1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 #include "sched.h" 7 8 int sched_rr_timeslice = RR_TIMESLICE; 9 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE; 10 11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 12 13 struct rt_bandwidth def_rt_bandwidth; 14 15 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 16 { 17 struct rt_bandwidth *rt_b = 18 container_of(timer, struct rt_bandwidth, rt_period_timer); 19 int idle = 0; 20 int overrun; 21 22 raw_spin_lock(&rt_b->rt_runtime_lock); 23 for (;;) { 24 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 25 if (!overrun) 26 break; 27 28 raw_spin_unlock(&rt_b->rt_runtime_lock); 29 idle = do_sched_rt_period_timer(rt_b, overrun); 30 raw_spin_lock(&rt_b->rt_runtime_lock); 31 } 32 if (idle) 33 rt_b->rt_period_active = 0; 34 raw_spin_unlock(&rt_b->rt_runtime_lock); 35 36 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 37 } 38 39 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 40 { 41 rt_b->rt_period = ns_to_ktime(period); 42 rt_b->rt_runtime = runtime; 43 44 raw_spin_lock_init(&rt_b->rt_runtime_lock); 45 46 hrtimer_init(&rt_b->rt_period_timer, 47 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 48 rt_b->rt_period_timer.function = sched_rt_period_timer; 49 } 50 51 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 52 { 53 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 54 return; 55 56 raw_spin_lock(&rt_b->rt_runtime_lock); 57 if (!rt_b->rt_period_active) { 58 rt_b->rt_period_active = 1; 59 /* 60 * SCHED_DEADLINE updates the bandwidth, as a run away 61 * RT task with a DL task could hog a CPU. But DL does 62 * not reset the period. If a deadline task was running 63 * without an RT task running, it can cause RT tasks to 64 * throttle when they start up. Kick the timer right away 65 * to update the period. 66 */ 67 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 68 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED); 69 } 70 raw_spin_unlock(&rt_b->rt_runtime_lock); 71 } 72 73 void init_rt_rq(struct rt_rq *rt_rq) 74 { 75 struct rt_prio_array *array; 76 int i; 77 78 array = &rt_rq->active; 79 for (i = 0; i < MAX_RT_PRIO; i++) { 80 INIT_LIST_HEAD(array->queue + i); 81 __clear_bit(i, array->bitmap); 82 } 83 /* delimiter for bitsearch: */ 84 __set_bit(MAX_RT_PRIO, array->bitmap); 85 86 #if defined CONFIG_SMP 87 rt_rq->highest_prio.curr = MAX_RT_PRIO; 88 rt_rq->highest_prio.next = MAX_RT_PRIO; 89 rt_rq->rt_nr_migratory = 0; 90 rt_rq->overloaded = 0; 91 plist_head_init(&rt_rq->pushable_tasks); 92 #endif /* CONFIG_SMP */ 93 /* We start is dequeued state, because no RT tasks are queued */ 94 rt_rq->rt_queued = 0; 95 96 rt_rq->rt_time = 0; 97 rt_rq->rt_throttled = 0; 98 rt_rq->rt_runtime = 0; 99 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 100 } 101 102 #ifdef CONFIG_RT_GROUP_SCHED 103 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 104 { 105 hrtimer_cancel(&rt_b->rt_period_timer); 106 } 107 108 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 109 110 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 111 { 112 #ifdef CONFIG_SCHED_DEBUG 113 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 114 #endif 115 return container_of(rt_se, struct task_struct, rt); 116 } 117 118 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 119 { 120 return rt_rq->rq; 121 } 122 123 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 124 { 125 return rt_se->rt_rq; 126 } 127 128 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 129 { 130 struct rt_rq *rt_rq = rt_se->rt_rq; 131 132 return rt_rq->rq; 133 } 134 135 void free_rt_sched_group(struct task_group *tg) 136 { 137 int i; 138 139 if (tg->rt_se) 140 destroy_rt_bandwidth(&tg->rt_bandwidth); 141 142 for_each_possible_cpu(i) { 143 if (tg->rt_rq) 144 kfree(tg->rt_rq[i]); 145 if (tg->rt_se) 146 kfree(tg->rt_se[i]); 147 } 148 149 kfree(tg->rt_rq); 150 kfree(tg->rt_se); 151 } 152 153 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 154 struct sched_rt_entity *rt_se, int cpu, 155 struct sched_rt_entity *parent) 156 { 157 struct rq *rq = cpu_rq(cpu); 158 159 rt_rq->highest_prio.curr = MAX_RT_PRIO; 160 rt_rq->rt_nr_boosted = 0; 161 rt_rq->rq = rq; 162 rt_rq->tg = tg; 163 164 tg->rt_rq[cpu] = rt_rq; 165 tg->rt_se[cpu] = rt_se; 166 167 if (!rt_se) 168 return; 169 170 if (!parent) 171 rt_se->rt_rq = &rq->rt; 172 else 173 rt_se->rt_rq = parent->my_q; 174 175 rt_se->my_q = rt_rq; 176 rt_se->parent = parent; 177 INIT_LIST_HEAD(&rt_se->run_list); 178 } 179 180 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 181 { 182 struct rt_rq *rt_rq; 183 struct sched_rt_entity *rt_se; 184 int i; 185 186 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); 187 if (!tg->rt_rq) 188 goto err; 189 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); 190 if (!tg->rt_se) 191 goto err; 192 193 init_rt_bandwidth(&tg->rt_bandwidth, 194 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 195 196 for_each_possible_cpu(i) { 197 rt_rq = kzalloc_node(sizeof(struct rt_rq), 198 GFP_KERNEL, cpu_to_node(i)); 199 if (!rt_rq) 200 goto err; 201 202 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 203 GFP_KERNEL, cpu_to_node(i)); 204 if (!rt_se) 205 goto err_free_rq; 206 207 init_rt_rq(rt_rq); 208 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 209 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 210 } 211 212 return 1; 213 214 err_free_rq: 215 kfree(rt_rq); 216 err: 217 return 0; 218 } 219 220 #else /* CONFIG_RT_GROUP_SCHED */ 221 222 #define rt_entity_is_task(rt_se) (1) 223 224 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 225 { 226 return container_of(rt_se, struct task_struct, rt); 227 } 228 229 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 230 { 231 return container_of(rt_rq, struct rq, rt); 232 } 233 234 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 235 { 236 struct task_struct *p = rt_task_of(rt_se); 237 238 return task_rq(p); 239 } 240 241 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 242 { 243 struct rq *rq = rq_of_rt_se(rt_se); 244 245 return &rq->rt; 246 } 247 248 void free_rt_sched_group(struct task_group *tg) { } 249 250 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 251 { 252 return 1; 253 } 254 #endif /* CONFIG_RT_GROUP_SCHED */ 255 256 #ifdef CONFIG_SMP 257 258 static void pull_rt_task(struct rq *this_rq); 259 260 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 261 { 262 /* Try to pull RT tasks here if we lower this rq's prio */ 263 return rq->rt.highest_prio.curr > prev->prio; 264 } 265 266 static inline int rt_overloaded(struct rq *rq) 267 { 268 return atomic_read(&rq->rd->rto_count); 269 } 270 271 static inline void rt_set_overload(struct rq *rq) 272 { 273 if (!rq->online) 274 return; 275 276 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 277 /* 278 * Make sure the mask is visible before we set 279 * the overload count. That is checked to determine 280 * if we should look at the mask. It would be a shame 281 * if we looked at the mask, but the mask was not 282 * updated yet. 283 * 284 * Matched by the barrier in pull_rt_task(). 285 */ 286 smp_wmb(); 287 atomic_inc(&rq->rd->rto_count); 288 } 289 290 static inline void rt_clear_overload(struct rq *rq) 291 { 292 if (!rq->online) 293 return; 294 295 /* the order here really doesn't matter */ 296 atomic_dec(&rq->rd->rto_count); 297 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 298 } 299 300 static void update_rt_migration(struct rt_rq *rt_rq) 301 { 302 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 303 if (!rt_rq->overloaded) { 304 rt_set_overload(rq_of_rt_rq(rt_rq)); 305 rt_rq->overloaded = 1; 306 } 307 } else if (rt_rq->overloaded) { 308 rt_clear_overload(rq_of_rt_rq(rt_rq)); 309 rt_rq->overloaded = 0; 310 } 311 } 312 313 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 314 { 315 struct task_struct *p; 316 317 if (!rt_entity_is_task(rt_se)) 318 return; 319 320 p = rt_task_of(rt_se); 321 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 322 323 rt_rq->rt_nr_total++; 324 if (p->nr_cpus_allowed > 1) 325 rt_rq->rt_nr_migratory++; 326 327 update_rt_migration(rt_rq); 328 } 329 330 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 331 { 332 struct task_struct *p; 333 334 if (!rt_entity_is_task(rt_se)) 335 return; 336 337 p = rt_task_of(rt_se); 338 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 339 340 rt_rq->rt_nr_total--; 341 if (p->nr_cpus_allowed > 1) 342 rt_rq->rt_nr_migratory--; 343 344 update_rt_migration(rt_rq); 345 } 346 347 static inline int has_pushable_tasks(struct rq *rq) 348 { 349 return !plist_head_empty(&rq->rt.pushable_tasks); 350 } 351 352 static DEFINE_PER_CPU(struct callback_head, rt_push_head); 353 static DEFINE_PER_CPU(struct callback_head, rt_pull_head); 354 355 static void push_rt_tasks(struct rq *); 356 static void pull_rt_task(struct rq *); 357 358 static inline void rt_queue_push_tasks(struct rq *rq) 359 { 360 if (!has_pushable_tasks(rq)) 361 return; 362 363 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 364 } 365 366 static inline void rt_queue_pull_task(struct rq *rq) 367 { 368 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 369 } 370 371 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 372 { 373 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 374 plist_node_init(&p->pushable_tasks, p->prio); 375 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 376 377 /* Update the highest prio pushable task */ 378 if (p->prio < rq->rt.highest_prio.next) 379 rq->rt.highest_prio.next = p->prio; 380 } 381 382 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 383 { 384 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 385 386 /* Update the new highest prio pushable task */ 387 if (has_pushable_tasks(rq)) { 388 p = plist_first_entry(&rq->rt.pushable_tasks, 389 struct task_struct, pushable_tasks); 390 rq->rt.highest_prio.next = p->prio; 391 } else 392 rq->rt.highest_prio.next = MAX_RT_PRIO; 393 } 394 395 #else 396 397 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 398 { 399 } 400 401 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 402 { 403 } 404 405 static inline 406 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 407 { 408 } 409 410 static inline 411 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 412 { 413 } 414 415 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 416 { 417 return false; 418 } 419 420 static inline void pull_rt_task(struct rq *this_rq) 421 { 422 } 423 424 static inline void rt_queue_push_tasks(struct rq *rq) 425 { 426 } 427 #endif /* CONFIG_SMP */ 428 429 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 430 static void dequeue_top_rt_rq(struct rt_rq *rt_rq); 431 432 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 433 { 434 return rt_se->on_rq; 435 } 436 437 #ifdef CONFIG_RT_GROUP_SCHED 438 439 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 440 { 441 if (!rt_rq->tg) 442 return RUNTIME_INF; 443 444 return rt_rq->rt_runtime; 445 } 446 447 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 448 { 449 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 450 } 451 452 typedef struct task_group *rt_rq_iter_t; 453 454 static inline struct task_group *next_task_group(struct task_group *tg) 455 { 456 do { 457 tg = list_entry_rcu(tg->list.next, 458 typeof(struct task_group), list); 459 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 460 461 if (&tg->list == &task_groups) 462 tg = NULL; 463 464 return tg; 465 } 466 467 #define for_each_rt_rq(rt_rq, iter, rq) \ 468 for (iter = container_of(&task_groups, typeof(*iter), list); \ 469 (iter = next_task_group(iter)) && \ 470 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 471 472 #define for_each_sched_rt_entity(rt_se) \ 473 for (; rt_se; rt_se = rt_se->parent) 474 475 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 476 { 477 return rt_se->my_q; 478 } 479 480 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 481 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 482 483 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 484 { 485 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 486 struct rq *rq = rq_of_rt_rq(rt_rq); 487 struct sched_rt_entity *rt_se; 488 489 int cpu = cpu_of(rq); 490 491 rt_se = rt_rq->tg->rt_se[cpu]; 492 493 if (rt_rq->rt_nr_running) { 494 if (!rt_se) 495 enqueue_top_rt_rq(rt_rq); 496 else if (!on_rt_rq(rt_se)) 497 enqueue_rt_entity(rt_se, 0); 498 499 if (rt_rq->highest_prio.curr < curr->prio) 500 resched_curr(rq); 501 } 502 } 503 504 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 505 { 506 struct sched_rt_entity *rt_se; 507 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 508 509 rt_se = rt_rq->tg->rt_se[cpu]; 510 511 if (!rt_se) { 512 dequeue_top_rt_rq(rt_rq); 513 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 514 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); 515 } 516 else if (on_rt_rq(rt_se)) 517 dequeue_rt_entity(rt_se, 0); 518 } 519 520 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 521 { 522 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 523 } 524 525 static int rt_se_boosted(struct sched_rt_entity *rt_se) 526 { 527 struct rt_rq *rt_rq = group_rt_rq(rt_se); 528 struct task_struct *p; 529 530 if (rt_rq) 531 return !!rt_rq->rt_nr_boosted; 532 533 p = rt_task_of(rt_se); 534 return p->prio != p->normal_prio; 535 } 536 537 #ifdef CONFIG_SMP 538 static inline const struct cpumask *sched_rt_period_mask(void) 539 { 540 return this_rq()->rd->span; 541 } 542 #else 543 static inline const struct cpumask *sched_rt_period_mask(void) 544 { 545 return cpu_online_mask; 546 } 547 #endif 548 549 static inline 550 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 551 { 552 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 553 } 554 555 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 556 { 557 return &rt_rq->tg->rt_bandwidth; 558 } 559 560 #else /* !CONFIG_RT_GROUP_SCHED */ 561 562 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 563 { 564 return rt_rq->rt_runtime; 565 } 566 567 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 568 { 569 return ktime_to_ns(def_rt_bandwidth.rt_period); 570 } 571 572 typedef struct rt_rq *rt_rq_iter_t; 573 574 #define for_each_rt_rq(rt_rq, iter, rq) \ 575 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 576 577 #define for_each_sched_rt_entity(rt_se) \ 578 for (; rt_se; rt_se = NULL) 579 580 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 581 { 582 return NULL; 583 } 584 585 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 586 { 587 struct rq *rq = rq_of_rt_rq(rt_rq); 588 589 if (!rt_rq->rt_nr_running) 590 return; 591 592 enqueue_top_rt_rq(rt_rq); 593 resched_curr(rq); 594 } 595 596 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 597 { 598 dequeue_top_rt_rq(rt_rq); 599 } 600 601 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 602 { 603 return rt_rq->rt_throttled; 604 } 605 606 static inline const struct cpumask *sched_rt_period_mask(void) 607 { 608 return cpu_online_mask; 609 } 610 611 static inline 612 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 613 { 614 return &cpu_rq(cpu)->rt; 615 } 616 617 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 618 { 619 return &def_rt_bandwidth; 620 } 621 622 #endif /* CONFIG_RT_GROUP_SCHED */ 623 624 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 625 { 626 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 627 628 return (hrtimer_active(&rt_b->rt_period_timer) || 629 rt_rq->rt_time < rt_b->rt_runtime); 630 } 631 632 #ifdef CONFIG_SMP 633 /* 634 * We ran out of runtime, see if we can borrow some from our neighbours. 635 */ 636 static void do_balance_runtime(struct rt_rq *rt_rq) 637 { 638 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 639 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 640 int i, weight; 641 u64 rt_period; 642 643 weight = cpumask_weight(rd->span); 644 645 raw_spin_lock(&rt_b->rt_runtime_lock); 646 rt_period = ktime_to_ns(rt_b->rt_period); 647 for_each_cpu(i, rd->span) { 648 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 649 s64 diff; 650 651 if (iter == rt_rq) 652 continue; 653 654 raw_spin_lock(&iter->rt_runtime_lock); 655 /* 656 * Either all rqs have inf runtime and there's nothing to steal 657 * or __disable_runtime() below sets a specific rq to inf to 658 * indicate its been disabled and disalow stealing. 659 */ 660 if (iter->rt_runtime == RUNTIME_INF) 661 goto next; 662 663 /* 664 * From runqueues with spare time, take 1/n part of their 665 * spare time, but no more than our period. 666 */ 667 diff = iter->rt_runtime - iter->rt_time; 668 if (diff > 0) { 669 diff = div_u64((u64)diff, weight); 670 if (rt_rq->rt_runtime + diff > rt_period) 671 diff = rt_period - rt_rq->rt_runtime; 672 iter->rt_runtime -= diff; 673 rt_rq->rt_runtime += diff; 674 if (rt_rq->rt_runtime == rt_period) { 675 raw_spin_unlock(&iter->rt_runtime_lock); 676 break; 677 } 678 } 679 next: 680 raw_spin_unlock(&iter->rt_runtime_lock); 681 } 682 raw_spin_unlock(&rt_b->rt_runtime_lock); 683 } 684 685 /* 686 * Ensure this RQ takes back all the runtime it lend to its neighbours. 687 */ 688 static void __disable_runtime(struct rq *rq) 689 { 690 struct root_domain *rd = rq->rd; 691 rt_rq_iter_t iter; 692 struct rt_rq *rt_rq; 693 694 if (unlikely(!scheduler_running)) 695 return; 696 697 for_each_rt_rq(rt_rq, iter, rq) { 698 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 699 s64 want; 700 int i; 701 702 raw_spin_lock(&rt_b->rt_runtime_lock); 703 raw_spin_lock(&rt_rq->rt_runtime_lock); 704 /* 705 * Either we're all inf and nobody needs to borrow, or we're 706 * already disabled and thus have nothing to do, or we have 707 * exactly the right amount of runtime to take out. 708 */ 709 if (rt_rq->rt_runtime == RUNTIME_INF || 710 rt_rq->rt_runtime == rt_b->rt_runtime) 711 goto balanced; 712 raw_spin_unlock(&rt_rq->rt_runtime_lock); 713 714 /* 715 * Calculate the difference between what we started out with 716 * and what we current have, that's the amount of runtime 717 * we lend and now have to reclaim. 718 */ 719 want = rt_b->rt_runtime - rt_rq->rt_runtime; 720 721 /* 722 * Greedy reclaim, take back as much as we can. 723 */ 724 for_each_cpu(i, rd->span) { 725 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 726 s64 diff; 727 728 /* 729 * Can't reclaim from ourselves or disabled runqueues. 730 */ 731 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 732 continue; 733 734 raw_spin_lock(&iter->rt_runtime_lock); 735 if (want > 0) { 736 diff = min_t(s64, iter->rt_runtime, want); 737 iter->rt_runtime -= diff; 738 want -= diff; 739 } else { 740 iter->rt_runtime -= want; 741 want -= want; 742 } 743 raw_spin_unlock(&iter->rt_runtime_lock); 744 745 if (!want) 746 break; 747 } 748 749 raw_spin_lock(&rt_rq->rt_runtime_lock); 750 /* 751 * We cannot be left wanting - that would mean some runtime 752 * leaked out of the system. 753 */ 754 BUG_ON(want); 755 balanced: 756 /* 757 * Disable all the borrow logic by pretending we have inf 758 * runtime - in which case borrowing doesn't make sense. 759 */ 760 rt_rq->rt_runtime = RUNTIME_INF; 761 rt_rq->rt_throttled = 0; 762 raw_spin_unlock(&rt_rq->rt_runtime_lock); 763 raw_spin_unlock(&rt_b->rt_runtime_lock); 764 765 /* Make rt_rq available for pick_next_task() */ 766 sched_rt_rq_enqueue(rt_rq); 767 } 768 } 769 770 static void __enable_runtime(struct rq *rq) 771 { 772 rt_rq_iter_t iter; 773 struct rt_rq *rt_rq; 774 775 if (unlikely(!scheduler_running)) 776 return; 777 778 /* 779 * Reset each runqueue's bandwidth settings 780 */ 781 for_each_rt_rq(rt_rq, iter, rq) { 782 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 783 784 raw_spin_lock(&rt_b->rt_runtime_lock); 785 raw_spin_lock(&rt_rq->rt_runtime_lock); 786 rt_rq->rt_runtime = rt_b->rt_runtime; 787 rt_rq->rt_time = 0; 788 rt_rq->rt_throttled = 0; 789 raw_spin_unlock(&rt_rq->rt_runtime_lock); 790 raw_spin_unlock(&rt_b->rt_runtime_lock); 791 } 792 } 793 794 static void balance_runtime(struct rt_rq *rt_rq) 795 { 796 if (!sched_feat(RT_RUNTIME_SHARE)) 797 return; 798 799 if (rt_rq->rt_time > rt_rq->rt_runtime) { 800 raw_spin_unlock(&rt_rq->rt_runtime_lock); 801 do_balance_runtime(rt_rq); 802 raw_spin_lock(&rt_rq->rt_runtime_lock); 803 } 804 } 805 #else /* !CONFIG_SMP */ 806 static inline void balance_runtime(struct rt_rq *rt_rq) {} 807 #endif /* CONFIG_SMP */ 808 809 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 810 { 811 int i, idle = 1, throttled = 0; 812 const struct cpumask *span; 813 814 span = sched_rt_period_mask(); 815 #ifdef CONFIG_RT_GROUP_SCHED 816 /* 817 * FIXME: isolated CPUs should really leave the root task group, 818 * whether they are isolcpus or were isolated via cpusets, lest 819 * the timer run on a CPU which does not service all runqueues, 820 * potentially leaving other CPUs indefinitely throttled. If 821 * isolation is really required, the user will turn the throttle 822 * off to kill the perturbations it causes anyway. Meanwhile, 823 * this maintains functionality for boot and/or troubleshooting. 824 */ 825 if (rt_b == &root_task_group.rt_bandwidth) 826 span = cpu_online_mask; 827 #endif 828 for_each_cpu(i, span) { 829 int enqueue = 0; 830 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 831 struct rq *rq = rq_of_rt_rq(rt_rq); 832 int skip; 833 834 /* 835 * When span == cpu_online_mask, taking each rq->lock 836 * can be time-consuming. Try to avoid it when possible. 837 */ 838 raw_spin_lock(&rt_rq->rt_runtime_lock); 839 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 840 raw_spin_unlock(&rt_rq->rt_runtime_lock); 841 if (skip) 842 continue; 843 844 raw_spin_lock(&rq->lock); 845 update_rq_clock(rq); 846 847 if (rt_rq->rt_time) { 848 u64 runtime; 849 850 raw_spin_lock(&rt_rq->rt_runtime_lock); 851 if (rt_rq->rt_throttled) 852 balance_runtime(rt_rq); 853 runtime = rt_rq->rt_runtime; 854 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 855 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 856 rt_rq->rt_throttled = 0; 857 enqueue = 1; 858 859 /* 860 * When we're idle and a woken (rt) task is 861 * throttled check_preempt_curr() will set 862 * skip_update and the time between the wakeup 863 * and this unthrottle will get accounted as 864 * 'runtime'. 865 */ 866 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 867 rq_clock_cancel_skipupdate(rq); 868 } 869 if (rt_rq->rt_time || rt_rq->rt_nr_running) 870 idle = 0; 871 raw_spin_unlock(&rt_rq->rt_runtime_lock); 872 } else if (rt_rq->rt_nr_running) { 873 idle = 0; 874 if (!rt_rq_throttled(rt_rq)) 875 enqueue = 1; 876 } 877 if (rt_rq->rt_throttled) 878 throttled = 1; 879 880 if (enqueue) 881 sched_rt_rq_enqueue(rt_rq); 882 raw_spin_unlock(&rq->lock); 883 } 884 885 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 886 return 1; 887 888 return idle; 889 } 890 891 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 892 { 893 #ifdef CONFIG_RT_GROUP_SCHED 894 struct rt_rq *rt_rq = group_rt_rq(rt_se); 895 896 if (rt_rq) 897 return rt_rq->highest_prio.curr; 898 #endif 899 900 return rt_task_of(rt_se)->prio; 901 } 902 903 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 904 { 905 u64 runtime = sched_rt_runtime(rt_rq); 906 907 if (rt_rq->rt_throttled) 908 return rt_rq_throttled(rt_rq); 909 910 if (runtime >= sched_rt_period(rt_rq)) 911 return 0; 912 913 balance_runtime(rt_rq); 914 runtime = sched_rt_runtime(rt_rq); 915 if (runtime == RUNTIME_INF) 916 return 0; 917 918 if (rt_rq->rt_time > runtime) { 919 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 920 921 /* 922 * Don't actually throttle groups that have no runtime assigned 923 * but accrue some time due to boosting. 924 */ 925 if (likely(rt_b->rt_runtime)) { 926 rt_rq->rt_throttled = 1; 927 printk_deferred_once("sched: RT throttling activated\n"); 928 } else { 929 /* 930 * In case we did anyway, make it go away, 931 * replenishment is a joke, since it will replenish us 932 * with exactly 0 ns. 933 */ 934 rt_rq->rt_time = 0; 935 } 936 937 if (rt_rq_throttled(rt_rq)) { 938 sched_rt_rq_dequeue(rt_rq); 939 return 1; 940 } 941 } 942 943 return 0; 944 } 945 946 /* 947 * Update the current task's runtime statistics. Skip current tasks that 948 * are not in our scheduling class. 949 */ 950 static void update_curr_rt(struct rq *rq) 951 { 952 struct task_struct *curr = rq->curr; 953 struct sched_rt_entity *rt_se = &curr->rt; 954 u64 delta_exec; 955 u64 now; 956 957 if (curr->sched_class != &rt_sched_class) 958 return; 959 960 now = rq_clock_task(rq); 961 delta_exec = now - curr->se.exec_start; 962 if (unlikely((s64)delta_exec <= 0)) 963 return; 964 965 schedstat_set(curr->se.statistics.exec_max, 966 max(curr->se.statistics.exec_max, delta_exec)); 967 968 curr->se.sum_exec_runtime += delta_exec; 969 account_group_exec_runtime(curr, delta_exec); 970 971 curr->se.exec_start = now; 972 cgroup_account_cputime(curr, delta_exec); 973 974 sched_rt_avg_update(rq, delta_exec); 975 976 if (!rt_bandwidth_enabled()) 977 return; 978 979 for_each_sched_rt_entity(rt_se) { 980 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 981 982 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 983 raw_spin_lock(&rt_rq->rt_runtime_lock); 984 rt_rq->rt_time += delta_exec; 985 if (sched_rt_runtime_exceeded(rt_rq)) 986 resched_curr(rq); 987 raw_spin_unlock(&rt_rq->rt_runtime_lock); 988 } 989 } 990 } 991 992 static void 993 dequeue_top_rt_rq(struct rt_rq *rt_rq) 994 { 995 struct rq *rq = rq_of_rt_rq(rt_rq); 996 997 BUG_ON(&rq->rt != rt_rq); 998 999 if (!rt_rq->rt_queued) 1000 return; 1001 1002 BUG_ON(!rq->nr_running); 1003 1004 sub_nr_running(rq, rt_rq->rt_nr_running); 1005 rt_rq->rt_queued = 0; 1006 1007 } 1008 1009 static void 1010 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1011 { 1012 struct rq *rq = rq_of_rt_rq(rt_rq); 1013 1014 BUG_ON(&rq->rt != rt_rq); 1015 1016 if (rt_rq->rt_queued) 1017 return; 1018 1019 if (rt_rq_throttled(rt_rq)) 1020 return; 1021 1022 if (rt_rq->rt_nr_running) { 1023 add_nr_running(rq, rt_rq->rt_nr_running); 1024 rt_rq->rt_queued = 1; 1025 } 1026 1027 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 1028 cpufreq_update_util(rq, 0); 1029 } 1030 1031 #if defined CONFIG_SMP 1032 1033 static void 1034 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1035 { 1036 struct rq *rq = rq_of_rt_rq(rt_rq); 1037 1038 #ifdef CONFIG_RT_GROUP_SCHED 1039 /* 1040 * Change rq's cpupri only if rt_rq is the top queue. 1041 */ 1042 if (&rq->rt != rt_rq) 1043 return; 1044 #endif 1045 if (rq->online && prio < prev_prio) 1046 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1047 } 1048 1049 static void 1050 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1051 { 1052 struct rq *rq = rq_of_rt_rq(rt_rq); 1053 1054 #ifdef CONFIG_RT_GROUP_SCHED 1055 /* 1056 * Change rq's cpupri only if rt_rq is the top queue. 1057 */ 1058 if (&rq->rt != rt_rq) 1059 return; 1060 #endif 1061 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1062 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1063 } 1064 1065 #else /* CONFIG_SMP */ 1066 1067 static inline 1068 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1069 static inline 1070 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1071 1072 #endif /* CONFIG_SMP */ 1073 1074 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1075 static void 1076 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1077 { 1078 int prev_prio = rt_rq->highest_prio.curr; 1079 1080 if (prio < prev_prio) 1081 rt_rq->highest_prio.curr = prio; 1082 1083 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1084 } 1085 1086 static void 1087 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1088 { 1089 int prev_prio = rt_rq->highest_prio.curr; 1090 1091 if (rt_rq->rt_nr_running) { 1092 1093 WARN_ON(prio < prev_prio); 1094 1095 /* 1096 * This may have been our highest task, and therefore 1097 * we may have some recomputation to do 1098 */ 1099 if (prio == prev_prio) { 1100 struct rt_prio_array *array = &rt_rq->active; 1101 1102 rt_rq->highest_prio.curr = 1103 sched_find_first_bit(array->bitmap); 1104 } 1105 1106 } else 1107 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1108 1109 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1110 } 1111 1112 #else 1113 1114 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1115 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1116 1117 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1118 1119 #ifdef CONFIG_RT_GROUP_SCHED 1120 1121 static void 1122 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1123 { 1124 if (rt_se_boosted(rt_se)) 1125 rt_rq->rt_nr_boosted++; 1126 1127 if (rt_rq->tg) 1128 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1129 } 1130 1131 static void 1132 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1133 { 1134 if (rt_se_boosted(rt_se)) 1135 rt_rq->rt_nr_boosted--; 1136 1137 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1138 } 1139 1140 #else /* CONFIG_RT_GROUP_SCHED */ 1141 1142 static void 1143 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1144 { 1145 start_rt_bandwidth(&def_rt_bandwidth); 1146 } 1147 1148 static inline 1149 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1150 1151 #endif /* CONFIG_RT_GROUP_SCHED */ 1152 1153 static inline 1154 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1155 { 1156 struct rt_rq *group_rq = group_rt_rq(rt_se); 1157 1158 if (group_rq) 1159 return group_rq->rt_nr_running; 1160 else 1161 return 1; 1162 } 1163 1164 static inline 1165 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1166 { 1167 struct rt_rq *group_rq = group_rt_rq(rt_se); 1168 struct task_struct *tsk; 1169 1170 if (group_rq) 1171 return group_rq->rr_nr_running; 1172 1173 tsk = rt_task_of(rt_se); 1174 1175 return (tsk->policy == SCHED_RR) ? 1 : 0; 1176 } 1177 1178 static inline 1179 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1180 { 1181 int prio = rt_se_prio(rt_se); 1182 1183 WARN_ON(!rt_prio(prio)); 1184 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1185 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1186 1187 inc_rt_prio(rt_rq, prio); 1188 inc_rt_migration(rt_se, rt_rq); 1189 inc_rt_group(rt_se, rt_rq); 1190 } 1191 1192 static inline 1193 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1194 { 1195 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1196 WARN_ON(!rt_rq->rt_nr_running); 1197 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1198 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1199 1200 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1201 dec_rt_migration(rt_se, rt_rq); 1202 dec_rt_group(rt_se, rt_rq); 1203 } 1204 1205 /* 1206 * Change rt_se->run_list location unless SAVE && !MOVE 1207 * 1208 * assumes ENQUEUE/DEQUEUE flags match 1209 */ 1210 static inline bool move_entity(unsigned int flags) 1211 { 1212 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1213 return false; 1214 1215 return true; 1216 } 1217 1218 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1219 { 1220 list_del_init(&rt_se->run_list); 1221 1222 if (list_empty(array->queue + rt_se_prio(rt_se))) 1223 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1224 1225 rt_se->on_list = 0; 1226 } 1227 1228 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1229 { 1230 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1231 struct rt_prio_array *array = &rt_rq->active; 1232 struct rt_rq *group_rq = group_rt_rq(rt_se); 1233 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1234 1235 /* 1236 * Don't enqueue the group if its throttled, or when empty. 1237 * The latter is a consequence of the former when a child group 1238 * get throttled and the current group doesn't have any other 1239 * active members. 1240 */ 1241 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1242 if (rt_se->on_list) 1243 __delist_rt_entity(rt_se, array); 1244 return; 1245 } 1246 1247 if (move_entity(flags)) { 1248 WARN_ON_ONCE(rt_se->on_list); 1249 if (flags & ENQUEUE_HEAD) 1250 list_add(&rt_se->run_list, queue); 1251 else 1252 list_add_tail(&rt_se->run_list, queue); 1253 1254 __set_bit(rt_se_prio(rt_se), array->bitmap); 1255 rt_se->on_list = 1; 1256 } 1257 rt_se->on_rq = 1; 1258 1259 inc_rt_tasks(rt_se, rt_rq); 1260 } 1261 1262 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1263 { 1264 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1265 struct rt_prio_array *array = &rt_rq->active; 1266 1267 if (move_entity(flags)) { 1268 WARN_ON_ONCE(!rt_se->on_list); 1269 __delist_rt_entity(rt_se, array); 1270 } 1271 rt_se->on_rq = 0; 1272 1273 dec_rt_tasks(rt_se, rt_rq); 1274 } 1275 1276 /* 1277 * Because the prio of an upper entry depends on the lower 1278 * entries, we must remove entries top - down. 1279 */ 1280 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1281 { 1282 struct sched_rt_entity *back = NULL; 1283 1284 for_each_sched_rt_entity(rt_se) { 1285 rt_se->back = back; 1286 back = rt_se; 1287 } 1288 1289 dequeue_top_rt_rq(rt_rq_of_se(back)); 1290 1291 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1292 if (on_rt_rq(rt_se)) 1293 __dequeue_rt_entity(rt_se, flags); 1294 } 1295 } 1296 1297 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1298 { 1299 struct rq *rq = rq_of_rt_se(rt_se); 1300 1301 dequeue_rt_stack(rt_se, flags); 1302 for_each_sched_rt_entity(rt_se) 1303 __enqueue_rt_entity(rt_se, flags); 1304 enqueue_top_rt_rq(&rq->rt); 1305 } 1306 1307 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1308 { 1309 struct rq *rq = rq_of_rt_se(rt_se); 1310 1311 dequeue_rt_stack(rt_se, flags); 1312 1313 for_each_sched_rt_entity(rt_se) { 1314 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1315 1316 if (rt_rq && rt_rq->rt_nr_running) 1317 __enqueue_rt_entity(rt_se, flags); 1318 } 1319 enqueue_top_rt_rq(&rq->rt); 1320 } 1321 1322 /* 1323 * Adding/removing a task to/from a priority array: 1324 */ 1325 static void 1326 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1327 { 1328 struct sched_rt_entity *rt_se = &p->rt; 1329 1330 if (flags & ENQUEUE_WAKEUP) 1331 rt_se->timeout = 0; 1332 1333 enqueue_rt_entity(rt_se, flags); 1334 1335 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1336 enqueue_pushable_task(rq, p); 1337 } 1338 1339 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1340 { 1341 struct sched_rt_entity *rt_se = &p->rt; 1342 1343 update_curr_rt(rq); 1344 dequeue_rt_entity(rt_se, flags); 1345 1346 dequeue_pushable_task(rq, p); 1347 } 1348 1349 /* 1350 * Put task to the head or the end of the run list without the overhead of 1351 * dequeue followed by enqueue. 1352 */ 1353 static void 1354 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1355 { 1356 if (on_rt_rq(rt_se)) { 1357 struct rt_prio_array *array = &rt_rq->active; 1358 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1359 1360 if (head) 1361 list_move(&rt_se->run_list, queue); 1362 else 1363 list_move_tail(&rt_se->run_list, queue); 1364 } 1365 } 1366 1367 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1368 { 1369 struct sched_rt_entity *rt_se = &p->rt; 1370 struct rt_rq *rt_rq; 1371 1372 for_each_sched_rt_entity(rt_se) { 1373 rt_rq = rt_rq_of_se(rt_se); 1374 requeue_rt_entity(rt_rq, rt_se, head); 1375 } 1376 } 1377 1378 static void yield_task_rt(struct rq *rq) 1379 { 1380 requeue_task_rt(rq, rq->curr, 0); 1381 } 1382 1383 #ifdef CONFIG_SMP 1384 static int find_lowest_rq(struct task_struct *task); 1385 1386 static int 1387 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1388 { 1389 struct task_struct *curr; 1390 struct rq *rq; 1391 1392 /* For anything but wake ups, just return the task_cpu */ 1393 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1394 goto out; 1395 1396 rq = cpu_rq(cpu); 1397 1398 rcu_read_lock(); 1399 curr = READ_ONCE(rq->curr); /* unlocked access */ 1400 1401 /* 1402 * If the current task on @p's runqueue is an RT task, then 1403 * try to see if we can wake this RT task up on another 1404 * runqueue. Otherwise simply start this RT task 1405 * on its current runqueue. 1406 * 1407 * We want to avoid overloading runqueues. If the woken 1408 * task is a higher priority, then it will stay on this CPU 1409 * and the lower prio task should be moved to another CPU. 1410 * Even though this will probably make the lower prio task 1411 * lose its cache, we do not want to bounce a higher task 1412 * around just because it gave up its CPU, perhaps for a 1413 * lock? 1414 * 1415 * For equal prio tasks, we just let the scheduler sort it out. 1416 * 1417 * Otherwise, just let it ride on the affined RQ and the 1418 * post-schedule router will push the preempted task away 1419 * 1420 * This test is optimistic, if we get it wrong the load-balancer 1421 * will have to sort it out. 1422 */ 1423 if (curr && unlikely(rt_task(curr)) && 1424 (curr->nr_cpus_allowed < 2 || 1425 curr->prio <= p->prio)) { 1426 int target = find_lowest_rq(p); 1427 1428 /* 1429 * Don't bother moving it if the destination CPU is 1430 * not running a lower priority task. 1431 */ 1432 if (target != -1 && 1433 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1434 cpu = target; 1435 } 1436 rcu_read_unlock(); 1437 1438 out: 1439 return cpu; 1440 } 1441 1442 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1443 { 1444 /* 1445 * Current can't be migrated, useless to reschedule, 1446 * let's hope p can move out. 1447 */ 1448 if (rq->curr->nr_cpus_allowed == 1 || 1449 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1450 return; 1451 1452 /* 1453 * p is migratable, so let's not schedule it and 1454 * see if it is pushed or pulled somewhere else. 1455 */ 1456 if (p->nr_cpus_allowed != 1 1457 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1458 return; 1459 1460 /* 1461 * There appear to be other CPUs that can accept 1462 * the current task but none can run 'p', so lets reschedule 1463 * to try and push the current task away: 1464 */ 1465 requeue_task_rt(rq, p, 1); 1466 resched_curr(rq); 1467 } 1468 1469 #endif /* CONFIG_SMP */ 1470 1471 /* 1472 * Preempt the current task with a newly woken task if needed: 1473 */ 1474 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1475 { 1476 if (p->prio < rq->curr->prio) { 1477 resched_curr(rq); 1478 return; 1479 } 1480 1481 #ifdef CONFIG_SMP 1482 /* 1483 * If: 1484 * 1485 * - the newly woken task is of equal priority to the current task 1486 * - the newly woken task is non-migratable while current is migratable 1487 * - current will be preempted on the next reschedule 1488 * 1489 * we should check to see if current can readily move to a different 1490 * cpu. If so, we will reschedule to allow the push logic to try 1491 * to move current somewhere else, making room for our non-migratable 1492 * task. 1493 */ 1494 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1495 check_preempt_equal_prio(rq, p); 1496 #endif 1497 } 1498 1499 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1500 struct rt_rq *rt_rq) 1501 { 1502 struct rt_prio_array *array = &rt_rq->active; 1503 struct sched_rt_entity *next = NULL; 1504 struct list_head *queue; 1505 int idx; 1506 1507 idx = sched_find_first_bit(array->bitmap); 1508 BUG_ON(idx >= MAX_RT_PRIO); 1509 1510 queue = array->queue + idx; 1511 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1512 1513 return next; 1514 } 1515 1516 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1517 { 1518 struct sched_rt_entity *rt_se; 1519 struct task_struct *p; 1520 struct rt_rq *rt_rq = &rq->rt; 1521 1522 do { 1523 rt_se = pick_next_rt_entity(rq, rt_rq); 1524 BUG_ON(!rt_se); 1525 rt_rq = group_rt_rq(rt_se); 1526 } while (rt_rq); 1527 1528 p = rt_task_of(rt_se); 1529 p->se.exec_start = rq_clock_task(rq); 1530 1531 return p; 1532 } 1533 1534 static struct task_struct * 1535 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 1536 { 1537 struct task_struct *p; 1538 struct rt_rq *rt_rq = &rq->rt; 1539 1540 if (need_pull_rt_task(rq, prev)) { 1541 /* 1542 * This is OK, because current is on_cpu, which avoids it being 1543 * picked for load-balance and preemption/IRQs are still 1544 * disabled avoiding further scheduler activity on it and we're 1545 * being very careful to re-start the picking loop. 1546 */ 1547 rq_unpin_lock(rq, rf); 1548 pull_rt_task(rq); 1549 rq_repin_lock(rq, rf); 1550 /* 1551 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1552 * means a dl or stop task can slip in, in which case we need 1553 * to re-start task selection. 1554 */ 1555 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) || 1556 rq->dl.dl_nr_running)) 1557 return RETRY_TASK; 1558 } 1559 1560 /* 1561 * We may dequeue prev's rt_rq in put_prev_task(). 1562 * So, we update time before rt_nr_running check. 1563 */ 1564 if (prev->sched_class == &rt_sched_class) 1565 update_curr_rt(rq); 1566 1567 if (!rt_rq->rt_queued) 1568 return NULL; 1569 1570 put_prev_task(rq, prev); 1571 1572 p = _pick_next_task_rt(rq); 1573 1574 /* The running task is never eligible for pushing */ 1575 dequeue_pushable_task(rq, p); 1576 1577 rt_queue_push_tasks(rq); 1578 1579 return p; 1580 } 1581 1582 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1583 { 1584 update_curr_rt(rq); 1585 1586 /* 1587 * The previous task needs to be made eligible for pushing 1588 * if it is still active 1589 */ 1590 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1591 enqueue_pushable_task(rq, p); 1592 } 1593 1594 #ifdef CONFIG_SMP 1595 1596 /* Only try algorithms three times */ 1597 #define RT_MAX_TRIES 3 1598 1599 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1600 { 1601 if (!task_running(rq, p) && 1602 cpumask_test_cpu(cpu, &p->cpus_allowed)) 1603 return 1; 1604 1605 return 0; 1606 } 1607 1608 /* 1609 * Return the highest pushable rq's task, which is suitable to be executed 1610 * on the CPU, NULL otherwise 1611 */ 1612 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1613 { 1614 struct plist_head *head = &rq->rt.pushable_tasks; 1615 struct task_struct *p; 1616 1617 if (!has_pushable_tasks(rq)) 1618 return NULL; 1619 1620 plist_for_each_entry(p, head, pushable_tasks) { 1621 if (pick_rt_task(rq, p, cpu)) 1622 return p; 1623 } 1624 1625 return NULL; 1626 } 1627 1628 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1629 1630 static int find_lowest_rq(struct task_struct *task) 1631 { 1632 struct sched_domain *sd; 1633 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1634 int this_cpu = smp_processor_id(); 1635 int cpu = task_cpu(task); 1636 1637 /* Make sure the mask is initialized first */ 1638 if (unlikely(!lowest_mask)) 1639 return -1; 1640 1641 if (task->nr_cpus_allowed == 1) 1642 return -1; /* No other targets possible */ 1643 1644 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1645 return -1; /* No targets found */ 1646 1647 /* 1648 * At this point we have built a mask of CPUs representing the 1649 * lowest priority tasks in the system. Now we want to elect 1650 * the best one based on our affinity and topology. 1651 * 1652 * We prioritize the last CPU that the task executed on since 1653 * it is most likely cache-hot in that location. 1654 */ 1655 if (cpumask_test_cpu(cpu, lowest_mask)) 1656 return cpu; 1657 1658 /* 1659 * Otherwise, we consult the sched_domains span maps to figure 1660 * out which CPU is logically closest to our hot cache data. 1661 */ 1662 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1663 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1664 1665 rcu_read_lock(); 1666 for_each_domain(cpu, sd) { 1667 if (sd->flags & SD_WAKE_AFFINE) { 1668 int best_cpu; 1669 1670 /* 1671 * "this_cpu" is cheaper to preempt than a 1672 * remote processor. 1673 */ 1674 if (this_cpu != -1 && 1675 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1676 rcu_read_unlock(); 1677 return this_cpu; 1678 } 1679 1680 best_cpu = cpumask_first_and(lowest_mask, 1681 sched_domain_span(sd)); 1682 if (best_cpu < nr_cpu_ids) { 1683 rcu_read_unlock(); 1684 return best_cpu; 1685 } 1686 } 1687 } 1688 rcu_read_unlock(); 1689 1690 /* 1691 * And finally, if there were no matches within the domains 1692 * just give the caller *something* to work with from the compatible 1693 * locations. 1694 */ 1695 if (this_cpu != -1) 1696 return this_cpu; 1697 1698 cpu = cpumask_any(lowest_mask); 1699 if (cpu < nr_cpu_ids) 1700 return cpu; 1701 1702 return -1; 1703 } 1704 1705 /* Will lock the rq it finds */ 1706 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1707 { 1708 struct rq *lowest_rq = NULL; 1709 int tries; 1710 int cpu; 1711 1712 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1713 cpu = find_lowest_rq(task); 1714 1715 if ((cpu == -1) || (cpu == rq->cpu)) 1716 break; 1717 1718 lowest_rq = cpu_rq(cpu); 1719 1720 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1721 /* 1722 * Target rq has tasks of equal or higher priority, 1723 * retrying does not release any lock and is unlikely 1724 * to yield a different result. 1725 */ 1726 lowest_rq = NULL; 1727 break; 1728 } 1729 1730 /* if the prio of this runqueue changed, try again */ 1731 if (double_lock_balance(rq, lowest_rq)) { 1732 /* 1733 * We had to unlock the run queue. In 1734 * the mean time, task could have 1735 * migrated already or had its affinity changed. 1736 * Also make sure that it wasn't scheduled on its rq. 1737 */ 1738 if (unlikely(task_rq(task) != rq || 1739 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) || 1740 task_running(rq, task) || 1741 !rt_task(task) || 1742 !task_on_rq_queued(task))) { 1743 1744 double_unlock_balance(rq, lowest_rq); 1745 lowest_rq = NULL; 1746 break; 1747 } 1748 } 1749 1750 /* If this rq is still suitable use it. */ 1751 if (lowest_rq->rt.highest_prio.curr > task->prio) 1752 break; 1753 1754 /* try again */ 1755 double_unlock_balance(rq, lowest_rq); 1756 lowest_rq = NULL; 1757 } 1758 1759 return lowest_rq; 1760 } 1761 1762 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1763 { 1764 struct task_struct *p; 1765 1766 if (!has_pushable_tasks(rq)) 1767 return NULL; 1768 1769 p = plist_first_entry(&rq->rt.pushable_tasks, 1770 struct task_struct, pushable_tasks); 1771 1772 BUG_ON(rq->cpu != task_cpu(p)); 1773 BUG_ON(task_current(rq, p)); 1774 BUG_ON(p->nr_cpus_allowed <= 1); 1775 1776 BUG_ON(!task_on_rq_queued(p)); 1777 BUG_ON(!rt_task(p)); 1778 1779 return p; 1780 } 1781 1782 /* 1783 * If the current CPU has more than one RT task, see if the non 1784 * running task can migrate over to a CPU that is running a task 1785 * of lesser priority. 1786 */ 1787 static int push_rt_task(struct rq *rq) 1788 { 1789 struct task_struct *next_task; 1790 struct rq *lowest_rq; 1791 int ret = 0; 1792 1793 if (!rq->rt.overloaded) 1794 return 0; 1795 1796 next_task = pick_next_pushable_task(rq); 1797 if (!next_task) 1798 return 0; 1799 1800 retry: 1801 if (unlikely(next_task == rq->curr)) { 1802 WARN_ON(1); 1803 return 0; 1804 } 1805 1806 /* 1807 * It's possible that the next_task slipped in of 1808 * higher priority than current. If that's the case 1809 * just reschedule current. 1810 */ 1811 if (unlikely(next_task->prio < rq->curr->prio)) { 1812 resched_curr(rq); 1813 return 0; 1814 } 1815 1816 /* We might release rq lock */ 1817 get_task_struct(next_task); 1818 1819 /* find_lock_lowest_rq locks the rq if found */ 1820 lowest_rq = find_lock_lowest_rq(next_task, rq); 1821 if (!lowest_rq) { 1822 struct task_struct *task; 1823 /* 1824 * find_lock_lowest_rq releases rq->lock 1825 * so it is possible that next_task has migrated. 1826 * 1827 * We need to make sure that the task is still on the same 1828 * run-queue and is also still the next task eligible for 1829 * pushing. 1830 */ 1831 task = pick_next_pushable_task(rq); 1832 if (task == next_task) { 1833 /* 1834 * The task hasn't migrated, and is still the next 1835 * eligible task, but we failed to find a run-queue 1836 * to push it to. Do not retry in this case, since 1837 * other CPUs will pull from us when ready. 1838 */ 1839 goto out; 1840 } 1841 1842 if (!task) 1843 /* No more tasks, just exit */ 1844 goto out; 1845 1846 /* 1847 * Something has shifted, try again. 1848 */ 1849 put_task_struct(next_task); 1850 next_task = task; 1851 goto retry; 1852 } 1853 1854 deactivate_task(rq, next_task, 0); 1855 set_task_cpu(next_task, lowest_rq->cpu); 1856 activate_task(lowest_rq, next_task, 0); 1857 ret = 1; 1858 1859 resched_curr(lowest_rq); 1860 1861 double_unlock_balance(rq, lowest_rq); 1862 1863 out: 1864 put_task_struct(next_task); 1865 1866 return ret; 1867 } 1868 1869 static void push_rt_tasks(struct rq *rq) 1870 { 1871 /* push_rt_task will return true if it moved an RT */ 1872 while (push_rt_task(rq)) 1873 ; 1874 } 1875 1876 #ifdef HAVE_RT_PUSH_IPI 1877 1878 /* 1879 * When a high priority task schedules out from a CPU and a lower priority 1880 * task is scheduled in, a check is made to see if there's any RT tasks 1881 * on other CPUs that are waiting to run because a higher priority RT task 1882 * is currently running on its CPU. In this case, the CPU with multiple RT 1883 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 1884 * up that may be able to run one of its non-running queued RT tasks. 1885 * 1886 * All CPUs with overloaded RT tasks need to be notified as there is currently 1887 * no way to know which of these CPUs have the highest priority task waiting 1888 * to run. Instead of trying to take a spinlock on each of these CPUs, 1889 * which has shown to cause large latency when done on machines with many 1890 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 1891 * RT tasks waiting to run. 1892 * 1893 * Just sending an IPI to each of the CPUs is also an issue, as on large 1894 * count CPU machines, this can cause an IPI storm on a CPU, especially 1895 * if its the only CPU with multiple RT tasks queued, and a large number 1896 * of CPUs scheduling a lower priority task at the same time. 1897 * 1898 * Each root domain has its own irq work function that can iterate over 1899 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 1900 * tassk must be checked if there's one or many CPUs that are lowering 1901 * their priority, there's a single irq work iterator that will try to 1902 * push off RT tasks that are waiting to run. 1903 * 1904 * When a CPU schedules a lower priority task, it will kick off the 1905 * irq work iterator that will jump to each CPU with overloaded RT tasks. 1906 * As it only takes the first CPU that schedules a lower priority task 1907 * to start the process, the rto_start variable is incremented and if 1908 * the atomic result is one, then that CPU will try to take the rto_lock. 1909 * This prevents high contention on the lock as the process handles all 1910 * CPUs scheduling lower priority tasks. 1911 * 1912 * All CPUs that are scheduling a lower priority task will increment the 1913 * rt_loop_next variable. This will make sure that the irq work iterator 1914 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 1915 * priority task, even if the iterator is in the middle of a scan. Incrementing 1916 * the rt_loop_next will cause the iterator to perform another scan. 1917 * 1918 */ 1919 static int rto_next_cpu(struct root_domain *rd) 1920 { 1921 int next; 1922 int cpu; 1923 1924 /* 1925 * When starting the IPI RT pushing, the rto_cpu is set to -1, 1926 * rt_next_cpu() will simply return the first CPU found in 1927 * the rto_mask. 1928 * 1929 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it 1930 * will return the next CPU found in the rto_mask. 1931 * 1932 * If there are no more CPUs left in the rto_mask, then a check is made 1933 * against rto_loop and rto_loop_next. rto_loop is only updated with 1934 * the rto_lock held, but any CPU may increment the rto_loop_next 1935 * without any locking. 1936 */ 1937 for (;;) { 1938 1939 /* When rto_cpu is -1 this acts like cpumask_first() */ 1940 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 1941 1942 rd->rto_cpu = cpu; 1943 1944 if (cpu < nr_cpu_ids) 1945 return cpu; 1946 1947 rd->rto_cpu = -1; 1948 1949 /* 1950 * ACQUIRE ensures we see the @rto_mask changes 1951 * made prior to the @next value observed. 1952 * 1953 * Matches WMB in rt_set_overload(). 1954 */ 1955 next = atomic_read_acquire(&rd->rto_loop_next); 1956 1957 if (rd->rto_loop == next) 1958 break; 1959 1960 rd->rto_loop = next; 1961 } 1962 1963 return -1; 1964 } 1965 1966 static inline bool rto_start_trylock(atomic_t *v) 1967 { 1968 return !atomic_cmpxchg_acquire(v, 0, 1); 1969 } 1970 1971 static inline void rto_start_unlock(atomic_t *v) 1972 { 1973 atomic_set_release(v, 0); 1974 } 1975 1976 static void tell_cpu_to_push(struct rq *rq) 1977 { 1978 int cpu = -1; 1979 1980 /* Keep the loop going if the IPI is currently active */ 1981 atomic_inc(&rq->rd->rto_loop_next); 1982 1983 /* Only one CPU can initiate a loop at a time */ 1984 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 1985 return; 1986 1987 raw_spin_lock(&rq->rd->rto_lock); 1988 1989 /* 1990 * The rto_cpu is updated under the lock, if it has a valid CPU 1991 * then the IPI is still running and will continue due to the 1992 * update to loop_next, and nothing needs to be done here. 1993 * Otherwise it is finishing up and an ipi needs to be sent. 1994 */ 1995 if (rq->rd->rto_cpu < 0) 1996 cpu = rto_next_cpu(rq->rd); 1997 1998 raw_spin_unlock(&rq->rd->rto_lock); 1999 2000 rto_start_unlock(&rq->rd->rto_loop_start); 2001 2002 if (cpu >= 0) { 2003 /* Make sure the rd does not get freed while pushing */ 2004 sched_get_rd(rq->rd); 2005 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 2006 } 2007 } 2008 2009 /* Called from hardirq context */ 2010 void rto_push_irq_work_func(struct irq_work *work) 2011 { 2012 struct root_domain *rd = 2013 container_of(work, struct root_domain, rto_push_work); 2014 struct rq *rq; 2015 int cpu; 2016 2017 rq = this_rq(); 2018 2019 /* 2020 * We do not need to grab the lock to check for has_pushable_tasks. 2021 * When it gets updated, a check is made if a push is possible. 2022 */ 2023 if (has_pushable_tasks(rq)) { 2024 raw_spin_lock(&rq->lock); 2025 push_rt_tasks(rq); 2026 raw_spin_unlock(&rq->lock); 2027 } 2028 2029 raw_spin_lock(&rd->rto_lock); 2030 2031 /* Pass the IPI to the next rt overloaded queue */ 2032 cpu = rto_next_cpu(rd); 2033 2034 raw_spin_unlock(&rd->rto_lock); 2035 2036 if (cpu < 0) { 2037 sched_put_rd(rd); 2038 return; 2039 } 2040 2041 /* Try the next RT overloaded CPU */ 2042 irq_work_queue_on(&rd->rto_push_work, cpu); 2043 } 2044 #endif /* HAVE_RT_PUSH_IPI */ 2045 2046 static void pull_rt_task(struct rq *this_rq) 2047 { 2048 int this_cpu = this_rq->cpu, cpu; 2049 bool resched = false; 2050 struct task_struct *p; 2051 struct rq *src_rq; 2052 int rt_overload_count = rt_overloaded(this_rq); 2053 2054 if (likely(!rt_overload_count)) 2055 return; 2056 2057 /* 2058 * Match the barrier from rt_set_overloaded; this guarantees that if we 2059 * see overloaded we must also see the rto_mask bit. 2060 */ 2061 smp_rmb(); 2062 2063 /* If we are the only overloaded CPU do nothing */ 2064 if (rt_overload_count == 1 && 2065 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2066 return; 2067 2068 #ifdef HAVE_RT_PUSH_IPI 2069 if (sched_feat(RT_PUSH_IPI)) { 2070 tell_cpu_to_push(this_rq); 2071 return; 2072 } 2073 #endif 2074 2075 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2076 if (this_cpu == cpu) 2077 continue; 2078 2079 src_rq = cpu_rq(cpu); 2080 2081 /* 2082 * Don't bother taking the src_rq->lock if the next highest 2083 * task is known to be lower-priority than our current task. 2084 * This may look racy, but if this value is about to go 2085 * logically higher, the src_rq will push this task away. 2086 * And if its going logically lower, we do not care 2087 */ 2088 if (src_rq->rt.highest_prio.next >= 2089 this_rq->rt.highest_prio.curr) 2090 continue; 2091 2092 /* 2093 * We can potentially drop this_rq's lock in 2094 * double_lock_balance, and another CPU could 2095 * alter this_rq 2096 */ 2097 double_lock_balance(this_rq, src_rq); 2098 2099 /* 2100 * We can pull only a task, which is pushable 2101 * on its rq, and no others. 2102 */ 2103 p = pick_highest_pushable_task(src_rq, this_cpu); 2104 2105 /* 2106 * Do we have an RT task that preempts 2107 * the to-be-scheduled task? 2108 */ 2109 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2110 WARN_ON(p == src_rq->curr); 2111 WARN_ON(!task_on_rq_queued(p)); 2112 2113 /* 2114 * There's a chance that p is higher in priority 2115 * than what's currently running on its CPU. 2116 * This is just that p is wakeing up and hasn't 2117 * had a chance to schedule. We only pull 2118 * p if it is lower in priority than the 2119 * current task on the run queue 2120 */ 2121 if (p->prio < src_rq->curr->prio) 2122 goto skip; 2123 2124 resched = true; 2125 2126 deactivate_task(src_rq, p, 0); 2127 set_task_cpu(p, this_cpu); 2128 activate_task(this_rq, p, 0); 2129 /* 2130 * We continue with the search, just in 2131 * case there's an even higher prio task 2132 * in another runqueue. (low likelihood 2133 * but possible) 2134 */ 2135 } 2136 skip: 2137 double_unlock_balance(this_rq, src_rq); 2138 } 2139 2140 if (resched) 2141 resched_curr(this_rq); 2142 } 2143 2144 /* 2145 * If we are not running and we are not going to reschedule soon, we should 2146 * try to push tasks away now 2147 */ 2148 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2149 { 2150 if (!task_running(rq, p) && 2151 !test_tsk_need_resched(rq->curr) && 2152 p->nr_cpus_allowed > 1 && 2153 (dl_task(rq->curr) || rt_task(rq->curr)) && 2154 (rq->curr->nr_cpus_allowed < 2 || 2155 rq->curr->prio <= p->prio)) 2156 push_rt_tasks(rq); 2157 } 2158 2159 /* Assumes rq->lock is held */ 2160 static void rq_online_rt(struct rq *rq) 2161 { 2162 if (rq->rt.overloaded) 2163 rt_set_overload(rq); 2164 2165 __enable_runtime(rq); 2166 2167 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2168 } 2169 2170 /* Assumes rq->lock is held */ 2171 static void rq_offline_rt(struct rq *rq) 2172 { 2173 if (rq->rt.overloaded) 2174 rt_clear_overload(rq); 2175 2176 __disable_runtime(rq); 2177 2178 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2179 } 2180 2181 /* 2182 * When switch from the rt queue, we bring ourselves to a position 2183 * that we might want to pull RT tasks from other runqueues. 2184 */ 2185 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2186 { 2187 /* 2188 * If there are other RT tasks then we will reschedule 2189 * and the scheduling of the other RT tasks will handle 2190 * the balancing. But if we are the last RT task 2191 * we may need to handle the pulling of RT tasks 2192 * now. 2193 */ 2194 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2195 return; 2196 2197 rt_queue_pull_task(rq); 2198 } 2199 2200 void __init init_sched_rt_class(void) 2201 { 2202 unsigned int i; 2203 2204 for_each_possible_cpu(i) { 2205 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2206 GFP_KERNEL, cpu_to_node(i)); 2207 } 2208 } 2209 #endif /* CONFIG_SMP */ 2210 2211 /* 2212 * When switching a task to RT, we may overload the runqueue 2213 * with RT tasks. In this case we try to push them off to 2214 * other runqueues. 2215 */ 2216 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2217 { 2218 /* 2219 * If we are already running, then there's nothing 2220 * that needs to be done. But if we are not running 2221 * we may need to preempt the current running task. 2222 * If that current running task is also an RT task 2223 * then see if we can move to another run queue. 2224 */ 2225 if (task_on_rq_queued(p) && rq->curr != p) { 2226 #ifdef CONFIG_SMP 2227 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2228 rt_queue_push_tasks(rq); 2229 #endif /* CONFIG_SMP */ 2230 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) 2231 resched_curr(rq); 2232 } 2233 } 2234 2235 /* 2236 * Priority of the task has changed. This may cause 2237 * us to initiate a push or pull. 2238 */ 2239 static void 2240 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2241 { 2242 if (!task_on_rq_queued(p)) 2243 return; 2244 2245 if (rq->curr == p) { 2246 #ifdef CONFIG_SMP 2247 /* 2248 * If our priority decreases while running, we 2249 * may need to pull tasks to this runqueue. 2250 */ 2251 if (oldprio < p->prio) 2252 rt_queue_pull_task(rq); 2253 2254 /* 2255 * If there's a higher priority task waiting to run 2256 * then reschedule. 2257 */ 2258 if (p->prio > rq->rt.highest_prio.curr) 2259 resched_curr(rq); 2260 #else 2261 /* For UP simply resched on drop of prio */ 2262 if (oldprio < p->prio) 2263 resched_curr(rq); 2264 #endif /* CONFIG_SMP */ 2265 } else { 2266 /* 2267 * This task is not running, but if it is 2268 * greater than the current running task 2269 * then reschedule. 2270 */ 2271 if (p->prio < rq->curr->prio) 2272 resched_curr(rq); 2273 } 2274 } 2275 2276 #ifdef CONFIG_POSIX_TIMERS 2277 static void watchdog(struct rq *rq, struct task_struct *p) 2278 { 2279 unsigned long soft, hard; 2280 2281 /* max may change after cur was read, this will be fixed next tick */ 2282 soft = task_rlimit(p, RLIMIT_RTTIME); 2283 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2284 2285 if (soft != RLIM_INFINITY) { 2286 unsigned long next; 2287 2288 if (p->rt.watchdog_stamp != jiffies) { 2289 p->rt.timeout++; 2290 p->rt.watchdog_stamp = jiffies; 2291 } 2292 2293 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2294 if (p->rt.timeout > next) 2295 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 2296 } 2297 } 2298 #else 2299 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2300 #endif 2301 2302 /* 2303 * scheduler tick hitting a task of our scheduling class. 2304 * 2305 * NOTE: This function can be called remotely by the tick offload that 2306 * goes along full dynticks. Therefore no local assumption can be made 2307 * and everything must be accessed through the @rq and @curr passed in 2308 * parameters. 2309 */ 2310 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2311 { 2312 struct sched_rt_entity *rt_se = &p->rt; 2313 2314 update_curr_rt(rq); 2315 2316 watchdog(rq, p); 2317 2318 /* 2319 * RR tasks need a special form of timeslice management. 2320 * FIFO tasks have no timeslices. 2321 */ 2322 if (p->policy != SCHED_RR) 2323 return; 2324 2325 if (--p->rt.time_slice) 2326 return; 2327 2328 p->rt.time_slice = sched_rr_timeslice; 2329 2330 /* 2331 * Requeue to the end of queue if we (and all of our ancestors) are not 2332 * the only element on the queue 2333 */ 2334 for_each_sched_rt_entity(rt_se) { 2335 if (rt_se->run_list.prev != rt_se->run_list.next) { 2336 requeue_task_rt(rq, p, 0); 2337 resched_curr(rq); 2338 return; 2339 } 2340 } 2341 } 2342 2343 static void set_curr_task_rt(struct rq *rq) 2344 { 2345 struct task_struct *p = rq->curr; 2346 2347 p->se.exec_start = rq_clock_task(rq); 2348 2349 /* The running task is never eligible for pushing */ 2350 dequeue_pushable_task(rq, p); 2351 } 2352 2353 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2354 { 2355 /* 2356 * Time slice is 0 for SCHED_FIFO tasks 2357 */ 2358 if (task->policy == SCHED_RR) 2359 return sched_rr_timeslice; 2360 else 2361 return 0; 2362 } 2363 2364 const struct sched_class rt_sched_class = { 2365 .next = &fair_sched_class, 2366 .enqueue_task = enqueue_task_rt, 2367 .dequeue_task = dequeue_task_rt, 2368 .yield_task = yield_task_rt, 2369 2370 .check_preempt_curr = check_preempt_curr_rt, 2371 2372 .pick_next_task = pick_next_task_rt, 2373 .put_prev_task = put_prev_task_rt, 2374 2375 #ifdef CONFIG_SMP 2376 .select_task_rq = select_task_rq_rt, 2377 2378 .set_cpus_allowed = set_cpus_allowed_common, 2379 .rq_online = rq_online_rt, 2380 .rq_offline = rq_offline_rt, 2381 .task_woken = task_woken_rt, 2382 .switched_from = switched_from_rt, 2383 #endif 2384 2385 .set_curr_task = set_curr_task_rt, 2386 .task_tick = task_tick_rt, 2387 2388 .get_rr_interval = get_rr_interval_rt, 2389 2390 .prio_changed = prio_changed_rt, 2391 .switched_to = switched_to_rt, 2392 2393 .update_curr = update_curr_rt, 2394 }; 2395 2396 #ifdef CONFIG_RT_GROUP_SCHED 2397 /* 2398 * Ensure that the real time constraints are schedulable. 2399 */ 2400 static DEFINE_MUTEX(rt_constraints_mutex); 2401 2402 /* Must be called with tasklist_lock held */ 2403 static inline int tg_has_rt_tasks(struct task_group *tg) 2404 { 2405 struct task_struct *g, *p; 2406 2407 /* 2408 * Autogroups do not have RT tasks; see autogroup_create(). 2409 */ 2410 if (task_group_is_autogroup(tg)) 2411 return 0; 2412 2413 for_each_process_thread(g, p) { 2414 if (rt_task(p) && task_group(p) == tg) 2415 return 1; 2416 } 2417 2418 return 0; 2419 } 2420 2421 struct rt_schedulable_data { 2422 struct task_group *tg; 2423 u64 rt_period; 2424 u64 rt_runtime; 2425 }; 2426 2427 static int tg_rt_schedulable(struct task_group *tg, void *data) 2428 { 2429 struct rt_schedulable_data *d = data; 2430 struct task_group *child; 2431 unsigned long total, sum = 0; 2432 u64 period, runtime; 2433 2434 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2435 runtime = tg->rt_bandwidth.rt_runtime; 2436 2437 if (tg == d->tg) { 2438 period = d->rt_period; 2439 runtime = d->rt_runtime; 2440 } 2441 2442 /* 2443 * Cannot have more runtime than the period. 2444 */ 2445 if (runtime > period && runtime != RUNTIME_INF) 2446 return -EINVAL; 2447 2448 /* 2449 * Ensure we don't starve existing RT tasks. 2450 */ 2451 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 2452 return -EBUSY; 2453 2454 total = to_ratio(period, runtime); 2455 2456 /* 2457 * Nobody can have more than the global setting allows. 2458 */ 2459 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2460 return -EINVAL; 2461 2462 /* 2463 * The sum of our children's runtime should not exceed our own. 2464 */ 2465 list_for_each_entry_rcu(child, &tg->children, siblings) { 2466 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2467 runtime = child->rt_bandwidth.rt_runtime; 2468 2469 if (child == d->tg) { 2470 period = d->rt_period; 2471 runtime = d->rt_runtime; 2472 } 2473 2474 sum += to_ratio(period, runtime); 2475 } 2476 2477 if (sum > total) 2478 return -EINVAL; 2479 2480 return 0; 2481 } 2482 2483 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2484 { 2485 int ret; 2486 2487 struct rt_schedulable_data data = { 2488 .tg = tg, 2489 .rt_period = period, 2490 .rt_runtime = runtime, 2491 }; 2492 2493 rcu_read_lock(); 2494 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2495 rcu_read_unlock(); 2496 2497 return ret; 2498 } 2499 2500 static int tg_set_rt_bandwidth(struct task_group *tg, 2501 u64 rt_period, u64 rt_runtime) 2502 { 2503 int i, err = 0; 2504 2505 /* 2506 * Disallowing the root group RT runtime is BAD, it would disallow the 2507 * kernel creating (and or operating) RT threads. 2508 */ 2509 if (tg == &root_task_group && rt_runtime == 0) 2510 return -EINVAL; 2511 2512 /* No period doesn't make any sense. */ 2513 if (rt_period == 0) 2514 return -EINVAL; 2515 2516 mutex_lock(&rt_constraints_mutex); 2517 read_lock(&tasklist_lock); 2518 err = __rt_schedulable(tg, rt_period, rt_runtime); 2519 if (err) 2520 goto unlock; 2521 2522 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2523 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2524 tg->rt_bandwidth.rt_runtime = rt_runtime; 2525 2526 for_each_possible_cpu(i) { 2527 struct rt_rq *rt_rq = tg->rt_rq[i]; 2528 2529 raw_spin_lock(&rt_rq->rt_runtime_lock); 2530 rt_rq->rt_runtime = rt_runtime; 2531 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2532 } 2533 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2534 unlock: 2535 read_unlock(&tasklist_lock); 2536 mutex_unlock(&rt_constraints_mutex); 2537 2538 return err; 2539 } 2540 2541 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2542 { 2543 u64 rt_runtime, rt_period; 2544 2545 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2546 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2547 if (rt_runtime_us < 0) 2548 rt_runtime = RUNTIME_INF; 2549 2550 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2551 } 2552 2553 long sched_group_rt_runtime(struct task_group *tg) 2554 { 2555 u64 rt_runtime_us; 2556 2557 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2558 return -1; 2559 2560 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2561 do_div(rt_runtime_us, NSEC_PER_USEC); 2562 return rt_runtime_us; 2563 } 2564 2565 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2566 { 2567 u64 rt_runtime, rt_period; 2568 2569 rt_period = rt_period_us * NSEC_PER_USEC; 2570 rt_runtime = tg->rt_bandwidth.rt_runtime; 2571 2572 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2573 } 2574 2575 long sched_group_rt_period(struct task_group *tg) 2576 { 2577 u64 rt_period_us; 2578 2579 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2580 do_div(rt_period_us, NSEC_PER_USEC); 2581 return rt_period_us; 2582 } 2583 2584 static int sched_rt_global_constraints(void) 2585 { 2586 int ret = 0; 2587 2588 mutex_lock(&rt_constraints_mutex); 2589 read_lock(&tasklist_lock); 2590 ret = __rt_schedulable(NULL, 0, 0); 2591 read_unlock(&tasklist_lock); 2592 mutex_unlock(&rt_constraints_mutex); 2593 2594 return ret; 2595 } 2596 2597 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2598 { 2599 /* Don't accept realtime tasks when there is no way for them to run */ 2600 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2601 return 0; 2602 2603 return 1; 2604 } 2605 2606 #else /* !CONFIG_RT_GROUP_SCHED */ 2607 static int sched_rt_global_constraints(void) 2608 { 2609 unsigned long flags; 2610 int i; 2611 2612 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2613 for_each_possible_cpu(i) { 2614 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2615 2616 raw_spin_lock(&rt_rq->rt_runtime_lock); 2617 rt_rq->rt_runtime = global_rt_runtime(); 2618 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2619 } 2620 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2621 2622 return 0; 2623 } 2624 #endif /* CONFIG_RT_GROUP_SCHED */ 2625 2626 static int sched_rt_global_validate(void) 2627 { 2628 if (sysctl_sched_rt_period <= 0) 2629 return -EINVAL; 2630 2631 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2632 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 2633 return -EINVAL; 2634 2635 return 0; 2636 } 2637 2638 static void sched_rt_do_global(void) 2639 { 2640 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 2641 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 2642 } 2643 2644 int sched_rt_handler(struct ctl_table *table, int write, 2645 void __user *buffer, size_t *lenp, 2646 loff_t *ppos) 2647 { 2648 int old_period, old_runtime; 2649 static DEFINE_MUTEX(mutex); 2650 int ret; 2651 2652 mutex_lock(&mutex); 2653 old_period = sysctl_sched_rt_period; 2654 old_runtime = sysctl_sched_rt_runtime; 2655 2656 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2657 2658 if (!ret && write) { 2659 ret = sched_rt_global_validate(); 2660 if (ret) 2661 goto undo; 2662 2663 ret = sched_dl_global_validate(); 2664 if (ret) 2665 goto undo; 2666 2667 ret = sched_rt_global_constraints(); 2668 if (ret) 2669 goto undo; 2670 2671 sched_rt_do_global(); 2672 sched_dl_do_global(); 2673 } 2674 if (0) { 2675 undo: 2676 sysctl_sched_rt_period = old_period; 2677 sysctl_sched_rt_runtime = old_runtime; 2678 } 2679 mutex_unlock(&mutex); 2680 2681 return ret; 2682 } 2683 2684 int sched_rr_handler(struct ctl_table *table, int write, 2685 void __user *buffer, size_t *lenp, 2686 loff_t *ppos) 2687 { 2688 int ret; 2689 static DEFINE_MUTEX(mutex); 2690 2691 mutex_lock(&mutex); 2692 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2693 /* 2694 * Make sure that internally we keep jiffies. 2695 * Also, writing zero resets the timeslice to default: 2696 */ 2697 if (!ret && write) { 2698 sched_rr_timeslice = 2699 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 2700 msecs_to_jiffies(sysctl_sched_rr_timeslice); 2701 } 2702 mutex_unlock(&mutex); 2703 2704 return ret; 2705 } 2706 2707 #ifdef CONFIG_SCHED_DEBUG 2708 void print_rt_stats(struct seq_file *m, int cpu) 2709 { 2710 rt_rq_iter_t iter; 2711 struct rt_rq *rt_rq; 2712 2713 rcu_read_lock(); 2714 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2715 print_rt_rq(m, cpu, rt_rq); 2716 rcu_read_unlock(); 2717 } 2718 #endif /* CONFIG_SCHED_DEBUG */ 2719