1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 #include "sched.h" 7 8 #include "pelt.h" 9 10 int sched_rr_timeslice = RR_TIMESLICE; 11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE; 12 13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 14 15 struct rt_bandwidth def_rt_bandwidth; 16 17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 18 { 19 struct rt_bandwidth *rt_b = 20 container_of(timer, struct rt_bandwidth, rt_period_timer); 21 int idle = 0; 22 int overrun; 23 24 raw_spin_lock(&rt_b->rt_runtime_lock); 25 for (;;) { 26 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 27 if (!overrun) 28 break; 29 30 raw_spin_unlock(&rt_b->rt_runtime_lock); 31 idle = do_sched_rt_period_timer(rt_b, overrun); 32 raw_spin_lock(&rt_b->rt_runtime_lock); 33 } 34 if (idle) 35 rt_b->rt_period_active = 0; 36 raw_spin_unlock(&rt_b->rt_runtime_lock); 37 38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 39 } 40 41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 42 { 43 rt_b->rt_period = ns_to_ktime(period); 44 rt_b->rt_runtime = runtime; 45 46 raw_spin_lock_init(&rt_b->rt_runtime_lock); 47 48 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC, 49 HRTIMER_MODE_REL_HARD); 50 rt_b->rt_period_timer.function = sched_rt_period_timer; 51 } 52 53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 54 { 55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 56 return; 57 58 raw_spin_lock(&rt_b->rt_runtime_lock); 59 if (!rt_b->rt_period_active) { 60 rt_b->rt_period_active = 1; 61 /* 62 * SCHED_DEADLINE updates the bandwidth, as a run away 63 * RT task with a DL task could hog a CPU. But DL does 64 * not reset the period. If a deadline task was running 65 * without an RT task running, it can cause RT tasks to 66 * throttle when they start up. Kick the timer right away 67 * to update the period. 68 */ 69 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 70 hrtimer_start_expires(&rt_b->rt_period_timer, 71 HRTIMER_MODE_ABS_PINNED_HARD); 72 } 73 raw_spin_unlock(&rt_b->rt_runtime_lock); 74 } 75 76 void init_rt_rq(struct rt_rq *rt_rq) 77 { 78 struct rt_prio_array *array; 79 int i; 80 81 array = &rt_rq->active; 82 for (i = 0; i < MAX_RT_PRIO; i++) { 83 INIT_LIST_HEAD(array->queue + i); 84 __clear_bit(i, array->bitmap); 85 } 86 /* delimiter for bitsearch: */ 87 __set_bit(MAX_RT_PRIO, array->bitmap); 88 89 #if defined CONFIG_SMP 90 rt_rq->highest_prio.curr = MAX_RT_PRIO; 91 rt_rq->highest_prio.next = MAX_RT_PRIO; 92 rt_rq->rt_nr_migratory = 0; 93 rt_rq->overloaded = 0; 94 plist_head_init(&rt_rq->pushable_tasks); 95 #endif /* CONFIG_SMP */ 96 /* We start is dequeued state, because no RT tasks are queued */ 97 rt_rq->rt_queued = 0; 98 99 rt_rq->rt_time = 0; 100 rt_rq->rt_throttled = 0; 101 rt_rq->rt_runtime = 0; 102 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 103 } 104 105 #ifdef CONFIG_RT_GROUP_SCHED 106 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 107 { 108 hrtimer_cancel(&rt_b->rt_period_timer); 109 } 110 111 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 112 113 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 114 { 115 #ifdef CONFIG_SCHED_DEBUG 116 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 117 #endif 118 return container_of(rt_se, struct task_struct, rt); 119 } 120 121 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 122 { 123 return rt_rq->rq; 124 } 125 126 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 127 { 128 return rt_se->rt_rq; 129 } 130 131 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 132 { 133 struct rt_rq *rt_rq = rt_se->rt_rq; 134 135 return rt_rq->rq; 136 } 137 138 void free_rt_sched_group(struct task_group *tg) 139 { 140 int i; 141 142 if (tg->rt_se) 143 destroy_rt_bandwidth(&tg->rt_bandwidth); 144 145 for_each_possible_cpu(i) { 146 if (tg->rt_rq) 147 kfree(tg->rt_rq[i]); 148 if (tg->rt_se) 149 kfree(tg->rt_se[i]); 150 } 151 152 kfree(tg->rt_rq); 153 kfree(tg->rt_se); 154 } 155 156 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 157 struct sched_rt_entity *rt_se, int cpu, 158 struct sched_rt_entity *parent) 159 { 160 struct rq *rq = cpu_rq(cpu); 161 162 rt_rq->highest_prio.curr = MAX_RT_PRIO; 163 rt_rq->rt_nr_boosted = 0; 164 rt_rq->rq = rq; 165 rt_rq->tg = tg; 166 167 tg->rt_rq[cpu] = rt_rq; 168 tg->rt_se[cpu] = rt_se; 169 170 if (!rt_se) 171 return; 172 173 if (!parent) 174 rt_se->rt_rq = &rq->rt; 175 else 176 rt_se->rt_rq = parent->my_q; 177 178 rt_se->my_q = rt_rq; 179 rt_se->parent = parent; 180 INIT_LIST_HEAD(&rt_se->run_list); 181 } 182 183 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 184 { 185 struct rt_rq *rt_rq; 186 struct sched_rt_entity *rt_se; 187 int i; 188 189 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); 190 if (!tg->rt_rq) 191 goto err; 192 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); 193 if (!tg->rt_se) 194 goto err; 195 196 init_rt_bandwidth(&tg->rt_bandwidth, 197 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 198 199 for_each_possible_cpu(i) { 200 rt_rq = kzalloc_node(sizeof(struct rt_rq), 201 GFP_KERNEL, cpu_to_node(i)); 202 if (!rt_rq) 203 goto err; 204 205 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 206 GFP_KERNEL, cpu_to_node(i)); 207 if (!rt_se) 208 goto err_free_rq; 209 210 init_rt_rq(rt_rq); 211 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 212 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 213 } 214 215 return 1; 216 217 err_free_rq: 218 kfree(rt_rq); 219 err: 220 return 0; 221 } 222 223 #else /* CONFIG_RT_GROUP_SCHED */ 224 225 #define rt_entity_is_task(rt_se) (1) 226 227 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 228 { 229 return container_of(rt_se, struct task_struct, rt); 230 } 231 232 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 233 { 234 return container_of(rt_rq, struct rq, rt); 235 } 236 237 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 238 { 239 struct task_struct *p = rt_task_of(rt_se); 240 241 return task_rq(p); 242 } 243 244 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 245 { 246 struct rq *rq = rq_of_rt_se(rt_se); 247 248 return &rq->rt; 249 } 250 251 void free_rt_sched_group(struct task_group *tg) { } 252 253 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 254 { 255 return 1; 256 } 257 #endif /* CONFIG_RT_GROUP_SCHED */ 258 259 #ifdef CONFIG_SMP 260 261 static void pull_rt_task(struct rq *this_rq); 262 263 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 264 { 265 /* Try to pull RT tasks here if we lower this rq's prio */ 266 return rq->rt.highest_prio.curr > prev->prio; 267 } 268 269 static inline int rt_overloaded(struct rq *rq) 270 { 271 return atomic_read(&rq->rd->rto_count); 272 } 273 274 static inline void rt_set_overload(struct rq *rq) 275 { 276 if (!rq->online) 277 return; 278 279 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 280 /* 281 * Make sure the mask is visible before we set 282 * the overload count. That is checked to determine 283 * if we should look at the mask. It would be a shame 284 * if we looked at the mask, but the mask was not 285 * updated yet. 286 * 287 * Matched by the barrier in pull_rt_task(). 288 */ 289 smp_wmb(); 290 atomic_inc(&rq->rd->rto_count); 291 } 292 293 static inline void rt_clear_overload(struct rq *rq) 294 { 295 if (!rq->online) 296 return; 297 298 /* the order here really doesn't matter */ 299 atomic_dec(&rq->rd->rto_count); 300 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 301 } 302 303 static void update_rt_migration(struct rt_rq *rt_rq) 304 { 305 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 306 if (!rt_rq->overloaded) { 307 rt_set_overload(rq_of_rt_rq(rt_rq)); 308 rt_rq->overloaded = 1; 309 } 310 } else if (rt_rq->overloaded) { 311 rt_clear_overload(rq_of_rt_rq(rt_rq)); 312 rt_rq->overloaded = 0; 313 } 314 } 315 316 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 317 { 318 struct task_struct *p; 319 320 if (!rt_entity_is_task(rt_se)) 321 return; 322 323 p = rt_task_of(rt_se); 324 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 325 326 rt_rq->rt_nr_total++; 327 if (p->nr_cpus_allowed > 1) 328 rt_rq->rt_nr_migratory++; 329 330 update_rt_migration(rt_rq); 331 } 332 333 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 334 { 335 struct task_struct *p; 336 337 if (!rt_entity_is_task(rt_se)) 338 return; 339 340 p = rt_task_of(rt_se); 341 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 342 343 rt_rq->rt_nr_total--; 344 if (p->nr_cpus_allowed > 1) 345 rt_rq->rt_nr_migratory--; 346 347 update_rt_migration(rt_rq); 348 } 349 350 static inline int has_pushable_tasks(struct rq *rq) 351 { 352 return !plist_head_empty(&rq->rt.pushable_tasks); 353 } 354 355 static DEFINE_PER_CPU(struct callback_head, rt_push_head); 356 static DEFINE_PER_CPU(struct callback_head, rt_pull_head); 357 358 static void push_rt_tasks(struct rq *); 359 static void pull_rt_task(struct rq *); 360 361 static inline void rt_queue_push_tasks(struct rq *rq) 362 { 363 if (!has_pushable_tasks(rq)) 364 return; 365 366 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 367 } 368 369 static inline void rt_queue_pull_task(struct rq *rq) 370 { 371 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 372 } 373 374 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 375 { 376 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 377 plist_node_init(&p->pushable_tasks, p->prio); 378 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 379 380 /* Update the highest prio pushable task */ 381 if (p->prio < rq->rt.highest_prio.next) 382 rq->rt.highest_prio.next = p->prio; 383 } 384 385 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 386 { 387 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 388 389 /* Update the new highest prio pushable task */ 390 if (has_pushable_tasks(rq)) { 391 p = plist_first_entry(&rq->rt.pushable_tasks, 392 struct task_struct, pushable_tasks); 393 rq->rt.highest_prio.next = p->prio; 394 } else 395 rq->rt.highest_prio.next = MAX_RT_PRIO; 396 } 397 398 #else 399 400 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 401 { 402 } 403 404 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 405 { 406 } 407 408 static inline 409 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 410 { 411 } 412 413 static inline 414 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 415 { 416 } 417 418 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 419 { 420 return false; 421 } 422 423 static inline void pull_rt_task(struct rq *this_rq) 424 { 425 } 426 427 static inline void rt_queue_push_tasks(struct rq *rq) 428 { 429 } 430 #endif /* CONFIG_SMP */ 431 432 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 433 static void dequeue_top_rt_rq(struct rt_rq *rt_rq); 434 435 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 436 { 437 return rt_se->on_rq; 438 } 439 440 #ifdef CONFIG_UCLAMP_TASK 441 /* 442 * Verify the fitness of task @p to run on @cpu taking into account the uclamp 443 * settings. 444 * 445 * This check is only important for heterogeneous systems where uclamp_min value 446 * is higher than the capacity of a @cpu. For non-heterogeneous system this 447 * function will always return true. 448 * 449 * The function will return true if the capacity of the @cpu is >= the 450 * uclamp_min and false otherwise. 451 * 452 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min 453 * > uclamp_max. 454 */ 455 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 456 { 457 unsigned int min_cap; 458 unsigned int max_cap; 459 unsigned int cpu_cap; 460 461 /* Only heterogeneous systems can benefit from this check */ 462 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 463 return true; 464 465 min_cap = uclamp_eff_value(p, UCLAMP_MIN); 466 max_cap = uclamp_eff_value(p, UCLAMP_MAX); 467 468 cpu_cap = capacity_orig_of(cpu); 469 470 return cpu_cap >= min(min_cap, max_cap); 471 } 472 #else 473 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 474 { 475 return true; 476 } 477 #endif 478 479 #ifdef CONFIG_RT_GROUP_SCHED 480 481 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 482 { 483 if (!rt_rq->tg) 484 return RUNTIME_INF; 485 486 return rt_rq->rt_runtime; 487 } 488 489 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 490 { 491 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 492 } 493 494 typedef struct task_group *rt_rq_iter_t; 495 496 static inline struct task_group *next_task_group(struct task_group *tg) 497 { 498 do { 499 tg = list_entry_rcu(tg->list.next, 500 typeof(struct task_group), list); 501 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 502 503 if (&tg->list == &task_groups) 504 tg = NULL; 505 506 return tg; 507 } 508 509 #define for_each_rt_rq(rt_rq, iter, rq) \ 510 for (iter = container_of(&task_groups, typeof(*iter), list); \ 511 (iter = next_task_group(iter)) && \ 512 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 513 514 #define for_each_sched_rt_entity(rt_se) \ 515 for (; rt_se; rt_se = rt_se->parent) 516 517 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 518 { 519 return rt_se->my_q; 520 } 521 522 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 523 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 524 525 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 526 { 527 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 528 struct rq *rq = rq_of_rt_rq(rt_rq); 529 struct sched_rt_entity *rt_se; 530 531 int cpu = cpu_of(rq); 532 533 rt_se = rt_rq->tg->rt_se[cpu]; 534 535 if (rt_rq->rt_nr_running) { 536 if (!rt_se) 537 enqueue_top_rt_rq(rt_rq); 538 else if (!on_rt_rq(rt_se)) 539 enqueue_rt_entity(rt_se, 0); 540 541 if (rt_rq->highest_prio.curr < curr->prio) 542 resched_curr(rq); 543 } 544 } 545 546 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 547 { 548 struct sched_rt_entity *rt_se; 549 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 550 551 rt_se = rt_rq->tg->rt_se[cpu]; 552 553 if (!rt_se) { 554 dequeue_top_rt_rq(rt_rq); 555 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 556 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); 557 } 558 else if (on_rt_rq(rt_se)) 559 dequeue_rt_entity(rt_se, 0); 560 } 561 562 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 563 { 564 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 565 } 566 567 static int rt_se_boosted(struct sched_rt_entity *rt_se) 568 { 569 struct rt_rq *rt_rq = group_rt_rq(rt_se); 570 struct task_struct *p; 571 572 if (rt_rq) 573 return !!rt_rq->rt_nr_boosted; 574 575 p = rt_task_of(rt_se); 576 return p->prio != p->normal_prio; 577 } 578 579 #ifdef CONFIG_SMP 580 static inline const struct cpumask *sched_rt_period_mask(void) 581 { 582 return this_rq()->rd->span; 583 } 584 #else 585 static inline const struct cpumask *sched_rt_period_mask(void) 586 { 587 return cpu_online_mask; 588 } 589 #endif 590 591 static inline 592 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 593 { 594 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 595 } 596 597 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 598 { 599 return &rt_rq->tg->rt_bandwidth; 600 } 601 602 #else /* !CONFIG_RT_GROUP_SCHED */ 603 604 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 605 { 606 return rt_rq->rt_runtime; 607 } 608 609 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 610 { 611 return ktime_to_ns(def_rt_bandwidth.rt_period); 612 } 613 614 typedef struct rt_rq *rt_rq_iter_t; 615 616 #define for_each_rt_rq(rt_rq, iter, rq) \ 617 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 618 619 #define for_each_sched_rt_entity(rt_se) \ 620 for (; rt_se; rt_se = NULL) 621 622 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 623 { 624 return NULL; 625 } 626 627 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 628 { 629 struct rq *rq = rq_of_rt_rq(rt_rq); 630 631 if (!rt_rq->rt_nr_running) 632 return; 633 634 enqueue_top_rt_rq(rt_rq); 635 resched_curr(rq); 636 } 637 638 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 639 { 640 dequeue_top_rt_rq(rt_rq); 641 } 642 643 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 644 { 645 return rt_rq->rt_throttled; 646 } 647 648 static inline const struct cpumask *sched_rt_period_mask(void) 649 { 650 return cpu_online_mask; 651 } 652 653 static inline 654 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 655 { 656 return &cpu_rq(cpu)->rt; 657 } 658 659 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 660 { 661 return &def_rt_bandwidth; 662 } 663 664 #endif /* CONFIG_RT_GROUP_SCHED */ 665 666 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 667 { 668 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 669 670 return (hrtimer_active(&rt_b->rt_period_timer) || 671 rt_rq->rt_time < rt_b->rt_runtime); 672 } 673 674 #ifdef CONFIG_SMP 675 /* 676 * We ran out of runtime, see if we can borrow some from our neighbours. 677 */ 678 static void do_balance_runtime(struct rt_rq *rt_rq) 679 { 680 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 681 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 682 int i, weight; 683 u64 rt_period; 684 685 weight = cpumask_weight(rd->span); 686 687 raw_spin_lock(&rt_b->rt_runtime_lock); 688 rt_period = ktime_to_ns(rt_b->rt_period); 689 for_each_cpu(i, rd->span) { 690 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 691 s64 diff; 692 693 if (iter == rt_rq) 694 continue; 695 696 raw_spin_lock(&iter->rt_runtime_lock); 697 /* 698 * Either all rqs have inf runtime and there's nothing to steal 699 * or __disable_runtime() below sets a specific rq to inf to 700 * indicate its been disabled and disalow stealing. 701 */ 702 if (iter->rt_runtime == RUNTIME_INF) 703 goto next; 704 705 /* 706 * From runqueues with spare time, take 1/n part of their 707 * spare time, but no more than our period. 708 */ 709 diff = iter->rt_runtime - iter->rt_time; 710 if (diff > 0) { 711 diff = div_u64((u64)diff, weight); 712 if (rt_rq->rt_runtime + diff > rt_period) 713 diff = rt_period - rt_rq->rt_runtime; 714 iter->rt_runtime -= diff; 715 rt_rq->rt_runtime += diff; 716 if (rt_rq->rt_runtime == rt_period) { 717 raw_spin_unlock(&iter->rt_runtime_lock); 718 break; 719 } 720 } 721 next: 722 raw_spin_unlock(&iter->rt_runtime_lock); 723 } 724 raw_spin_unlock(&rt_b->rt_runtime_lock); 725 } 726 727 /* 728 * Ensure this RQ takes back all the runtime it lend to its neighbours. 729 */ 730 static void __disable_runtime(struct rq *rq) 731 { 732 struct root_domain *rd = rq->rd; 733 rt_rq_iter_t iter; 734 struct rt_rq *rt_rq; 735 736 if (unlikely(!scheduler_running)) 737 return; 738 739 for_each_rt_rq(rt_rq, iter, rq) { 740 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 741 s64 want; 742 int i; 743 744 raw_spin_lock(&rt_b->rt_runtime_lock); 745 raw_spin_lock(&rt_rq->rt_runtime_lock); 746 /* 747 * Either we're all inf and nobody needs to borrow, or we're 748 * already disabled and thus have nothing to do, or we have 749 * exactly the right amount of runtime to take out. 750 */ 751 if (rt_rq->rt_runtime == RUNTIME_INF || 752 rt_rq->rt_runtime == rt_b->rt_runtime) 753 goto balanced; 754 raw_spin_unlock(&rt_rq->rt_runtime_lock); 755 756 /* 757 * Calculate the difference between what we started out with 758 * and what we current have, that's the amount of runtime 759 * we lend and now have to reclaim. 760 */ 761 want = rt_b->rt_runtime - rt_rq->rt_runtime; 762 763 /* 764 * Greedy reclaim, take back as much as we can. 765 */ 766 for_each_cpu(i, rd->span) { 767 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 768 s64 diff; 769 770 /* 771 * Can't reclaim from ourselves or disabled runqueues. 772 */ 773 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 774 continue; 775 776 raw_spin_lock(&iter->rt_runtime_lock); 777 if (want > 0) { 778 diff = min_t(s64, iter->rt_runtime, want); 779 iter->rt_runtime -= diff; 780 want -= diff; 781 } else { 782 iter->rt_runtime -= want; 783 want -= want; 784 } 785 raw_spin_unlock(&iter->rt_runtime_lock); 786 787 if (!want) 788 break; 789 } 790 791 raw_spin_lock(&rt_rq->rt_runtime_lock); 792 /* 793 * We cannot be left wanting - that would mean some runtime 794 * leaked out of the system. 795 */ 796 BUG_ON(want); 797 balanced: 798 /* 799 * Disable all the borrow logic by pretending we have inf 800 * runtime - in which case borrowing doesn't make sense. 801 */ 802 rt_rq->rt_runtime = RUNTIME_INF; 803 rt_rq->rt_throttled = 0; 804 raw_spin_unlock(&rt_rq->rt_runtime_lock); 805 raw_spin_unlock(&rt_b->rt_runtime_lock); 806 807 /* Make rt_rq available for pick_next_task() */ 808 sched_rt_rq_enqueue(rt_rq); 809 } 810 } 811 812 static void __enable_runtime(struct rq *rq) 813 { 814 rt_rq_iter_t iter; 815 struct rt_rq *rt_rq; 816 817 if (unlikely(!scheduler_running)) 818 return; 819 820 /* 821 * Reset each runqueue's bandwidth settings 822 */ 823 for_each_rt_rq(rt_rq, iter, rq) { 824 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 825 826 raw_spin_lock(&rt_b->rt_runtime_lock); 827 raw_spin_lock(&rt_rq->rt_runtime_lock); 828 rt_rq->rt_runtime = rt_b->rt_runtime; 829 rt_rq->rt_time = 0; 830 rt_rq->rt_throttled = 0; 831 raw_spin_unlock(&rt_rq->rt_runtime_lock); 832 raw_spin_unlock(&rt_b->rt_runtime_lock); 833 } 834 } 835 836 static void balance_runtime(struct rt_rq *rt_rq) 837 { 838 if (!sched_feat(RT_RUNTIME_SHARE)) 839 return; 840 841 if (rt_rq->rt_time > rt_rq->rt_runtime) { 842 raw_spin_unlock(&rt_rq->rt_runtime_lock); 843 do_balance_runtime(rt_rq); 844 raw_spin_lock(&rt_rq->rt_runtime_lock); 845 } 846 } 847 #else /* !CONFIG_SMP */ 848 static inline void balance_runtime(struct rt_rq *rt_rq) {} 849 #endif /* CONFIG_SMP */ 850 851 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 852 { 853 int i, idle = 1, throttled = 0; 854 const struct cpumask *span; 855 856 span = sched_rt_period_mask(); 857 #ifdef CONFIG_RT_GROUP_SCHED 858 /* 859 * FIXME: isolated CPUs should really leave the root task group, 860 * whether they are isolcpus or were isolated via cpusets, lest 861 * the timer run on a CPU which does not service all runqueues, 862 * potentially leaving other CPUs indefinitely throttled. If 863 * isolation is really required, the user will turn the throttle 864 * off to kill the perturbations it causes anyway. Meanwhile, 865 * this maintains functionality for boot and/or troubleshooting. 866 */ 867 if (rt_b == &root_task_group.rt_bandwidth) 868 span = cpu_online_mask; 869 #endif 870 for_each_cpu(i, span) { 871 int enqueue = 0; 872 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 873 struct rq *rq = rq_of_rt_rq(rt_rq); 874 int skip; 875 876 /* 877 * When span == cpu_online_mask, taking each rq->lock 878 * can be time-consuming. Try to avoid it when possible. 879 */ 880 raw_spin_lock(&rt_rq->rt_runtime_lock); 881 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) 882 rt_rq->rt_runtime = rt_b->rt_runtime; 883 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 884 raw_spin_unlock(&rt_rq->rt_runtime_lock); 885 if (skip) 886 continue; 887 888 raw_spin_lock(&rq->lock); 889 update_rq_clock(rq); 890 891 if (rt_rq->rt_time) { 892 u64 runtime; 893 894 raw_spin_lock(&rt_rq->rt_runtime_lock); 895 if (rt_rq->rt_throttled) 896 balance_runtime(rt_rq); 897 runtime = rt_rq->rt_runtime; 898 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 899 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 900 rt_rq->rt_throttled = 0; 901 enqueue = 1; 902 903 /* 904 * When we're idle and a woken (rt) task is 905 * throttled check_preempt_curr() will set 906 * skip_update and the time between the wakeup 907 * and this unthrottle will get accounted as 908 * 'runtime'. 909 */ 910 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 911 rq_clock_cancel_skipupdate(rq); 912 } 913 if (rt_rq->rt_time || rt_rq->rt_nr_running) 914 idle = 0; 915 raw_spin_unlock(&rt_rq->rt_runtime_lock); 916 } else if (rt_rq->rt_nr_running) { 917 idle = 0; 918 if (!rt_rq_throttled(rt_rq)) 919 enqueue = 1; 920 } 921 if (rt_rq->rt_throttled) 922 throttled = 1; 923 924 if (enqueue) 925 sched_rt_rq_enqueue(rt_rq); 926 raw_spin_unlock(&rq->lock); 927 } 928 929 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 930 return 1; 931 932 return idle; 933 } 934 935 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 936 { 937 #ifdef CONFIG_RT_GROUP_SCHED 938 struct rt_rq *rt_rq = group_rt_rq(rt_se); 939 940 if (rt_rq) 941 return rt_rq->highest_prio.curr; 942 #endif 943 944 return rt_task_of(rt_se)->prio; 945 } 946 947 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 948 { 949 u64 runtime = sched_rt_runtime(rt_rq); 950 951 if (rt_rq->rt_throttled) 952 return rt_rq_throttled(rt_rq); 953 954 if (runtime >= sched_rt_period(rt_rq)) 955 return 0; 956 957 balance_runtime(rt_rq); 958 runtime = sched_rt_runtime(rt_rq); 959 if (runtime == RUNTIME_INF) 960 return 0; 961 962 if (rt_rq->rt_time > runtime) { 963 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 964 965 /* 966 * Don't actually throttle groups that have no runtime assigned 967 * but accrue some time due to boosting. 968 */ 969 if (likely(rt_b->rt_runtime)) { 970 rt_rq->rt_throttled = 1; 971 printk_deferred_once("sched: RT throttling activated\n"); 972 } else { 973 /* 974 * In case we did anyway, make it go away, 975 * replenishment is a joke, since it will replenish us 976 * with exactly 0 ns. 977 */ 978 rt_rq->rt_time = 0; 979 } 980 981 if (rt_rq_throttled(rt_rq)) { 982 sched_rt_rq_dequeue(rt_rq); 983 return 1; 984 } 985 } 986 987 return 0; 988 } 989 990 /* 991 * Update the current task's runtime statistics. Skip current tasks that 992 * are not in our scheduling class. 993 */ 994 static void update_curr_rt(struct rq *rq) 995 { 996 struct task_struct *curr = rq->curr; 997 struct sched_rt_entity *rt_se = &curr->rt; 998 u64 delta_exec; 999 u64 now; 1000 1001 if (curr->sched_class != &rt_sched_class) 1002 return; 1003 1004 now = rq_clock_task(rq); 1005 delta_exec = now - curr->se.exec_start; 1006 if (unlikely((s64)delta_exec <= 0)) 1007 return; 1008 1009 schedstat_set(curr->se.statistics.exec_max, 1010 max(curr->se.statistics.exec_max, delta_exec)); 1011 1012 curr->se.sum_exec_runtime += delta_exec; 1013 account_group_exec_runtime(curr, delta_exec); 1014 1015 curr->se.exec_start = now; 1016 cgroup_account_cputime(curr, delta_exec); 1017 1018 if (!rt_bandwidth_enabled()) 1019 return; 1020 1021 for_each_sched_rt_entity(rt_se) { 1022 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1023 1024 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 1025 raw_spin_lock(&rt_rq->rt_runtime_lock); 1026 rt_rq->rt_time += delta_exec; 1027 if (sched_rt_runtime_exceeded(rt_rq)) 1028 resched_curr(rq); 1029 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1030 } 1031 } 1032 } 1033 1034 static void 1035 dequeue_top_rt_rq(struct rt_rq *rt_rq) 1036 { 1037 struct rq *rq = rq_of_rt_rq(rt_rq); 1038 1039 BUG_ON(&rq->rt != rt_rq); 1040 1041 if (!rt_rq->rt_queued) 1042 return; 1043 1044 BUG_ON(!rq->nr_running); 1045 1046 sub_nr_running(rq, rt_rq->rt_nr_running); 1047 rt_rq->rt_queued = 0; 1048 1049 } 1050 1051 static void 1052 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1053 { 1054 struct rq *rq = rq_of_rt_rq(rt_rq); 1055 1056 BUG_ON(&rq->rt != rt_rq); 1057 1058 if (rt_rq->rt_queued) 1059 return; 1060 1061 if (rt_rq_throttled(rt_rq)) 1062 return; 1063 1064 if (rt_rq->rt_nr_running) { 1065 add_nr_running(rq, rt_rq->rt_nr_running); 1066 rt_rq->rt_queued = 1; 1067 } 1068 1069 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 1070 cpufreq_update_util(rq, 0); 1071 } 1072 1073 #if defined CONFIG_SMP 1074 1075 static void 1076 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1077 { 1078 struct rq *rq = rq_of_rt_rq(rt_rq); 1079 1080 #ifdef CONFIG_RT_GROUP_SCHED 1081 /* 1082 * Change rq's cpupri only if rt_rq is the top queue. 1083 */ 1084 if (&rq->rt != rt_rq) 1085 return; 1086 #endif 1087 if (rq->online && prio < prev_prio) 1088 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1089 } 1090 1091 static void 1092 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1093 { 1094 struct rq *rq = rq_of_rt_rq(rt_rq); 1095 1096 #ifdef CONFIG_RT_GROUP_SCHED 1097 /* 1098 * Change rq's cpupri only if rt_rq is the top queue. 1099 */ 1100 if (&rq->rt != rt_rq) 1101 return; 1102 #endif 1103 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1104 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1105 } 1106 1107 #else /* CONFIG_SMP */ 1108 1109 static inline 1110 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1111 static inline 1112 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1113 1114 #endif /* CONFIG_SMP */ 1115 1116 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1117 static void 1118 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1119 { 1120 int prev_prio = rt_rq->highest_prio.curr; 1121 1122 if (prio < prev_prio) 1123 rt_rq->highest_prio.curr = prio; 1124 1125 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1126 } 1127 1128 static void 1129 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1130 { 1131 int prev_prio = rt_rq->highest_prio.curr; 1132 1133 if (rt_rq->rt_nr_running) { 1134 1135 WARN_ON(prio < prev_prio); 1136 1137 /* 1138 * This may have been our highest task, and therefore 1139 * we may have some recomputation to do 1140 */ 1141 if (prio == prev_prio) { 1142 struct rt_prio_array *array = &rt_rq->active; 1143 1144 rt_rq->highest_prio.curr = 1145 sched_find_first_bit(array->bitmap); 1146 } 1147 1148 } else 1149 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1150 1151 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1152 } 1153 1154 #else 1155 1156 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1157 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1158 1159 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1160 1161 #ifdef CONFIG_RT_GROUP_SCHED 1162 1163 static void 1164 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1165 { 1166 if (rt_se_boosted(rt_se)) 1167 rt_rq->rt_nr_boosted++; 1168 1169 if (rt_rq->tg) 1170 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1171 } 1172 1173 static void 1174 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1175 { 1176 if (rt_se_boosted(rt_se)) 1177 rt_rq->rt_nr_boosted--; 1178 1179 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1180 } 1181 1182 #else /* CONFIG_RT_GROUP_SCHED */ 1183 1184 static void 1185 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1186 { 1187 start_rt_bandwidth(&def_rt_bandwidth); 1188 } 1189 1190 static inline 1191 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1192 1193 #endif /* CONFIG_RT_GROUP_SCHED */ 1194 1195 static inline 1196 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1197 { 1198 struct rt_rq *group_rq = group_rt_rq(rt_se); 1199 1200 if (group_rq) 1201 return group_rq->rt_nr_running; 1202 else 1203 return 1; 1204 } 1205 1206 static inline 1207 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1208 { 1209 struct rt_rq *group_rq = group_rt_rq(rt_se); 1210 struct task_struct *tsk; 1211 1212 if (group_rq) 1213 return group_rq->rr_nr_running; 1214 1215 tsk = rt_task_of(rt_se); 1216 1217 return (tsk->policy == SCHED_RR) ? 1 : 0; 1218 } 1219 1220 static inline 1221 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1222 { 1223 int prio = rt_se_prio(rt_se); 1224 1225 WARN_ON(!rt_prio(prio)); 1226 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1227 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1228 1229 inc_rt_prio(rt_rq, prio); 1230 inc_rt_migration(rt_se, rt_rq); 1231 inc_rt_group(rt_se, rt_rq); 1232 } 1233 1234 static inline 1235 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1236 { 1237 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1238 WARN_ON(!rt_rq->rt_nr_running); 1239 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1240 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1241 1242 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1243 dec_rt_migration(rt_se, rt_rq); 1244 dec_rt_group(rt_se, rt_rq); 1245 } 1246 1247 /* 1248 * Change rt_se->run_list location unless SAVE && !MOVE 1249 * 1250 * assumes ENQUEUE/DEQUEUE flags match 1251 */ 1252 static inline bool move_entity(unsigned int flags) 1253 { 1254 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1255 return false; 1256 1257 return true; 1258 } 1259 1260 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1261 { 1262 list_del_init(&rt_se->run_list); 1263 1264 if (list_empty(array->queue + rt_se_prio(rt_se))) 1265 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1266 1267 rt_se->on_list = 0; 1268 } 1269 1270 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1271 { 1272 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1273 struct rt_prio_array *array = &rt_rq->active; 1274 struct rt_rq *group_rq = group_rt_rq(rt_se); 1275 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1276 1277 /* 1278 * Don't enqueue the group if its throttled, or when empty. 1279 * The latter is a consequence of the former when a child group 1280 * get throttled and the current group doesn't have any other 1281 * active members. 1282 */ 1283 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1284 if (rt_se->on_list) 1285 __delist_rt_entity(rt_se, array); 1286 return; 1287 } 1288 1289 if (move_entity(flags)) { 1290 WARN_ON_ONCE(rt_se->on_list); 1291 if (flags & ENQUEUE_HEAD) 1292 list_add(&rt_se->run_list, queue); 1293 else 1294 list_add_tail(&rt_se->run_list, queue); 1295 1296 __set_bit(rt_se_prio(rt_se), array->bitmap); 1297 rt_se->on_list = 1; 1298 } 1299 rt_se->on_rq = 1; 1300 1301 inc_rt_tasks(rt_se, rt_rq); 1302 } 1303 1304 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1305 { 1306 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1307 struct rt_prio_array *array = &rt_rq->active; 1308 1309 if (move_entity(flags)) { 1310 WARN_ON_ONCE(!rt_se->on_list); 1311 __delist_rt_entity(rt_se, array); 1312 } 1313 rt_se->on_rq = 0; 1314 1315 dec_rt_tasks(rt_se, rt_rq); 1316 } 1317 1318 /* 1319 * Because the prio of an upper entry depends on the lower 1320 * entries, we must remove entries top - down. 1321 */ 1322 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1323 { 1324 struct sched_rt_entity *back = NULL; 1325 1326 for_each_sched_rt_entity(rt_se) { 1327 rt_se->back = back; 1328 back = rt_se; 1329 } 1330 1331 dequeue_top_rt_rq(rt_rq_of_se(back)); 1332 1333 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1334 if (on_rt_rq(rt_se)) 1335 __dequeue_rt_entity(rt_se, flags); 1336 } 1337 } 1338 1339 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1340 { 1341 struct rq *rq = rq_of_rt_se(rt_se); 1342 1343 dequeue_rt_stack(rt_se, flags); 1344 for_each_sched_rt_entity(rt_se) 1345 __enqueue_rt_entity(rt_se, flags); 1346 enqueue_top_rt_rq(&rq->rt); 1347 } 1348 1349 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1350 { 1351 struct rq *rq = rq_of_rt_se(rt_se); 1352 1353 dequeue_rt_stack(rt_se, flags); 1354 1355 for_each_sched_rt_entity(rt_se) { 1356 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1357 1358 if (rt_rq && rt_rq->rt_nr_running) 1359 __enqueue_rt_entity(rt_se, flags); 1360 } 1361 enqueue_top_rt_rq(&rq->rt); 1362 } 1363 1364 /* 1365 * Adding/removing a task to/from a priority array: 1366 */ 1367 static void 1368 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1369 { 1370 struct sched_rt_entity *rt_se = &p->rt; 1371 1372 if (flags & ENQUEUE_WAKEUP) 1373 rt_se->timeout = 0; 1374 1375 enqueue_rt_entity(rt_se, flags); 1376 1377 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1378 enqueue_pushable_task(rq, p); 1379 } 1380 1381 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1382 { 1383 struct sched_rt_entity *rt_se = &p->rt; 1384 1385 update_curr_rt(rq); 1386 dequeue_rt_entity(rt_se, flags); 1387 1388 dequeue_pushable_task(rq, p); 1389 } 1390 1391 /* 1392 * Put task to the head or the end of the run list without the overhead of 1393 * dequeue followed by enqueue. 1394 */ 1395 static void 1396 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1397 { 1398 if (on_rt_rq(rt_se)) { 1399 struct rt_prio_array *array = &rt_rq->active; 1400 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1401 1402 if (head) 1403 list_move(&rt_se->run_list, queue); 1404 else 1405 list_move_tail(&rt_se->run_list, queue); 1406 } 1407 } 1408 1409 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1410 { 1411 struct sched_rt_entity *rt_se = &p->rt; 1412 struct rt_rq *rt_rq; 1413 1414 for_each_sched_rt_entity(rt_se) { 1415 rt_rq = rt_rq_of_se(rt_se); 1416 requeue_rt_entity(rt_rq, rt_se, head); 1417 } 1418 } 1419 1420 static void yield_task_rt(struct rq *rq) 1421 { 1422 requeue_task_rt(rq, rq->curr, 0); 1423 } 1424 1425 #ifdef CONFIG_SMP 1426 static int find_lowest_rq(struct task_struct *task); 1427 1428 static int 1429 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1430 { 1431 struct task_struct *curr; 1432 struct rq *rq; 1433 bool test; 1434 1435 /* For anything but wake ups, just return the task_cpu */ 1436 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1437 goto out; 1438 1439 rq = cpu_rq(cpu); 1440 1441 rcu_read_lock(); 1442 curr = READ_ONCE(rq->curr); /* unlocked access */ 1443 1444 /* 1445 * If the current task on @p's runqueue is an RT task, then 1446 * try to see if we can wake this RT task up on another 1447 * runqueue. Otherwise simply start this RT task 1448 * on its current runqueue. 1449 * 1450 * We want to avoid overloading runqueues. If the woken 1451 * task is a higher priority, then it will stay on this CPU 1452 * and the lower prio task should be moved to another CPU. 1453 * Even though this will probably make the lower prio task 1454 * lose its cache, we do not want to bounce a higher task 1455 * around just because it gave up its CPU, perhaps for a 1456 * lock? 1457 * 1458 * For equal prio tasks, we just let the scheduler sort it out. 1459 * 1460 * Otherwise, just let it ride on the affined RQ and the 1461 * post-schedule router will push the preempted task away 1462 * 1463 * This test is optimistic, if we get it wrong the load-balancer 1464 * will have to sort it out. 1465 * 1466 * We take into account the capacity of the CPU to ensure it fits the 1467 * requirement of the task - which is only important on heterogeneous 1468 * systems like big.LITTLE. 1469 */ 1470 test = curr && 1471 unlikely(rt_task(curr)) && 1472 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio); 1473 1474 if (test || !rt_task_fits_capacity(p, cpu)) { 1475 int target = find_lowest_rq(p); 1476 1477 /* 1478 * Don't bother moving it if the destination CPU is 1479 * not running a lower priority task. 1480 */ 1481 if (target != -1 && 1482 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1483 cpu = target; 1484 } 1485 rcu_read_unlock(); 1486 1487 out: 1488 return cpu; 1489 } 1490 1491 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1492 { 1493 /* 1494 * Current can't be migrated, useless to reschedule, 1495 * let's hope p can move out. 1496 */ 1497 if (rq->curr->nr_cpus_allowed == 1 || 1498 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL, NULL)) 1499 return; 1500 1501 /* 1502 * p is migratable, so let's not schedule it and 1503 * see if it is pushed or pulled somewhere else. 1504 */ 1505 if (p->nr_cpus_allowed != 1 && 1506 cpupri_find(&rq->rd->cpupri, p, NULL, NULL)) 1507 return; 1508 1509 /* 1510 * There appear to be other CPUs that can accept 1511 * the current task but none can run 'p', so lets reschedule 1512 * to try and push the current task away: 1513 */ 1514 requeue_task_rt(rq, p, 1); 1515 resched_curr(rq); 1516 } 1517 1518 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1519 { 1520 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) { 1521 /* 1522 * This is OK, because current is on_cpu, which avoids it being 1523 * picked for load-balance and preemption/IRQs are still 1524 * disabled avoiding further scheduler activity on it and we've 1525 * not yet started the picking loop. 1526 */ 1527 rq_unpin_lock(rq, rf); 1528 pull_rt_task(rq); 1529 rq_repin_lock(rq, rf); 1530 } 1531 1532 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq); 1533 } 1534 #endif /* CONFIG_SMP */ 1535 1536 /* 1537 * Preempt the current task with a newly woken task if needed: 1538 */ 1539 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1540 { 1541 if (p->prio < rq->curr->prio) { 1542 resched_curr(rq); 1543 return; 1544 } 1545 1546 #ifdef CONFIG_SMP 1547 /* 1548 * If: 1549 * 1550 * - the newly woken task is of equal priority to the current task 1551 * - the newly woken task is non-migratable while current is migratable 1552 * - current will be preempted on the next reschedule 1553 * 1554 * we should check to see if current can readily move to a different 1555 * cpu. If so, we will reschedule to allow the push logic to try 1556 * to move current somewhere else, making room for our non-migratable 1557 * task. 1558 */ 1559 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1560 check_preempt_equal_prio(rq, p); 1561 #endif 1562 } 1563 1564 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first) 1565 { 1566 p->se.exec_start = rq_clock_task(rq); 1567 1568 /* The running task is never eligible for pushing */ 1569 dequeue_pushable_task(rq, p); 1570 1571 if (!first) 1572 return; 1573 1574 /* 1575 * If prev task was rt, put_prev_task() has already updated the 1576 * utilization. We only care of the case where we start to schedule a 1577 * rt task 1578 */ 1579 if (rq->curr->sched_class != &rt_sched_class) 1580 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1581 1582 rt_queue_push_tasks(rq); 1583 } 1584 1585 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1586 struct rt_rq *rt_rq) 1587 { 1588 struct rt_prio_array *array = &rt_rq->active; 1589 struct sched_rt_entity *next = NULL; 1590 struct list_head *queue; 1591 int idx; 1592 1593 idx = sched_find_first_bit(array->bitmap); 1594 BUG_ON(idx >= MAX_RT_PRIO); 1595 1596 queue = array->queue + idx; 1597 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1598 1599 return next; 1600 } 1601 1602 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1603 { 1604 struct sched_rt_entity *rt_se; 1605 struct rt_rq *rt_rq = &rq->rt; 1606 1607 do { 1608 rt_se = pick_next_rt_entity(rq, rt_rq); 1609 BUG_ON(!rt_se); 1610 rt_rq = group_rt_rq(rt_se); 1611 } while (rt_rq); 1612 1613 return rt_task_of(rt_se); 1614 } 1615 1616 static struct task_struct *pick_next_task_rt(struct rq *rq) 1617 { 1618 struct task_struct *p; 1619 1620 if (!sched_rt_runnable(rq)) 1621 return NULL; 1622 1623 p = _pick_next_task_rt(rq); 1624 set_next_task_rt(rq, p, true); 1625 return p; 1626 } 1627 1628 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1629 { 1630 update_curr_rt(rq); 1631 1632 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1633 1634 /* 1635 * The previous task needs to be made eligible for pushing 1636 * if it is still active 1637 */ 1638 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1639 enqueue_pushable_task(rq, p); 1640 } 1641 1642 #ifdef CONFIG_SMP 1643 1644 /* Only try algorithms three times */ 1645 #define RT_MAX_TRIES 3 1646 1647 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1648 { 1649 if (!task_running(rq, p) && 1650 cpumask_test_cpu(cpu, p->cpus_ptr) && 1651 rt_task_fits_capacity(p, cpu)) 1652 return 1; 1653 1654 return 0; 1655 } 1656 1657 /* 1658 * Return the highest pushable rq's task, which is suitable to be executed 1659 * on the CPU, NULL otherwise 1660 */ 1661 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1662 { 1663 struct plist_head *head = &rq->rt.pushable_tasks; 1664 struct task_struct *p; 1665 1666 if (!has_pushable_tasks(rq)) 1667 return NULL; 1668 1669 plist_for_each_entry(p, head, pushable_tasks) { 1670 if (pick_rt_task(rq, p, cpu)) 1671 return p; 1672 } 1673 1674 return NULL; 1675 } 1676 1677 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1678 1679 static int find_lowest_rq(struct task_struct *task) 1680 { 1681 struct sched_domain *sd; 1682 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1683 int this_cpu = smp_processor_id(); 1684 int cpu = task_cpu(task); 1685 1686 /* Make sure the mask is initialized first */ 1687 if (unlikely(!lowest_mask)) 1688 return -1; 1689 1690 if (task->nr_cpus_allowed == 1) 1691 return -1; /* No other targets possible */ 1692 1693 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask, 1694 rt_task_fits_capacity)) 1695 return -1; /* No targets found */ 1696 1697 /* 1698 * At this point we have built a mask of CPUs representing the 1699 * lowest priority tasks in the system. Now we want to elect 1700 * the best one based on our affinity and topology. 1701 * 1702 * We prioritize the last CPU that the task executed on since 1703 * it is most likely cache-hot in that location. 1704 */ 1705 if (cpumask_test_cpu(cpu, lowest_mask)) 1706 return cpu; 1707 1708 /* 1709 * Otherwise, we consult the sched_domains span maps to figure 1710 * out which CPU is logically closest to our hot cache data. 1711 */ 1712 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1713 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1714 1715 rcu_read_lock(); 1716 for_each_domain(cpu, sd) { 1717 if (sd->flags & SD_WAKE_AFFINE) { 1718 int best_cpu; 1719 1720 /* 1721 * "this_cpu" is cheaper to preempt than a 1722 * remote processor. 1723 */ 1724 if (this_cpu != -1 && 1725 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1726 rcu_read_unlock(); 1727 return this_cpu; 1728 } 1729 1730 best_cpu = cpumask_first_and(lowest_mask, 1731 sched_domain_span(sd)); 1732 if (best_cpu < nr_cpu_ids) { 1733 rcu_read_unlock(); 1734 return best_cpu; 1735 } 1736 } 1737 } 1738 rcu_read_unlock(); 1739 1740 /* 1741 * And finally, if there were no matches within the domains 1742 * just give the caller *something* to work with from the compatible 1743 * locations. 1744 */ 1745 if (this_cpu != -1) 1746 return this_cpu; 1747 1748 cpu = cpumask_any(lowest_mask); 1749 if (cpu < nr_cpu_ids) 1750 return cpu; 1751 1752 return -1; 1753 } 1754 1755 /* Will lock the rq it finds */ 1756 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1757 { 1758 struct rq *lowest_rq = NULL; 1759 int tries; 1760 int cpu; 1761 1762 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1763 cpu = find_lowest_rq(task); 1764 1765 if ((cpu == -1) || (cpu == rq->cpu)) 1766 break; 1767 1768 lowest_rq = cpu_rq(cpu); 1769 1770 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1771 /* 1772 * Target rq has tasks of equal or higher priority, 1773 * retrying does not release any lock and is unlikely 1774 * to yield a different result. 1775 */ 1776 lowest_rq = NULL; 1777 break; 1778 } 1779 1780 /* if the prio of this runqueue changed, try again */ 1781 if (double_lock_balance(rq, lowest_rq)) { 1782 /* 1783 * We had to unlock the run queue. In 1784 * the mean time, task could have 1785 * migrated already or had its affinity changed. 1786 * Also make sure that it wasn't scheduled on its rq. 1787 */ 1788 if (unlikely(task_rq(task) != rq || 1789 !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) || 1790 task_running(rq, task) || 1791 !rt_task(task) || 1792 !task_on_rq_queued(task))) { 1793 1794 double_unlock_balance(rq, lowest_rq); 1795 lowest_rq = NULL; 1796 break; 1797 } 1798 } 1799 1800 /* If this rq is still suitable use it. */ 1801 if (lowest_rq->rt.highest_prio.curr > task->prio) 1802 break; 1803 1804 /* try again */ 1805 double_unlock_balance(rq, lowest_rq); 1806 lowest_rq = NULL; 1807 } 1808 1809 return lowest_rq; 1810 } 1811 1812 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1813 { 1814 struct task_struct *p; 1815 1816 if (!has_pushable_tasks(rq)) 1817 return NULL; 1818 1819 p = plist_first_entry(&rq->rt.pushable_tasks, 1820 struct task_struct, pushable_tasks); 1821 1822 BUG_ON(rq->cpu != task_cpu(p)); 1823 BUG_ON(task_current(rq, p)); 1824 BUG_ON(p->nr_cpus_allowed <= 1); 1825 1826 BUG_ON(!task_on_rq_queued(p)); 1827 BUG_ON(!rt_task(p)); 1828 1829 return p; 1830 } 1831 1832 /* 1833 * If the current CPU has more than one RT task, see if the non 1834 * running task can migrate over to a CPU that is running a task 1835 * of lesser priority. 1836 */ 1837 static int push_rt_task(struct rq *rq) 1838 { 1839 struct task_struct *next_task; 1840 struct rq *lowest_rq; 1841 int ret = 0; 1842 1843 if (!rq->rt.overloaded) 1844 return 0; 1845 1846 next_task = pick_next_pushable_task(rq); 1847 if (!next_task) 1848 return 0; 1849 1850 retry: 1851 if (WARN_ON(next_task == rq->curr)) 1852 return 0; 1853 1854 /* 1855 * It's possible that the next_task slipped in of 1856 * higher priority than current. If that's the case 1857 * just reschedule current. 1858 */ 1859 if (unlikely(next_task->prio < rq->curr->prio)) { 1860 resched_curr(rq); 1861 return 0; 1862 } 1863 1864 /* We might release rq lock */ 1865 get_task_struct(next_task); 1866 1867 /* find_lock_lowest_rq locks the rq if found */ 1868 lowest_rq = find_lock_lowest_rq(next_task, rq); 1869 if (!lowest_rq) { 1870 struct task_struct *task; 1871 /* 1872 * find_lock_lowest_rq releases rq->lock 1873 * so it is possible that next_task has migrated. 1874 * 1875 * We need to make sure that the task is still on the same 1876 * run-queue and is also still the next task eligible for 1877 * pushing. 1878 */ 1879 task = pick_next_pushable_task(rq); 1880 if (task == next_task) { 1881 /* 1882 * The task hasn't migrated, and is still the next 1883 * eligible task, but we failed to find a run-queue 1884 * to push it to. Do not retry in this case, since 1885 * other CPUs will pull from us when ready. 1886 */ 1887 goto out; 1888 } 1889 1890 if (!task) 1891 /* No more tasks, just exit */ 1892 goto out; 1893 1894 /* 1895 * Something has shifted, try again. 1896 */ 1897 put_task_struct(next_task); 1898 next_task = task; 1899 goto retry; 1900 } 1901 1902 deactivate_task(rq, next_task, 0); 1903 set_task_cpu(next_task, lowest_rq->cpu); 1904 activate_task(lowest_rq, next_task, 0); 1905 ret = 1; 1906 1907 resched_curr(lowest_rq); 1908 1909 double_unlock_balance(rq, lowest_rq); 1910 1911 out: 1912 put_task_struct(next_task); 1913 1914 return ret; 1915 } 1916 1917 static void push_rt_tasks(struct rq *rq) 1918 { 1919 /* push_rt_task will return true if it moved an RT */ 1920 while (push_rt_task(rq)) 1921 ; 1922 } 1923 1924 #ifdef HAVE_RT_PUSH_IPI 1925 1926 /* 1927 * When a high priority task schedules out from a CPU and a lower priority 1928 * task is scheduled in, a check is made to see if there's any RT tasks 1929 * on other CPUs that are waiting to run because a higher priority RT task 1930 * is currently running on its CPU. In this case, the CPU with multiple RT 1931 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 1932 * up that may be able to run one of its non-running queued RT tasks. 1933 * 1934 * All CPUs with overloaded RT tasks need to be notified as there is currently 1935 * no way to know which of these CPUs have the highest priority task waiting 1936 * to run. Instead of trying to take a spinlock on each of these CPUs, 1937 * which has shown to cause large latency when done on machines with many 1938 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 1939 * RT tasks waiting to run. 1940 * 1941 * Just sending an IPI to each of the CPUs is also an issue, as on large 1942 * count CPU machines, this can cause an IPI storm on a CPU, especially 1943 * if its the only CPU with multiple RT tasks queued, and a large number 1944 * of CPUs scheduling a lower priority task at the same time. 1945 * 1946 * Each root domain has its own irq work function that can iterate over 1947 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 1948 * tassk must be checked if there's one or many CPUs that are lowering 1949 * their priority, there's a single irq work iterator that will try to 1950 * push off RT tasks that are waiting to run. 1951 * 1952 * When a CPU schedules a lower priority task, it will kick off the 1953 * irq work iterator that will jump to each CPU with overloaded RT tasks. 1954 * As it only takes the first CPU that schedules a lower priority task 1955 * to start the process, the rto_start variable is incremented and if 1956 * the atomic result is one, then that CPU will try to take the rto_lock. 1957 * This prevents high contention on the lock as the process handles all 1958 * CPUs scheduling lower priority tasks. 1959 * 1960 * All CPUs that are scheduling a lower priority task will increment the 1961 * rt_loop_next variable. This will make sure that the irq work iterator 1962 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 1963 * priority task, even if the iterator is in the middle of a scan. Incrementing 1964 * the rt_loop_next will cause the iterator to perform another scan. 1965 * 1966 */ 1967 static int rto_next_cpu(struct root_domain *rd) 1968 { 1969 int next; 1970 int cpu; 1971 1972 /* 1973 * When starting the IPI RT pushing, the rto_cpu is set to -1, 1974 * rt_next_cpu() will simply return the first CPU found in 1975 * the rto_mask. 1976 * 1977 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it 1978 * will return the next CPU found in the rto_mask. 1979 * 1980 * If there are no more CPUs left in the rto_mask, then a check is made 1981 * against rto_loop and rto_loop_next. rto_loop is only updated with 1982 * the rto_lock held, but any CPU may increment the rto_loop_next 1983 * without any locking. 1984 */ 1985 for (;;) { 1986 1987 /* When rto_cpu is -1 this acts like cpumask_first() */ 1988 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 1989 1990 rd->rto_cpu = cpu; 1991 1992 if (cpu < nr_cpu_ids) 1993 return cpu; 1994 1995 rd->rto_cpu = -1; 1996 1997 /* 1998 * ACQUIRE ensures we see the @rto_mask changes 1999 * made prior to the @next value observed. 2000 * 2001 * Matches WMB in rt_set_overload(). 2002 */ 2003 next = atomic_read_acquire(&rd->rto_loop_next); 2004 2005 if (rd->rto_loop == next) 2006 break; 2007 2008 rd->rto_loop = next; 2009 } 2010 2011 return -1; 2012 } 2013 2014 static inline bool rto_start_trylock(atomic_t *v) 2015 { 2016 return !atomic_cmpxchg_acquire(v, 0, 1); 2017 } 2018 2019 static inline void rto_start_unlock(atomic_t *v) 2020 { 2021 atomic_set_release(v, 0); 2022 } 2023 2024 static void tell_cpu_to_push(struct rq *rq) 2025 { 2026 int cpu = -1; 2027 2028 /* Keep the loop going if the IPI is currently active */ 2029 atomic_inc(&rq->rd->rto_loop_next); 2030 2031 /* Only one CPU can initiate a loop at a time */ 2032 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 2033 return; 2034 2035 raw_spin_lock(&rq->rd->rto_lock); 2036 2037 /* 2038 * The rto_cpu is updated under the lock, if it has a valid CPU 2039 * then the IPI is still running and will continue due to the 2040 * update to loop_next, and nothing needs to be done here. 2041 * Otherwise it is finishing up and an ipi needs to be sent. 2042 */ 2043 if (rq->rd->rto_cpu < 0) 2044 cpu = rto_next_cpu(rq->rd); 2045 2046 raw_spin_unlock(&rq->rd->rto_lock); 2047 2048 rto_start_unlock(&rq->rd->rto_loop_start); 2049 2050 if (cpu >= 0) { 2051 /* Make sure the rd does not get freed while pushing */ 2052 sched_get_rd(rq->rd); 2053 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 2054 } 2055 } 2056 2057 /* Called from hardirq context */ 2058 void rto_push_irq_work_func(struct irq_work *work) 2059 { 2060 struct root_domain *rd = 2061 container_of(work, struct root_domain, rto_push_work); 2062 struct rq *rq; 2063 int cpu; 2064 2065 rq = this_rq(); 2066 2067 /* 2068 * We do not need to grab the lock to check for has_pushable_tasks. 2069 * When it gets updated, a check is made if a push is possible. 2070 */ 2071 if (has_pushable_tasks(rq)) { 2072 raw_spin_lock(&rq->lock); 2073 push_rt_tasks(rq); 2074 raw_spin_unlock(&rq->lock); 2075 } 2076 2077 raw_spin_lock(&rd->rto_lock); 2078 2079 /* Pass the IPI to the next rt overloaded queue */ 2080 cpu = rto_next_cpu(rd); 2081 2082 raw_spin_unlock(&rd->rto_lock); 2083 2084 if (cpu < 0) { 2085 sched_put_rd(rd); 2086 return; 2087 } 2088 2089 /* Try the next RT overloaded CPU */ 2090 irq_work_queue_on(&rd->rto_push_work, cpu); 2091 } 2092 #endif /* HAVE_RT_PUSH_IPI */ 2093 2094 static void pull_rt_task(struct rq *this_rq) 2095 { 2096 int this_cpu = this_rq->cpu, cpu; 2097 bool resched = false; 2098 struct task_struct *p; 2099 struct rq *src_rq; 2100 int rt_overload_count = rt_overloaded(this_rq); 2101 2102 if (likely(!rt_overload_count)) 2103 return; 2104 2105 /* 2106 * Match the barrier from rt_set_overloaded; this guarantees that if we 2107 * see overloaded we must also see the rto_mask bit. 2108 */ 2109 smp_rmb(); 2110 2111 /* If we are the only overloaded CPU do nothing */ 2112 if (rt_overload_count == 1 && 2113 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2114 return; 2115 2116 #ifdef HAVE_RT_PUSH_IPI 2117 if (sched_feat(RT_PUSH_IPI)) { 2118 tell_cpu_to_push(this_rq); 2119 return; 2120 } 2121 #endif 2122 2123 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2124 if (this_cpu == cpu) 2125 continue; 2126 2127 src_rq = cpu_rq(cpu); 2128 2129 /* 2130 * Don't bother taking the src_rq->lock if the next highest 2131 * task is known to be lower-priority than our current task. 2132 * This may look racy, but if this value is about to go 2133 * logically higher, the src_rq will push this task away. 2134 * And if its going logically lower, we do not care 2135 */ 2136 if (src_rq->rt.highest_prio.next >= 2137 this_rq->rt.highest_prio.curr) 2138 continue; 2139 2140 /* 2141 * We can potentially drop this_rq's lock in 2142 * double_lock_balance, and another CPU could 2143 * alter this_rq 2144 */ 2145 double_lock_balance(this_rq, src_rq); 2146 2147 /* 2148 * We can pull only a task, which is pushable 2149 * on its rq, and no others. 2150 */ 2151 p = pick_highest_pushable_task(src_rq, this_cpu); 2152 2153 /* 2154 * Do we have an RT task that preempts 2155 * the to-be-scheduled task? 2156 */ 2157 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2158 WARN_ON(p == src_rq->curr); 2159 WARN_ON(!task_on_rq_queued(p)); 2160 2161 /* 2162 * There's a chance that p is higher in priority 2163 * than what's currently running on its CPU. 2164 * This is just that p is wakeing up and hasn't 2165 * had a chance to schedule. We only pull 2166 * p if it is lower in priority than the 2167 * current task on the run queue 2168 */ 2169 if (p->prio < src_rq->curr->prio) 2170 goto skip; 2171 2172 resched = true; 2173 2174 deactivate_task(src_rq, p, 0); 2175 set_task_cpu(p, this_cpu); 2176 activate_task(this_rq, p, 0); 2177 /* 2178 * We continue with the search, just in 2179 * case there's an even higher prio task 2180 * in another runqueue. (low likelihood 2181 * but possible) 2182 */ 2183 } 2184 skip: 2185 double_unlock_balance(this_rq, src_rq); 2186 } 2187 2188 if (resched) 2189 resched_curr(this_rq); 2190 } 2191 2192 /* 2193 * If we are not running and we are not going to reschedule soon, we should 2194 * try to push tasks away now 2195 */ 2196 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2197 { 2198 bool need_to_push = !task_running(rq, p) && 2199 !test_tsk_need_resched(rq->curr) && 2200 p->nr_cpus_allowed > 1 && 2201 (dl_task(rq->curr) || rt_task(rq->curr)) && 2202 (rq->curr->nr_cpus_allowed < 2 || 2203 rq->curr->prio <= p->prio); 2204 2205 if (need_to_push || !rt_task_fits_capacity(p, cpu_of(rq))) 2206 push_rt_tasks(rq); 2207 } 2208 2209 /* Assumes rq->lock is held */ 2210 static void rq_online_rt(struct rq *rq) 2211 { 2212 if (rq->rt.overloaded) 2213 rt_set_overload(rq); 2214 2215 __enable_runtime(rq); 2216 2217 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2218 } 2219 2220 /* Assumes rq->lock is held */ 2221 static void rq_offline_rt(struct rq *rq) 2222 { 2223 if (rq->rt.overloaded) 2224 rt_clear_overload(rq); 2225 2226 __disable_runtime(rq); 2227 2228 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2229 } 2230 2231 /* 2232 * When switch from the rt queue, we bring ourselves to a position 2233 * that we might want to pull RT tasks from other runqueues. 2234 */ 2235 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2236 { 2237 /* 2238 * If there are other RT tasks then we will reschedule 2239 * and the scheduling of the other RT tasks will handle 2240 * the balancing. But if we are the last RT task 2241 * we may need to handle the pulling of RT tasks 2242 * now. 2243 */ 2244 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2245 return; 2246 2247 rt_queue_pull_task(rq); 2248 } 2249 2250 void __init init_sched_rt_class(void) 2251 { 2252 unsigned int i; 2253 2254 for_each_possible_cpu(i) { 2255 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2256 GFP_KERNEL, cpu_to_node(i)); 2257 } 2258 } 2259 #endif /* CONFIG_SMP */ 2260 2261 /* 2262 * When switching a task to RT, we may overload the runqueue 2263 * with RT tasks. In this case we try to push them off to 2264 * other runqueues. 2265 */ 2266 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2267 { 2268 /* 2269 * If we are already running, then there's nothing 2270 * that needs to be done. But if we are not running 2271 * we may need to preempt the current running task. 2272 * If that current running task is also an RT task 2273 * then see if we can move to another run queue. 2274 */ 2275 if (task_on_rq_queued(p) && rq->curr != p) { 2276 #ifdef CONFIG_SMP 2277 bool need_to_push = rq->rt.overloaded || 2278 !rt_task_fits_capacity(p, cpu_of(rq)); 2279 2280 if (p->nr_cpus_allowed > 1 && need_to_push) 2281 rt_queue_push_tasks(rq); 2282 #endif /* CONFIG_SMP */ 2283 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) 2284 resched_curr(rq); 2285 } 2286 } 2287 2288 /* 2289 * Priority of the task has changed. This may cause 2290 * us to initiate a push or pull. 2291 */ 2292 static void 2293 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2294 { 2295 if (!task_on_rq_queued(p)) 2296 return; 2297 2298 if (rq->curr == p) { 2299 #ifdef CONFIG_SMP 2300 /* 2301 * If our priority decreases while running, we 2302 * may need to pull tasks to this runqueue. 2303 */ 2304 if (oldprio < p->prio) 2305 rt_queue_pull_task(rq); 2306 2307 /* 2308 * If there's a higher priority task waiting to run 2309 * then reschedule. 2310 */ 2311 if (p->prio > rq->rt.highest_prio.curr) 2312 resched_curr(rq); 2313 #else 2314 /* For UP simply resched on drop of prio */ 2315 if (oldprio < p->prio) 2316 resched_curr(rq); 2317 #endif /* CONFIG_SMP */ 2318 } else { 2319 /* 2320 * This task is not running, but if it is 2321 * greater than the current running task 2322 * then reschedule. 2323 */ 2324 if (p->prio < rq->curr->prio) 2325 resched_curr(rq); 2326 } 2327 } 2328 2329 #ifdef CONFIG_POSIX_TIMERS 2330 static void watchdog(struct rq *rq, struct task_struct *p) 2331 { 2332 unsigned long soft, hard; 2333 2334 /* max may change after cur was read, this will be fixed next tick */ 2335 soft = task_rlimit(p, RLIMIT_RTTIME); 2336 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2337 2338 if (soft != RLIM_INFINITY) { 2339 unsigned long next; 2340 2341 if (p->rt.watchdog_stamp != jiffies) { 2342 p->rt.timeout++; 2343 p->rt.watchdog_stamp = jiffies; 2344 } 2345 2346 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2347 if (p->rt.timeout > next) { 2348 posix_cputimers_rt_watchdog(&p->posix_cputimers, 2349 p->se.sum_exec_runtime); 2350 } 2351 } 2352 } 2353 #else 2354 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2355 #endif 2356 2357 /* 2358 * scheduler tick hitting a task of our scheduling class. 2359 * 2360 * NOTE: This function can be called remotely by the tick offload that 2361 * goes along full dynticks. Therefore no local assumption can be made 2362 * and everything must be accessed through the @rq and @curr passed in 2363 * parameters. 2364 */ 2365 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2366 { 2367 struct sched_rt_entity *rt_se = &p->rt; 2368 2369 update_curr_rt(rq); 2370 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2371 2372 watchdog(rq, p); 2373 2374 /* 2375 * RR tasks need a special form of timeslice management. 2376 * FIFO tasks have no timeslices. 2377 */ 2378 if (p->policy != SCHED_RR) 2379 return; 2380 2381 if (--p->rt.time_slice) 2382 return; 2383 2384 p->rt.time_slice = sched_rr_timeslice; 2385 2386 /* 2387 * Requeue to the end of queue if we (and all of our ancestors) are not 2388 * the only element on the queue 2389 */ 2390 for_each_sched_rt_entity(rt_se) { 2391 if (rt_se->run_list.prev != rt_se->run_list.next) { 2392 requeue_task_rt(rq, p, 0); 2393 resched_curr(rq); 2394 return; 2395 } 2396 } 2397 } 2398 2399 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2400 { 2401 /* 2402 * Time slice is 0 for SCHED_FIFO tasks 2403 */ 2404 if (task->policy == SCHED_RR) 2405 return sched_rr_timeslice; 2406 else 2407 return 0; 2408 } 2409 2410 const struct sched_class rt_sched_class = { 2411 .next = &fair_sched_class, 2412 .enqueue_task = enqueue_task_rt, 2413 .dequeue_task = dequeue_task_rt, 2414 .yield_task = yield_task_rt, 2415 2416 .check_preempt_curr = check_preempt_curr_rt, 2417 2418 .pick_next_task = pick_next_task_rt, 2419 .put_prev_task = put_prev_task_rt, 2420 .set_next_task = set_next_task_rt, 2421 2422 #ifdef CONFIG_SMP 2423 .balance = balance_rt, 2424 .select_task_rq = select_task_rq_rt, 2425 .set_cpus_allowed = set_cpus_allowed_common, 2426 .rq_online = rq_online_rt, 2427 .rq_offline = rq_offline_rt, 2428 .task_woken = task_woken_rt, 2429 .switched_from = switched_from_rt, 2430 #endif 2431 2432 .task_tick = task_tick_rt, 2433 2434 .get_rr_interval = get_rr_interval_rt, 2435 2436 .prio_changed = prio_changed_rt, 2437 .switched_to = switched_to_rt, 2438 2439 .update_curr = update_curr_rt, 2440 2441 #ifdef CONFIG_UCLAMP_TASK 2442 .uclamp_enabled = 1, 2443 #endif 2444 }; 2445 2446 #ifdef CONFIG_RT_GROUP_SCHED 2447 /* 2448 * Ensure that the real time constraints are schedulable. 2449 */ 2450 static DEFINE_MUTEX(rt_constraints_mutex); 2451 2452 /* Must be called with tasklist_lock held */ 2453 static inline int tg_has_rt_tasks(struct task_group *tg) 2454 { 2455 struct task_struct *g, *p; 2456 2457 /* 2458 * Autogroups do not have RT tasks; see autogroup_create(). 2459 */ 2460 if (task_group_is_autogroup(tg)) 2461 return 0; 2462 2463 for_each_process_thread(g, p) { 2464 if (rt_task(p) && task_group(p) == tg) 2465 return 1; 2466 } 2467 2468 return 0; 2469 } 2470 2471 struct rt_schedulable_data { 2472 struct task_group *tg; 2473 u64 rt_period; 2474 u64 rt_runtime; 2475 }; 2476 2477 static int tg_rt_schedulable(struct task_group *tg, void *data) 2478 { 2479 struct rt_schedulable_data *d = data; 2480 struct task_group *child; 2481 unsigned long total, sum = 0; 2482 u64 period, runtime; 2483 2484 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2485 runtime = tg->rt_bandwidth.rt_runtime; 2486 2487 if (tg == d->tg) { 2488 period = d->rt_period; 2489 runtime = d->rt_runtime; 2490 } 2491 2492 /* 2493 * Cannot have more runtime than the period. 2494 */ 2495 if (runtime > period && runtime != RUNTIME_INF) 2496 return -EINVAL; 2497 2498 /* 2499 * Ensure we don't starve existing RT tasks. 2500 */ 2501 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 2502 return -EBUSY; 2503 2504 total = to_ratio(period, runtime); 2505 2506 /* 2507 * Nobody can have more than the global setting allows. 2508 */ 2509 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2510 return -EINVAL; 2511 2512 /* 2513 * The sum of our children's runtime should not exceed our own. 2514 */ 2515 list_for_each_entry_rcu(child, &tg->children, siblings) { 2516 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2517 runtime = child->rt_bandwidth.rt_runtime; 2518 2519 if (child == d->tg) { 2520 period = d->rt_period; 2521 runtime = d->rt_runtime; 2522 } 2523 2524 sum += to_ratio(period, runtime); 2525 } 2526 2527 if (sum > total) 2528 return -EINVAL; 2529 2530 return 0; 2531 } 2532 2533 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2534 { 2535 int ret; 2536 2537 struct rt_schedulable_data data = { 2538 .tg = tg, 2539 .rt_period = period, 2540 .rt_runtime = runtime, 2541 }; 2542 2543 rcu_read_lock(); 2544 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2545 rcu_read_unlock(); 2546 2547 return ret; 2548 } 2549 2550 static int tg_set_rt_bandwidth(struct task_group *tg, 2551 u64 rt_period, u64 rt_runtime) 2552 { 2553 int i, err = 0; 2554 2555 /* 2556 * Disallowing the root group RT runtime is BAD, it would disallow the 2557 * kernel creating (and or operating) RT threads. 2558 */ 2559 if (tg == &root_task_group && rt_runtime == 0) 2560 return -EINVAL; 2561 2562 /* No period doesn't make any sense. */ 2563 if (rt_period == 0) 2564 return -EINVAL; 2565 2566 mutex_lock(&rt_constraints_mutex); 2567 read_lock(&tasklist_lock); 2568 err = __rt_schedulable(tg, rt_period, rt_runtime); 2569 if (err) 2570 goto unlock; 2571 2572 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2573 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2574 tg->rt_bandwidth.rt_runtime = rt_runtime; 2575 2576 for_each_possible_cpu(i) { 2577 struct rt_rq *rt_rq = tg->rt_rq[i]; 2578 2579 raw_spin_lock(&rt_rq->rt_runtime_lock); 2580 rt_rq->rt_runtime = rt_runtime; 2581 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2582 } 2583 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2584 unlock: 2585 read_unlock(&tasklist_lock); 2586 mutex_unlock(&rt_constraints_mutex); 2587 2588 return err; 2589 } 2590 2591 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2592 { 2593 u64 rt_runtime, rt_period; 2594 2595 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2596 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2597 if (rt_runtime_us < 0) 2598 rt_runtime = RUNTIME_INF; 2599 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) 2600 return -EINVAL; 2601 2602 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2603 } 2604 2605 long sched_group_rt_runtime(struct task_group *tg) 2606 { 2607 u64 rt_runtime_us; 2608 2609 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2610 return -1; 2611 2612 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2613 do_div(rt_runtime_us, NSEC_PER_USEC); 2614 return rt_runtime_us; 2615 } 2616 2617 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2618 { 2619 u64 rt_runtime, rt_period; 2620 2621 if (rt_period_us > U64_MAX / NSEC_PER_USEC) 2622 return -EINVAL; 2623 2624 rt_period = rt_period_us * NSEC_PER_USEC; 2625 rt_runtime = tg->rt_bandwidth.rt_runtime; 2626 2627 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2628 } 2629 2630 long sched_group_rt_period(struct task_group *tg) 2631 { 2632 u64 rt_period_us; 2633 2634 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2635 do_div(rt_period_us, NSEC_PER_USEC); 2636 return rt_period_us; 2637 } 2638 2639 static int sched_rt_global_constraints(void) 2640 { 2641 int ret = 0; 2642 2643 mutex_lock(&rt_constraints_mutex); 2644 read_lock(&tasklist_lock); 2645 ret = __rt_schedulable(NULL, 0, 0); 2646 read_unlock(&tasklist_lock); 2647 mutex_unlock(&rt_constraints_mutex); 2648 2649 return ret; 2650 } 2651 2652 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2653 { 2654 /* Don't accept realtime tasks when there is no way for them to run */ 2655 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2656 return 0; 2657 2658 return 1; 2659 } 2660 2661 #else /* !CONFIG_RT_GROUP_SCHED */ 2662 static int sched_rt_global_constraints(void) 2663 { 2664 unsigned long flags; 2665 int i; 2666 2667 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2668 for_each_possible_cpu(i) { 2669 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2670 2671 raw_spin_lock(&rt_rq->rt_runtime_lock); 2672 rt_rq->rt_runtime = global_rt_runtime(); 2673 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2674 } 2675 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2676 2677 return 0; 2678 } 2679 #endif /* CONFIG_RT_GROUP_SCHED */ 2680 2681 static int sched_rt_global_validate(void) 2682 { 2683 if (sysctl_sched_rt_period <= 0) 2684 return -EINVAL; 2685 2686 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2687 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 2688 return -EINVAL; 2689 2690 return 0; 2691 } 2692 2693 static void sched_rt_do_global(void) 2694 { 2695 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 2696 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 2697 } 2698 2699 int sched_rt_handler(struct ctl_table *table, int write, 2700 void __user *buffer, size_t *lenp, 2701 loff_t *ppos) 2702 { 2703 int old_period, old_runtime; 2704 static DEFINE_MUTEX(mutex); 2705 int ret; 2706 2707 mutex_lock(&mutex); 2708 old_period = sysctl_sched_rt_period; 2709 old_runtime = sysctl_sched_rt_runtime; 2710 2711 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2712 2713 if (!ret && write) { 2714 ret = sched_rt_global_validate(); 2715 if (ret) 2716 goto undo; 2717 2718 ret = sched_dl_global_validate(); 2719 if (ret) 2720 goto undo; 2721 2722 ret = sched_rt_global_constraints(); 2723 if (ret) 2724 goto undo; 2725 2726 sched_rt_do_global(); 2727 sched_dl_do_global(); 2728 } 2729 if (0) { 2730 undo: 2731 sysctl_sched_rt_period = old_period; 2732 sysctl_sched_rt_runtime = old_runtime; 2733 } 2734 mutex_unlock(&mutex); 2735 2736 return ret; 2737 } 2738 2739 int sched_rr_handler(struct ctl_table *table, int write, 2740 void __user *buffer, size_t *lenp, 2741 loff_t *ppos) 2742 { 2743 int ret; 2744 static DEFINE_MUTEX(mutex); 2745 2746 mutex_lock(&mutex); 2747 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2748 /* 2749 * Make sure that internally we keep jiffies. 2750 * Also, writing zero resets the timeslice to default: 2751 */ 2752 if (!ret && write) { 2753 sched_rr_timeslice = 2754 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 2755 msecs_to_jiffies(sysctl_sched_rr_timeslice); 2756 } 2757 mutex_unlock(&mutex); 2758 2759 return ret; 2760 } 2761 2762 #ifdef CONFIG_SCHED_DEBUG 2763 void print_rt_stats(struct seq_file *m, int cpu) 2764 { 2765 rt_rq_iter_t iter; 2766 struct rt_rq *rt_rq; 2767 2768 rcu_read_lock(); 2769 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2770 print_rt_rq(m, cpu, rt_rq); 2771 rcu_read_unlock(); 2772 } 2773 #endif /* CONFIG_SCHED_DEBUG */ 2774