 rt_rq->rt_runtime = RUNTIME_INF; 741 rt_rq->rt_throttled = 0; 742 raw_spin_unlock(&rt_rq->rt_runtime_lock); 743 raw_spin_unlock(&rt_b->rt_runtime_lock); 744 745 /* Make rt_rq available for pick_next_task() */ 746 sched_rt_rq_enqueue(rt_rq); 747 } 748 } 749 750 static void __enable_runtime(struct rq *rq) 751 { 752 rt_rq_iter_t iter; 753 struct rt_rq *rt_rq; 754 755 if (unlikely(!scheduler_running)) 756 return; 757 758 /* 759 * Reset each runqueue's bandwidth settings 760 */ 761 for_each_rt_rq(rt_rq, iter, rq) { 762 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 763 764 raw_spin_lock(&rt_b->rt_runtime_lock); 765 raw_spin_lock(&rt_rq->rt_runtime_lock); 766 rt_rq->rt_runtime = rt_b->rt_runtime; 767 rt_rq->rt_time = 0; 768 rt_rq->rt_throttled = 0; 769 raw_spin_unlock(&rt_rq->rt_runtime_lock); 770 raw_spin_unlock(&rt_b->rt_runtime_lock); 771 } 772 } 773 774 static int balance_runtime(struct rt_rq *rt_rq) 775 { 776 int more = 0; 777 778 if (!sched_feat(RT_RUNTIME_SHARE)) 779 return more; 780 781 if (rt_rq->rt_time > rt_rq->rt_runtime) { 782 raw_spin_unlock(&rt_rq->rt_runtime_lock); 783 more = do_balance_runtime(rt_rq); 784 raw_spin_lock(&rt_rq->rt_runtime_lock); 785 } 786 787 return more; 788 } 789 #else /* !CONFIG_SMP */ 790 static inline int balance_runtime(struct rt_rq *rt_rq) 791 { 792 return 0; 793 } 794 #endif /* CONFIG_SMP */ 795 796 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 797 { 798 int i, idle = 1, throttled = 0; 799 const struct cpumask *span; 800 801 span = sched_rt_period_mask(); 802 #ifdef CONFIG_RT_GROUP_SCHED 803 /* 804 * FIXME: isolated CPUs should really leave the root task group, 805 * whether they are isolcpus or were isolated via cpusets, lest 806 * the timer run on a CPU which does not service all runqueues, 807 * potentially leaving other CPUs indefinitely throttled. If 808 * isolation is really required, the user will turn the throttle 809 * off to kill the perturbations it causes anyway. Meanwhile, 810 * this maintains functionality for boot and/or troubleshooting. 811 */ 812 if (rt_b == &root_task_group.rt_bandwidth) 813 span = cpu_online_mask; 814 #endif 815 for_each_cpu(i, span) { 816 int enqueue = 0; 817 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 818 struct rq *rq = rq_of_rt_rq(rt_rq); 819 820 raw_spin_lock(&rq->lock); 821 if (rt_rq->rt_time) { 822 u64 runtime; 823 824 raw_spin_lock(&rt_rq->rt_runtime_lock); 825 if (rt_rq->rt_throttled) 826 balance_runtime(rt_rq); 827 runtime = rt_rq->rt_runtime; 828 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 829 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 830 rt_rq->rt_throttled = 0; 831 enqueue = 1; 832 833 /* 834 * When we're idle and a woken (rt) task is 835 * throttled check_preempt_curr() will set 836 * skip_update and the time between the wakeup 837 * and this unthrottle will get accounted as 838 * 'runtime'. 839 */ 840 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 841 rq_clock_skip_update(rq, false); 842 } 843 if (rt_rq->rt_time || rt_rq->rt_nr_running) 844 idle = 0; 845 raw_spin_unlock(&rt_rq->rt_runtime_lock); 846 } else if (rt_rq->rt_nr_running) { 847 idle = 0; 848 if (!rt_rq_throttled(rt_rq)) 849 enqueue = 1; 850 } 851 if (rt_rq->rt_throttled) 852 throttled = 1; 853 854 if (enqueue) 855 sched_rt_rq_enqueue(rt_rq); 856 raw_spin_unlock(&rq->lock); 857 } 858 859 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 860 return 1; 861 862 return idle; 863 } 864 865 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 866 { 867 #ifdef CONFIG_RT_GROUP_SCHED 868 struct rt_rq *rt_rq = group_rt_rq(rt_se); 869 870 if (rt_rq) 871 return rt_rq->highest_prio.curr; 872 #endif 873 874 return rt_task_of(rt_se)->prio; 875 } 876 877 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 878 { 879 u64 runtime = sched_rt_runtime(rt_rq); 880 881 if (rt_rq->rt_throttled) 882 return rt_rq_throttled(rt_rq); 883 884 if (runtime >= sched_rt_period(rt_rq)) 885 return 0; 886 887 balance_runtime(rt_rq); 888 runtime = sched_rt_runtime(rt_rq); 889 if (runtime == RUNTIME_INF) 890 return 0; 891 892 if (rt_rq->rt_time > runtime) { 893 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 894 895 /* 896 * Don't actually throttle groups that have no runtime assigned 897 * but accrue some time due to boosting. 898 */ 899 if (likely(rt_b->rt_runtime)) { 900 rt_rq->rt_throttled = 1; 901 printk_deferred_once("sched: RT throttling activated\n"); 902 } else { 903 /* 904 * In case we did anyway, make it go away, 905 * replenishment is a joke, since it will replenish us 906 * with exactly 0 ns. 907 */ 908 rt_rq->rt_time = 0; 909 } 910 911 if (rt_rq_throttled(rt_rq)) { 912 sched_rt_rq_dequeue(rt_rq); 913 return 1; 914 } 915 } 916 917 return 0; 918 } 919 920 /* 921 * Update the current task's runtime statistics. Skip current tasks that 922 * are not in our scheduling class. 923 */ 924 static void update_curr_rt(struct rq *rq) 925 { 926 struct task_struct *curr = rq->curr; 927 struct sched_rt_entity *rt_se = &curr->rt; 928 u64 delta_exec; 929 930 if (curr->sched_class != &rt_sched_class) 931 return; 932 933 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 934 if (unlikely((s64)delta_exec <= 0)) 935 return; 936 937 schedstat_set(curr->se.statistics.exec_max, 938 max(curr->se.statistics.exec_max, delta_exec)); 939 940 curr->se.sum_exec_runtime += delta_exec; 941 account_group_exec_runtime(curr, delta_exec); 942 943 curr->se.exec_start = rq_clock_task(rq); 944 cpuacct_charge(curr, delta_exec); 945 946 sched_rt_avg_update(rq, delta_exec); 947 948 if (!rt_bandwidth_enabled()) 949 return; 950 951 for_each_sched_rt_entity(rt_se) { 952 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 953 954 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 955 raw_spin_lock(&rt_rq->rt_runtime_lock); 956 rt_rq->rt_time += delta_exec; 957 if (sched_rt_runtime_exceeded(rt_rq)) 958 resched_curr(rq); 959 raw_spin_unlock(&rt_rq->rt_runtime_lock); 960 } 961 } 962 } 963 964 static void 965 dequeue_top_rt_rq(struct rt_rq *rt_rq) 966 { 967 struct rq *rq = rq_of_rt_rq(rt_rq); 968 969 BUG_ON(&rq->rt != rt_rq); 970 971 if (!rt_rq->rt_queued) 972 return; 973 974 BUG_ON(!rq->nr_running); 975 976 sub_nr_running(rq, rt_rq->rt_nr_running); 977 rt_rq->rt_queued = 0; 978 } 979 980 static void 981 enqueue_top_rt_rq(struct rt_rq *rt_rq) 982 { 983 struct rq *rq = rq_of_rt_rq(rt_rq); 984 985 BUG_ON(&rq->rt != rt_rq); 986 987 if (rt_rq->rt_queued) 988 return; 989 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running) 990 return; 991 992 add_nr_running(rq, rt_rq->rt_nr_running); 993 rt_rq->rt_queued = 1; 994 } 995 996 #if defined CONFIG_SMP 997 998 static void 999 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1000 { 1001 struct rq *rq = rq_of_rt_rq(rt_rq); 1002 1003 #ifdef CONFIG_RT_GROUP_SCHED 1004 /* 1005 * Change rq's cpupri only if rt_rq is the top queue. 1006 */ 1007 if (&rq->rt != rt_rq) 1008 return; 1009 #endif 1010 if (rq->online && prio < prev_prio) 1011 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1012 } 1013 1014 static void 1015 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1016 { 1017 struct rq *rq = rq_of_rt_rq(rt_rq); 1018 1019 #ifdef CONFIG_RT_GROUP_SCHED 1020 /* 1021 * Change rq's cpupri only if rt_rq is the top queue. 1022 */ 1023 if (&rq->rt != rt_rq) 1024 return; 1025 #endif 1026 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1027 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1028 } 1029 1030 #else /* CONFIG_SMP */ 1031 1032 static inline 1033 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1034 static inline 1035 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1036 1037 #endif /* CONFIG_SMP */ 1038 1039 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1040 static void 1041 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1042 { 1043 int prev_prio = rt_rq->highest_prio.curr; 1044 1045 if (prio < prev_prio) 1046 rt_rq->highest_prio.curr = prio; 1047 1048 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1049 } 1050 1051 static void 1052 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1053 { 1054 int prev_prio = rt_rq->highest_prio.curr; 1055 1056 if (rt_rq->rt_nr_running) { 1057 1058 WARN_ON(prio < prev_prio); 1059 1060 /* 1061 * This may have been our highest task, and therefore 1062 * we may have some recomputation to do 1063 */ 1064 if (prio == prev_prio) { 1065 struct rt_prio_array *array = &rt_rq->active; 1066 1067 rt_rq->highest_prio.curr = 1068 sched_find_first_bit(array->bitmap); 1069 } 1070 1071 } else 1072 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1073 1074 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1075 } 1076 1077 #else 1078 1079 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1080 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1081 1082 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1083 1084 #ifdef CONFIG_RT_GROUP_SCHED 1085 1086 static void 1087 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1088 { 1089 if (rt_se_boosted(rt_se)) 1090 rt_rq->rt_nr_boosted++; 1091 1092 if (rt_rq->tg) 1093 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1094 } 1095 1096 static void 1097 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1098 { 1099 if (rt_se_boosted(rt_se)) 1100 rt_rq->rt_nr_boosted--; 1101 1102 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1103 } 1104 1105 #else /* CONFIG_RT_GROUP_SCHED */ 1106 1107 static void 1108 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1109 { 1110 start_rt_bandwidth(&def_rt_bandwidth); 1111 } 1112 1113 static inline 1114 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1115 1116 #endif /* CONFIG_RT_GROUP_SCHED */ 1117 1118 static inline 1119 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1120 { 1121 struct rt_rq *group_rq = group_rt_rq(rt_se); 1122 1123 if (group_rq) 1124 return group_rq->rt_nr_running; 1125 else 1126 return 1; 1127 } 1128 1129 static inline 1130 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1131 { 1132 int prio = rt_se_prio(rt_se); 1133 1134 WARN_ON(!rt_prio(prio)); 1135 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1136 1137 inc_rt_prio(rt_rq, prio); 1138 inc_rt_migration(rt_se, rt_rq); 1139 inc_rt_group(rt_se, rt_rq); 1140 } 1141 1142 static inline 1143 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1144 { 1145 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1146 WARN_ON(!rt_rq->rt_nr_running); 1147 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1148 1149 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1150 dec_rt_migration(rt_se, rt_rq); 1151 dec_rt_group(rt_se, rt_rq); 1152 } 1153 1154 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) 1155 { 1156 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1157 struct rt_prio_array *array = &rt_rq->active; 1158 struct rt_rq *group_rq = group_rt_rq(rt_se); 1159 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1160 1161 /* 1162 * Don't enqueue the group if its throttled, or when empty. 1163 * The latter is a consequence of the former when a child group 1164 * get throttled and the current group doesn't have any other 1165 * active members. 1166 */ 1167 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) 1168 return; 1169 1170 if (head) 1171 list_add(&rt_se->run_list, queue); 1172 else 1173 list_add_tail(&rt_se->run_list, queue); 1174 __set_bit(rt_se_prio(rt_se), array->bitmap); 1175 1176 inc_rt_tasks(rt_se, rt_rq); 1177 } 1178 1179 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) 1180 { 1181 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1182 struct rt_prio_array *array = &rt_rq->active; 1183 1184 list_del_init(&rt_se->run_list); 1185 if (list_empty(array->queue + rt_se_prio(rt_se))) 1186 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1187 1188 dec_rt_tasks(rt_se, rt_rq); 1189 } 1190 1191 /* 1192 * Because the prio of an upper entry depends on the lower 1193 * entries, we must remove entries top - down. 1194 */ 1195 static void dequeue_rt_stack(struct sched_rt_entity *rt_se) 1196 { 1197 struct sched_rt_entity *back = NULL; 1198 1199 for_each_sched_rt_entity(rt_se) { 1200 rt_se->back = back; 1201 back = rt_se; 1202 } 1203 1204 dequeue_top_rt_rq(rt_rq_of_se(back)); 1205 1206 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1207 if (on_rt_rq(rt_se)) 1208 __dequeue_rt_entity(rt_se); 1209 } 1210 } 1211 1212 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) 1213 { 1214 struct rq *rq = rq_of_rt_se(rt_se); 1215 1216 dequeue_rt_stack(rt_se); 1217 for_each_sched_rt_entity(rt_se) 1218 __enqueue_rt_entity(rt_se, head); 1219 enqueue_top_rt_rq(&rq->rt); 1220 } 1221 1222 static void dequeue_rt_entity(struct sched_rt_entity *rt_se) 1223 { 1224 struct rq *rq = rq_of_rt_se(rt_se); 1225 1226 dequeue_rt_stack(rt_se); 1227 1228 for_each_sched_rt_entity(rt_se) { 1229 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1230 1231 if (rt_rq && rt_rq->rt_nr_running) 1232 __enqueue_rt_entity(rt_se, false); 1233 } 1234 enqueue_top_rt_rq(&rq->rt); 1235 } 1236 1237 /* 1238 * Adding/removing a task to/from a priority array: 1239 */ 1240 static void 1241 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1242 { 1243 struct sched_rt_entity *rt_se = &p->rt; 1244 1245 if (flags & ENQUEUE_WAKEUP) 1246 rt_se->timeout = 0; 1247 1248 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); 1249 1250 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1251 enqueue_pushable_task(rq, p); 1252 } 1253 1254 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1255 { 1256 struct sched_rt_entity *rt_se = &p->rt; 1257 1258 update_curr_rt(rq); 1259 dequeue_rt_entity(rt_se); 1260 1261 dequeue_pushable_task(rq, p); 1262 } 1263 1264 /* 1265 * Put task to the head or the end of the run list without the overhead of 1266 * dequeue followed by enqueue. 1267 */ 1268 static void 1269 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1270 { 1271 if (on_rt_rq(rt_se)) { 1272 struct rt_prio_array *array = &rt_rq->active; 1273 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1274 1275 if (head) 1276 list_move(&rt_se->run_list, queue); 1277 else 1278 list_move_tail(&rt_se->run_list, queue); 1279 } 1280 } 1281 1282 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1283 { 1284 struct sched_rt_entity *rt_se = &p->rt; 1285 struct rt_rq *rt_rq; 1286 1287 for_each_sched_rt_entity(rt_se) { 1288 rt_rq = rt_rq_of_se(rt_se); 1289 requeue_rt_entity(rt_rq, rt_se, head); 1290 } 1291 } 1292 1293 static void yield_task_rt(struct rq *rq) 1294 { 1295 requeue_task_rt(rq, rq->curr, 0); 1296 } 1297 1298 #ifdef CONFIG_SMP 1299 static int find_lowest_rq(struct task_struct *task); 1300 1301 static int 1302 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1303 { 1304 struct task_struct *curr; 1305 struct rq *rq; 1306 1307 /* For anything but wake ups, just return the task_cpu */ 1308 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1309 goto out; 1310 1311 rq = cpu_rq(cpu); 1312 1313 rcu_read_lock(); 1314 curr = ACCESS_ONCE(rq->curr); /* unlocked access */ 1315 1316 /* 1317 * If the current task on @p's runqueue is an RT task, then 1318 * try to see if we can wake this RT task up on another 1319 * runqueue. Otherwise simply start this RT task 1320 * on its current runqueue. 1321 * 1322 * We want to avoid overloading runqueues. If the woken 1323 * task is a higher priority, then it will stay on this CPU 1324 * and the lower prio task should be moved to another CPU. 1325 * Even though this will probably make the lower prio task 1326 * lose its cache, we do not want to bounce a higher task 1327 * around just because it gave up its CPU, perhaps for a 1328 * lock? 1329 * 1330 * For equal prio tasks, we just let the scheduler sort it out. 1331 * 1332 * Otherwise, just let it ride on the affined RQ and the 1333 * post-schedule router will push the preempted task away 1334 * 1335 * This test is optimistic, if we get it wrong the load-balancer 1336 * will have to sort it out. 1337 */ 1338 if (curr && unlikely(rt_task(curr)) && 1339 (curr->nr_cpus_allowed < 2 || 1340 curr->prio <= p->prio)) { 1341 int target = find_lowest_rq(p); 1342 1343 /* 1344 * Don't bother moving it if the destination CPU is 1345 * not running a lower priority task. 1346 */ 1347 if (target != -1 && 1348 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1349 cpu = target; 1350 } 1351 rcu_read_unlock(); 1352 1353 out: 1354 return cpu; 1355 } 1356 1357 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1358 { 1359 /* 1360 * Current can't be migrated, useless to reschedule, 1361 * let's hope p can move out. 1362 */ 1363 if (rq->curr->nr_cpus_allowed == 1 || 1364 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1365 return; 1366 1367 /* 1368 * p is migratable, so let's not schedule it and 1369 * see if it is pushed or pulled somewhere else. 1370 */ 1371 if (p->nr_cpus_allowed != 1 1372 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1373 return; 1374 1375 /* 1376 * There appears to be other cpus that can accept 1377 * current and none to run 'p', so lets reschedule 1378 * to try and push current away: 1379 */ 1380 requeue_task_rt(rq, p, 1); 1381 resched_curr(rq); 1382 } 1383 1384 #endif /* CONFIG_SMP */ 1385 1386 /* 1387 * Preempt the current task with a newly woken task if needed: 1388 */ 1389 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1390 { 1391 if (p->prio < rq->curr->prio) { 1392 resched_curr(rq); 1393 return; 1394 } 1395 1396 #ifdef CONFIG_SMP 1397 /* 1398 * If: 1399 * 1400 * - the newly woken task is of equal priority to the current task 1401 * - the newly woken task is non-migratable while current is migratable 1402 * - current will be preempted on the next reschedule 1403 * 1404 * we should check to see if current can readily move to a different 1405 * cpu. If so, we will reschedule to allow the push logic to try 1406 * to move current somewhere else, making room for our non-migratable 1407 * task. 1408 */ 1409 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1410 check_preempt_equal_prio(rq, p); 1411 #endif 1412 } 1413 1414 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1415 struct rt_rq *rt_rq) 1416 { 1417 struct rt_prio_array *array = &rt_rq->active; 1418 struct sched_rt_entity *next = NULL; 1419 struct list_head *queue; 1420 int idx; 1421 1422 idx = sched_find_first_bit(array->bitmap); 1423 BUG_ON(idx >= MAX_RT_PRIO); 1424 1425 queue = array->queue + idx; 1426 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1427 1428 return next; 1429 } 1430 1431 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1432 { 1433 struct sched_rt_entity *rt_se; 1434 struct task_struct *p; 1435 struct rt_rq *rt_rq = &rq->rt; 1436 1437 do { 1438 rt_se = pick_next_rt_entity(rq, rt_rq); 1439 BUG_ON(!rt_se); 1440 rt_rq = group_rt_rq(rt_se); 1441 } while (rt_rq); 1442 1443 p = rt_task_of(rt_se); 1444 p->se.exec_start = rq_clock_task(rq); 1445 1446 return p; 1447 } 1448 1449 static struct task_struct * 1450 pick_next_task_rt(struct rq *rq, struct task_struct *prev) 1451 { 1452 struct task_struct *p; 1453 struct rt_rq *rt_rq = &rq->rt; 1454 1455 if (need_pull_rt_task(rq, prev)) { 1456 pull_rt_task(rq); 1457 /* 1458 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1459 * means a dl or stop task can slip in, in which case we need 1460 * to re-start task selection. 1461 */ 1462 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) || 1463 rq->dl.dl_nr_running)) 1464 return RETRY_TASK; 1465 } 1466 1467 /* 1468 * We may dequeue prev's rt_rq in put_prev_task(). 1469 * So, we update time before rt_nr_running check. 1470 */ 1471 if (prev->sched_class == &rt_sched_class) 1472 update_curr_rt(rq); 1473 1474 if (!rt_rq->rt_queued) 1475 return NULL; 1476 1477 put_prev_task(rq, prev); 1478 1479 p = _pick_next_task_rt(rq); 1480 1481 /* The running task is never eligible for pushing */ 1482 dequeue_pushable_task(rq, p); 1483 1484 set_post_schedule(rq); 1485 1486 return p; 1487 } 1488 1489 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1490 { 1491 update_curr_rt(rq); 1492 1493 /* 1494 * The previous task needs to be made eligible for pushing 1495 * if it is still active 1496 */ 1497 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1498 enqueue_pushable_task(rq, p); 1499 } 1500 1501 #ifdef CONFIG_SMP 1502 1503 /* Only try algorithms three times */ 1504 #define RT_MAX_TRIES 3 1505 1506 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1507 { 1508 if (!task_running(rq, p) && 1509 cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 1510 return 1; 1511 return 0; 1512 } 1513 1514 /* 1515 * Return the highest pushable rq's task, which is suitable to be executed 1516 * on the cpu, NULL otherwise 1517 */ 1518 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1519 { 1520 struct plist_head *head = &rq->rt.pushable_tasks; 1521 struct task_struct *p; 1522 1523 if (!has_pushable_tasks(rq)) 1524 return NULL; 1525 1526 plist_for_each_entry(p, head, pushable_tasks) { 1527 if (pick_rt_task(rq, p, cpu)) 1528 return p; 1529 } 1530 1531 return NULL; 1532 } 1533 1534 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1535 1536 static int find_lowest_rq(struct task_struct *task) 1537 { 1538 struct sched_domain *sd; 1539 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1540 int this_cpu = smp_processor_id(); 1541 int cpu = task_cpu(task); 1542 1543 /* Make sure the mask is initialized first */ 1544 if (unlikely(!lowest_mask)) 1545 return -1; 1546 1547 if (task->nr_cpus_allowed == 1) 1548 return -1; /* No other targets possible */ 1549 1550 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1551 return -1; /* No targets found */ 1552 1553 /* 1554 * At this point we have built a mask of cpus representing the 1555 * lowest priority tasks in the system. Now we want to elect 1556 * the best one based on our affinity and topology. 1557 * 1558 * We prioritize the last cpu that the task executed on since 1559 * it is most likely cache-hot in that location. 1560 */ 1561 if (cpumask_test_cpu(cpu, lowest_mask)) 1562 return cpu; 1563 1564 /* 1565 * Otherwise, we consult the sched_domains span maps to figure 1566 * out which cpu is logically closest to our hot cache data. 1567 */ 1568 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1569 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1570 1571 rcu_read_lock(); 1572 for_each_domain(cpu, sd) { 1573 if (sd->flags & SD_WAKE_AFFINE) { 1574 int best_cpu; 1575 1576 /* 1577 * "this_cpu" is cheaper to preempt than a 1578 * remote processor. 1579 */ 1580 if (this_cpu != -1 && 1581 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1582 rcu_read_unlock(); 1583 return this_cpu; 1584 } 1585 1586 best_cpu = cpumask_first_and(lowest_mask, 1587 sched_domain_span(sd)); 1588 if (best_cpu < nr_cpu_ids) { 1589 rcu_read_unlock(); 1590 return best_cpu; 1591 } 1592 } 1593 } 1594 rcu_read_unlock(); 1595 1596 /* 1597 * And finally, if there were no matches within the domains 1598 * just give the caller *something* to work with from the compatible 1599 * locations. 1600 */ 1601 if (this_cpu != -1) 1602 return this_cpu; 1603 1604 cpu = cpumask_any(lowest_mask); 1605 if (cpu < nr_cpu_ids) 1606 return cpu; 1607 return -1; 1608 } 1609 1610 /* Will lock the rq it finds */ 1611 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1612 { 1613 struct rq *lowest_rq = NULL; 1614 int tries; 1615 int cpu; 1616 1617 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1618 cpu = find_lowest_rq(task); 1619 1620 if ((cpu == -1) || (cpu == rq->cpu)) 1621 break; 1622 1623 lowest_rq = cpu_rq(cpu); 1624 1625 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1626 /* 1627 * Target rq has tasks of equal or higher priority, 1628 * retrying does not release any lock and is unlikely 1629 * to yield a different result. 1630 */ 1631 lowest_rq = NULL; 1632 break; 1633 } 1634 1635 /* if the prio of this runqueue changed, try again */ 1636 if (double_lock_balance(rq, lowest_rq)) { 1637 /* 1638 * We had to unlock the run queue. In 1639 * the mean time, task could have 1640 * migrated already or had its affinity changed. 1641 * Also make sure that it wasn't scheduled on its rq. 1642 */ 1643 if (unlikely(task_rq(task) != rq || 1644 !cpumask_test_cpu(lowest_rq->cpu, 1645 tsk_cpus_allowed(task)) || 1646 task_running(rq, task) || 1647 !task_on_rq_queued(task))) { 1648 1649 double_unlock_balance(rq, lowest_rq); 1650 lowest_rq = NULL; 1651 break; 1652 } 1653 } 1654 1655 /* If this rq is still suitable use it. */ 1656 if (lowest_rq->rt.highest_prio.curr > task->prio) 1657 break; 1658 1659 /* try again */ 1660 double_unlock_balance(rq, lowest_rq); 1661 lowest_rq = NULL; 1662 } 1663 1664 return lowest_rq; 1665 } 1666 1667 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1668 { 1669 struct task_struct *p; 1670 1671 if (!has_pushable_tasks(rq)) 1672 return NULL; 1673 1674 p = plist_first_entry(&rq->rt.pushable_tasks, 1675 struct task_struct, pushable_tasks); 1676 1677 BUG_ON(rq->cpu != task_cpu(p)); 1678 BUG_ON(task_current(rq, p)); 1679 BUG_ON(p->nr_cpus_allowed <= 1); 1680 1681 BUG_ON(!task_on_rq_queued(p)); 1682 BUG_ON(!rt_task(p)); 1683 1684 return p; 1685 } 1686 1687 /* 1688 * If the current CPU has more than one RT task, see if the non 1689 * running task can migrate over to a CPU that is running a task 1690 * of lesser priority. 1691 */ 1692 static int push_rt_task(struct rq *rq) 1693 { 1694 struct task_struct *next_task; 1695 struct rq *lowest_rq; 1696 int ret = 0; 1697 1698 if (!rq->rt.overloaded) 1699 return 0; 1700 1701 next_task = pick_next_pushable_task(rq); 1702 if (!next_task) 1703 return 0; 1704 1705 retry: 1706 if (unlikely(next_task == rq->curr)) { 1707 WARN_ON(1); 1708 return 0; 1709 } 1710 1711 /* 1712 * It's possible that the next_task slipped in of 1713 * higher priority than current. If that's the case 1714 * just reschedule current. 1715 */ 1716 if (unlikely(next_task->prio < rq->curr->prio)) { 1717 resched_curr(rq); 1718 return 0; 1719 } 1720 1721 /* We might release rq lock */ 1722 get_task_struct(next_task); 1723 1724 /* find_lock_lowest_rq locks the rq if found */ 1725 lowest_rq = find_lock_lowest_rq(next_task, rq); 1726 if (!lowest_rq) { 1727 struct task_struct *task; 1728 /* 1729 * find_lock_lowest_rq releases rq->lock 1730 * so it is possible that next_task has migrated. 1731 * 1732 * We need to make sure that the task is still on the same 1733 * run-queue and is also still the next task eligible for 1734 * pushing. 1735 */ 1736 task = pick_next_pushable_task(rq); 1737 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1738 /* 1739 * The task hasn't migrated, and is still the next 1740 * eligible task, but we failed to find a run-queue 1741 * to push it to. Do not retry in this case, since 1742 * other cpus will pull from us when ready. 1743 */ 1744 goto out; 1745 } 1746 1747 if (!task) 1748 /* No more tasks, just exit */ 1749 goto out; 1750 1751 /* 1752 * Something has shifted, try again. 1753 */ 1754 put_task_struct(next_task); 1755 next_task = task; 1756 goto retry; 1757 } 1758 1759 deactivate_task(rq, next_task, 0); 1760 set_task_cpu(next_task, lowest_rq->cpu); 1761 activate_task(lowest_rq, next_task, 0); 1762 ret = 1; 1763 1764 resched_curr(lowest_rq); 1765 1766 double_unlock_balance(rq, lowest_rq); 1767 1768 out: 1769 put_task_struct(next_task); 1770 1771 return ret; 1772 } 1773 1774 static void push_rt_tasks(struct rq *rq) 1775 { 1776 /* push_rt_task will return true if it moved an RT */ 1777 while (push_rt_task(rq)) 1778 ; 1779 } 1780 1781 static int pull_rt_task(struct rq *this_rq) 1782 { 1783 int this_cpu = this_rq->cpu, ret = 0, cpu; 1784 struct task_struct *p; 1785 struct rq *src_rq; 1786 1787 if (likely(!rt_overloaded(this_rq))) 1788 return 0; 1789 1790 /* 1791 * Match the barrier from rt_set_overloaded; this guarantees that if we 1792 * see overloaded we must also see the rto_mask bit. 1793 */ 1794 smp_rmb(); 1795 1796 for_each_cpu(cpu, this_rq->rd->rto_mask) { 1797 if (this_cpu == cpu) 1798 continue; 1799 1800 src_rq = cpu_rq(cpu); 1801 1802 /* 1803 * Don't bother taking the src_rq->lock if the next highest 1804 * task is known to be lower-priority than our current task. 1805 * This may look racy, but if this value is about to go 1806 * logically higher, the src_rq will push this task away. 1807 * And if its going logically lower, we do not care 1808 */ 1809 if (src_rq->rt.highest_prio.next >= 1810 this_rq->rt.highest_prio.curr) 1811 continue; 1812 1813 /* 1814 * We can potentially drop this_rq's lock in 1815 * double_lock_balance, and another CPU could 1816 * alter this_rq 1817 */ 1818 double_lock_balance(this_rq, src_rq); 1819 1820 /* 1821 * We can pull only a task, which is pushable 1822 * on its rq, and no others. 1823 */ 1824 p = pick_highest_pushable_task(src_rq, this_cpu); 1825 1826 /* 1827 * Do we have an RT task that preempts 1828 * the to-be-scheduled task? 1829 */ 1830 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 1831 WARN_ON(p == src_rq->curr); 1832 WARN_ON(!task_on_rq_queued(p)); 1833 1834 /* 1835 * There's a chance that p is higher in priority 1836 * than what's currently running on its cpu. 1837 * This is just that p is wakeing up and hasn't 1838 * had a chance to schedule. We only pull 1839 * p if it is lower in priority than the 1840 * current task on the run queue 1841 */ 1842 if (p->prio < src_rq->curr->prio) 1843 goto skip; 1844 1845 ret = 1; 1846 1847 deactivate_task(src_rq, p, 0); 1848 set_task_cpu(p, this_cpu); 1849 activate_task(this_rq, p, 0); 1850 /* 1851 * We continue with the search, just in 1852 * case there's an even higher prio task 1853 * in another runqueue. (low likelihood 1854 * but possible) 1855 */ 1856 } 1857 skip: 1858 double_unlock_balance(this_rq, src_rq); 1859 } 1860 1861 return ret; 1862 } 1863 1864 static void post_schedule_rt(struct rq *rq) 1865 { 1866 push_rt_tasks(rq); 1867 } 1868 1869 /* 1870 * If we are not running and we are not going to reschedule soon, we should 1871 * try to push tasks away now 1872 */ 1873 static void task_woken_rt(struct rq *rq, struct task_struct *p) 1874 { 1875 if (!task_running(rq, p) && 1876 !test_tsk_need_resched(rq->curr) && 1877 has_pushable_tasks(rq) && 1878 p->nr_cpus_allowed > 1 && 1879 (dl_task(rq->curr) || rt_task(rq->curr)) && 1880 (rq->curr->nr_cpus_allowed < 2 || 1881 rq->curr->prio <= p->prio)) 1882 push_rt_tasks(rq); 1883 } 1884 1885 static void set_cpus_allowed_rt(struct task_struct *p, 1886 const struct cpumask *new_mask) 1887 { 1888 struct rq *rq; 1889 int weight; 1890 1891 BUG_ON(!rt_task(p)); 1892 1893 if (!task_on_rq_queued(p)) 1894 return; 1895 1896 weight = cpumask_weight(new_mask); 1897 1898 /* 1899 * Only update if the process changes its state from whether it 1900 * can migrate or not. 1901 */ 1902 if ((p->nr_cpus_allowed > 1) == (weight > 1)) 1903 return; 1904 1905 rq = task_rq(p); 1906 1907 /* 1908 * The process used to be able to migrate OR it can now migrate 1909 */ 1910 if (weight <= 1) { 1911 if (!task_current(rq, p)) 1912 dequeue_pushable_task(rq, p); 1913 BUG_ON(!rq->rt.rt_nr_migratory); 1914 rq->rt.rt_nr_migratory--; 1915 } else { 1916 if (!task_current(rq, p)) 1917 enqueue_pushable_task(rq, p); 1918 rq->rt.rt_nr_migratory++; 1919 } 1920 1921 update_rt_migration(&rq->rt); 1922 } 1923 1924 /* Assumes rq->lock is held */ 1925 static void rq_online_rt(struct rq *rq) 1926 { 1927 if (rq->rt.overloaded) 1928 rt_set_overload(rq); 1929 1930 __enable_runtime(rq); 1931 1932 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1933 } 1934 1935 /* Assumes rq->lock is held */ 1936 static void rq_offline_rt(struct rq *rq) 1937 { 1938 if (rq->rt.overloaded) 1939 rt_clear_overload(rq); 1940 1941 __disable_runtime(rq); 1942 1943 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 1944 } 1945 1946 /* 1947 * When switch from the rt queue, we bring ourselves to a position 1948 * that we might want to pull RT tasks from other runqueues. 1949 */ 1950 static void switched_from_rt(struct rq *rq, struct task_struct *p) 1951 { 1952 /* 1953 * If there are other RT tasks then we will reschedule 1954 * and the scheduling of the other RT tasks will handle 1955 * the balancing. But if we are the last RT task 1956 * we may need to handle the pulling of RT tasks 1957 * now. 1958 */ 1959 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 1960 return; 1961 1962 if (pull_rt_task(rq)) 1963 resched_curr(rq); 1964 } 1965 1966 void __init init_sched_rt_class(void) 1967 { 1968 unsigned int i; 1969 1970 for_each_possible_cpu(i) { 1971 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 1972 GFP_KERNEL, cpu_to_node(i)); 1973 } 1974 } 1975 #endif /* CONFIG_SMP */ 1976 1977 /* 1978 * When switching a task to RT, we may overload the runqueue 1979 * with RT tasks. In this case we try to push them off to 1980 * other runqueues. 1981 */ 1982 static void switched_to_rt(struct rq *rq, struct task_struct *p) 1983 { 1984 int check_resched = 1; 1985 1986 /* 1987 * If we are already running, then there's nothing 1988 * that needs to be done. But if we are not running 1989 * we may need to preempt the current running task. 1990 * If that current running task is also an RT task 1991 * then see if we can move to another run queue. 1992 */ 1993 if (task_on_rq_queued(p) && rq->curr != p) { 1994 #ifdef CONFIG_SMP 1995 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded && 1996 /* Don't resched if we changed runqueues */ 1997 push_rt_task(rq) && rq != task_rq(p)) 1998 check_resched = 0; 1999 #endif /* CONFIG_SMP */ 2000 if (check_resched && p->prio < rq->curr->prio) 2001 resched_curr(rq); 2002 } 2003 } 2004 2005 /* 2006 * Priority of the task has changed. This may cause 2007 * us to initiate a push or pull. 2008 */ 2009 static void 2010 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2011 { 2012 if (!task_on_rq_queued(p)) 2013 return; 2014 2015 if (rq->curr == p) { 2016 #ifdef CONFIG_SMP 2017 /* 2018 * If our priority decreases while running, we 2019 * may need to pull tasks to this runqueue. 2020 */ 2021 if (oldprio < p->prio) 2022 pull_rt_task(rq); 2023 /* 2024 * If there's a higher priority task waiting to run 2025 * then reschedule. Note, the above pull_rt_task 2026 * can release the rq lock and p could migrate. 2027 * Only reschedule if p is still on the same runqueue. 2028 */ 2029 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) 2030 resched_curr(rq); 2031 #else 2032 /* For UP simply resched on drop of prio */ 2033 if (oldprio < p->prio) 2034 resched_curr(rq); 2035 #endif /* CONFIG_SMP */ 2036 } else { 2037 /* 2038 * This task is not running, but if it is 2039 * greater than the current running task 2040 * then reschedule. 2041 */ 2042 if (p->prio < rq->curr->prio) 2043 resched_curr(rq); 2044 } 2045 } 2046 2047 static void watchdog(struct rq *rq, struct task_struct *p) 2048 { 2049 unsigned long soft, hard; 2050 2051 /* max may change after cur was read, this will be fixed next tick */ 2052 soft = task_rlimit(p, RLIMIT_RTTIME); 2053 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2054 2055 if (soft != RLIM_INFINITY) { 2056 unsigned long next; 2057 2058 if (p->rt.watchdog_stamp != jiffies) { 2059 p->rt.timeout++; 2060 p->rt.watchdog_stamp = jiffies; 2061 } 2062 2063 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2064 if (p->rt.timeout > next) 2065 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 2066 } 2067 } 2068 2069 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2070 { 2071 struct sched_rt_entity *rt_se = &p->rt; 2072 2073 update_curr_rt(rq); 2074 2075 watchdog(rq, p); 2076 2077 /* 2078 * RR tasks need a special form of timeslice management. 2079 * FIFO tasks have no timeslices. 2080 */ 2081 if (p->policy != SCHED_RR) 2082 return; 2083 2084 if (--p->rt.time_slice) 2085 return; 2086 2087 p->rt.time_slice = sched_rr_timeslice; 2088 2089 /* 2090 * Requeue to the end of queue if we (and all of our ancestors) are not 2091 * the only element on the queue 2092 */ 2093 for_each_sched_rt_entity(rt_se) { 2094 if (rt_se->run_list.prev != rt_se->run_list.next) { 2095 requeue_task_rt(rq, p, 0); 2096 resched_curr(rq); 2097 return; 2098 } 2099 } 2100 } 2101 2102 static void set_curr_task_rt(struct rq *rq) 2103 { 2104 struct task_struct *p = rq->curr; 2105 2106 p->se.exec_start = rq_clock_task(rq); 2107 2108 /* The running task is never eligible for pushing */ 2109 dequeue_pushable_task(rq, p); 2110 } 2111 2112 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2113 { 2114 /* 2115 * Time slice is 0 for SCHED_FIFO tasks 2116 */ 2117 if (task->policy == SCHED_RR) 2118 return sched_rr_timeslice; 2119 else 2120 return 0; 2121 } 2122 2123 const struct sched_class rt_sched_class = { 2124 .next = &fair_sched_class, 2125 .enqueue_task = enqueue_task_rt, 2126 .dequeue_task = dequeue_task_rt, 2127 .yield_task = yield_task_rt, 2128 2129 .check_preempt_curr = check_preempt_curr_rt, 2130 2131 .pick_next_task = pick_next_task_rt, 2132 .put_prev_task = put_prev_task_rt, 2133 2134 #ifdef CONFIG_SMP 2135 .select_task_rq = select_task_rq_rt, 2136 2137 .set_cpus_allowed = set_cpus_allowed_rt, 2138 .rq_online = rq_online_rt, 2139 .rq_offline = rq_offline_rt, 2140 .post_schedule = post_schedule_rt, 2141 .task_woken = task_woken_rt, 2142 .switched_from = switched_from_rt, 2143 #endif 2144 2145 .set_curr_task = set_curr_task_rt, 2146 .task_tick = task_tick_rt, 2147 2148 .get_rr_interval = get_rr_interval_rt, 2149 2150 .prio_changed = prio_changed_rt, 2151 .switched_to = switched_to_rt, 2152 2153 .update_curr = update_curr_rt, 2154 }; 2155 2156 #ifdef CONFIG_SCHED_DEBUG 2157 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2158 2159 void print_rt_stats(struct seq_file *m, int cpu) 2160 { 2161 rt_rq_iter_t iter; 2162 struct rt_rq *rt_rq; 2163 2164 rcu_read_lock(); 2165 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2166 print_rt_rq(m, cpu, rt_rq); 2167 rcu_read_unlock(); 2168 } 2169 #endif /* CONFIG_SCHED_DEBUG */ 2170