1 /* 2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 3 * policies) 4 */ 5 6 #include "sched.h" 7 8 #include <linux/slab.h> 9 10 int sched_rr_timeslice = RR_TIMESLICE; 11 12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 13 14 struct rt_bandwidth def_rt_bandwidth; 15 16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 17 { 18 struct rt_bandwidth *rt_b = 19 container_of(timer, struct rt_bandwidth, rt_period_timer); 20 ktime_t now; 21 int overrun; 22 int idle = 0; 23 24 for (;;) { 25 now = hrtimer_cb_get_time(timer); 26 overrun = hrtimer_forward(timer, now, rt_b->rt_period); 27 28 if (!overrun) 29 break; 30 31 idle = do_sched_rt_period_timer(rt_b, overrun); 32 } 33 34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 35 } 36 37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 38 { 39 rt_b->rt_period = ns_to_ktime(period); 40 rt_b->rt_runtime = runtime; 41 42 raw_spin_lock_init(&rt_b->rt_runtime_lock); 43 44 hrtimer_init(&rt_b->rt_period_timer, 45 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 46 rt_b->rt_period_timer.function = sched_rt_period_timer; 47 } 48 49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 50 { 51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 52 return; 53 54 if (hrtimer_active(&rt_b->rt_period_timer)) 55 return; 56 57 raw_spin_lock(&rt_b->rt_runtime_lock); 58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period); 59 raw_spin_unlock(&rt_b->rt_runtime_lock); 60 } 61 62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) 63 { 64 struct rt_prio_array *array; 65 int i; 66 67 array = &rt_rq->active; 68 for (i = 0; i < MAX_RT_PRIO; i++) { 69 INIT_LIST_HEAD(array->queue + i); 70 __clear_bit(i, array->bitmap); 71 } 72 /* delimiter for bitsearch: */ 73 __set_bit(MAX_RT_PRIO, array->bitmap); 74 75 #if defined CONFIG_SMP 76 rt_rq->highest_prio.curr = MAX_RT_PRIO; 77 rt_rq->highest_prio.next = MAX_RT_PRIO; 78 rt_rq->rt_nr_migratory = 0; 79 rt_rq->overloaded = 0; 80 plist_head_init(&rt_rq->pushable_tasks); 81 #endif 82 83 rt_rq->rt_time = 0; 84 rt_rq->rt_throttled = 0; 85 rt_rq->rt_runtime = 0; 86 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 87 } 88 89 #ifdef CONFIG_RT_GROUP_SCHED 90 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 91 { 92 hrtimer_cancel(&rt_b->rt_period_timer); 93 } 94 95 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 96 97 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 98 { 99 #ifdef CONFIG_SCHED_DEBUG 100 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 101 #endif 102 return container_of(rt_se, struct task_struct, rt); 103 } 104 105 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 106 { 107 return rt_rq->rq; 108 } 109 110 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 111 { 112 return rt_se->rt_rq; 113 } 114 115 void free_rt_sched_group(struct task_group *tg) 116 { 117 int i; 118 119 if (tg->rt_se) 120 destroy_rt_bandwidth(&tg->rt_bandwidth); 121 122 for_each_possible_cpu(i) { 123 if (tg->rt_rq) 124 kfree(tg->rt_rq[i]); 125 if (tg->rt_se) 126 kfree(tg->rt_se[i]); 127 } 128 129 kfree(tg->rt_rq); 130 kfree(tg->rt_se); 131 } 132 133 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 134 struct sched_rt_entity *rt_se, int cpu, 135 struct sched_rt_entity *parent) 136 { 137 struct rq *rq = cpu_rq(cpu); 138 139 rt_rq->highest_prio.curr = MAX_RT_PRIO; 140 rt_rq->rt_nr_boosted = 0; 141 rt_rq->rq = rq; 142 rt_rq->tg = tg; 143 144 tg->rt_rq[cpu] = rt_rq; 145 tg->rt_se[cpu] = rt_se; 146 147 if (!rt_se) 148 return; 149 150 if (!parent) 151 rt_se->rt_rq = &rq->rt; 152 else 153 rt_se->rt_rq = parent->my_q; 154 155 rt_se->my_q = rt_rq; 156 rt_se->parent = parent; 157 INIT_LIST_HEAD(&rt_se->run_list); 158 } 159 160 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 161 { 162 struct rt_rq *rt_rq; 163 struct sched_rt_entity *rt_se; 164 int i; 165 166 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); 167 if (!tg->rt_rq) 168 goto err; 169 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); 170 if (!tg->rt_se) 171 goto err; 172 173 init_rt_bandwidth(&tg->rt_bandwidth, 174 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 175 176 for_each_possible_cpu(i) { 177 rt_rq = kzalloc_node(sizeof(struct rt_rq), 178 GFP_KERNEL, cpu_to_node(i)); 179 if (!rt_rq) 180 goto err; 181 182 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 183 GFP_KERNEL, cpu_to_node(i)); 184 if (!rt_se) 185 goto err_free_rq; 186 187 init_rt_rq(rt_rq, cpu_rq(i)); 188 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 189 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 190 } 191 192 return 1; 193 194 err_free_rq: 195 kfree(rt_rq); 196 err: 197 return 0; 198 } 199 200 #else /* CONFIG_RT_GROUP_SCHED */ 201 202 #define rt_entity_is_task(rt_se) (1) 203 204 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 205 { 206 return container_of(rt_se, struct task_struct, rt); 207 } 208 209 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 210 { 211 return container_of(rt_rq, struct rq, rt); 212 } 213 214 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 215 { 216 struct task_struct *p = rt_task_of(rt_se); 217 struct rq *rq = task_rq(p); 218 219 return &rq->rt; 220 } 221 222 void free_rt_sched_group(struct task_group *tg) { } 223 224 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 225 { 226 return 1; 227 } 228 #endif /* CONFIG_RT_GROUP_SCHED */ 229 230 #ifdef CONFIG_SMP 231 232 static inline int rt_overloaded(struct rq *rq) 233 { 234 return atomic_read(&rq->rd->rto_count); 235 } 236 237 static inline void rt_set_overload(struct rq *rq) 238 { 239 if (!rq->online) 240 return; 241 242 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 243 /* 244 * Make sure the mask is visible before we set 245 * the overload count. That is checked to determine 246 * if we should look at the mask. It would be a shame 247 * if we looked at the mask, but the mask was not 248 * updated yet. 249 * 250 * Matched by the barrier in pull_rt_task(). 251 */ 252 smp_wmb(); 253 atomic_inc(&rq->rd->rto_count); 254 } 255 256 static inline void rt_clear_overload(struct rq *rq) 257 { 258 if (!rq->online) 259 return; 260 261 /* the order here really doesn't matter */ 262 atomic_dec(&rq->rd->rto_count); 263 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 264 } 265 266 static void update_rt_migration(struct rt_rq *rt_rq) 267 { 268 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 269 if (!rt_rq->overloaded) { 270 rt_set_overload(rq_of_rt_rq(rt_rq)); 271 rt_rq->overloaded = 1; 272 } 273 } else if (rt_rq->overloaded) { 274 rt_clear_overload(rq_of_rt_rq(rt_rq)); 275 rt_rq->overloaded = 0; 276 } 277 } 278 279 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 280 { 281 struct task_struct *p; 282 283 if (!rt_entity_is_task(rt_se)) 284 return; 285 286 p = rt_task_of(rt_se); 287 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 288 289 rt_rq->rt_nr_total++; 290 if (p->nr_cpus_allowed > 1) 291 rt_rq->rt_nr_migratory++; 292 293 update_rt_migration(rt_rq); 294 } 295 296 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 297 { 298 struct task_struct *p; 299 300 if (!rt_entity_is_task(rt_se)) 301 return; 302 303 p = rt_task_of(rt_se); 304 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 305 306 rt_rq->rt_nr_total--; 307 if (p->nr_cpus_allowed > 1) 308 rt_rq->rt_nr_migratory--; 309 310 update_rt_migration(rt_rq); 311 } 312 313 static inline int has_pushable_tasks(struct rq *rq) 314 { 315 return !plist_head_empty(&rq->rt.pushable_tasks); 316 } 317 318 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 319 { 320 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 321 plist_node_init(&p->pushable_tasks, p->prio); 322 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 323 324 /* Update the highest prio pushable task */ 325 if (p->prio < rq->rt.highest_prio.next) 326 rq->rt.highest_prio.next = p->prio; 327 } 328 329 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 330 { 331 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 332 333 /* Update the new highest prio pushable task */ 334 if (has_pushable_tasks(rq)) { 335 p = plist_first_entry(&rq->rt.pushable_tasks, 336 struct task_struct, pushable_tasks); 337 rq->rt.highest_prio.next = p->prio; 338 } else 339 rq->rt.highest_prio.next = MAX_RT_PRIO; 340 } 341 342 #else 343 344 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 345 { 346 } 347 348 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 349 { 350 } 351 352 static inline 353 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 354 { 355 } 356 357 static inline 358 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 359 { 360 } 361 362 #endif /* CONFIG_SMP */ 363 364 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 365 { 366 return !list_empty(&rt_se->run_list); 367 } 368 369 #ifdef CONFIG_RT_GROUP_SCHED 370 371 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 372 { 373 if (!rt_rq->tg) 374 return RUNTIME_INF; 375 376 return rt_rq->rt_runtime; 377 } 378 379 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 380 { 381 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 382 } 383 384 typedef struct task_group *rt_rq_iter_t; 385 386 static inline struct task_group *next_task_group(struct task_group *tg) 387 { 388 do { 389 tg = list_entry_rcu(tg->list.next, 390 typeof(struct task_group), list); 391 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 392 393 if (&tg->list == &task_groups) 394 tg = NULL; 395 396 return tg; 397 } 398 399 #define for_each_rt_rq(rt_rq, iter, rq) \ 400 for (iter = container_of(&task_groups, typeof(*iter), list); \ 401 (iter = next_task_group(iter)) && \ 402 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 403 404 #define for_each_sched_rt_entity(rt_se) \ 405 for (; rt_se; rt_se = rt_se->parent) 406 407 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 408 { 409 return rt_se->my_q; 410 } 411 412 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); 413 static void dequeue_rt_entity(struct sched_rt_entity *rt_se); 414 415 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 416 { 417 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 418 struct sched_rt_entity *rt_se; 419 420 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 421 422 rt_se = rt_rq->tg->rt_se[cpu]; 423 424 if (rt_rq->rt_nr_running) { 425 if (rt_se && !on_rt_rq(rt_se)) 426 enqueue_rt_entity(rt_se, false); 427 if (rt_rq->highest_prio.curr < curr->prio) 428 resched_task(curr); 429 } 430 } 431 432 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 433 { 434 struct sched_rt_entity *rt_se; 435 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 436 437 rt_se = rt_rq->tg->rt_se[cpu]; 438 439 if (rt_se && on_rt_rq(rt_se)) 440 dequeue_rt_entity(rt_se); 441 } 442 443 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 444 { 445 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 446 } 447 448 static int rt_se_boosted(struct sched_rt_entity *rt_se) 449 { 450 struct rt_rq *rt_rq = group_rt_rq(rt_se); 451 struct task_struct *p; 452 453 if (rt_rq) 454 return !!rt_rq->rt_nr_boosted; 455 456 p = rt_task_of(rt_se); 457 return p->prio != p->normal_prio; 458 } 459 460 #ifdef CONFIG_SMP 461 static inline const struct cpumask *sched_rt_period_mask(void) 462 { 463 return this_rq()->rd->span; 464 } 465 #else 466 static inline const struct cpumask *sched_rt_period_mask(void) 467 { 468 return cpu_online_mask; 469 } 470 #endif 471 472 static inline 473 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 474 { 475 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 476 } 477 478 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 479 { 480 return &rt_rq->tg->rt_bandwidth; 481 } 482 483 #else /* !CONFIG_RT_GROUP_SCHED */ 484 485 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 486 { 487 return rt_rq->rt_runtime; 488 } 489 490 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 491 { 492 return ktime_to_ns(def_rt_bandwidth.rt_period); 493 } 494 495 typedef struct rt_rq *rt_rq_iter_t; 496 497 #define for_each_rt_rq(rt_rq, iter, rq) \ 498 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 499 500 #define for_each_sched_rt_entity(rt_se) \ 501 for (; rt_se; rt_se = NULL) 502 503 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 504 { 505 return NULL; 506 } 507 508 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 509 { 510 if (rt_rq->rt_nr_running) 511 resched_task(rq_of_rt_rq(rt_rq)->curr); 512 } 513 514 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 515 { 516 } 517 518 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 519 { 520 return rt_rq->rt_throttled; 521 } 522 523 static inline const struct cpumask *sched_rt_period_mask(void) 524 { 525 return cpu_online_mask; 526 } 527 528 static inline 529 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 530 { 531 return &cpu_rq(cpu)->rt; 532 } 533 534 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 535 { 536 return &def_rt_bandwidth; 537 } 538 539 #endif /* CONFIG_RT_GROUP_SCHED */ 540 541 #ifdef CONFIG_SMP 542 /* 543 * We ran out of runtime, see if we can borrow some from our neighbours. 544 */ 545 static int do_balance_runtime(struct rt_rq *rt_rq) 546 { 547 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 548 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 549 int i, weight, more = 0; 550 u64 rt_period; 551 552 weight = cpumask_weight(rd->span); 553 554 raw_spin_lock(&rt_b->rt_runtime_lock); 555 rt_period = ktime_to_ns(rt_b->rt_period); 556 for_each_cpu(i, rd->span) { 557 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 558 s64 diff; 559 560 if (iter == rt_rq) 561 continue; 562 563 raw_spin_lock(&iter->rt_runtime_lock); 564 /* 565 * Either all rqs have inf runtime and there's nothing to steal 566 * or __disable_runtime() below sets a specific rq to inf to 567 * indicate its been disabled and disalow stealing. 568 */ 569 if (iter->rt_runtime == RUNTIME_INF) 570 goto next; 571 572 /* 573 * From runqueues with spare time, take 1/n part of their 574 * spare time, but no more than our period. 575 */ 576 diff = iter->rt_runtime - iter->rt_time; 577 if (diff > 0) { 578 diff = div_u64((u64)diff, weight); 579 if (rt_rq->rt_runtime + diff > rt_period) 580 diff = rt_period - rt_rq->rt_runtime; 581 iter->rt_runtime -= diff; 582 rt_rq->rt_runtime += diff; 583 more = 1; 584 if (rt_rq->rt_runtime == rt_period) { 585 raw_spin_unlock(&iter->rt_runtime_lock); 586 break; 587 } 588 } 589 next: 590 raw_spin_unlock(&iter->rt_runtime_lock); 591 } 592 raw_spin_unlock(&rt_b->rt_runtime_lock); 593 594 return more; 595 } 596 597 /* 598 * Ensure this RQ takes back all the runtime it lend to its neighbours. 599 */ 600 static void __disable_runtime(struct rq *rq) 601 { 602 struct root_domain *rd = rq->rd; 603 rt_rq_iter_t iter; 604 struct rt_rq *rt_rq; 605 606 if (unlikely(!scheduler_running)) 607 return; 608 609 for_each_rt_rq(rt_rq, iter, rq) { 610 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 611 s64 want; 612 int i; 613 614 raw_spin_lock(&rt_b->rt_runtime_lock); 615 raw_spin_lock(&rt_rq->rt_runtime_lock); 616 /* 617 * Either we're all inf and nobody needs to borrow, or we're 618 * already disabled and thus have nothing to do, or we have 619 * exactly the right amount of runtime to take out. 620 */ 621 if (rt_rq->rt_runtime == RUNTIME_INF || 622 rt_rq->rt_runtime == rt_b->rt_runtime) 623 goto balanced; 624 raw_spin_unlock(&rt_rq->rt_runtime_lock); 625 626 /* 627 * Calculate the difference between what we started out with 628 * and what we current have, that's the amount of runtime 629 * we lend and now have to reclaim. 630 */ 631 want = rt_b->rt_runtime - rt_rq->rt_runtime; 632 633 /* 634 * Greedy reclaim, take back as much as we can. 635 */ 636 for_each_cpu(i, rd->span) { 637 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 638 s64 diff; 639 640 /* 641 * Can't reclaim from ourselves or disabled runqueues. 642 */ 643 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 644 continue; 645 646 raw_spin_lock(&iter->rt_runtime_lock); 647 if (want > 0) { 648 diff = min_t(s64, iter->rt_runtime, want); 649 iter->rt_runtime -= diff; 650 want -= diff; 651 } else { 652 iter->rt_runtime -= want; 653 want -= want; 654 } 655 raw_spin_unlock(&iter->rt_runtime_lock); 656 657 if (!want) 658 break; 659 } 660 661 raw_spin_lock(&rt_rq->rt_runtime_lock); 662 /* 663 * We cannot be left wanting - that would mean some runtime 664 * leaked out of the system. 665 */ 666 BUG_ON(want); 667 balanced: 668 /* 669 * Disable all the borrow logic by pretending we have inf 670 * runtime - in which case borrowing doesn't make sense. 671 */ 672 rt_rq->rt_runtime = RUNTIME_INF; 673 rt_rq->rt_throttled = 0; 674 raw_spin_unlock(&rt_rq->rt_runtime_lock); 675 raw_spin_unlock(&rt_b->rt_runtime_lock); 676 } 677 } 678 679 static void __enable_runtime(struct rq *rq) 680 { 681 rt_rq_iter_t iter; 682 struct rt_rq *rt_rq; 683 684 if (unlikely(!scheduler_running)) 685 return; 686 687 /* 688 * Reset each runqueue's bandwidth settings 689 */ 690 for_each_rt_rq(rt_rq, iter, rq) { 691 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 692 693 raw_spin_lock(&rt_b->rt_runtime_lock); 694 raw_spin_lock(&rt_rq->rt_runtime_lock); 695 rt_rq->rt_runtime = rt_b->rt_runtime; 696 rt_rq->rt_time = 0; 697 rt_rq->rt_throttled = 0; 698 raw_spin_unlock(&rt_rq->rt_runtime_lock); 699 raw_spin_unlock(&rt_b->rt_runtime_lock); 700 } 701 } 702 703 static int balance_runtime(struct rt_rq *rt_rq) 704 { 705 int more = 0; 706 707 if (!sched_feat(RT_RUNTIME_SHARE)) 708 return more; 709 710 if (rt_rq->rt_time > rt_rq->rt_runtime) { 711 raw_spin_unlock(&rt_rq->rt_runtime_lock); 712 more = do_balance_runtime(rt_rq); 713 raw_spin_lock(&rt_rq->rt_runtime_lock); 714 } 715 716 return more; 717 } 718 #else /* !CONFIG_SMP */ 719 static inline int balance_runtime(struct rt_rq *rt_rq) 720 { 721 return 0; 722 } 723 #endif /* CONFIG_SMP */ 724 725 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 726 { 727 int i, idle = 1, throttled = 0; 728 const struct cpumask *span; 729 730 span = sched_rt_period_mask(); 731 #ifdef CONFIG_RT_GROUP_SCHED 732 /* 733 * FIXME: isolated CPUs should really leave the root task group, 734 * whether they are isolcpus or were isolated via cpusets, lest 735 * the timer run on a CPU which does not service all runqueues, 736 * potentially leaving other CPUs indefinitely throttled. If 737 * isolation is really required, the user will turn the throttle 738 * off to kill the perturbations it causes anyway. Meanwhile, 739 * this maintains functionality for boot and/or troubleshooting. 740 */ 741 if (rt_b == &root_task_group.rt_bandwidth) 742 span = cpu_online_mask; 743 #endif 744 for_each_cpu(i, span) { 745 int enqueue = 0; 746 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 747 struct rq *rq = rq_of_rt_rq(rt_rq); 748 749 raw_spin_lock(&rq->lock); 750 if (rt_rq->rt_time) { 751 u64 runtime; 752 753 raw_spin_lock(&rt_rq->rt_runtime_lock); 754 if (rt_rq->rt_throttled) 755 balance_runtime(rt_rq); 756 runtime = rt_rq->rt_runtime; 757 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 758 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 759 rt_rq->rt_throttled = 0; 760 enqueue = 1; 761 762 /* 763 * Force a clock update if the CPU was idle, 764 * lest wakeup -> unthrottle time accumulate. 765 */ 766 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 767 rq->skip_clock_update = -1; 768 } 769 if (rt_rq->rt_time || rt_rq->rt_nr_running) 770 idle = 0; 771 raw_spin_unlock(&rt_rq->rt_runtime_lock); 772 } else if (rt_rq->rt_nr_running) { 773 idle = 0; 774 if (!rt_rq_throttled(rt_rq)) 775 enqueue = 1; 776 } 777 if (rt_rq->rt_throttled) 778 throttled = 1; 779 780 if (enqueue) 781 sched_rt_rq_enqueue(rt_rq); 782 raw_spin_unlock(&rq->lock); 783 } 784 785 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 786 return 1; 787 788 return idle; 789 } 790 791 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 792 { 793 #ifdef CONFIG_RT_GROUP_SCHED 794 struct rt_rq *rt_rq = group_rt_rq(rt_se); 795 796 if (rt_rq) 797 return rt_rq->highest_prio.curr; 798 #endif 799 800 return rt_task_of(rt_se)->prio; 801 } 802 803 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 804 { 805 u64 runtime = sched_rt_runtime(rt_rq); 806 807 if (rt_rq->rt_throttled) 808 return rt_rq_throttled(rt_rq); 809 810 if (runtime >= sched_rt_period(rt_rq)) 811 return 0; 812 813 balance_runtime(rt_rq); 814 runtime = sched_rt_runtime(rt_rq); 815 if (runtime == RUNTIME_INF) 816 return 0; 817 818 if (rt_rq->rt_time > runtime) { 819 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 820 821 /* 822 * Don't actually throttle groups that have no runtime assigned 823 * but accrue some time due to boosting. 824 */ 825 if (likely(rt_b->rt_runtime)) { 826 static bool once = false; 827 828 rt_rq->rt_throttled = 1; 829 830 if (!once) { 831 once = true; 832 printk_sched("sched: RT throttling activated\n"); 833 } 834 } else { 835 /* 836 * In case we did anyway, make it go away, 837 * replenishment is a joke, since it will replenish us 838 * with exactly 0 ns. 839 */ 840 rt_rq->rt_time = 0; 841 } 842 843 if (rt_rq_throttled(rt_rq)) { 844 sched_rt_rq_dequeue(rt_rq); 845 return 1; 846 } 847 } 848 849 return 0; 850 } 851 852 /* 853 * Update the current task's runtime statistics. Skip current tasks that 854 * are not in our scheduling class. 855 */ 856 static void update_curr_rt(struct rq *rq) 857 { 858 struct task_struct *curr = rq->curr; 859 struct sched_rt_entity *rt_se = &curr->rt; 860 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 861 u64 delta_exec; 862 863 if (curr->sched_class != &rt_sched_class) 864 return; 865 866 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 867 if (unlikely((s64)delta_exec <= 0)) 868 return; 869 870 schedstat_set(curr->se.statistics.exec_max, 871 max(curr->se.statistics.exec_max, delta_exec)); 872 873 curr->se.sum_exec_runtime += delta_exec; 874 account_group_exec_runtime(curr, delta_exec); 875 876 curr->se.exec_start = rq_clock_task(rq); 877 cpuacct_charge(curr, delta_exec); 878 879 sched_rt_avg_update(rq, delta_exec); 880 881 if (!rt_bandwidth_enabled()) 882 return; 883 884 for_each_sched_rt_entity(rt_se) { 885 rt_rq = rt_rq_of_se(rt_se); 886 887 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 888 raw_spin_lock(&rt_rq->rt_runtime_lock); 889 rt_rq->rt_time += delta_exec; 890 if (sched_rt_runtime_exceeded(rt_rq)) 891 resched_task(curr); 892 raw_spin_unlock(&rt_rq->rt_runtime_lock); 893 } 894 } 895 } 896 897 #if defined CONFIG_SMP 898 899 static void 900 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 901 { 902 struct rq *rq = rq_of_rt_rq(rt_rq); 903 904 #ifdef CONFIG_RT_GROUP_SCHED 905 /* 906 * Change rq's cpupri only if rt_rq is the top queue. 907 */ 908 if (&rq->rt != rt_rq) 909 return; 910 #endif 911 if (rq->online && prio < prev_prio) 912 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 913 } 914 915 static void 916 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 917 { 918 struct rq *rq = rq_of_rt_rq(rt_rq); 919 920 #ifdef CONFIG_RT_GROUP_SCHED 921 /* 922 * Change rq's cpupri only if rt_rq is the top queue. 923 */ 924 if (&rq->rt != rt_rq) 925 return; 926 #endif 927 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 928 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 929 } 930 931 #else /* CONFIG_SMP */ 932 933 static inline 934 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 935 static inline 936 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 937 938 #endif /* CONFIG_SMP */ 939 940 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 941 static void 942 inc_rt_prio(struct rt_rq *rt_rq, int prio) 943 { 944 int prev_prio = rt_rq->highest_prio.curr; 945 946 if (prio < prev_prio) 947 rt_rq->highest_prio.curr = prio; 948 949 inc_rt_prio_smp(rt_rq, prio, prev_prio); 950 } 951 952 static void 953 dec_rt_prio(struct rt_rq *rt_rq, int prio) 954 { 955 int prev_prio = rt_rq->highest_prio.curr; 956 957 if (rt_rq->rt_nr_running) { 958 959 WARN_ON(prio < prev_prio); 960 961 /* 962 * This may have been our highest task, and therefore 963 * we may have some recomputation to do 964 */ 965 if (prio == prev_prio) { 966 struct rt_prio_array *array = &rt_rq->active; 967 968 rt_rq->highest_prio.curr = 969 sched_find_first_bit(array->bitmap); 970 } 971 972 } else 973 rt_rq->highest_prio.curr = MAX_RT_PRIO; 974 975 dec_rt_prio_smp(rt_rq, prio, prev_prio); 976 } 977 978 #else 979 980 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 981 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 982 983 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 984 985 #ifdef CONFIG_RT_GROUP_SCHED 986 987 static void 988 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 989 { 990 if (rt_se_boosted(rt_se)) 991 rt_rq->rt_nr_boosted++; 992 993 if (rt_rq->tg) 994 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 995 } 996 997 static void 998 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 999 { 1000 if (rt_se_boosted(rt_se)) 1001 rt_rq->rt_nr_boosted--; 1002 1003 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1004 } 1005 1006 #else /* CONFIG_RT_GROUP_SCHED */ 1007 1008 static void 1009 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1010 { 1011 start_rt_bandwidth(&def_rt_bandwidth); 1012 } 1013 1014 static inline 1015 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1016 1017 #endif /* CONFIG_RT_GROUP_SCHED */ 1018 1019 static inline 1020 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1021 { 1022 int prio = rt_se_prio(rt_se); 1023 1024 WARN_ON(!rt_prio(prio)); 1025 rt_rq->rt_nr_running++; 1026 1027 inc_rt_prio(rt_rq, prio); 1028 inc_rt_migration(rt_se, rt_rq); 1029 inc_rt_group(rt_se, rt_rq); 1030 } 1031 1032 static inline 1033 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1034 { 1035 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1036 WARN_ON(!rt_rq->rt_nr_running); 1037 rt_rq->rt_nr_running--; 1038 1039 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1040 dec_rt_migration(rt_se, rt_rq); 1041 dec_rt_group(rt_se, rt_rq); 1042 } 1043 1044 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) 1045 { 1046 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1047 struct rt_prio_array *array = &rt_rq->active; 1048 struct rt_rq *group_rq = group_rt_rq(rt_se); 1049 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1050 1051 /* 1052 * Don't enqueue the group if its throttled, or when empty. 1053 * The latter is a consequence of the former when a child group 1054 * get throttled and the current group doesn't have any other 1055 * active members. 1056 */ 1057 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) 1058 return; 1059 1060 if (head) 1061 list_add(&rt_se->run_list, queue); 1062 else 1063 list_add_tail(&rt_se->run_list, queue); 1064 __set_bit(rt_se_prio(rt_se), array->bitmap); 1065 1066 inc_rt_tasks(rt_se, rt_rq); 1067 } 1068 1069 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) 1070 { 1071 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1072 struct rt_prio_array *array = &rt_rq->active; 1073 1074 list_del_init(&rt_se->run_list); 1075 if (list_empty(array->queue + rt_se_prio(rt_se))) 1076 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1077 1078 dec_rt_tasks(rt_se, rt_rq); 1079 } 1080 1081 /* 1082 * Because the prio of an upper entry depends on the lower 1083 * entries, we must remove entries top - down. 1084 */ 1085 static void dequeue_rt_stack(struct sched_rt_entity *rt_se) 1086 { 1087 struct sched_rt_entity *back = NULL; 1088 1089 for_each_sched_rt_entity(rt_se) { 1090 rt_se->back = back; 1091 back = rt_se; 1092 } 1093 1094 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1095 if (on_rt_rq(rt_se)) 1096 __dequeue_rt_entity(rt_se); 1097 } 1098 } 1099 1100 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) 1101 { 1102 dequeue_rt_stack(rt_se); 1103 for_each_sched_rt_entity(rt_se) 1104 __enqueue_rt_entity(rt_se, head); 1105 } 1106 1107 static void dequeue_rt_entity(struct sched_rt_entity *rt_se) 1108 { 1109 dequeue_rt_stack(rt_se); 1110 1111 for_each_sched_rt_entity(rt_se) { 1112 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1113 1114 if (rt_rq && rt_rq->rt_nr_running) 1115 __enqueue_rt_entity(rt_se, false); 1116 } 1117 } 1118 1119 /* 1120 * Adding/removing a task to/from a priority array: 1121 */ 1122 static void 1123 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1124 { 1125 struct sched_rt_entity *rt_se = &p->rt; 1126 1127 if (flags & ENQUEUE_WAKEUP) 1128 rt_se->timeout = 0; 1129 1130 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); 1131 1132 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1133 enqueue_pushable_task(rq, p); 1134 1135 inc_nr_running(rq); 1136 } 1137 1138 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1139 { 1140 struct sched_rt_entity *rt_se = &p->rt; 1141 1142 update_curr_rt(rq); 1143 dequeue_rt_entity(rt_se); 1144 1145 dequeue_pushable_task(rq, p); 1146 1147 dec_nr_running(rq); 1148 } 1149 1150 /* 1151 * Put task to the head or the end of the run list without the overhead of 1152 * dequeue followed by enqueue. 1153 */ 1154 static void 1155 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1156 { 1157 if (on_rt_rq(rt_se)) { 1158 struct rt_prio_array *array = &rt_rq->active; 1159 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1160 1161 if (head) 1162 list_move(&rt_se->run_list, queue); 1163 else 1164 list_move_tail(&rt_se->run_list, queue); 1165 } 1166 } 1167 1168 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1169 { 1170 struct sched_rt_entity *rt_se = &p->rt; 1171 struct rt_rq *rt_rq; 1172 1173 for_each_sched_rt_entity(rt_se) { 1174 rt_rq = rt_rq_of_se(rt_se); 1175 requeue_rt_entity(rt_rq, rt_se, head); 1176 } 1177 } 1178 1179 static void yield_task_rt(struct rq *rq) 1180 { 1181 requeue_task_rt(rq, rq->curr, 0); 1182 } 1183 1184 #ifdef CONFIG_SMP 1185 static int find_lowest_rq(struct task_struct *task); 1186 1187 static int 1188 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1189 { 1190 struct task_struct *curr; 1191 struct rq *rq; 1192 1193 if (p->nr_cpus_allowed == 1) 1194 goto out; 1195 1196 /* For anything but wake ups, just return the task_cpu */ 1197 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1198 goto out; 1199 1200 rq = cpu_rq(cpu); 1201 1202 rcu_read_lock(); 1203 curr = ACCESS_ONCE(rq->curr); /* unlocked access */ 1204 1205 /* 1206 * If the current task on @p's runqueue is an RT task, then 1207 * try to see if we can wake this RT task up on another 1208 * runqueue. Otherwise simply start this RT task 1209 * on its current runqueue. 1210 * 1211 * We want to avoid overloading runqueues. If the woken 1212 * task is a higher priority, then it will stay on this CPU 1213 * and the lower prio task should be moved to another CPU. 1214 * Even though this will probably make the lower prio task 1215 * lose its cache, we do not want to bounce a higher task 1216 * around just because it gave up its CPU, perhaps for a 1217 * lock? 1218 * 1219 * For equal prio tasks, we just let the scheduler sort it out. 1220 * 1221 * Otherwise, just let it ride on the affined RQ and the 1222 * post-schedule router will push the preempted task away 1223 * 1224 * This test is optimistic, if we get it wrong the load-balancer 1225 * will have to sort it out. 1226 */ 1227 if (curr && unlikely(rt_task(curr)) && 1228 (curr->nr_cpus_allowed < 2 || 1229 curr->prio <= p->prio)) { 1230 int target = find_lowest_rq(p); 1231 1232 if (target != -1) 1233 cpu = target; 1234 } 1235 rcu_read_unlock(); 1236 1237 out: 1238 return cpu; 1239 } 1240 1241 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1242 { 1243 if (rq->curr->nr_cpus_allowed == 1) 1244 return; 1245 1246 if (p->nr_cpus_allowed != 1 1247 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1248 return; 1249 1250 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1251 return; 1252 1253 /* 1254 * There appears to be other cpus that can accept 1255 * current and none to run 'p', so lets reschedule 1256 * to try and push current away: 1257 */ 1258 requeue_task_rt(rq, p, 1); 1259 resched_task(rq->curr); 1260 } 1261 1262 #endif /* CONFIG_SMP */ 1263 1264 /* 1265 * Preempt the current task with a newly woken task if needed: 1266 */ 1267 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1268 { 1269 if (p->prio < rq->curr->prio) { 1270 resched_task(rq->curr); 1271 return; 1272 } 1273 1274 #ifdef CONFIG_SMP 1275 /* 1276 * If: 1277 * 1278 * - the newly woken task is of equal priority to the current task 1279 * - the newly woken task is non-migratable while current is migratable 1280 * - current will be preempted on the next reschedule 1281 * 1282 * we should check to see if current can readily move to a different 1283 * cpu. If so, we will reschedule to allow the push logic to try 1284 * to move current somewhere else, making room for our non-migratable 1285 * task. 1286 */ 1287 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1288 check_preempt_equal_prio(rq, p); 1289 #endif 1290 } 1291 1292 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1293 struct rt_rq *rt_rq) 1294 { 1295 struct rt_prio_array *array = &rt_rq->active; 1296 struct sched_rt_entity *next = NULL; 1297 struct list_head *queue; 1298 int idx; 1299 1300 idx = sched_find_first_bit(array->bitmap); 1301 BUG_ON(idx >= MAX_RT_PRIO); 1302 1303 queue = array->queue + idx; 1304 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1305 1306 return next; 1307 } 1308 1309 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1310 { 1311 struct sched_rt_entity *rt_se; 1312 struct task_struct *p; 1313 struct rt_rq *rt_rq; 1314 1315 rt_rq = &rq->rt; 1316 1317 if (!rt_rq->rt_nr_running) 1318 return NULL; 1319 1320 if (rt_rq_throttled(rt_rq)) 1321 return NULL; 1322 1323 do { 1324 rt_se = pick_next_rt_entity(rq, rt_rq); 1325 BUG_ON(!rt_se); 1326 rt_rq = group_rt_rq(rt_se); 1327 } while (rt_rq); 1328 1329 p = rt_task_of(rt_se); 1330 p->se.exec_start = rq_clock_task(rq); 1331 1332 return p; 1333 } 1334 1335 static struct task_struct *pick_next_task_rt(struct rq *rq) 1336 { 1337 struct task_struct *p = _pick_next_task_rt(rq); 1338 1339 /* The running task is never eligible for pushing */ 1340 if (p) 1341 dequeue_pushable_task(rq, p); 1342 1343 #ifdef CONFIG_SMP 1344 /* 1345 * We detect this state here so that we can avoid taking the RQ 1346 * lock again later if there is no need to push 1347 */ 1348 rq->post_schedule = has_pushable_tasks(rq); 1349 #endif 1350 1351 return p; 1352 } 1353 1354 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1355 { 1356 update_curr_rt(rq); 1357 1358 /* 1359 * The previous task needs to be made eligible for pushing 1360 * if it is still active 1361 */ 1362 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1363 enqueue_pushable_task(rq, p); 1364 } 1365 1366 #ifdef CONFIG_SMP 1367 1368 /* Only try algorithms three times */ 1369 #define RT_MAX_TRIES 3 1370 1371 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1372 { 1373 if (!task_running(rq, p) && 1374 cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 1375 return 1; 1376 return 0; 1377 } 1378 1379 /* 1380 * Return the highest pushable rq's task, which is suitable to be executed 1381 * on the cpu, NULL otherwise 1382 */ 1383 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1384 { 1385 struct plist_head *head = &rq->rt.pushable_tasks; 1386 struct task_struct *p; 1387 1388 if (!has_pushable_tasks(rq)) 1389 return NULL; 1390 1391 plist_for_each_entry(p, head, pushable_tasks) { 1392 if (pick_rt_task(rq, p, cpu)) 1393 return p; 1394 } 1395 1396 return NULL; 1397 } 1398 1399 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1400 1401 static int find_lowest_rq(struct task_struct *task) 1402 { 1403 struct sched_domain *sd; 1404 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); 1405 int this_cpu = smp_processor_id(); 1406 int cpu = task_cpu(task); 1407 1408 /* Make sure the mask is initialized first */ 1409 if (unlikely(!lowest_mask)) 1410 return -1; 1411 1412 if (task->nr_cpus_allowed == 1) 1413 return -1; /* No other targets possible */ 1414 1415 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1416 return -1; /* No targets found */ 1417 1418 /* 1419 * At this point we have built a mask of cpus representing the 1420 * lowest priority tasks in the system. Now we want to elect 1421 * the best one based on our affinity and topology. 1422 * 1423 * We prioritize the last cpu that the task executed on since 1424 * it is most likely cache-hot in that location. 1425 */ 1426 if (cpumask_test_cpu(cpu, lowest_mask)) 1427 return cpu; 1428 1429 /* 1430 * Otherwise, we consult the sched_domains span maps to figure 1431 * out which cpu is logically closest to our hot cache data. 1432 */ 1433 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1434 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1435 1436 rcu_read_lock(); 1437 for_each_domain(cpu, sd) { 1438 if (sd->flags & SD_WAKE_AFFINE) { 1439 int best_cpu; 1440 1441 /* 1442 * "this_cpu" is cheaper to preempt than a 1443 * remote processor. 1444 */ 1445 if (this_cpu != -1 && 1446 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1447 rcu_read_unlock(); 1448 return this_cpu; 1449 } 1450 1451 best_cpu = cpumask_first_and(lowest_mask, 1452 sched_domain_span(sd)); 1453 if (best_cpu < nr_cpu_ids) { 1454 rcu_read_unlock(); 1455 return best_cpu; 1456 } 1457 } 1458 } 1459 rcu_read_unlock(); 1460 1461 /* 1462 * And finally, if there were no matches within the domains 1463 * just give the caller *something* to work with from the compatible 1464 * locations. 1465 */ 1466 if (this_cpu != -1) 1467 return this_cpu; 1468 1469 cpu = cpumask_any(lowest_mask); 1470 if (cpu < nr_cpu_ids) 1471 return cpu; 1472 return -1; 1473 } 1474 1475 /* Will lock the rq it finds */ 1476 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1477 { 1478 struct rq *lowest_rq = NULL; 1479 int tries; 1480 int cpu; 1481 1482 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1483 cpu = find_lowest_rq(task); 1484 1485 if ((cpu == -1) || (cpu == rq->cpu)) 1486 break; 1487 1488 lowest_rq = cpu_rq(cpu); 1489 1490 /* if the prio of this runqueue changed, try again */ 1491 if (double_lock_balance(rq, lowest_rq)) { 1492 /* 1493 * We had to unlock the run queue. In 1494 * the mean time, task could have 1495 * migrated already or had its affinity changed. 1496 * Also make sure that it wasn't scheduled on its rq. 1497 */ 1498 if (unlikely(task_rq(task) != rq || 1499 !cpumask_test_cpu(lowest_rq->cpu, 1500 tsk_cpus_allowed(task)) || 1501 task_running(rq, task) || 1502 !task->on_rq)) { 1503 1504 double_unlock_balance(rq, lowest_rq); 1505 lowest_rq = NULL; 1506 break; 1507 } 1508 } 1509 1510 /* If this rq is still suitable use it. */ 1511 if (lowest_rq->rt.highest_prio.curr > task->prio) 1512 break; 1513 1514 /* try again */ 1515 double_unlock_balance(rq, lowest_rq); 1516 lowest_rq = NULL; 1517 } 1518 1519 return lowest_rq; 1520 } 1521 1522 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1523 { 1524 struct task_struct *p; 1525 1526 if (!has_pushable_tasks(rq)) 1527 return NULL; 1528 1529 p = plist_first_entry(&rq->rt.pushable_tasks, 1530 struct task_struct, pushable_tasks); 1531 1532 BUG_ON(rq->cpu != task_cpu(p)); 1533 BUG_ON(task_current(rq, p)); 1534 BUG_ON(p->nr_cpus_allowed <= 1); 1535 1536 BUG_ON(!p->on_rq); 1537 BUG_ON(!rt_task(p)); 1538 1539 return p; 1540 } 1541 1542 /* 1543 * If the current CPU has more than one RT task, see if the non 1544 * running task can migrate over to a CPU that is running a task 1545 * of lesser priority. 1546 */ 1547 static int push_rt_task(struct rq *rq) 1548 { 1549 struct task_struct *next_task; 1550 struct rq *lowest_rq; 1551 int ret = 0; 1552 1553 if (!rq->rt.overloaded) 1554 return 0; 1555 1556 next_task = pick_next_pushable_task(rq); 1557 if (!next_task) 1558 return 0; 1559 1560 retry: 1561 if (unlikely(next_task == rq->curr)) { 1562 WARN_ON(1); 1563 return 0; 1564 } 1565 1566 /* 1567 * It's possible that the next_task slipped in of 1568 * higher priority than current. If that's the case 1569 * just reschedule current. 1570 */ 1571 if (unlikely(next_task->prio < rq->curr->prio)) { 1572 resched_task(rq->curr); 1573 return 0; 1574 } 1575 1576 /* We might release rq lock */ 1577 get_task_struct(next_task); 1578 1579 /* find_lock_lowest_rq locks the rq if found */ 1580 lowest_rq = find_lock_lowest_rq(next_task, rq); 1581 if (!lowest_rq) { 1582 struct task_struct *task; 1583 /* 1584 * find_lock_lowest_rq releases rq->lock 1585 * so it is possible that next_task has migrated. 1586 * 1587 * We need to make sure that the task is still on the same 1588 * run-queue and is also still the next task eligible for 1589 * pushing. 1590 */ 1591 task = pick_next_pushable_task(rq); 1592 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1593 /* 1594 * The task hasn't migrated, and is still the next 1595 * eligible task, but we failed to find a run-queue 1596 * to push it to. Do not retry in this case, since 1597 * other cpus will pull from us when ready. 1598 */ 1599 goto out; 1600 } 1601 1602 if (!task) 1603 /* No more tasks, just exit */ 1604 goto out; 1605 1606 /* 1607 * Something has shifted, try again. 1608 */ 1609 put_task_struct(next_task); 1610 next_task = task; 1611 goto retry; 1612 } 1613 1614 deactivate_task(rq, next_task, 0); 1615 set_task_cpu(next_task, lowest_rq->cpu); 1616 activate_task(lowest_rq, next_task, 0); 1617 ret = 1; 1618 1619 resched_task(lowest_rq->curr); 1620 1621 double_unlock_balance(rq, lowest_rq); 1622 1623 out: 1624 put_task_struct(next_task); 1625 1626 return ret; 1627 } 1628 1629 static void push_rt_tasks(struct rq *rq) 1630 { 1631 /* push_rt_task will return true if it moved an RT */ 1632 while (push_rt_task(rq)) 1633 ; 1634 } 1635 1636 static int pull_rt_task(struct rq *this_rq) 1637 { 1638 int this_cpu = this_rq->cpu, ret = 0, cpu; 1639 struct task_struct *p; 1640 struct rq *src_rq; 1641 1642 if (likely(!rt_overloaded(this_rq))) 1643 return 0; 1644 1645 /* 1646 * Match the barrier from rt_set_overloaded; this guarantees that if we 1647 * see overloaded we must also see the rto_mask bit. 1648 */ 1649 smp_rmb(); 1650 1651 for_each_cpu(cpu, this_rq->rd->rto_mask) { 1652 if (this_cpu == cpu) 1653 continue; 1654 1655 src_rq = cpu_rq(cpu); 1656 1657 /* 1658 * Don't bother taking the src_rq->lock if the next highest 1659 * task is known to be lower-priority than our current task. 1660 * This may look racy, but if this value is about to go 1661 * logically higher, the src_rq will push this task away. 1662 * And if its going logically lower, we do not care 1663 */ 1664 if (src_rq->rt.highest_prio.next >= 1665 this_rq->rt.highest_prio.curr) 1666 continue; 1667 1668 /* 1669 * We can potentially drop this_rq's lock in 1670 * double_lock_balance, and another CPU could 1671 * alter this_rq 1672 */ 1673 double_lock_balance(this_rq, src_rq); 1674 1675 /* 1676 * We can pull only a task, which is pushable 1677 * on its rq, and no others. 1678 */ 1679 p = pick_highest_pushable_task(src_rq, this_cpu); 1680 1681 /* 1682 * Do we have an RT task that preempts 1683 * the to-be-scheduled task? 1684 */ 1685 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 1686 WARN_ON(p == src_rq->curr); 1687 WARN_ON(!p->on_rq); 1688 1689 /* 1690 * There's a chance that p is higher in priority 1691 * than what's currently running on its cpu. 1692 * This is just that p is wakeing up and hasn't 1693 * had a chance to schedule. We only pull 1694 * p if it is lower in priority than the 1695 * current task on the run queue 1696 */ 1697 if (p->prio < src_rq->curr->prio) 1698 goto skip; 1699 1700 ret = 1; 1701 1702 deactivate_task(src_rq, p, 0); 1703 set_task_cpu(p, this_cpu); 1704 activate_task(this_rq, p, 0); 1705 /* 1706 * We continue with the search, just in 1707 * case there's an even higher prio task 1708 * in another runqueue. (low likelihood 1709 * but possible) 1710 */ 1711 } 1712 skip: 1713 double_unlock_balance(this_rq, src_rq); 1714 } 1715 1716 return ret; 1717 } 1718 1719 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) 1720 { 1721 /* Try to pull RT tasks here if we lower this rq's prio */ 1722 if (rq->rt.highest_prio.curr > prev->prio) 1723 pull_rt_task(rq); 1724 } 1725 1726 static void post_schedule_rt(struct rq *rq) 1727 { 1728 push_rt_tasks(rq); 1729 } 1730 1731 /* 1732 * If we are not running and we are not going to reschedule soon, we should 1733 * try to push tasks away now 1734 */ 1735 static void task_woken_rt(struct rq *rq, struct task_struct *p) 1736 { 1737 if (!task_running(rq, p) && 1738 !test_tsk_need_resched(rq->curr) && 1739 has_pushable_tasks(rq) && 1740 p->nr_cpus_allowed > 1 && 1741 (dl_task(rq->curr) || rt_task(rq->curr)) && 1742 (rq->curr->nr_cpus_allowed < 2 || 1743 rq->curr->prio <= p->prio)) 1744 push_rt_tasks(rq); 1745 } 1746 1747 static void set_cpus_allowed_rt(struct task_struct *p, 1748 const struct cpumask *new_mask) 1749 { 1750 struct rq *rq; 1751 int weight; 1752 1753 BUG_ON(!rt_task(p)); 1754 1755 if (!p->on_rq) 1756 return; 1757 1758 weight = cpumask_weight(new_mask); 1759 1760 /* 1761 * Only update if the process changes its state from whether it 1762 * can migrate or not. 1763 */ 1764 if ((p->nr_cpus_allowed > 1) == (weight > 1)) 1765 return; 1766 1767 rq = task_rq(p); 1768 1769 /* 1770 * The process used to be able to migrate OR it can now migrate 1771 */ 1772 if (weight <= 1) { 1773 if (!task_current(rq, p)) 1774 dequeue_pushable_task(rq, p); 1775 BUG_ON(!rq->rt.rt_nr_migratory); 1776 rq->rt.rt_nr_migratory--; 1777 } else { 1778 if (!task_current(rq, p)) 1779 enqueue_pushable_task(rq, p); 1780 rq->rt.rt_nr_migratory++; 1781 } 1782 1783 update_rt_migration(&rq->rt); 1784 } 1785 1786 /* Assumes rq->lock is held */ 1787 static void rq_online_rt(struct rq *rq) 1788 { 1789 if (rq->rt.overloaded) 1790 rt_set_overload(rq); 1791 1792 __enable_runtime(rq); 1793 1794 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1795 } 1796 1797 /* Assumes rq->lock is held */ 1798 static void rq_offline_rt(struct rq *rq) 1799 { 1800 if (rq->rt.overloaded) 1801 rt_clear_overload(rq); 1802 1803 __disable_runtime(rq); 1804 1805 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 1806 } 1807 1808 /* 1809 * When switch from the rt queue, we bring ourselves to a position 1810 * that we might want to pull RT tasks from other runqueues. 1811 */ 1812 static void switched_from_rt(struct rq *rq, struct task_struct *p) 1813 { 1814 /* 1815 * If there are other RT tasks then we will reschedule 1816 * and the scheduling of the other RT tasks will handle 1817 * the balancing. But if we are the last RT task 1818 * we may need to handle the pulling of RT tasks 1819 * now. 1820 */ 1821 if (!p->on_rq || rq->rt.rt_nr_running) 1822 return; 1823 1824 if (pull_rt_task(rq)) 1825 resched_task(rq->curr); 1826 } 1827 1828 void init_sched_rt_class(void) 1829 { 1830 unsigned int i; 1831 1832 for_each_possible_cpu(i) { 1833 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 1834 GFP_KERNEL, cpu_to_node(i)); 1835 } 1836 } 1837 #endif /* CONFIG_SMP */ 1838 1839 /* 1840 * When switching a task to RT, we may overload the runqueue 1841 * with RT tasks. In this case we try to push them off to 1842 * other runqueues. 1843 */ 1844 static void switched_to_rt(struct rq *rq, struct task_struct *p) 1845 { 1846 int check_resched = 1; 1847 1848 /* 1849 * If we are already running, then there's nothing 1850 * that needs to be done. But if we are not running 1851 * we may need to preempt the current running task. 1852 * If that current running task is also an RT task 1853 * then see if we can move to another run queue. 1854 */ 1855 if (p->on_rq && rq->curr != p) { 1856 #ifdef CONFIG_SMP 1857 if (rq->rt.overloaded && push_rt_task(rq) && 1858 /* Don't resched if we changed runqueues */ 1859 rq != task_rq(p)) 1860 check_resched = 0; 1861 #endif /* CONFIG_SMP */ 1862 if (check_resched && p->prio < rq->curr->prio) 1863 resched_task(rq->curr); 1864 } 1865 } 1866 1867 /* 1868 * Priority of the task has changed. This may cause 1869 * us to initiate a push or pull. 1870 */ 1871 static void 1872 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 1873 { 1874 if (!p->on_rq) 1875 return; 1876 1877 if (rq->curr == p) { 1878 #ifdef CONFIG_SMP 1879 /* 1880 * If our priority decreases while running, we 1881 * may need to pull tasks to this runqueue. 1882 */ 1883 if (oldprio < p->prio) 1884 pull_rt_task(rq); 1885 /* 1886 * If there's a higher priority task waiting to run 1887 * then reschedule. Note, the above pull_rt_task 1888 * can release the rq lock and p could migrate. 1889 * Only reschedule if p is still on the same runqueue. 1890 */ 1891 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) 1892 resched_task(p); 1893 #else 1894 /* For UP simply resched on drop of prio */ 1895 if (oldprio < p->prio) 1896 resched_task(p); 1897 #endif /* CONFIG_SMP */ 1898 } else { 1899 /* 1900 * This task is not running, but if it is 1901 * greater than the current running task 1902 * then reschedule. 1903 */ 1904 if (p->prio < rq->curr->prio) 1905 resched_task(rq->curr); 1906 } 1907 } 1908 1909 static void watchdog(struct rq *rq, struct task_struct *p) 1910 { 1911 unsigned long soft, hard; 1912 1913 /* max may change after cur was read, this will be fixed next tick */ 1914 soft = task_rlimit(p, RLIMIT_RTTIME); 1915 hard = task_rlimit_max(p, RLIMIT_RTTIME); 1916 1917 if (soft != RLIM_INFINITY) { 1918 unsigned long next; 1919 1920 if (p->rt.watchdog_stamp != jiffies) { 1921 p->rt.timeout++; 1922 p->rt.watchdog_stamp = jiffies; 1923 } 1924 1925 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 1926 if (p->rt.timeout > next) 1927 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 1928 } 1929 } 1930 1931 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 1932 { 1933 struct sched_rt_entity *rt_se = &p->rt; 1934 1935 update_curr_rt(rq); 1936 1937 watchdog(rq, p); 1938 1939 /* 1940 * RR tasks need a special form of timeslice management. 1941 * FIFO tasks have no timeslices. 1942 */ 1943 if (p->policy != SCHED_RR) 1944 return; 1945 1946 if (--p->rt.time_slice) 1947 return; 1948 1949 p->rt.time_slice = sched_rr_timeslice; 1950 1951 /* 1952 * Requeue to the end of queue if we (and all of our ancestors) are not 1953 * the only element on the queue 1954 */ 1955 for_each_sched_rt_entity(rt_se) { 1956 if (rt_se->run_list.prev != rt_se->run_list.next) { 1957 requeue_task_rt(rq, p, 0); 1958 set_tsk_need_resched(p); 1959 return; 1960 } 1961 } 1962 } 1963 1964 static void set_curr_task_rt(struct rq *rq) 1965 { 1966 struct task_struct *p = rq->curr; 1967 1968 p->se.exec_start = rq_clock_task(rq); 1969 1970 /* The running task is never eligible for pushing */ 1971 dequeue_pushable_task(rq, p); 1972 } 1973 1974 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 1975 { 1976 /* 1977 * Time slice is 0 for SCHED_FIFO tasks 1978 */ 1979 if (task->policy == SCHED_RR) 1980 return sched_rr_timeslice; 1981 else 1982 return 0; 1983 } 1984 1985 const struct sched_class rt_sched_class = { 1986 .next = &fair_sched_class, 1987 .enqueue_task = enqueue_task_rt, 1988 .dequeue_task = dequeue_task_rt, 1989 .yield_task = yield_task_rt, 1990 1991 .check_preempt_curr = check_preempt_curr_rt, 1992 1993 .pick_next_task = pick_next_task_rt, 1994 .put_prev_task = put_prev_task_rt, 1995 1996 #ifdef CONFIG_SMP 1997 .select_task_rq = select_task_rq_rt, 1998 1999 .set_cpus_allowed = set_cpus_allowed_rt, 2000 .rq_online = rq_online_rt, 2001 .rq_offline = rq_offline_rt, 2002 .pre_schedule = pre_schedule_rt, 2003 .post_schedule = post_schedule_rt, 2004 .task_woken = task_woken_rt, 2005 .switched_from = switched_from_rt, 2006 #endif 2007 2008 .set_curr_task = set_curr_task_rt, 2009 .task_tick = task_tick_rt, 2010 2011 .get_rr_interval = get_rr_interval_rt, 2012 2013 .prio_changed = prio_changed_rt, 2014 .switched_to = switched_to_rt, 2015 }; 2016 2017 #ifdef CONFIG_SCHED_DEBUG 2018 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2019 2020 void print_rt_stats(struct seq_file *m, int cpu) 2021 { 2022 rt_rq_iter_t iter; 2023 struct rt_rq *rt_rq; 2024 2025 rcu_read_lock(); 2026 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2027 print_rt_rq(m, cpu, rt_rq); 2028 rcu_read_unlock(); 2029 } 2030 #endif /* CONFIG_SCHED_DEBUG */ 2031