xref: /openbmc/linux/kernel/sched/rt.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5 
6 #include "sched.h"
7 
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10 
11 int sched_rr_timeslice = RR_TIMESLICE;
12 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
13 
14 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
15 
16 struct rt_bandwidth def_rt_bandwidth;
17 
18 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
19 {
20 	struct rt_bandwidth *rt_b =
21 		container_of(timer, struct rt_bandwidth, rt_period_timer);
22 	int idle = 0;
23 	int overrun;
24 
25 	raw_spin_lock(&rt_b->rt_runtime_lock);
26 	for (;;) {
27 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
28 		if (!overrun)
29 			break;
30 
31 		raw_spin_unlock(&rt_b->rt_runtime_lock);
32 		idle = do_sched_rt_period_timer(rt_b, overrun);
33 		raw_spin_lock(&rt_b->rt_runtime_lock);
34 	}
35 	if (idle)
36 		rt_b->rt_period_active = 0;
37 	raw_spin_unlock(&rt_b->rt_runtime_lock);
38 
39 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
40 }
41 
42 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
43 {
44 	rt_b->rt_period = ns_to_ktime(period);
45 	rt_b->rt_runtime = runtime;
46 
47 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
48 
49 	hrtimer_init(&rt_b->rt_period_timer,
50 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
51 	rt_b->rt_period_timer.function = sched_rt_period_timer;
52 }
53 
54 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
55 {
56 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
57 		return;
58 
59 	raw_spin_lock(&rt_b->rt_runtime_lock);
60 	if (!rt_b->rt_period_active) {
61 		rt_b->rt_period_active = 1;
62 		/*
63 		 * SCHED_DEADLINE updates the bandwidth, as a run away
64 		 * RT task with a DL task could hog a CPU. But DL does
65 		 * not reset the period. If a deadline task was running
66 		 * without an RT task running, it can cause RT tasks to
67 		 * throttle when they start up. Kick the timer right away
68 		 * to update the period.
69 		 */
70 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
71 		hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
72 	}
73 	raw_spin_unlock(&rt_b->rt_runtime_lock);
74 }
75 
76 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
77 static void push_irq_work_func(struct irq_work *work);
78 #endif
79 
80 void init_rt_rq(struct rt_rq *rt_rq)
81 {
82 	struct rt_prio_array *array;
83 	int i;
84 
85 	array = &rt_rq->active;
86 	for (i = 0; i < MAX_RT_PRIO; i++) {
87 		INIT_LIST_HEAD(array->queue + i);
88 		__clear_bit(i, array->bitmap);
89 	}
90 	/* delimiter for bitsearch: */
91 	__set_bit(MAX_RT_PRIO, array->bitmap);
92 
93 #if defined CONFIG_SMP
94 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
95 	rt_rq->highest_prio.next = MAX_RT_PRIO;
96 	rt_rq->rt_nr_migratory = 0;
97 	rt_rq->overloaded = 0;
98 	plist_head_init(&rt_rq->pushable_tasks);
99 
100 #ifdef HAVE_RT_PUSH_IPI
101 	rt_rq->push_flags = 0;
102 	rt_rq->push_cpu = nr_cpu_ids;
103 	raw_spin_lock_init(&rt_rq->push_lock);
104 	init_irq_work(&rt_rq->push_work, push_irq_work_func);
105 #endif
106 #endif /* CONFIG_SMP */
107 	/* We start is dequeued state, because no RT tasks are queued */
108 	rt_rq->rt_queued = 0;
109 
110 	rt_rq->rt_time = 0;
111 	rt_rq->rt_throttled = 0;
112 	rt_rq->rt_runtime = 0;
113 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
114 }
115 
116 #ifdef CONFIG_RT_GROUP_SCHED
117 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
118 {
119 	hrtimer_cancel(&rt_b->rt_period_timer);
120 }
121 
122 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
123 
124 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
125 {
126 #ifdef CONFIG_SCHED_DEBUG
127 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
128 #endif
129 	return container_of(rt_se, struct task_struct, rt);
130 }
131 
132 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
133 {
134 	return rt_rq->rq;
135 }
136 
137 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
138 {
139 	return rt_se->rt_rq;
140 }
141 
142 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
143 {
144 	struct rt_rq *rt_rq = rt_se->rt_rq;
145 
146 	return rt_rq->rq;
147 }
148 
149 void free_rt_sched_group(struct task_group *tg)
150 {
151 	int i;
152 
153 	if (tg->rt_se)
154 		destroy_rt_bandwidth(&tg->rt_bandwidth);
155 
156 	for_each_possible_cpu(i) {
157 		if (tg->rt_rq)
158 			kfree(tg->rt_rq[i]);
159 		if (tg->rt_se)
160 			kfree(tg->rt_se[i]);
161 	}
162 
163 	kfree(tg->rt_rq);
164 	kfree(tg->rt_se);
165 }
166 
167 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
168 		struct sched_rt_entity *rt_se, int cpu,
169 		struct sched_rt_entity *parent)
170 {
171 	struct rq *rq = cpu_rq(cpu);
172 
173 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
174 	rt_rq->rt_nr_boosted = 0;
175 	rt_rq->rq = rq;
176 	rt_rq->tg = tg;
177 
178 	tg->rt_rq[cpu] = rt_rq;
179 	tg->rt_se[cpu] = rt_se;
180 
181 	if (!rt_se)
182 		return;
183 
184 	if (!parent)
185 		rt_se->rt_rq = &rq->rt;
186 	else
187 		rt_se->rt_rq = parent->my_q;
188 
189 	rt_se->my_q = rt_rq;
190 	rt_se->parent = parent;
191 	INIT_LIST_HEAD(&rt_se->run_list);
192 }
193 
194 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
195 {
196 	struct rt_rq *rt_rq;
197 	struct sched_rt_entity *rt_se;
198 	int i;
199 
200 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
201 	if (!tg->rt_rq)
202 		goto err;
203 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
204 	if (!tg->rt_se)
205 		goto err;
206 
207 	init_rt_bandwidth(&tg->rt_bandwidth,
208 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
209 
210 	for_each_possible_cpu(i) {
211 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
212 				     GFP_KERNEL, cpu_to_node(i));
213 		if (!rt_rq)
214 			goto err;
215 
216 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
217 				     GFP_KERNEL, cpu_to_node(i));
218 		if (!rt_se)
219 			goto err_free_rq;
220 
221 		init_rt_rq(rt_rq);
222 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
223 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
224 	}
225 
226 	return 1;
227 
228 err_free_rq:
229 	kfree(rt_rq);
230 err:
231 	return 0;
232 }
233 
234 #else /* CONFIG_RT_GROUP_SCHED */
235 
236 #define rt_entity_is_task(rt_se) (1)
237 
238 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
239 {
240 	return container_of(rt_se, struct task_struct, rt);
241 }
242 
243 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
244 {
245 	return container_of(rt_rq, struct rq, rt);
246 }
247 
248 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
249 {
250 	struct task_struct *p = rt_task_of(rt_se);
251 
252 	return task_rq(p);
253 }
254 
255 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
256 {
257 	struct rq *rq = rq_of_rt_se(rt_se);
258 
259 	return &rq->rt;
260 }
261 
262 void free_rt_sched_group(struct task_group *tg) { }
263 
264 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
265 {
266 	return 1;
267 }
268 #endif /* CONFIG_RT_GROUP_SCHED */
269 
270 #ifdef CONFIG_SMP
271 
272 static void pull_rt_task(struct rq *this_rq);
273 
274 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
275 {
276 	/* Try to pull RT tasks here if we lower this rq's prio */
277 	return rq->rt.highest_prio.curr > prev->prio;
278 }
279 
280 static inline int rt_overloaded(struct rq *rq)
281 {
282 	return atomic_read(&rq->rd->rto_count);
283 }
284 
285 static inline void rt_set_overload(struct rq *rq)
286 {
287 	if (!rq->online)
288 		return;
289 
290 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
291 	/*
292 	 * Make sure the mask is visible before we set
293 	 * the overload count. That is checked to determine
294 	 * if we should look at the mask. It would be a shame
295 	 * if we looked at the mask, but the mask was not
296 	 * updated yet.
297 	 *
298 	 * Matched by the barrier in pull_rt_task().
299 	 */
300 	smp_wmb();
301 	atomic_inc(&rq->rd->rto_count);
302 }
303 
304 static inline void rt_clear_overload(struct rq *rq)
305 {
306 	if (!rq->online)
307 		return;
308 
309 	/* the order here really doesn't matter */
310 	atomic_dec(&rq->rd->rto_count);
311 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
312 }
313 
314 static void update_rt_migration(struct rt_rq *rt_rq)
315 {
316 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
317 		if (!rt_rq->overloaded) {
318 			rt_set_overload(rq_of_rt_rq(rt_rq));
319 			rt_rq->overloaded = 1;
320 		}
321 	} else if (rt_rq->overloaded) {
322 		rt_clear_overload(rq_of_rt_rq(rt_rq));
323 		rt_rq->overloaded = 0;
324 	}
325 }
326 
327 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
328 {
329 	struct task_struct *p;
330 
331 	if (!rt_entity_is_task(rt_se))
332 		return;
333 
334 	p = rt_task_of(rt_se);
335 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
336 
337 	rt_rq->rt_nr_total++;
338 	if (p->nr_cpus_allowed > 1)
339 		rt_rq->rt_nr_migratory++;
340 
341 	update_rt_migration(rt_rq);
342 }
343 
344 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
345 {
346 	struct task_struct *p;
347 
348 	if (!rt_entity_is_task(rt_se))
349 		return;
350 
351 	p = rt_task_of(rt_se);
352 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
353 
354 	rt_rq->rt_nr_total--;
355 	if (p->nr_cpus_allowed > 1)
356 		rt_rq->rt_nr_migratory--;
357 
358 	update_rt_migration(rt_rq);
359 }
360 
361 static inline int has_pushable_tasks(struct rq *rq)
362 {
363 	return !plist_head_empty(&rq->rt.pushable_tasks);
364 }
365 
366 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
367 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
368 
369 static void push_rt_tasks(struct rq *);
370 static void pull_rt_task(struct rq *);
371 
372 static inline void queue_push_tasks(struct rq *rq)
373 {
374 	if (!has_pushable_tasks(rq))
375 		return;
376 
377 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
378 }
379 
380 static inline void queue_pull_task(struct rq *rq)
381 {
382 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
383 }
384 
385 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
386 {
387 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
388 	plist_node_init(&p->pushable_tasks, p->prio);
389 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
390 
391 	/* Update the highest prio pushable task */
392 	if (p->prio < rq->rt.highest_prio.next)
393 		rq->rt.highest_prio.next = p->prio;
394 }
395 
396 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
397 {
398 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
399 
400 	/* Update the new highest prio pushable task */
401 	if (has_pushable_tasks(rq)) {
402 		p = plist_first_entry(&rq->rt.pushable_tasks,
403 				      struct task_struct, pushable_tasks);
404 		rq->rt.highest_prio.next = p->prio;
405 	} else
406 		rq->rt.highest_prio.next = MAX_RT_PRIO;
407 }
408 
409 #else
410 
411 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
412 {
413 }
414 
415 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
416 {
417 }
418 
419 static inline
420 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
421 {
422 }
423 
424 static inline
425 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
426 {
427 }
428 
429 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
430 {
431 	return false;
432 }
433 
434 static inline void pull_rt_task(struct rq *this_rq)
435 {
436 }
437 
438 static inline void queue_push_tasks(struct rq *rq)
439 {
440 }
441 #endif /* CONFIG_SMP */
442 
443 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
444 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
445 
446 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
447 {
448 	return rt_se->on_rq;
449 }
450 
451 #ifdef CONFIG_RT_GROUP_SCHED
452 
453 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
454 {
455 	if (!rt_rq->tg)
456 		return RUNTIME_INF;
457 
458 	return rt_rq->rt_runtime;
459 }
460 
461 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
462 {
463 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
464 }
465 
466 typedef struct task_group *rt_rq_iter_t;
467 
468 static inline struct task_group *next_task_group(struct task_group *tg)
469 {
470 	do {
471 		tg = list_entry_rcu(tg->list.next,
472 			typeof(struct task_group), list);
473 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
474 
475 	if (&tg->list == &task_groups)
476 		tg = NULL;
477 
478 	return tg;
479 }
480 
481 #define for_each_rt_rq(rt_rq, iter, rq)					\
482 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
483 		(iter = next_task_group(iter)) &&			\
484 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
485 
486 #define for_each_sched_rt_entity(rt_se) \
487 	for (; rt_se; rt_se = rt_se->parent)
488 
489 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
490 {
491 	return rt_se->my_q;
492 }
493 
494 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
495 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
496 
497 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
498 {
499 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
500 	struct rq *rq = rq_of_rt_rq(rt_rq);
501 	struct sched_rt_entity *rt_se;
502 
503 	int cpu = cpu_of(rq);
504 
505 	rt_se = rt_rq->tg->rt_se[cpu];
506 
507 	if (rt_rq->rt_nr_running) {
508 		if (!rt_se)
509 			enqueue_top_rt_rq(rt_rq);
510 		else if (!on_rt_rq(rt_se))
511 			enqueue_rt_entity(rt_se, 0);
512 
513 		if (rt_rq->highest_prio.curr < curr->prio)
514 			resched_curr(rq);
515 	}
516 }
517 
518 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
519 {
520 	struct sched_rt_entity *rt_se;
521 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
522 
523 	rt_se = rt_rq->tg->rt_se[cpu];
524 
525 	if (!rt_se)
526 		dequeue_top_rt_rq(rt_rq);
527 	else if (on_rt_rq(rt_se))
528 		dequeue_rt_entity(rt_se, 0);
529 }
530 
531 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
532 {
533 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
534 }
535 
536 static int rt_se_boosted(struct sched_rt_entity *rt_se)
537 {
538 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
539 	struct task_struct *p;
540 
541 	if (rt_rq)
542 		return !!rt_rq->rt_nr_boosted;
543 
544 	p = rt_task_of(rt_se);
545 	return p->prio != p->normal_prio;
546 }
547 
548 #ifdef CONFIG_SMP
549 static inline const struct cpumask *sched_rt_period_mask(void)
550 {
551 	return this_rq()->rd->span;
552 }
553 #else
554 static inline const struct cpumask *sched_rt_period_mask(void)
555 {
556 	return cpu_online_mask;
557 }
558 #endif
559 
560 static inline
561 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
562 {
563 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
564 }
565 
566 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
567 {
568 	return &rt_rq->tg->rt_bandwidth;
569 }
570 
571 #else /* !CONFIG_RT_GROUP_SCHED */
572 
573 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
574 {
575 	return rt_rq->rt_runtime;
576 }
577 
578 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
579 {
580 	return ktime_to_ns(def_rt_bandwidth.rt_period);
581 }
582 
583 typedef struct rt_rq *rt_rq_iter_t;
584 
585 #define for_each_rt_rq(rt_rq, iter, rq) \
586 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
587 
588 #define for_each_sched_rt_entity(rt_se) \
589 	for (; rt_se; rt_se = NULL)
590 
591 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
592 {
593 	return NULL;
594 }
595 
596 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
597 {
598 	struct rq *rq = rq_of_rt_rq(rt_rq);
599 
600 	if (!rt_rq->rt_nr_running)
601 		return;
602 
603 	enqueue_top_rt_rq(rt_rq);
604 	resched_curr(rq);
605 }
606 
607 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
608 {
609 	dequeue_top_rt_rq(rt_rq);
610 }
611 
612 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
613 {
614 	return rt_rq->rt_throttled;
615 }
616 
617 static inline const struct cpumask *sched_rt_period_mask(void)
618 {
619 	return cpu_online_mask;
620 }
621 
622 static inline
623 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
624 {
625 	return &cpu_rq(cpu)->rt;
626 }
627 
628 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
629 {
630 	return &def_rt_bandwidth;
631 }
632 
633 #endif /* CONFIG_RT_GROUP_SCHED */
634 
635 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
636 {
637 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
638 
639 	return (hrtimer_active(&rt_b->rt_period_timer) ||
640 		rt_rq->rt_time < rt_b->rt_runtime);
641 }
642 
643 #ifdef CONFIG_SMP
644 /*
645  * We ran out of runtime, see if we can borrow some from our neighbours.
646  */
647 static void do_balance_runtime(struct rt_rq *rt_rq)
648 {
649 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
650 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
651 	int i, weight;
652 	u64 rt_period;
653 
654 	weight = cpumask_weight(rd->span);
655 
656 	raw_spin_lock(&rt_b->rt_runtime_lock);
657 	rt_period = ktime_to_ns(rt_b->rt_period);
658 	for_each_cpu(i, rd->span) {
659 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
660 		s64 diff;
661 
662 		if (iter == rt_rq)
663 			continue;
664 
665 		raw_spin_lock(&iter->rt_runtime_lock);
666 		/*
667 		 * Either all rqs have inf runtime and there's nothing to steal
668 		 * or __disable_runtime() below sets a specific rq to inf to
669 		 * indicate its been disabled and disalow stealing.
670 		 */
671 		if (iter->rt_runtime == RUNTIME_INF)
672 			goto next;
673 
674 		/*
675 		 * From runqueues with spare time, take 1/n part of their
676 		 * spare time, but no more than our period.
677 		 */
678 		diff = iter->rt_runtime - iter->rt_time;
679 		if (diff > 0) {
680 			diff = div_u64((u64)diff, weight);
681 			if (rt_rq->rt_runtime + diff > rt_period)
682 				diff = rt_period - rt_rq->rt_runtime;
683 			iter->rt_runtime -= diff;
684 			rt_rq->rt_runtime += diff;
685 			if (rt_rq->rt_runtime == rt_period) {
686 				raw_spin_unlock(&iter->rt_runtime_lock);
687 				break;
688 			}
689 		}
690 next:
691 		raw_spin_unlock(&iter->rt_runtime_lock);
692 	}
693 	raw_spin_unlock(&rt_b->rt_runtime_lock);
694 }
695 
696 /*
697  * Ensure this RQ takes back all the runtime it lend to its neighbours.
698  */
699 static void __disable_runtime(struct rq *rq)
700 {
701 	struct root_domain *rd = rq->rd;
702 	rt_rq_iter_t iter;
703 	struct rt_rq *rt_rq;
704 
705 	if (unlikely(!scheduler_running))
706 		return;
707 
708 	for_each_rt_rq(rt_rq, iter, rq) {
709 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
710 		s64 want;
711 		int i;
712 
713 		raw_spin_lock(&rt_b->rt_runtime_lock);
714 		raw_spin_lock(&rt_rq->rt_runtime_lock);
715 		/*
716 		 * Either we're all inf and nobody needs to borrow, or we're
717 		 * already disabled and thus have nothing to do, or we have
718 		 * exactly the right amount of runtime to take out.
719 		 */
720 		if (rt_rq->rt_runtime == RUNTIME_INF ||
721 				rt_rq->rt_runtime == rt_b->rt_runtime)
722 			goto balanced;
723 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
724 
725 		/*
726 		 * Calculate the difference between what we started out with
727 		 * and what we current have, that's the amount of runtime
728 		 * we lend and now have to reclaim.
729 		 */
730 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
731 
732 		/*
733 		 * Greedy reclaim, take back as much as we can.
734 		 */
735 		for_each_cpu(i, rd->span) {
736 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
737 			s64 diff;
738 
739 			/*
740 			 * Can't reclaim from ourselves or disabled runqueues.
741 			 */
742 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
743 				continue;
744 
745 			raw_spin_lock(&iter->rt_runtime_lock);
746 			if (want > 0) {
747 				diff = min_t(s64, iter->rt_runtime, want);
748 				iter->rt_runtime -= diff;
749 				want -= diff;
750 			} else {
751 				iter->rt_runtime -= want;
752 				want -= want;
753 			}
754 			raw_spin_unlock(&iter->rt_runtime_lock);
755 
756 			if (!want)
757 				break;
758 		}
759 
760 		raw_spin_lock(&rt_rq->rt_runtime_lock);
761 		/*
762 		 * We cannot be left wanting - that would mean some runtime
763 		 * leaked out of the system.
764 		 */
765 		BUG_ON(want);
766 balanced:
767 		/*
768 		 * Disable all the borrow logic by pretending we have inf
769 		 * runtime - in which case borrowing doesn't make sense.
770 		 */
771 		rt_rq->rt_runtime = RUNTIME_INF;
772 		rt_rq->rt_throttled = 0;
773 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
774 		raw_spin_unlock(&rt_b->rt_runtime_lock);
775 
776 		/* Make rt_rq available for pick_next_task() */
777 		sched_rt_rq_enqueue(rt_rq);
778 	}
779 }
780 
781 static void __enable_runtime(struct rq *rq)
782 {
783 	rt_rq_iter_t iter;
784 	struct rt_rq *rt_rq;
785 
786 	if (unlikely(!scheduler_running))
787 		return;
788 
789 	/*
790 	 * Reset each runqueue's bandwidth settings
791 	 */
792 	for_each_rt_rq(rt_rq, iter, rq) {
793 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
794 
795 		raw_spin_lock(&rt_b->rt_runtime_lock);
796 		raw_spin_lock(&rt_rq->rt_runtime_lock);
797 		rt_rq->rt_runtime = rt_b->rt_runtime;
798 		rt_rq->rt_time = 0;
799 		rt_rq->rt_throttled = 0;
800 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
801 		raw_spin_unlock(&rt_b->rt_runtime_lock);
802 	}
803 }
804 
805 static void balance_runtime(struct rt_rq *rt_rq)
806 {
807 	if (!sched_feat(RT_RUNTIME_SHARE))
808 		return;
809 
810 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
811 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
812 		do_balance_runtime(rt_rq);
813 		raw_spin_lock(&rt_rq->rt_runtime_lock);
814 	}
815 }
816 #else /* !CONFIG_SMP */
817 static inline void balance_runtime(struct rt_rq *rt_rq) {}
818 #endif /* CONFIG_SMP */
819 
820 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
821 {
822 	int i, idle = 1, throttled = 0;
823 	const struct cpumask *span;
824 
825 	span = sched_rt_period_mask();
826 #ifdef CONFIG_RT_GROUP_SCHED
827 	/*
828 	 * FIXME: isolated CPUs should really leave the root task group,
829 	 * whether they are isolcpus or were isolated via cpusets, lest
830 	 * the timer run on a CPU which does not service all runqueues,
831 	 * potentially leaving other CPUs indefinitely throttled.  If
832 	 * isolation is really required, the user will turn the throttle
833 	 * off to kill the perturbations it causes anyway.  Meanwhile,
834 	 * this maintains functionality for boot and/or troubleshooting.
835 	 */
836 	if (rt_b == &root_task_group.rt_bandwidth)
837 		span = cpu_online_mask;
838 #endif
839 	for_each_cpu(i, span) {
840 		int enqueue = 0;
841 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
842 		struct rq *rq = rq_of_rt_rq(rt_rq);
843 		int skip;
844 
845 		/*
846 		 * When span == cpu_online_mask, taking each rq->lock
847 		 * can be time-consuming. Try to avoid it when possible.
848 		 */
849 		raw_spin_lock(&rt_rq->rt_runtime_lock);
850 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
851 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
852 		if (skip)
853 			continue;
854 
855 		raw_spin_lock(&rq->lock);
856 		if (rt_rq->rt_time) {
857 			u64 runtime;
858 
859 			raw_spin_lock(&rt_rq->rt_runtime_lock);
860 			if (rt_rq->rt_throttled)
861 				balance_runtime(rt_rq);
862 			runtime = rt_rq->rt_runtime;
863 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
864 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
865 				rt_rq->rt_throttled = 0;
866 				enqueue = 1;
867 
868 				/*
869 				 * When we're idle and a woken (rt) task is
870 				 * throttled check_preempt_curr() will set
871 				 * skip_update and the time between the wakeup
872 				 * and this unthrottle will get accounted as
873 				 * 'runtime'.
874 				 */
875 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
876 					rq_clock_skip_update(rq, false);
877 			}
878 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
879 				idle = 0;
880 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
881 		} else if (rt_rq->rt_nr_running) {
882 			idle = 0;
883 			if (!rt_rq_throttled(rt_rq))
884 				enqueue = 1;
885 		}
886 		if (rt_rq->rt_throttled)
887 			throttled = 1;
888 
889 		if (enqueue)
890 			sched_rt_rq_enqueue(rt_rq);
891 		raw_spin_unlock(&rq->lock);
892 	}
893 
894 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
895 		return 1;
896 
897 	return idle;
898 }
899 
900 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
901 {
902 #ifdef CONFIG_RT_GROUP_SCHED
903 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
904 
905 	if (rt_rq)
906 		return rt_rq->highest_prio.curr;
907 #endif
908 
909 	return rt_task_of(rt_se)->prio;
910 }
911 
912 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
913 {
914 	u64 runtime = sched_rt_runtime(rt_rq);
915 
916 	if (rt_rq->rt_throttled)
917 		return rt_rq_throttled(rt_rq);
918 
919 	if (runtime >= sched_rt_period(rt_rq))
920 		return 0;
921 
922 	balance_runtime(rt_rq);
923 	runtime = sched_rt_runtime(rt_rq);
924 	if (runtime == RUNTIME_INF)
925 		return 0;
926 
927 	if (rt_rq->rt_time > runtime) {
928 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
929 
930 		/*
931 		 * Don't actually throttle groups that have no runtime assigned
932 		 * but accrue some time due to boosting.
933 		 */
934 		if (likely(rt_b->rt_runtime)) {
935 			rt_rq->rt_throttled = 1;
936 			printk_deferred_once("sched: RT throttling activated\n");
937 		} else {
938 			/*
939 			 * In case we did anyway, make it go away,
940 			 * replenishment is a joke, since it will replenish us
941 			 * with exactly 0 ns.
942 			 */
943 			rt_rq->rt_time = 0;
944 		}
945 
946 		if (rt_rq_throttled(rt_rq)) {
947 			sched_rt_rq_dequeue(rt_rq);
948 			return 1;
949 		}
950 	}
951 
952 	return 0;
953 }
954 
955 /*
956  * Update the current task's runtime statistics. Skip current tasks that
957  * are not in our scheduling class.
958  */
959 static void update_curr_rt(struct rq *rq)
960 {
961 	struct task_struct *curr = rq->curr;
962 	struct sched_rt_entity *rt_se = &curr->rt;
963 	u64 delta_exec;
964 
965 	if (curr->sched_class != &rt_sched_class)
966 		return;
967 
968 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
969 	if (unlikely((s64)delta_exec <= 0))
970 		return;
971 
972 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
973 	cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_RT);
974 
975 	schedstat_set(curr->se.statistics.exec_max,
976 		      max(curr->se.statistics.exec_max, delta_exec));
977 
978 	curr->se.sum_exec_runtime += delta_exec;
979 	account_group_exec_runtime(curr, delta_exec);
980 
981 	curr->se.exec_start = rq_clock_task(rq);
982 	cpuacct_charge(curr, delta_exec);
983 
984 	sched_rt_avg_update(rq, delta_exec);
985 
986 	if (!rt_bandwidth_enabled())
987 		return;
988 
989 	for_each_sched_rt_entity(rt_se) {
990 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
991 
992 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
993 			raw_spin_lock(&rt_rq->rt_runtime_lock);
994 			rt_rq->rt_time += delta_exec;
995 			if (sched_rt_runtime_exceeded(rt_rq))
996 				resched_curr(rq);
997 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
998 		}
999 	}
1000 }
1001 
1002 static void
1003 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1004 {
1005 	struct rq *rq = rq_of_rt_rq(rt_rq);
1006 
1007 	BUG_ON(&rq->rt != rt_rq);
1008 
1009 	if (!rt_rq->rt_queued)
1010 		return;
1011 
1012 	BUG_ON(!rq->nr_running);
1013 
1014 	sub_nr_running(rq, rt_rq->rt_nr_running);
1015 	rt_rq->rt_queued = 0;
1016 }
1017 
1018 static void
1019 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1020 {
1021 	struct rq *rq = rq_of_rt_rq(rt_rq);
1022 
1023 	BUG_ON(&rq->rt != rt_rq);
1024 
1025 	if (rt_rq->rt_queued)
1026 		return;
1027 	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1028 		return;
1029 
1030 	add_nr_running(rq, rt_rq->rt_nr_running);
1031 	rt_rq->rt_queued = 1;
1032 }
1033 
1034 #if defined CONFIG_SMP
1035 
1036 static void
1037 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1038 {
1039 	struct rq *rq = rq_of_rt_rq(rt_rq);
1040 
1041 #ifdef CONFIG_RT_GROUP_SCHED
1042 	/*
1043 	 * Change rq's cpupri only if rt_rq is the top queue.
1044 	 */
1045 	if (&rq->rt != rt_rq)
1046 		return;
1047 #endif
1048 	if (rq->online && prio < prev_prio)
1049 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1050 }
1051 
1052 static void
1053 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1054 {
1055 	struct rq *rq = rq_of_rt_rq(rt_rq);
1056 
1057 #ifdef CONFIG_RT_GROUP_SCHED
1058 	/*
1059 	 * Change rq's cpupri only if rt_rq is the top queue.
1060 	 */
1061 	if (&rq->rt != rt_rq)
1062 		return;
1063 #endif
1064 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1065 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1066 }
1067 
1068 #else /* CONFIG_SMP */
1069 
1070 static inline
1071 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1072 static inline
1073 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1074 
1075 #endif /* CONFIG_SMP */
1076 
1077 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1078 static void
1079 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1080 {
1081 	int prev_prio = rt_rq->highest_prio.curr;
1082 
1083 	if (prio < prev_prio)
1084 		rt_rq->highest_prio.curr = prio;
1085 
1086 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1087 }
1088 
1089 static void
1090 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1091 {
1092 	int prev_prio = rt_rq->highest_prio.curr;
1093 
1094 	if (rt_rq->rt_nr_running) {
1095 
1096 		WARN_ON(prio < prev_prio);
1097 
1098 		/*
1099 		 * This may have been our highest task, and therefore
1100 		 * we may have some recomputation to do
1101 		 */
1102 		if (prio == prev_prio) {
1103 			struct rt_prio_array *array = &rt_rq->active;
1104 
1105 			rt_rq->highest_prio.curr =
1106 				sched_find_first_bit(array->bitmap);
1107 		}
1108 
1109 	} else
1110 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1111 
1112 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1113 }
1114 
1115 #else
1116 
1117 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1118 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1119 
1120 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1121 
1122 #ifdef CONFIG_RT_GROUP_SCHED
1123 
1124 static void
1125 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1126 {
1127 	if (rt_se_boosted(rt_se))
1128 		rt_rq->rt_nr_boosted++;
1129 
1130 	if (rt_rq->tg)
1131 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1132 }
1133 
1134 static void
1135 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1136 {
1137 	if (rt_se_boosted(rt_se))
1138 		rt_rq->rt_nr_boosted--;
1139 
1140 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1141 }
1142 
1143 #else /* CONFIG_RT_GROUP_SCHED */
1144 
1145 static void
1146 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1147 {
1148 	start_rt_bandwidth(&def_rt_bandwidth);
1149 }
1150 
1151 static inline
1152 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1153 
1154 #endif /* CONFIG_RT_GROUP_SCHED */
1155 
1156 static inline
1157 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1158 {
1159 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1160 
1161 	if (group_rq)
1162 		return group_rq->rt_nr_running;
1163 	else
1164 		return 1;
1165 }
1166 
1167 static inline
1168 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1169 {
1170 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1171 	struct task_struct *tsk;
1172 
1173 	if (group_rq)
1174 		return group_rq->rr_nr_running;
1175 
1176 	tsk = rt_task_of(rt_se);
1177 
1178 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1179 }
1180 
1181 static inline
1182 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1183 {
1184 	int prio = rt_se_prio(rt_se);
1185 
1186 	WARN_ON(!rt_prio(prio));
1187 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1188 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1189 
1190 	inc_rt_prio(rt_rq, prio);
1191 	inc_rt_migration(rt_se, rt_rq);
1192 	inc_rt_group(rt_se, rt_rq);
1193 }
1194 
1195 static inline
1196 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1197 {
1198 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1199 	WARN_ON(!rt_rq->rt_nr_running);
1200 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1201 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1202 
1203 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1204 	dec_rt_migration(rt_se, rt_rq);
1205 	dec_rt_group(rt_se, rt_rq);
1206 }
1207 
1208 /*
1209  * Change rt_se->run_list location unless SAVE && !MOVE
1210  *
1211  * assumes ENQUEUE/DEQUEUE flags match
1212  */
1213 static inline bool move_entity(unsigned int flags)
1214 {
1215 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1216 		return false;
1217 
1218 	return true;
1219 }
1220 
1221 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1222 {
1223 	list_del_init(&rt_se->run_list);
1224 
1225 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1226 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1227 
1228 	rt_se->on_list = 0;
1229 }
1230 
1231 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1232 {
1233 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1234 	struct rt_prio_array *array = &rt_rq->active;
1235 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1236 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1237 
1238 	/*
1239 	 * Don't enqueue the group if its throttled, or when empty.
1240 	 * The latter is a consequence of the former when a child group
1241 	 * get throttled and the current group doesn't have any other
1242 	 * active members.
1243 	 */
1244 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1245 		if (rt_se->on_list)
1246 			__delist_rt_entity(rt_se, array);
1247 		return;
1248 	}
1249 
1250 	if (move_entity(flags)) {
1251 		WARN_ON_ONCE(rt_se->on_list);
1252 		if (flags & ENQUEUE_HEAD)
1253 			list_add(&rt_se->run_list, queue);
1254 		else
1255 			list_add_tail(&rt_se->run_list, queue);
1256 
1257 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1258 		rt_se->on_list = 1;
1259 	}
1260 	rt_se->on_rq = 1;
1261 
1262 	inc_rt_tasks(rt_se, rt_rq);
1263 }
1264 
1265 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1266 {
1267 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1268 	struct rt_prio_array *array = &rt_rq->active;
1269 
1270 	if (move_entity(flags)) {
1271 		WARN_ON_ONCE(!rt_se->on_list);
1272 		__delist_rt_entity(rt_se, array);
1273 	}
1274 	rt_se->on_rq = 0;
1275 
1276 	dec_rt_tasks(rt_se, rt_rq);
1277 }
1278 
1279 /*
1280  * Because the prio of an upper entry depends on the lower
1281  * entries, we must remove entries top - down.
1282  */
1283 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1284 {
1285 	struct sched_rt_entity *back = NULL;
1286 
1287 	for_each_sched_rt_entity(rt_se) {
1288 		rt_se->back = back;
1289 		back = rt_se;
1290 	}
1291 
1292 	dequeue_top_rt_rq(rt_rq_of_se(back));
1293 
1294 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1295 		if (on_rt_rq(rt_se))
1296 			__dequeue_rt_entity(rt_se, flags);
1297 	}
1298 }
1299 
1300 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1301 {
1302 	struct rq *rq = rq_of_rt_se(rt_se);
1303 
1304 	dequeue_rt_stack(rt_se, flags);
1305 	for_each_sched_rt_entity(rt_se)
1306 		__enqueue_rt_entity(rt_se, flags);
1307 	enqueue_top_rt_rq(&rq->rt);
1308 }
1309 
1310 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1311 {
1312 	struct rq *rq = rq_of_rt_se(rt_se);
1313 
1314 	dequeue_rt_stack(rt_se, flags);
1315 
1316 	for_each_sched_rt_entity(rt_se) {
1317 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1318 
1319 		if (rt_rq && rt_rq->rt_nr_running)
1320 			__enqueue_rt_entity(rt_se, flags);
1321 	}
1322 	enqueue_top_rt_rq(&rq->rt);
1323 }
1324 
1325 /*
1326  * Adding/removing a task to/from a priority array:
1327  */
1328 static void
1329 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1330 {
1331 	struct sched_rt_entity *rt_se = &p->rt;
1332 
1333 	if (flags & ENQUEUE_WAKEUP)
1334 		rt_se->timeout = 0;
1335 
1336 	enqueue_rt_entity(rt_se, flags);
1337 
1338 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1339 		enqueue_pushable_task(rq, p);
1340 }
1341 
1342 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1343 {
1344 	struct sched_rt_entity *rt_se = &p->rt;
1345 
1346 	update_curr_rt(rq);
1347 	dequeue_rt_entity(rt_se, flags);
1348 
1349 	dequeue_pushable_task(rq, p);
1350 }
1351 
1352 /*
1353  * Put task to the head or the end of the run list without the overhead of
1354  * dequeue followed by enqueue.
1355  */
1356 static void
1357 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1358 {
1359 	if (on_rt_rq(rt_se)) {
1360 		struct rt_prio_array *array = &rt_rq->active;
1361 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1362 
1363 		if (head)
1364 			list_move(&rt_se->run_list, queue);
1365 		else
1366 			list_move_tail(&rt_se->run_list, queue);
1367 	}
1368 }
1369 
1370 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1371 {
1372 	struct sched_rt_entity *rt_se = &p->rt;
1373 	struct rt_rq *rt_rq;
1374 
1375 	for_each_sched_rt_entity(rt_se) {
1376 		rt_rq = rt_rq_of_se(rt_se);
1377 		requeue_rt_entity(rt_rq, rt_se, head);
1378 	}
1379 }
1380 
1381 static void yield_task_rt(struct rq *rq)
1382 {
1383 	requeue_task_rt(rq, rq->curr, 0);
1384 }
1385 
1386 #ifdef CONFIG_SMP
1387 static int find_lowest_rq(struct task_struct *task);
1388 
1389 static int
1390 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1391 {
1392 	struct task_struct *curr;
1393 	struct rq *rq;
1394 
1395 	/* For anything but wake ups, just return the task_cpu */
1396 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1397 		goto out;
1398 
1399 	rq = cpu_rq(cpu);
1400 
1401 	rcu_read_lock();
1402 	curr = READ_ONCE(rq->curr); /* unlocked access */
1403 
1404 	/*
1405 	 * If the current task on @p's runqueue is an RT task, then
1406 	 * try to see if we can wake this RT task up on another
1407 	 * runqueue. Otherwise simply start this RT task
1408 	 * on its current runqueue.
1409 	 *
1410 	 * We want to avoid overloading runqueues. If the woken
1411 	 * task is a higher priority, then it will stay on this CPU
1412 	 * and the lower prio task should be moved to another CPU.
1413 	 * Even though this will probably make the lower prio task
1414 	 * lose its cache, we do not want to bounce a higher task
1415 	 * around just because it gave up its CPU, perhaps for a
1416 	 * lock?
1417 	 *
1418 	 * For equal prio tasks, we just let the scheduler sort it out.
1419 	 *
1420 	 * Otherwise, just let it ride on the affined RQ and the
1421 	 * post-schedule router will push the preempted task away
1422 	 *
1423 	 * This test is optimistic, if we get it wrong the load-balancer
1424 	 * will have to sort it out.
1425 	 */
1426 	if (curr && unlikely(rt_task(curr)) &&
1427 	    (curr->nr_cpus_allowed < 2 ||
1428 	     curr->prio <= p->prio)) {
1429 		int target = find_lowest_rq(p);
1430 
1431 		/*
1432 		 * Don't bother moving it if the destination CPU is
1433 		 * not running a lower priority task.
1434 		 */
1435 		if (target != -1 &&
1436 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1437 			cpu = target;
1438 	}
1439 	rcu_read_unlock();
1440 
1441 out:
1442 	return cpu;
1443 }
1444 
1445 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1446 {
1447 	/*
1448 	 * Current can't be migrated, useless to reschedule,
1449 	 * let's hope p can move out.
1450 	 */
1451 	if (rq->curr->nr_cpus_allowed == 1 ||
1452 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1453 		return;
1454 
1455 	/*
1456 	 * p is migratable, so let's not schedule it and
1457 	 * see if it is pushed or pulled somewhere else.
1458 	 */
1459 	if (p->nr_cpus_allowed != 1
1460 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1461 		return;
1462 
1463 	/*
1464 	 * There appears to be other cpus that can accept
1465 	 * current and none to run 'p', so lets reschedule
1466 	 * to try and push current away:
1467 	 */
1468 	requeue_task_rt(rq, p, 1);
1469 	resched_curr(rq);
1470 }
1471 
1472 #endif /* CONFIG_SMP */
1473 
1474 /*
1475  * Preempt the current task with a newly woken task if needed:
1476  */
1477 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1478 {
1479 	if (p->prio < rq->curr->prio) {
1480 		resched_curr(rq);
1481 		return;
1482 	}
1483 
1484 #ifdef CONFIG_SMP
1485 	/*
1486 	 * If:
1487 	 *
1488 	 * - the newly woken task is of equal priority to the current task
1489 	 * - the newly woken task is non-migratable while current is migratable
1490 	 * - current will be preempted on the next reschedule
1491 	 *
1492 	 * we should check to see if current can readily move to a different
1493 	 * cpu.  If so, we will reschedule to allow the push logic to try
1494 	 * to move current somewhere else, making room for our non-migratable
1495 	 * task.
1496 	 */
1497 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1498 		check_preempt_equal_prio(rq, p);
1499 #endif
1500 }
1501 
1502 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1503 						   struct rt_rq *rt_rq)
1504 {
1505 	struct rt_prio_array *array = &rt_rq->active;
1506 	struct sched_rt_entity *next = NULL;
1507 	struct list_head *queue;
1508 	int idx;
1509 
1510 	idx = sched_find_first_bit(array->bitmap);
1511 	BUG_ON(idx >= MAX_RT_PRIO);
1512 
1513 	queue = array->queue + idx;
1514 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1515 
1516 	return next;
1517 }
1518 
1519 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1520 {
1521 	struct sched_rt_entity *rt_se;
1522 	struct task_struct *p;
1523 	struct rt_rq *rt_rq  = &rq->rt;
1524 
1525 	do {
1526 		rt_se = pick_next_rt_entity(rq, rt_rq);
1527 		BUG_ON(!rt_se);
1528 		rt_rq = group_rt_rq(rt_se);
1529 	} while (rt_rq);
1530 
1531 	p = rt_task_of(rt_se);
1532 	p->se.exec_start = rq_clock_task(rq);
1533 
1534 	return p;
1535 }
1536 
1537 static struct task_struct *
1538 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1539 {
1540 	struct task_struct *p;
1541 	struct rt_rq *rt_rq = &rq->rt;
1542 
1543 	if (need_pull_rt_task(rq, prev)) {
1544 		/*
1545 		 * This is OK, because current is on_cpu, which avoids it being
1546 		 * picked for load-balance and preemption/IRQs are still
1547 		 * disabled avoiding further scheduler activity on it and we're
1548 		 * being very careful to re-start the picking loop.
1549 		 */
1550 		rq_unpin_lock(rq, rf);
1551 		pull_rt_task(rq);
1552 		rq_repin_lock(rq, rf);
1553 		/*
1554 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1555 		 * means a dl or stop task can slip in, in which case we need
1556 		 * to re-start task selection.
1557 		 */
1558 		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1559 			     rq->dl.dl_nr_running))
1560 			return RETRY_TASK;
1561 	}
1562 
1563 	/*
1564 	 * We may dequeue prev's rt_rq in put_prev_task().
1565 	 * So, we update time before rt_nr_running check.
1566 	 */
1567 	if (prev->sched_class == &rt_sched_class)
1568 		update_curr_rt(rq);
1569 
1570 	if (!rt_rq->rt_queued)
1571 		return NULL;
1572 
1573 	put_prev_task(rq, prev);
1574 
1575 	p = _pick_next_task_rt(rq);
1576 
1577 	/* The running task is never eligible for pushing */
1578 	dequeue_pushable_task(rq, p);
1579 
1580 	queue_push_tasks(rq);
1581 
1582 	return p;
1583 }
1584 
1585 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1586 {
1587 	update_curr_rt(rq);
1588 
1589 	/*
1590 	 * The previous task needs to be made eligible for pushing
1591 	 * if it is still active
1592 	 */
1593 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1594 		enqueue_pushable_task(rq, p);
1595 }
1596 
1597 #ifdef CONFIG_SMP
1598 
1599 /* Only try algorithms three times */
1600 #define RT_MAX_TRIES 3
1601 
1602 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1603 {
1604 	if (!task_running(rq, p) &&
1605 	    cpumask_test_cpu(cpu, &p->cpus_allowed))
1606 		return 1;
1607 	return 0;
1608 }
1609 
1610 /*
1611  * Return the highest pushable rq's task, which is suitable to be executed
1612  * on the cpu, NULL otherwise
1613  */
1614 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1615 {
1616 	struct plist_head *head = &rq->rt.pushable_tasks;
1617 	struct task_struct *p;
1618 
1619 	if (!has_pushable_tasks(rq))
1620 		return NULL;
1621 
1622 	plist_for_each_entry(p, head, pushable_tasks) {
1623 		if (pick_rt_task(rq, p, cpu))
1624 			return p;
1625 	}
1626 
1627 	return NULL;
1628 }
1629 
1630 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1631 
1632 static int find_lowest_rq(struct task_struct *task)
1633 {
1634 	struct sched_domain *sd;
1635 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1636 	int this_cpu = smp_processor_id();
1637 	int cpu      = task_cpu(task);
1638 
1639 	/* Make sure the mask is initialized first */
1640 	if (unlikely(!lowest_mask))
1641 		return -1;
1642 
1643 	if (task->nr_cpus_allowed == 1)
1644 		return -1; /* No other targets possible */
1645 
1646 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1647 		return -1; /* No targets found */
1648 
1649 	/*
1650 	 * At this point we have built a mask of cpus representing the
1651 	 * lowest priority tasks in the system.  Now we want to elect
1652 	 * the best one based on our affinity and topology.
1653 	 *
1654 	 * We prioritize the last cpu that the task executed on since
1655 	 * it is most likely cache-hot in that location.
1656 	 */
1657 	if (cpumask_test_cpu(cpu, lowest_mask))
1658 		return cpu;
1659 
1660 	/*
1661 	 * Otherwise, we consult the sched_domains span maps to figure
1662 	 * out which cpu is logically closest to our hot cache data.
1663 	 */
1664 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1665 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1666 
1667 	rcu_read_lock();
1668 	for_each_domain(cpu, sd) {
1669 		if (sd->flags & SD_WAKE_AFFINE) {
1670 			int best_cpu;
1671 
1672 			/*
1673 			 * "this_cpu" is cheaper to preempt than a
1674 			 * remote processor.
1675 			 */
1676 			if (this_cpu != -1 &&
1677 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1678 				rcu_read_unlock();
1679 				return this_cpu;
1680 			}
1681 
1682 			best_cpu = cpumask_first_and(lowest_mask,
1683 						     sched_domain_span(sd));
1684 			if (best_cpu < nr_cpu_ids) {
1685 				rcu_read_unlock();
1686 				return best_cpu;
1687 			}
1688 		}
1689 	}
1690 	rcu_read_unlock();
1691 
1692 	/*
1693 	 * And finally, if there were no matches within the domains
1694 	 * just give the caller *something* to work with from the compatible
1695 	 * locations.
1696 	 */
1697 	if (this_cpu != -1)
1698 		return this_cpu;
1699 
1700 	cpu = cpumask_any(lowest_mask);
1701 	if (cpu < nr_cpu_ids)
1702 		return cpu;
1703 	return -1;
1704 }
1705 
1706 /* Will lock the rq it finds */
1707 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1708 {
1709 	struct rq *lowest_rq = NULL;
1710 	int tries;
1711 	int cpu;
1712 
1713 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1714 		cpu = find_lowest_rq(task);
1715 
1716 		if ((cpu == -1) || (cpu == rq->cpu))
1717 			break;
1718 
1719 		lowest_rq = cpu_rq(cpu);
1720 
1721 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1722 			/*
1723 			 * Target rq has tasks of equal or higher priority,
1724 			 * retrying does not release any lock and is unlikely
1725 			 * to yield a different result.
1726 			 */
1727 			lowest_rq = NULL;
1728 			break;
1729 		}
1730 
1731 		/* if the prio of this runqueue changed, try again */
1732 		if (double_lock_balance(rq, lowest_rq)) {
1733 			/*
1734 			 * We had to unlock the run queue. In
1735 			 * the mean time, task could have
1736 			 * migrated already or had its affinity changed.
1737 			 * Also make sure that it wasn't scheduled on its rq.
1738 			 */
1739 			if (unlikely(task_rq(task) != rq ||
1740 				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1741 				     task_running(rq, task) ||
1742 				     !rt_task(task) ||
1743 				     !task_on_rq_queued(task))) {
1744 
1745 				double_unlock_balance(rq, lowest_rq);
1746 				lowest_rq = NULL;
1747 				break;
1748 			}
1749 		}
1750 
1751 		/* If this rq is still suitable use it. */
1752 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1753 			break;
1754 
1755 		/* try again */
1756 		double_unlock_balance(rq, lowest_rq);
1757 		lowest_rq = NULL;
1758 	}
1759 
1760 	return lowest_rq;
1761 }
1762 
1763 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1764 {
1765 	struct task_struct *p;
1766 
1767 	if (!has_pushable_tasks(rq))
1768 		return NULL;
1769 
1770 	p = plist_first_entry(&rq->rt.pushable_tasks,
1771 			      struct task_struct, pushable_tasks);
1772 
1773 	BUG_ON(rq->cpu != task_cpu(p));
1774 	BUG_ON(task_current(rq, p));
1775 	BUG_ON(p->nr_cpus_allowed <= 1);
1776 
1777 	BUG_ON(!task_on_rq_queued(p));
1778 	BUG_ON(!rt_task(p));
1779 
1780 	return p;
1781 }
1782 
1783 /*
1784  * If the current CPU has more than one RT task, see if the non
1785  * running task can migrate over to a CPU that is running a task
1786  * of lesser priority.
1787  */
1788 static int push_rt_task(struct rq *rq)
1789 {
1790 	struct task_struct *next_task;
1791 	struct rq *lowest_rq;
1792 	int ret = 0;
1793 
1794 	if (!rq->rt.overloaded)
1795 		return 0;
1796 
1797 	next_task = pick_next_pushable_task(rq);
1798 	if (!next_task)
1799 		return 0;
1800 
1801 retry:
1802 	if (unlikely(next_task == rq->curr)) {
1803 		WARN_ON(1);
1804 		return 0;
1805 	}
1806 
1807 	/*
1808 	 * It's possible that the next_task slipped in of
1809 	 * higher priority than current. If that's the case
1810 	 * just reschedule current.
1811 	 */
1812 	if (unlikely(next_task->prio < rq->curr->prio)) {
1813 		resched_curr(rq);
1814 		return 0;
1815 	}
1816 
1817 	/* We might release rq lock */
1818 	get_task_struct(next_task);
1819 
1820 	/* find_lock_lowest_rq locks the rq if found */
1821 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1822 	if (!lowest_rq) {
1823 		struct task_struct *task;
1824 		/*
1825 		 * find_lock_lowest_rq releases rq->lock
1826 		 * so it is possible that next_task has migrated.
1827 		 *
1828 		 * We need to make sure that the task is still on the same
1829 		 * run-queue and is also still the next task eligible for
1830 		 * pushing.
1831 		 */
1832 		task = pick_next_pushable_task(rq);
1833 		if (task == next_task) {
1834 			/*
1835 			 * The task hasn't migrated, and is still the next
1836 			 * eligible task, but we failed to find a run-queue
1837 			 * to push it to.  Do not retry in this case, since
1838 			 * other cpus will pull from us when ready.
1839 			 */
1840 			goto out;
1841 		}
1842 
1843 		if (!task)
1844 			/* No more tasks, just exit */
1845 			goto out;
1846 
1847 		/*
1848 		 * Something has shifted, try again.
1849 		 */
1850 		put_task_struct(next_task);
1851 		next_task = task;
1852 		goto retry;
1853 	}
1854 
1855 	deactivate_task(rq, next_task, 0);
1856 	set_task_cpu(next_task, lowest_rq->cpu);
1857 	activate_task(lowest_rq, next_task, 0);
1858 	ret = 1;
1859 
1860 	resched_curr(lowest_rq);
1861 
1862 	double_unlock_balance(rq, lowest_rq);
1863 
1864 out:
1865 	put_task_struct(next_task);
1866 
1867 	return ret;
1868 }
1869 
1870 static void push_rt_tasks(struct rq *rq)
1871 {
1872 	/* push_rt_task will return true if it moved an RT */
1873 	while (push_rt_task(rq))
1874 		;
1875 }
1876 
1877 #ifdef HAVE_RT_PUSH_IPI
1878 /*
1879  * The search for the next cpu always starts at rq->cpu and ends
1880  * when we reach rq->cpu again. It will never return rq->cpu.
1881  * This returns the next cpu to check, or nr_cpu_ids if the loop
1882  * is complete.
1883  *
1884  * rq->rt.push_cpu holds the last cpu returned by this function,
1885  * or if this is the first instance, it must hold rq->cpu.
1886  */
1887 static int rto_next_cpu(struct rq *rq)
1888 {
1889 	int prev_cpu = rq->rt.push_cpu;
1890 	int cpu;
1891 
1892 	cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1893 
1894 	/*
1895 	 * If the previous cpu is less than the rq's CPU, then it already
1896 	 * passed the end of the mask, and has started from the beginning.
1897 	 * We end if the next CPU is greater or equal to rq's CPU.
1898 	 */
1899 	if (prev_cpu < rq->cpu) {
1900 		if (cpu >= rq->cpu)
1901 			return nr_cpu_ids;
1902 
1903 	} else if (cpu >= nr_cpu_ids) {
1904 		/*
1905 		 * We passed the end of the mask, start at the beginning.
1906 		 * If the result is greater or equal to the rq's CPU, then
1907 		 * the loop is finished.
1908 		 */
1909 		cpu = cpumask_first(rq->rd->rto_mask);
1910 		if (cpu >= rq->cpu)
1911 			return nr_cpu_ids;
1912 	}
1913 	rq->rt.push_cpu = cpu;
1914 
1915 	/* Return cpu to let the caller know if the loop is finished or not */
1916 	return cpu;
1917 }
1918 
1919 static int find_next_push_cpu(struct rq *rq)
1920 {
1921 	struct rq *next_rq;
1922 	int cpu;
1923 
1924 	while (1) {
1925 		cpu = rto_next_cpu(rq);
1926 		if (cpu >= nr_cpu_ids)
1927 			break;
1928 		next_rq = cpu_rq(cpu);
1929 
1930 		/* Make sure the next rq can push to this rq */
1931 		if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1932 			break;
1933 	}
1934 
1935 	return cpu;
1936 }
1937 
1938 #define RT_PUSH_IPI_EXECUTING		1
1939 #define RT_PUSH_IPI_RESTART		2
1940 
1941 /*
1942  * When a high priority task schedules out from a CPU and a lower priority
1943  * task is scheduled in, a check is made to see if there's any RT tasks
1944  * on other CPUs that are waiting to run because a higher priority RT task
1945  * is currently running on its CPU. In this case, the CPU with multiple RT
1946  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1947  * up that may be able to run one of its non-running queued RT tasks.
1948  *
1949  * On large CPU boxes, there's the case that several CPUs could schedule
1950  * a lower priority task at the same time, in which case it will look for
1951  * any overloaded CPUs that it could pull a task from. To do this, the runqueue
1952  * lock must be taken from that overloaded CPU. Having 10s of CPUs all fighting
1953  * for a single overloaded CPU's runqueue lock can produce a large latency.
1954  * (This has actually been observed on large boxes running cyclictest).
1955  * Instead of taking the runqueue lock of the overloaded CPU, each of the
1956  * CPUs that scheduled a lower priority task simply sends an IPI to the
1957  * overloaded CPU. An IPI is much cheaper than taking an runqueue lock with
1958  * lots of contention. The overloaded CPU will look to push its non-running
1959  * RT task off, and if it does, it can then ignore the other IPIs coming
1960  * in, and just pass those IPIs off to any other overloaded CPU.
1961  *
1962  * When a CPU schedules a lower priority task, it only sends an IPI to
1963  * the "next" CPU that has overloaded RT tasks. This prevents IPI storms,
1964  * as having 10 CPUs scheduling lower priority tasks and 10 CPUs with
1965  * RT overloaded tasks, would cause 100 IPIs to go out at once.
1966  *
1967  * The overloaded RT CPU, when receiving an IPI, will try to push off its
1968  * overloaded RT tasks and then send an IPI to the next CPU that has
1969  * overloaded RT tasks. This stops when all CPUs with overloaded RT tasks
1970  * have completed. Just because a CPU may have pushed off its own overloaded
1971  * RT task does not mean it should stop sending the IPI around to other
1972  * overloaded CPUs. There may be another RT task waiting to run on one of
1973  * those CPUs that are of higher priority than the one that was just
1974  * pushed.
1975  *
1976  * An optimization that could possibly be made is to make a CPU array similar
1977  * to the cpupri array mask of all running RT tasks, but for the overloaded
1978  * case, then the IPI could be sent to only the CPU with the highest priority
1979  * RT task waiting, and that CPU could send off further IPIs to the CPU with
1980  * the next highest waiting task. Since the overloaded case is much less likely
1981  * to happen, the complexity of this implementation may not be worth it.
1982  * Instead, just send an IPI around to all overloaded CPUs.
1983  *
1984  * The rq->rt.push_flags holds the status of the IPI that is going around.
1985  * A run queue can only send out a single IPI at a time. The possible flags
1986  * for rq->rt.push_flags are:
1987  *
1988  *    (None or zero):		No IPI is going around for the current rq
1989  *    RT_PUSH_IPI_EXECUTING:	An IPI for the rq is being passed around
1990  *    RT_PUSH_IPI_RESTART:	The priority of the running task for the rq
1991  *				has changed, and the IPI should restart
1992  *				circulating the overloaded CPUs again.
1993  *
1994  * rq->rt.push_cpu contains the CPU that is being sent the IPI. It is updated
1995  * before sending to the next CPU.
1996  *
1997  * Instead of having all CPUs that schedule a lower priority task send
1998  * an IPI to the same "first" CPU in the RT overload mask, they send it
1999  * to the next overloaded CPU after their own CPU. This helps distribute
2000  * the work when there's more than one overloaded CPU and multiple CPUs
2001  * scheduling in lower priority tasks.
2002  *
2003  * When a rq schedules a lower priority task than what was currently
2004  * running, the next CPU with overloaded RT tasks is examined first.
2005  * That is, if CPU 1 and 5 are overloaded, and CPU 3 schedules a lower
2006  * priority task, it will send an IPI first to CPU 5, then CPU 5 will
2007  * send to CPU 1 if it is still overloaded. CPU 1 will clear the
2008  * rq->rt.push_flags if RT_PUSH_IPI_RESTART is not set.
2009  *
2010  * The first CPU to notice IPI_RESTART is set, will clear that flag and then
2011  * send an IPI to the next overloaded CPU after the rq->cpu and not the next
2012  * CPU after push_cpu. That is, if CPU 1, 4 and 5 are overloaded when CPU 3
2013  * schedules a lower priority task, and the IPI_RESTART gets set while the
2014  * handling is being done on CPU 5, it will clear the flag and send it back to
2015  * CPU 4 instead of CPU 1.
2016  *
2017  * Note, the above logic can be disabled by turning off the sched_feature
2018  * RT_PUSH_IPI. Then the rq lock of the overloaded CPU will simply be
2019  * taken by the CPU requesting a pull and the waiting RT task will be pulled
2020  * by that CPU. This may be fine for machines with few CPUs.
2021  */
2022 static void tell_cpu_to_push(struct rq *rq)
2023 {
2024 	int cpu;
2025 
2026 	if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
2027 		raw_spin_lock(&rq->rt.push_lock);
2028 		/* Make sure it's still executing */
2029 		if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
2030 			/*
2031 			 * Tell the IPI to restart the loop as things have
2032 			 * changed since it started.
2033 			 */
2034 			rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
2035 			raw_spin_unlock(&rq->rt.push_lock);
2036 			return;
2037 		}
2038 		raw_spin_unlock(&rq->rt.push_lock);
2039 	}
2040 
2041 	/* When here, there's no IPI going around */
2042 
2043 	rq->rt.push_cpu = rq->cpu;
2044 	cpu = find_next_push_cpu(rq);
2045 	if (cpu >= nr_cpu_ids)
2046 		return;
2047 
2048 	rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
2049 
2050 	irq_work_queue_on(&rq->rt.push_work, cpu);
2051 }
2052 
2053 /* Called from hardirq context */
2054 static void try_to_push_tasks(void *arg)
2055 {
2056 	struct rt_rq *rt_rq = arg;
2057 	struct rq *rq, *src_rq;
2058 	int this_cpu;
2059 	int cpu;
2060 
2061 	this_cpu = rt_rq->push_cpu;
2062 
2063 	/* Paranoid check */
2064 	BUG_ON(this_cpu != smp_processor_id());
2065 
2066 	rq = cpu_rq(this_cpu);
2067 	src_rq = rq_of_rt_rq(rt_rq);
2068 
2069 again:
2070 	if (has_pushable_tasks(rq)) {
2071 		raw_spin_lock(&rq->lock);
2072 		push_rt_task(rq);
2073 		raw_spin_unlock(&rq->lock);
2074 	}
2075 
2076 	/* Pass the IPI to the next rt overloaded queue */
2077 	raw_spin_lock(&rt_rq->push_lock);
2078 	/*
2079 	 * If the source queue changed since the IPI went out,
2080 	 * we need to restart the search from that CPU again.
2081 	 */
2082 	if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
2083 		rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
2084 		rt_rq->push_cpu = src_rq->cpu;
2085 	}
2086 
2087 	cpu = find_next_push_cpu(src_rq);
2088 
2089 	if (cpu >= nr_cpu_ids)
2090 		rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
2091 	raw_spin_unlock(&rt_rq->push_lock);
2092 
2093 	if (cpu >= nr_cpu_ids)
2094 		return;
2095 
2096 	/*
2097 	 * It is possible that a restart caused this CPU to be
2098 	 * chosen again. Don't bother with an IPI, just see if we
2099 	 * have more to push.
2100 	 */
2101 	if (unlikely(cpu == rq->cpu))
2102 		goto again;
2103 
2104 	/* Try the next RT overloaded CPU */
2105 	irq_work_queue_on(&rt_rq->push_work, cpu);
2106 }
2107 
2108 static void push_irq_work_func(struct irq_work *work)
2109 {
2110 	struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
2111 
2112 	try_to_push_tasks(rt_rq);
2113 }
2114 #endif /* HAVE_RT_PUSH_IPI */
2115 
2116 static void pull_rt_task(struct rq *this_rq)
2117 {
2118 	int this_cpu = this_rq->cpu, cpu;
2119 	bool resched = false;
2120 	struct task_struct *p;
2121 	struct rq *src_rq;
2122 
2123 	if (likely(!rt_overloaded(this_rq)))
2124 		return;
2125 
2126 	/*
2127 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2128 	 * see overloaded we must also see the rto_mask bit.
2129 	 */
2130 	smp_rmb();
2131 
2132 #ifdef HAVE_RT_PUSH_IPI
2133 	if (sched_feat(RT_PUSH_IPI)) {
2134 		tell_cpu_to_push(this_rq);
2135 		return;
2136 	}
2137 #endif
2138 
2139 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2140 		if (this_cpu == cpu)
2141 			continue;
2142 
2143 		src_rq = cpu_rq(cpu);
2144 
2145 		/*
2146 		 * Don't bother taking the src_rq->lock if the next highest
2147 		 * task is known to be lower-priority than our current task.
2148 		 * This may look racy, but if this value is about to go
2149 		 * logically higher, the src_rq will push this task away.
2150 		 * And if its going logically lower, we do not care
2151 		 */
2152 		if (src_rq->rt.highest_prio.next >=
2153 		    this_rq->rt.highest_prio.curr)
2154 			continue;
2155 
2156 		/*
2157 		 * We can potentially drop this_rq's lock in
2158 		 * double_lock_balance, and another CPU could
2159 		 * alter this_rq
2160 		 */
2161 		double_lock_balance(this_rq, src_rq);
2162 
2163 		/*
2164 		 * We can pull only a task, which is pushable
2165 		 * on its rq, and no others.
2166 		 */
2167 		p = pick_highest_pushable_task(src_rq, this_cpu);
2168 
2169 		/*
2170 		 * Do we have an RT task that preempts
2171 		 * the to-be-scheduled task?
2172 		 */
2173 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2174 			WARN_ON(p == src_rq->curr);
2175 			WARN_ON(!task_on_rq_queued(p));
2176 
2177 			/*
2178 			 * There's a chance that p is higher in priority
2179 			 * than what's currently running on its cpu.
2180 			 * This is just that p is wakeing up and hasn't
2181 			 * had a chance to schedule. We only pull
2182 			 * p if it is lower in priority than the
2183 			 * current task on the run queue
2184 			 */
2185 			if (p->prio < src_rq->curr->prio)
2186 				goto skip;
2187 
2188 			resched = true;
2189 
2190 			deactivate_task(src_rq, p, 0);
2191 			set_task_cpu(p, this_cpu);
2192 			activate_task(this_rq, p, 0);
2193 			/*
2194 			 * We continue with the search, just in
2195 			 * case there's an even higher prio task
2196 			 * in another runqueue. (low likelihood
2197 			 * but possible)
2198 			 */
2199 		}
2200 skip:
2201 		double_unlock_balance(this_rq, src_rq);
2202 	}
2203 
2204 	if (resched)
2205 		resched_curr(this_rq);
2206 }
2207 
2208 /*
2209  * If we are not running and we are not going to reschedule soon, we should
2210  * try to push tasks away now
2211  */
2212 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2213 {
2214 	if (!task_running(rq, p) &&
2215 	    !test_tsk_need_resched(rq->curr) &&
2216 	    p->nr_cpus_allowed > 1 &&
2217 	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2218 	    (rq->curr->nr_cpus_allowed < 2 ||
2219 	     rq->curr->prio <= p->prio))
2220 		push_rt_tasks(rq);
2221 }
2222 
2223 /* Assumes rq->lock is held */
2224 static void rq_online_rt(struct rq *rq)
2225 {
2226 	if (rq->rt.overloaded)
2227 		rt_set_overload(rq);
2228 
2229 	__enable_runtime(rq);
2230 
2231 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2232 }
2233 
2234 /* Assumes rq->lock is held */
2235 static void rq_offline_rt(struct rq *rq)
2236 {
2237 	if (rq->rt.overloaded)
2238 		rt_clear_overload(rq);
2239 
2240 	__disable_runtime(rq);
2241 
2242 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2243 }
2244 
2245 /*
2246  * When switch from the rt queue, we bring ourselves to a position
2247  * that we might want to pull RT tasks from other runqueues.
2248  */
2249 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2250 {
2251 	/*
2252 	 * If there are other RT tasks then we will reschedule
2253 	 * and the scheduling of the other RT tasks will handle
2254 	 * the balancing. But if we are the last RT task
2255 	 * we may need to handle the pulling of RT tasks
2256 	 * now.
2257 	 */
2258 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2259 		return;
2260 
2261 	queue_pull_task(rq);
2262 }
2263 
2264 void __init init_sched_rt_class(void)
2265 {
2266 	unsigned int i;
2267 
2268 	for_each_possible_cpu(i) {
2269 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2270 					GFP_KERNEL, cpu_to_node(i));
2271 	}
2272 }
2273 #endif /* CONFIG_SMP */
2274 
2275 /*
2276  * When switching a task to RT, we may overload the runqueue
2277  * with RT tasks. In this case we try to push them off to
2278  * other runqueues.
2279  */
2280 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2281 {
2282 	/*
2283 	 * If we are already running, then there's nothing
2284 	 * that needs to be done. But if we are not running
2285 	 * we may need to preempt the current running task.
2286 	 * If that current running task is also an RT task
2287 	 * then see if we can move to another run queue.
2288 	 */
2289 	if (task_on_rq_queued(p) && rq->curr != p) {
2290 #ifdef CONFIG_SMP
2291 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2292 			queue_push_tasks(rq);
2293 #endif /* CONFIG_SMP */
2294 		if (p->prio < rq->curr->prio)
2295 			resched_curr(rq);
2296 	}
2297 }
2298 
2299 /*
2300  * Priority of the task has changed. This may cause
2301  * us to initiate a push or pull.
2302  */
2303 static void
2304 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2305 {
2306 	if (!task_on_rq_queued(p))
2307 		return;
2308 
2309 	if (rq->curr == p) {
2310 #ifdef CONFIG_SMP
2311 		/*
2312 		 * If our priority decreases while running, we
2313 		 * may need to pull tasks to this runqueue.
2314 		 */
2315 		if (oldprio < p->prio)
2316 			queue_pull_task(rq);
2317 
2318 		/*
2319 		 * If there's a higher priority task waiting to run
2320 		 * then reschedule.
2321 		 */
2322 		if (p->prio > rq->rt.highest_prio.curr)
2323 			resched_curr(rq);
2324 #else
2325 		/* For UP simply resched on drop of prio */
2326 		if (oldprio < p->prio)
2327 			resched_curr(rq);
2328 #endif /* CONFIG_SMP */
2329 	} else {
2330 		/*
2331 		 * This task is not running, but if it is
2332 		 * greater than the current running task
2333 		 * then reschedule.
2334 		 */
2335 		if (p->prio < rq->curr->prio)
2336 			resched_curr(rq);
2337 	}
2338 }
2339 
2340 #ifdef CONFIG_POSIX_TIMERS
2341 static void watchdog(struct rq *rq, struct task_struct *p)
2342 {
2343 	unsigned long soft, hard;
2344 
2345 	/* max may change after cur was read, this will be fixed next tick */
2346 	soft = task_rlimit(p, RLIMIT_RTTIME);
2347 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2348 
2349 	if (soft != RLIM_INFINITY) {
2350 		unsigned long next;
2351 
2352 		if (p->rt.watchdog_stamp != jiffies) {
2353 			p->rt.timeout++;
2354 			p->rt.watchdog_stamp = jiffies;
2355 		}
2356 
2357 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2358 		if (p->rt.timeout > next)
2359 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2360 	}
2361 }
2362 #else
2363 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2364 #endif
2365 
2366 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2367 {
2368 	struct sched_rt_entity *rt_se = &p->rt;
2369 
2370 	update_curr_rt(rq);
2371 
2372 	watchdog(rq, p);
2373 
2374 	/*
2375 	 * RR tasks need a special form of timeslice management.
2376 	 * FIFO tasks have no timeslices.
2377 	 */
2378 	if (p->policy != SCHED_RR)
2379 		return;
2380 
2381 	if (--p->rt.time_slice)
2382 		return;
2383 
2384 	p->rt.time_slice = sched_rr_timeslice;
2385 
2386 	/*
2387 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2388 	 * the only element on the queue
2389 	 */
2390 	for_each_sched_rt_entity(rt_se) {
2391 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2392 			requeue_task_rt(rq, p, 0);
2393 			resched_curr(rq);
2394 			return;
2395 		}
2396 	}
2397 }
2398 
2399 static void set_curr_task_rt(struct rq *rq)
2400 {
2401 	struct task_struct *p = rq->curr;
2402 
2403 	p->se.exec_start = rq_clock_task(rq);
2404 
2405 	/* The running task is never eligible for pushing */
2406 	dequeue_pushable_task(rq, p);
2407 }
2408 
2409 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2410 {
2411 	/*
2412 	 * Time slice is 0 for SCHED_FIFO tasks
2413 	 */
2414 	if (task->policy == SCHED_RR)
2415 		return sched_rr_timeslice;
2416 	else
2417 		return 0;
2418 }
2419 
2420 const struct sched_class rt_sched_class = {
2421 	.next			= &fair_sched_class,
2422 	.enqueue_task		= enqueue_task_rt,
2423 	.dequeue_task		= dequeue_task_rt,
2424 	.yield_task		= yield_task_rt,
2425 
2426 	.check_preempt_curr	= check_preempt_curr_rt,
2427 
2428 	.pick_next_task		= pick_next_task_rt,
2429 	.put_prev_task		= put_prev_task_rt,
2430 
2431 #ifdef CONFIG_SMP
2432 	.select_task_rq		= select_task_rq_rt,
2433 
2434 	.set_cpus_allowed       = set_cpus_allowed_common,
2435 	.rq_online              = rq_online_rt,
2436 	.rq_offline             = rq_offline_rt,
2437 	.task_woken		= task_woken_rt,
2438 	.switched_from		= switched_from_rt,
2439 #endif
2440 
2441 	.set_curr_task          = set_curr_task_rt,
2442 	.task_tick		= task_tick_rt,
2443 
2444 	.get_rr_interval	= get_rr_interval_rt,
2445 
2446 	.prio_changed		= prio_changed_rt,
2447 	.switched_to		= switched_to_rt,
2448 
2449 	.update_curr		= update_curr_rt,
2450 };
2451 
2452 #ifdef CONFIG_RT_GROUP_SCHED
2453 /*
2454  * Ensure that the real time constraints are schedulable.
2455  */
2456 static DEFINE_MUTEX(rt_constraints_mutex);
2457 
2458 /* Must be called with tasklist_lock held */
2459 static inline int tg_has_rt_tasks(struct task_group *tg)
2460 {
2461 	struct task_struct *g, *p;
2462 
2463 	/*
2464 	 * Autogroups do not have RT tasks; see autogroup_create().
2465 	 */
2466 	if (task_group_is_autogroup(tg))
2467 		return 0;
2468 
2469 	for_each_process_thread(g, p) {
2470 		if (rt_task(p) && task_group(p) == tg)
2471 			return 1;
2472 	}
2473 
2474 	return 0;
2475 }
2476 
2477 struct rt_schedulable_data {
2478 	struct task_group *tg;
2479 	u64 rt_period;
2480 	u64 rt_runtime;
2481 };
2482 
2483 static int tg_rt_schedulable(struct task_group *tg, void *data)
2484 {
2485 	struct rt_schedulable_data *d = data;
2486 	struct task_group *child;
2487 	unsigned long total, sum = 0;
2488 	u64 period, runtime;
2489 
2490 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2491 	runtime = tg->rt_bandwidth.rt_runtime;
2492 
2493 	if (tg == d->tg) {
2494 		period = d->rt_period;
2495 		runtime = d->rt_runtime;
2496 	}
2497 
2498 	/*
2499 	 * Cannot have more runtime than the period.
2500 	 */
2501 	if (runtime > period && runtime != RUNTIME_INF)
2502 		return -EINVAL;
2503 
2504 	/*
2505 	 * Ensure we don't starve existing RT tasks.
2506 	 */
2507 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2508 		return -EBUSY;
2509 
2510 	total = to_ratio(period, runtime);
2511 
2512 	/*
2513 	 * Nobody can have more than the global setting allows.
2514 	 */
2515 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2516 		return -EINVAL;
2517 
2518 	/*
2519 	 * The sum of our children's runtime should not exceed our own.
2520 	 */
2521 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2522 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2523 		runtime = child->rt_bandwidth.rt_runtime;
2524 
2525 		if (child == d->tg) {
2526 			period = d->rt_period;
2527 			runtime = d->rt_runtime;
2528 		}
2529 
2530 		sum += to_ratio(period, runtime);
2531 	}
2532 
2533 	if (sum > total)
2534 		return -EINVAL;
2535 
2536 	return 0;
2537 }
2538 
2539 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2540 {
2541 	int ret;
2542 
2543 	struct rt_schedulable_data data = {
2544 		.tg = tg,
2545 		.rt_period = period,
2546 		.rt_runtime = runtime,
2547 	};
2548 
2549 	rcu_read_lock();
2550 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2551 	rcu_read_unlock();
2552 
2553 	return ret;
2554 }
2555 
2556 static int tg_set_rt_bandwidth(struct task_group *tg,
2557 		u64 rt_period, u64 rt_runtime)
2558 {
2559 	int i, err = 0;
2560 
2561 	/*
2562 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2563 	 * kernel creating (and or operating) RT threads.
2564 	 */
2565 	if (tg == &root_task_group && rt_runtime == 0)
2566 		return -EINVAL;
2567 
2568 	/* No period doesn't make any sense. */
2569 	if (rt_period == 0)
2570 		return -EINVAL;
2571 
2572 	mutex_lock(&rt_constraints_mutex);
2573 	read_lock(&tasklist_lock);
2574 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2575 	if (err)
2576 		goto unlock;
2577 
2578 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2579 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2580 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2581 
2582 	for_each_possible_cpu(i) {
2583 		struct rt_rq *rt_rq = tg->rt_rq[i];
2584 
2585 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2586 		rt_rq->rt_runtime = rt_runtime;
2587 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2588 	}
2589 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2590 unlock:
2591 	read_unlock(&tasklist_lock);
2592 	mutex_unlock(&rt_constraints_mutex);
2593 
2594 	return err;
2595 }
2596 
2597 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2598 {
2599 	u64 rt_runtime, rt_period;
2600 
2601 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2602 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2603 	if (rt_runtime_us < 0)
2604 		rt_runtime = RUNTIME_INF;
2605 
2606 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2607 }
2608 
2609 long sched_group_rt_runtime(struct task_group *tg)
2610 {
2611 	u64 rt_runtime_us;
2612 
2613 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2614 		return -1;
2615 
2616 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2617 	do_div(rt_runtime_us, NSEC_PER_USEC);
2618 	return rt_runtime_us;
2619 }
2620 
2621 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2622 {
2623 	u64 rt_runtime, rt_period;
2624 
2625 	rt_period = rt_period_us * NSEC_PER_USEC;
2626 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2627 
2628 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2629 }
2630 
2631 long sched_group_rt_period(struct task_group *tg)
2632 {
2633 	u64 rt_period_us;
2634 
2635 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2636 	do_div(rt_period_us, NSEC_PER_USEC);
2637 	return rt_period_us;
2638 }
2639 
2640 static int sched_rt_global_constraints(void)
2641 {
2642 	int ret = 0;
2643 
2644 	mutex_lock(&rt_constraints_mutex);
2645 	read_lock(&tasklist_lock);
2646 	ret = __rt_schedulable(NULL, 0, 0);
2647 	read_unlock(&tasklist_lock);
2648 	mutex_unlock(&rt_constraints_mutex);
2649 
2650 	return ret;
2651 }
2652 
2653 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2654 {
2655 	/* Don't accept realtime tasks when there is no way for them to run */
2656 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2657 		return 0;
2658 
2659 	return 1;
2660 }
2661 
2662 #else /* !CONFIG_RT_GROUP_SCHED */
2663 static int sched_rt_global_constraints(void)
2664 {
2665 	unsigned long flags;
2666 	int i;
2667 
2668 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2669 	for_each_possible_cpu(i) {
2670 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2671 
2672 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2673 		rt_rq->rt_runtime = global_rt_runtime();
2674 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2675 	}
2676 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2677 
2678 	return 0;
2679 }
2680 #endif /* CONFIG_RT_GROUP_SCHED */
2681 
2682 static int sched_rt_global_validate(void)
2683 {
2684 	if (sysctl_sched_rt_period <= 0)
2685 		return -EINVAL;
2686 
2687 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2688 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2689 		return -EINVAL;
2690 
2691 	return 0;
2692 }
2693 
2694 static void sched_rt_do_global(void)
2695 {
2696 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2697 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2698 }
2699 
2700 int sched_rt_handler(struct ctl_table *table, int write,
2701 		void __user *buffer, size_t *lenp,
2702 		loff_t *ppos)
2703 {
2704 	int old_period, old_runtime;
2705 	static DEFINE_MUTEX(mutex);
2706 	int ret;
2707 
2708 	mutex_lock(&mutex);
2709 	old_period = sysctl_sched_rt_period;
2710 	old_runtime = sysctl_sched_rt_runtime;
2711 
2712 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2713 
2714 	if (!ret && write) {
2715 		ret = sched_rt_global_validate();
2716 		if (ret)
2717 			goto undo;
2718 
2719 		ret = sched_dl_global_validate();
2720 		if (ret)
2721 			goto undo;
2722 
2723 		ret = sched_rt_global_constraints();
2724 		if (ret)
2725 			goto undo;
2726 
2727 		sched_rt_do_global();
2728 		sched_dl_do_global();
2729 	}
2730 	if (0) {
2731 undo:
2732 		sysctl_sched_rt_period = old_period;
2733 		sysctl_sched_rt_runtime = old_runtime;
2734 	}
2735 	mutex_unlock(&mutex);
2736 
2737 	return ret;
2738 }
2739 
2740 int sched_rr_handler(struct ctl_table *table, int write,
2741 		void __user *buffer, size_t *lenp,
2742 		loff_t *ppos)
2743 {
2744 	int ret;
2745 	static DEFINE_MUTEX(mutex);
2746 
2747 	mutex_lock(&mutex);
2748 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2749 	/*
2750 	 * Make sure that internally we keep jiffies.
2751 	 * Also, writing zero resets the timeslice to default:
2752 	 */
2753 	if (!ret && write) {
2754 		sched_rr_timeslice =
2755 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2756 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2757 	}
2758 	mutex_unlock(&mutex);
2759 	return ret;
2760 }
2761 
2762 #ifdef CONFIG_SCHED_DEBUG
2763 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2764 
2765 void print_rt_stats(struct seq_file *m, int cpu)
2766 {
2767 	rt_rq_iter_t iter;
2768 	struct rt_rq *rt_rq;
2769 
2770 	rcu_read_lock();
2771 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2772 		print_rt_rq(m, cpu, rt_rq);
2773 	rcu_read_unlock();
2774 }
2775 #endif /* CONFIG_SCHED_DEBUG */
2776