xref: /openbmc/linux/kernel/sched/rt.c (revision 36a7b63f069630e854beb305e99c151cddd3b8e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
10 
11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12 
13 struct rt_bandwidth def_rt_bandwidth;
14 
15 /*
16  * period over which we measure -rt task CPU usage in us.
17  * default: 1s
18  */
19 unsigned int sysctl_sched_rt_period = 1000000;
20 
21 /*
22  * part of the period that we allow rt tasks to run in us.
23  * default: 0.95s
24  */
25 int sysctl_sched_rt_runtime = 950000;
26 
27 #ifdef CONFIG_SYSCTL
28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
30 		size_t *lenp, loff_t *ppos);
31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
32 		size_t *lenp, loff_t *ppos);
33 static struct ctl_table sched_rt_sysctls[] = {
34 	{
35 		.procname       = "sched_rt_period_us",
36 		.data           = &sysctl_sched_rt_period,
37 		.maxlen         = sizeof(unsigned int),
38 		.mode           = 0644,
39 		.proc_handler   = sched_rt_handler,
40 	},
41 	{
42 		.procname       = "sched_rt_runtime_us",
43 		.data           = &sysctl_sched_rt_runtime,
44 		.maxlen         = sizeof(int),
45 		.mode           = 0644,
46 		.proc_handler   = sched_rt_handler,
47 	},
48 	{
49 		.procname       = "sched_rr_timeslice_ms",
50 		.data           = &sysctl_sched_rr_timeslice,
51 		.maxlen         = sizeof(int),
52 		.mode           = 0644,
53 		.proc_handler   = sched_rr_handler,
54 	},
55 	{}
56 };
57 
58 static int __init sched_rt_sysctl_init(void)
59 {
60 	register_sysctl_init("kernel", sched_rt_sysctls);
61 	return 0;
62 }
63 late_initcall(sched_rt_sysctl_init);
64 #endif
65 
66 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
67 {
68 	struct rt_bandwidth *rt_b =
69 		container_of(timer, struct rt_bandwidth, rt_period_timer);
70 	int idle = 0;
71 	int overrun;
72 
73 	raw_spin_lock(&rt_b->rt_runtime_lock);
74 	for (;;) {
75 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
76 		if (!overrun)
77 			break;
78 
79 		raw_spin_unlock(&rt_b->rt_runtime_lock);
80 		idle = do_sched_rt_period_timer(rt_b, overrun);
81 		raw_spin_lock(&rt_b->rt_runtime_lock);
82 	}
83 	if (idle)
84 		rt_b->rt_period_active = 0;
85 	raw_spin_unlock(&rt_b->rt_runtime_lock);
86 
87 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
88 }
89 
90 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
91 {
92 	rt_b->rt_period = ns_to_ktime(period);
93 	rt_b->rt_runtime = runtime;
94 
95 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
96 
97 	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
98 		     HRTIMER_MODE_REL_HARD);
99 	rt_b->rt_period_timer.function = sched_rt_period_timer;
100 }
101 
102 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
103 {
104 	raw_spin_lock(&rt_b->rt_runtime_lock);
105 	if (!rt_b->rt_period_active) {
106 		rt_b->rt_period_active = 1;
107 		/*
108 		 * SCHED_DEADLINE updates the bandwidth, as a run away
109 		 * RT task with a DL task could hog a CPU. But DL does
110 		 * not reset the period. If a deadline task was running
111 		 * without an RT task running, it can cause RT tasks to
112 		 * throttle when they start up. Kick the timer right away
113 		 * to update the period.
114 		 */
115 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
116 		hrtimer_start_expires(&rt_b->rt_period_timer,
117 				      HRTIMER_MODE_ABS_PINNED_HARD);
118 	}
119 	raw_spin_unlock(&rt_b->rt_runtime_lock);
120 }
121 
122 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
123 {
124 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
125 		return;
126 
127 	do_start_rt_bandwidth(rt_b);
128 }
129 
130 void init_rt_rq(struct rt_rq *rt_rq)
131 {
132 	struct rt_prio_array *array;
133 	int i;
134 
135 	array = &rt_rq->active;
136 	for (i = 0; i < MAX_RT_PRIO; i++) {
137 		INIT_LIST_HEAD(array->queue + i);
138 		__clear_bit(i, array->bitmap);
139 	}
140 	/* delimiter for bitsearch: */
141 	__set_bit(MAX_RT_PRIO, array->bitmap);
142 
143 #if defined CONFIG_SMP
144 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
145 	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
146 	rt_rq->rt_nr_migratory = 0;
147 	rt_rq->overloaded = 0;
148 	plist_head_init(&rt_rq->pushable_tasks);
149 #endif /* CONFIG_SMP */
150 	/* We start is dequeued state, because no RT tasks are queued */
151 	rt_rq->rt_queued = 0;
152 
153 	rt_rq->rt_time = 0;
154 	rt_rq->rt_throttled = 0;
155 	rt_rq->rt_runtime = 0;
156 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
157 }
158 
159 #ifdef CONFIG_RT_GROUP_SCHED
160 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
161 {
162 	hrtimer_cancel(&rt_b->rt_period_timer);
163 }
164 
165 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
166 
167 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
168 {
169 #ifdef CONFIG_SCHED_DEBUG
170 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
171 #endif
172 	return container_of(rt_se, struct task_struct, rt);
173 }
174 
175 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
176 {
177 	return rt_rq->rq;
178 }
179 
180 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
181 {
182 	return rt_se->rt_rq;
183 }
184 
185 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
186 {
187 	struct rt_rq *rt_rq = rt_se->rt_rq;
188 
189 	return rt_rq->rq;
190 }
191 
192 void unregister_rt_sched_group(struct task_group *tg)
193 {
194 	if (tg->rt_se)
195 		destroy_rt_bandwidth(&tg->rt_bandwidth);
196 
197 }
198 
199 void free_rt_sched_group(struct task_group *tg)
200 {
201 	int i;
202 
203 	for_each_possible_cpu(i) {
204 		if (tg->rt_rq)
205 			kfree(tg->rt_rq[i]);
206 		if (tg->rt_se)
207 			kfree(tg->rt_se[i]);
208 	}
209 
210 	kfree(tg->rt_rq);
211 	kfree(tg->rt_se);
212 }
213 
214 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
215 		struct sched_rt_entity *rt_se, int cpu,
216 		struct sched_rt_entity *parent)
217 {
218 	struct rq *rq = cpu_rq(cpu);
219 
220 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
221 	rt_rq->rt_nr_boosted = 0;
222 	rt_rq->rq = rq;
223 	rt_rq->tg = tg;
224 
225 	tg->rt_rq[cpu] = rt_rq;
226 	tg->rt_se[cpu] = rt_se;
227 
228 	if (!rt_se)
229 		return;
230 
231 	if (!parent)
232 		rt_se->rt_rq = &rq->rt;
233 	else
234 		rt_se->rt_rq = parent->my_q;
235 
236 	rt_se->my_q = rt_rq;
237 	rt_se->parent = parent;
238 	INIT_LIST_HEAD(&rt_se->run_list);
239 }
240 
241 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
242 {
243 	struct rt_rq *rt_rq;
244 	struct sched_rt_entity *rt_se;
245 	int i;
246 
247 	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
248 	if (!tg->rt_rq)
249 		goto err;
250 	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
251 	if (!tg->rt_se)
252 		goto err;
253 
254 	init_rt_bandwidth(&tg->rt_bandwidth,
255 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
256 
257 	for_each_possible_cpu(i) {
258 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
259 				     GFP_KERNEL, cpu_to_node(i));
260 		if (!rt_rq)
261 			goto err;
262 
263 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
264 				     GFP_KERNEL, cpu_to_node(i));
265 		if (!rt_se)
266 			goto err_free_rq;
267 
268 		init_rt_rq(rt_rq);
269 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
270 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
271 	}
272 
273 	return 1;
274 
275 err_free_rq:
276 	kfree(rt_rq);
277 err:
278 	return 0;
279 }
280 
281 #else /* CONFIG_RT_GROUP_SCHED */
282 
283 #define rt_entity_is_task(rt_se) (1)
284 
285 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
286 {
287 	return container_of(rt_se, struct task_struct, rt);
288 }
289 
290 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
291 {
292 	return container_of(rt_rq, struct rq, rt);
293 }
294 
295 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
296 {
297 	struct task_struct *p = rt_task_of(rt_se);
298 
299 	return task_rq(p);
300 }
301 
302 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
303 {
304 	struct rq *rq = rq_of_rt_se(rt_se);
305 
306 	return &rq->rt;
307 }
308 
309 void unregister_rt_sched_group(struct task_group *tg) { }
310 
311 void free_rt_sched_group(struct task_group *tg) { }
312 
313 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
314 {
315 	return 1;
316 }
317 #endif /* CONFIG_RT_GROUP_SCHED */
318 
319 #ifdef CONFIG_SMP
320 
321 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
322 {
323 	/* Try to pull RT tasks here if we lower this rq's prio */
324 	return rq->online && rq->rt.highest_prio.curr > prev->prio;
325 }
326 
327 static inline int rt_overloaded(struct rq *rq)
328 {
329 	return atomic_read(&rq->rd->rto_count);
330 }
331 
332 static inline void rt_set_overload(struct rq *rq)
333 {
334 	if (!rq->online)
335 		return;
336 
337 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
338 	/*
339 	 * Make sure the mask is visible before we set
340 	 * the overload count. That is checked to determine
341 	 * if we should look at the mask. It would be a shame
342 	 * if we looked at the mask, but the mask was not
343 	 * updated yet.
344 	 *
345 	 * Matched by the barrier in pull_rt_task().
346 	 */
347 	smp_wmb();
348 	atomic_inc(&rq->rd->rto_count);
349 }
350 
351 static inline void rt_clear_overload(struct rq *rq)
352 {
353 	if (!rq->online)
354 		return;
355 
356 	/* the order here really doesn't matter */
357 	atomic_dec(&rq->rd->rto_count);
358 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
359 }
360 
361 static void update_rt_migration(struct rt_rq *rt_rq)
362 {
363 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
364 		if (!rt_rq->overloaded) {
365 			rt_set_overload(rq_of_rt_rq(rt_rq));
366 			rt_rq->overloaded = 1;
367 		}
368 	} else if (rt_rq->overloaded) {
369 		rt_clear_overload(rq_of_rt_rq(rt_rq));
370 		rt_rq->overloaded = 0;
371 	}
372 }
373 
374 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
375 {
376 	struct task_struct *p;
377 
378 	if (!rt_entity_is_task(rt_se))
379 		return;
380 
381 	p = rt_task_of(rt_se);
382 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
383 
384 	rt_rq->rt_nr_total++;
385 	if (p->nr_cpus_allowed > 1)
386 		rt_rq->rt_nr_migratory++;
387 
388 	update_rt_migration(rt_rq);
389 }
390 
391 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
392 {
393 	struct task_struct *p;
394 
395 	if (!rt_entity_is_task(rt_se))
396 		return;
397 
398 	p = rt_task_of(rt_se);
399 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
400 
401 	rt_rq->rt_nr_total--;
402 	if (p->nr_cpus_allowed > 1)
403 		rt_rq->rt_nr_migratory--;
404 
405 	update_rt_migration(rt_rq);
406 }
407 
408 static inline int has_pushable_tasks(struct rq *rq)
409 {
410 	return !plist_head_empty(&rq->rt.pushable_tasks);
411 }
412 
413 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
414 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
415 
416 static void push_rt_tasks(struct rq *);
417 static void pull_rt_task(struct rq *);
418 
419 static inline void rt_queue_push_tasks(struct rq *rq)
420 {
421 	if (!has_pushable_tasks(rq))
422 		return;
423 
424 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
425 }
426 
427 static inline void rt_queue_pull_task(struct rq *rq)
428 {
429 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
430 }
431 
432 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
433 {
434 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
435 	plist_node_init(&p->pushable_tasks, p->prio);
436 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
437 
438 	/* Update the highest prio pushable task */
439 	if (p->prio < rq->rt.highest_prio.next)
440 		rq->rt.highest_prio.next = p->prio;
441 }
442 
443 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
444 {
445 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
446 
447 	/* Update the new highest prio pushable task */
448 	if (has_pushable_tasks(rq)) {
449 		p = plist_first_entry(&rq->rt.pushable_tasks,
450 				      struct task_struct, pushable_tasks);
451 		rq->rt.highest_prio.next = p->prio;
452 	} else {
453 		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
454 	}
455 }
456 
457 #else
458 
459 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
460 {
461 }
462 
463 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
464 {
465 }
466 
467 static inline
468 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
469 {
470 }
471 
472 static inline
473 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
474 {
475 }
476 
477 static inline void rt_queue_push_tasks(struct rq *rq)
478 {
479 }
480 #endif /* CONFIG_SMP */
481 
482 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
483 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
484 
485 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
486 {
487 	return rt_se->on_rq;
488 }
489 
490 #ifdef CONFIG_UCLAMP_TASK
491 /*
492  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
493  * settings.
494  *
495  * This check is only important for heterogeneous systems where uclamp_min value
496  * is higher than the capacity of a @cpu. For non-heterogeneous system this
497  * function will always return true.
498  *
499  * The function will return true if the capacity of the @cpu is >= the
500  * uclamp_min and false otherwise.
501  *
502  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
503  * > uclamp_max.
504  */
505 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
506 {
507 	unsigned int min_cap;
508 	unsigned int max_cap;
509 	unsigned int cpu_cap;
510 
511 	/* Only heterogeneous systems can benefit from this check */
512 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
513 		return true;
514 
515 	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
516 	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
517 
518 	cpu_cap = capacity_orig_of(cpu);
519 
520 	return cpu_cap >= min(min_cap, max_cap);
521 }
522 #else
523 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
524 {
525 	return true;
526 }
527 #endif
528 
529 #ifdef CONFIG_RT_GROUP_SCHED
530 
531 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
532 {
533 	if (!rt_rq->tg)
534 		return RUNTIME_INF;
535 
536 	return rt_rq->rt_runtime;
537 }
538 
539 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
540 {
541 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
542 }
543 
544 typedef struct task_group *rt_rq_iter_t;
545 
546 static inline struct task_group *next_task_group(struct task_group *tg)
547 {
548 	do {
549 		tg = list_entry_rcu(tg->list.next,
550 			typeof(struct task_group), list);
551 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
552 
553 	if (&tg->list == &task_groups)
554 		tg = NULL;
555 
556 	return tg;
557 }
558 
559 #define for_each_rt_rq(rt_rq, iter, rq)					\
560 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
561 		(iter = next_task_group(iter)) &&			\
562 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
563 
564 #define for_each_sched_rt_entity(rt_se) \
565 	for (; rt_se; rt_se = rt_se->parent)
566 
567 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
568 {
569 	return rt_se->my_q;
570 }
571 
572 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
573 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
574 
575 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
576 {
577 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
578 	struct rq *rq = rq_of_rt_rq(rt_rq);
579 	struct sched_rt_entity *rt_se;
580 
581 	int cpu = cpu_of(rq);
582 
583 	rt_se = rt_rq->tg->rt_se[cpu];
584 
585 	if (rt_rq->rt_nr_running) {
586 		if (!rt_se)
587 			enqueue_top_rt_rq(rt_rq);
588 		else if (!on_rt_rq(rt_se))
589 			enqueue_rt_entity(rt_se, 0);
590 
591 		if (rt_rq->highest_prio.curr < curr->prio)
592 			resched_curr(rq);
593 	}
594 }
595 
596 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
597 {
598 	struct sched_rt_entity *rt_se;
599 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
600 
601 	rt_se = rt_rq->tg->rt_se[cpu];
602 
603 	if (!rt_se) {
604 		dequeue_top_rt_rq(rt_rq);
605 		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
606 		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
607 	}
608 	else if (on_rt_rq(rt_se))
609 		dequeue_rt_entity(rt_se, 0);
610 }
611 
612 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
613 {
614 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
615 }
616 
617 static int rt_se_boosted(struct sched_rt_entity *rt_se)
618 {
619 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
620 	struct task_struct *p;
621 
622 	if (rt_rq)
623 		return !!rt_rq->rt_nr_boosted;
624 
625 	p = rt_task_of(rt_se);
626 	return p->prio != p->normal_prio;
627 }
628 
629 #ifdef CONFIG_SMP
630 static inline const struct cpumask *sched_rt_period_mask(void)
631 {
632 	return this_rq()->rd->span;
633 }
634 #else
635 static inline const struct cpumask *sched_rt_period_mask(void)
636 {
637 	return cpu_online_mask;
638 }
639 #endif
640 
641 static inline
642 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
643 {
644 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
645 }
646 
647 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
648 {
649 	return &rt_rq->tg->rt_bandwidth;
650 }
651 
652 #else /* !CONFIG_RT_GROUP_SCHED */
653 
654 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
655 {
656 	return rt_rq->rt_runtime;
657 }
658 
659 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
660 {
661 	return ktime_to_ns(def_rt_bandwidth.rt_period);
662 }
663 
664 typedef struct rt_rq *rt_rq_iter_t;
665 
666 #define for_each_rt_rq(rt_rq, iter, rq) \
667 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
668 
669 #define for_each_sched_rt_entity(rt_se) \
670 	for (; rt_se; rt_se = NULL)
671 
672 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
673 {
674 	return NULL;
675 }
676 
677 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
678 {
679 	struct rq *rq = rq_of_rt_rq(rt_rq);
680 
681 	if (!rt_rq->rt_nr_running)
682 		return;
683 
684 	enqueue_top_rt_rq(rt_rq);
685 	resched_curr(rq);
686 }
687 
688 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
689 {
690 	dequeue_top_rt_rq(rt_rq);
691 }
692 
693 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
694 {
695 	return rt_rq->rt_throttled;
696 }
697 
698 static inline const struct cpumask *sched_rt_period_mask(void)
699 {
700 	return cpu_online_mask;
701 }
702 
703 static inline
704 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
705 {
706 	return &cpu_rq(cpu)->rt;
707 }
708 
709 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
710 {
711 	return &def_rt_bandwidth;
712 }
713 
714 #endif /* CONFIG_RT_GROUP_SCHED */
715 
716 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
717 {
718 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
719 
720 	return (hrtimer_active(&rt_b->rt_period_timer) ||
721 		rt_rq->rt_time < rt_b->rt_runtime);
722 }
723 
724 #ifdef CONFIG_SMP
725 /*
726  * We ran out of runtime, see if we can borrow some from our neighbours.
727  */
728 static void do_balance_runtime(struct rt_rq *rt_rq)
729 {
730 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
731 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
732 	int i, weight;
733 	u64 rt_period;
734 
735 	weight = cpumask_weight(rd->span);
736 
737 	raw_spin_lock(&rt_b->rt_runtime_lock);
738 	rt_period = ktime_to_ns(rt_b->rt_period);
739 	for_each_cpu(i, rd->span) {
740 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
741 		s64 diff;
742 
743 		if (iter == rt_rq)
744 			continue;
745 
746 		raw_spin_lock(&iter->rt_runtime_lock);
747 		/*
748 		 * Either all rqs have inf runtime and there's nothing to steal
749 		 * or __disable_runtime() below sets a specific rq to inf to
750 		 * indicate its been disabled and disallow stealing.
751 		 */
752 		if (iter->rt_runtime == RUNTIME_INF)
753 			goto next;
754 
755 		/*
756 		 * From runqueues with spare time, take 1/n part of their
757 		 * spare time, but no more than our period.
758 		 */
759 		diff = iter->rt_runtime - iter->rt_time;
760 		if (diff > 0) {
761 			diff = div_u64((u64)diff, weight);
762 			if (rt_rq->rt_runtime + diff > rt_period)
763 				diff = rt_period - rt_rq->rt_runtime;
764 			iter->rt_runtime -= diff;
765 			rt_rq->rt_runtime += diff;
766 			if (rt_rq->rt_runtime == rt_period) {
767 				raw_spin_unlock(&iter->rt_runtime_lock);
768 				break;
769 			}
770 		}
771 next:
772 		raw_spin_unlock(&iter->rt_runtime_lock);
773 	}
774 	raw_spin_unlock(&rt_b->rt_runtime_lock);
775 }
776 
777 /*
778  * Ensure this RQ takes back all the runtime it lend to its neighbours.
779  */
780 static void __disable_runtime(struct rq *rq)
781 {
782 	struct root_domain *rd = rq->rd;
783 	rt_rq_iter_t iter;
784 	struct rt_rq *rt_rq;
785 
786 	if (unlikely(!scheduler_running))
787 		return;
788 
789 	for_each_rt_rq(rt_rq, iter, rq) {
790 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
791 		s64 want;
792 		int i;
793 
794 		raw_spin_lock(&rt_b->rt_runtime_lock);
795 		raw_spin_lock(&rt_rq->rt_runtime_lock);
796 		/*
797 		 * Either we're all inf and nobody needs to borrow, or we're
798 		 * already disabled and thus have nothing to do, or we have
799 		 * exactly the right amount of runtime to take out.
800 		 */
801 		if (rt_rq->rt_runtime == RUNTIME_INF ||
802 				rt_rq->rt_runtime == rt_b->rt_runtime)
803 			goto balanced;
804 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
805 
806 		/*
807 		 * Calculate the difference between what we started out with
808 		 * and what we current have, that's the amount of runtime
809 		 * we lend and now have to reclaim.
810 		 */
811 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
812 
813 		/*
814 		 * Greedy reclaim, take back as much as we can.
815 		 */
816 		for_each_cpu(i, rd->span) {
817 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
818 			s64 diff;
819 
820 			/*
821 			 * Can't reclaim from ourselves or disabled runqueues.
822 			 */
823 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
824 				continue;
825 
826 			raw_spin_lock(&iter->rt_runtime_lock);
827 			if (want > 0) {
828 				diff = min_t(s64, iter->rt_runtime, want);
829 				iter->rt_runtime -= diff;
830 				want -= diff;
831 			} else {
832 				iter->rt_runtime -= want;
833 				want -= want;
834 			}
835 			raw_spin_unlock(&iter->rt_runtime_lock);
836 
837 			if (!want)
838 				break;
839 		}
840 
841 		raw_spin_lock(&rt_rq->rt_runtime_lock);
842 		/*
843 		 * We cannot be left wanting - that would mean some runtime
844 		 * leaked out of the system.
845 		 */
846 		BUG_ON(want);
847 balanced:
848 		/*
849 		 * Disable all the borrow logic by pretending we have inf
850 		 * runtime - in which case borrowing doesn't make sense.
851 		 */
852 		rt_rq->rt_runtime = RUNTIME_INF;
853 		rt_rq->rt_throttled = 0;
854 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
855 		raw_spin_unlock(&rt_b->rt_runtime_lock);
856 
857 		/* Make rt_rq available for pick_next_task() */
858 		sched_rt_rq_enqueue(rt_rq);
859 	}
860 }
861 
862 static void __enable_runtime(struct rq *rq)
863 {
864 	rt_rq_iter_t iter;
865 	struct rt_rq *rt_rq;
866 
867 	if (unlikely(!scheduler_running))
868 		return;
869 
870 	/*
871 	 * Reset each runqueue's bandwidth settings
872 	 */
873 	for_each_rt_rq(rt_rq, iter, rq) {
874 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
875 
876 		raw_spin_lock(&rt_b->rt_runtime_lock);
877 		raw_spin_lock(&rt_rq->rt_runtime_lock);
878 		rt_rq->rt_runtime = rt_b->rt_runtime;
879 		rt_rq->rt_time = 0;
880 		rt_rq->rt_throttled = 0;
881 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
882 		raw_spin_unlock(&rt_b->rt_runtime_lock);
883 	}
884 }
885 
886 static void balance_runtime(struct rt_rq *rt_rq)
887 {
888 	if (!sched_feat(RT_RUNTIME_SHARE))
889 		return;
890 
891 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
892 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
893 		do_balance_runtime(rt_rq);
894 		raw_spin_lock(&rt_rq->rt_runtime_lock);
895 	}
896 }
897 #else /* !CONFIG_SMP */
898 static inline void balance_runtime(struct rt_rq *rt_rq) {}
899 #endif /* CONFIG_SMP */
900 
901 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
902 {
903 	int i, idle = 1, throttled = 0;
904 	const struct cpumask *span;
905 
906 	span = sched_rt_period_mask();
907 #ifdef CONFIG_RT_GROUP_SCHED
908 	/*
909 	 * FIXME: isolated CPUs should really leave the root task group,
910 	 * whether they are isolcpus or were isolated via cpusets, lest
911 	 * the timer run on a CPU which does not service all runqueues,
912 	 * potentially leaving other CPUs indefinitely throttled.  If
913 	 * isolation is really required, the user will turn the throttle
914 	 * off to kill the perturbations it causes anyway.  Meanwhile,
915 	 * this maintains functionality for boot and/or troubleshooting.
916 	 */
917 	if (rt_b == &root_task_group.rt_bandwidth)
918 		span = cpu_online_mask;
919 #endif
920 	for_each_cpu(i, span) {
921 		int enqueue = 0;
922 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
923 		struct rq *rq = rq_of_rt_rq(rt_rq);
924 		struct rq_flags rf;
925 		int skip;
926 
927 		/*
928 		 * When span == cpu_online_mask, taking each rq->lock
929 		 * can be time-consuming. Try to avoid it when possible.
930 		 */
931 		raw_spin_lock(&rt_rq->rt_runtime_lock);
932 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
933 			rt_rq->rt_runtime = rt_b->rt_runtime;
934 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
935 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
936 		if (skip)
937 			continue;
938 
939 		rq_lock(rq, &rf);
940 		update_rq_clock(rq);
941 
942 		if (rt_rq->rt_time) {
943 			u64 runtime;
944 
945 			raw_spin_lock(&rt_rq->rt_runtime_lock);
946 			if (rt_rq->rt_throttled)
947 				balance_runtime(rt_rq);
948 			runtime = rt_rq->rt_runtime;
949 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
950 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
951 				rt_rq->rt_throttled = 0;
952 				enqueue = 1;
953 
954 				/*
955 				 * When we're idle and a woken (rt) task is
956 				 * throttled check_preempt_curr() will set
957 				 * skip_update and the time between the wakeup
958 				 * and this unthrottle will get accounted as
959 				 * 'runtime'.
960 				 */
961 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
962 					rq_clock_cancel_skipupdate(rq);
963 			}
964 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
965 				idle = 0;
966 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
967 		} else if (rt_rq->rt_nr_running) {
968 			idle = 0;
969 			if (!rt_rq_throttled(rt_rq))
970 				enqueue = 1;
971 		}
972 		if (rt_rq->rt_throttled)
973 			throttled = 1;
974 
975 		if (enqueue)
976 			sched_rt_rq_enqueue(rt_rq);
977 		rq_unlock(rq, &rf);
978 	}
979 
980 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
981 		return 1;
982 
983 	return idle;
984 }
985 
986 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
987 {
988 #ifdef CONFIG_RT_GROUP_SCHED
989 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
990 
991 	if (rt_rq)
992 		return rt_rq->highest_prio.curr;
993 #endif
994 
995 	return rt_task_of(rt_se)->prio;
996 }
997 
998 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
999 {
1000 	u64 runtime = sched_rt_runtime(rt_rq);
1001 
1002 	if (rt_rq->rt_throttled)
1003 		return rt_rq_throttled(rt_rq);
1004 
1005 	if (runtime >= sched_rt_period(rt_rq))
1006 		return 0;
1007 
1008 	balance_runtime(rt_rq);
1009 	runtime = sched_rt_runtime(rt_rq);
1010 	if (runtime == RUNTIME_INF)
1011 		return 0;
1012 
1013 	if (rt_rq->rt_time > runtime) {
1014 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
1015 
1016 		/*
1017 		 * Don't actually throttle groups that have no runtime assigned
1018 		 * but accrue some time due to boosting.
1019 		 */
1020 		if (likely(rt_b->rt_runtime)) {
1021 			rt_rq->rt_throttled = 1;
1022 			printk_deferred_once("sched: RT throttling activated\n");
1023 		} else {
1024 			/*
1025 			 * In case we did anyway, make it go away,
1026 			 * replenishment is a joke, since it will replenish us
1027 			 * with exactly 0 ns.
1028 			 */
1029 			rt_rq->rt_time = 0;
1030 		}
1031 
1032 		if (rt_rq_throttled(rt_rq)) {
1033 			sched_rt_rq_dequeue(rt_rq);
1034 			return 1;
1035 		}
1036 	}
1037 
1038 	return 0;
1039 }
1040 
1041 /*
1042  * Update the current task's runtime statistics. Skip current tasks that
1043  * are not in our scheduling class.
1044  */
1045 static void update_curr_rt(struct rq *rq)
1046 {
1047 	struct task_struct *curr = rq->curr;
1048 	struct sched_rt_entity *rt_se = &curr->rt;
1049 	u64 delta_exec;
1050 	u64 now;
1051 
1052 	if (curr->sched_class != &rt_sched_class)
1053 		return;
1054 
1055 	now = rq_clock_task(rq);
1056 	delta_exec = now - curr->se.exec_start;
1057 	if (unlikely((s64)delta_exec <= 0))
1058 		return;
1059 
1060 	schedstat_set(curr->stats.exec_max,
1061 		      max(curr->stats.exec_max, delta_exec));
1062 
1063 	trace_sched_stat_runtime(curr, delta_exec, 0);
1064 
1065 	curr->se.sum_exec_runtime += delta_exec;
1066 	account_group_exec_runtime(curr, delta_exec);
1067 
1068 	curr->se.exec_start = now;
1069 	cgroup_account_cputime(curr, delta_exec);
1070 
1071 	if (!rt_bandwidth_enabled())
1072 		return;
1073 
1074 	for_each_sched_rt_entity(rt_se) {
1075 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1076 		int exceeded;
1077 
1078 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1079 			raw_spin_lock(&rt_rq->rt_runtime_lock);
1080 			rt_rq->rt_time += delta_exec;
1081 			exceeded = sched_rt_runtime_exceeded(rt_rq);
1082 			if (exceeded)
1083 				resched_curr(rq);
1084 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1085 			if (exceeded)
1086 				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1087 		}
1088 	}
1089 }
1090 
1091 static void
1092 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1093 {
1094 	struct rq *rq = rq_of_rt_rq(rt_rq);
1095 
1096 	BUG_ON(&rq->rt != rt_rq);
1097 
1098 	if (!rt_rq->rt_queued)
1099 		return;
1100 
1101 	BUG_ON(!rq->nr_running);
1102 
1103 	sub_nr_running(rq, rt_rq->rt_nr_running);
1104 	rt_rq->rt_queued = 0;
1105 
1106 }
1107 
1108 static void
1109 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1110 {
1111 	struct rq *rq = rq_of_rt_rq(rt_rq);
1112 
1113 	BUG_ON(&rq->rt != rt_rq);
1114 
1115 	if (rt_rq->rt_queued)
1116 		return;
1117 
1118 	if (rt_rq_throttled(rt_rq))
1119 		return;
1120 
1121 	if (rt_rq->rt_nr_running) {
1122 		add_nr_running(rq, rt_rq->rt_nr_running);
1123 		rt_rq->rt_queued = 1;
1124 	}
1125 
1126 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1127 	cpufreq_update_util(rq, 0);
1128 }
1129 
1130 #if defined CONFIG_SMP
1131 
1132 static void
1133 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1134 {
1135 	struct rq *rq = rq_of_rt_rq(rt_rq);
1136 
1137 #ifdef CONFIG_RT_GROUP_SCHED
1138 	/*
1139 	 * Change rq's cpupri only if rt_rq is the top queue.
1140 	 */
1141 	if (&rq->rt != rt_rq)
1142 		return;
1143 #endif
1144 	if (rq->online && prio < prev_prio)
1145 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1146 }
1147 
1148 static void
1149 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1150 {
1151 	struct rq *rq = rq_of_rt_rq(rt_rq);
1152 
1153 #ifdef CONFIG_RT_GROUP_SCHED
1154 	/*
1155 	 * Change rq's cpupri only if rt_rq is the top queue.
1156 	 */
1157 	if (&rq->rt != rt_rq)
1158 		return;
1159 #endif
1160 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1161 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1162 }
1163 
1164 #else /* CONFIG_SMP */
1165 
1166 static inline
1167 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1168 static inline
1169 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1170 
1171 #endif /* CONFIG_SMP */
1172 
1173 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1174 static void
1175 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1176 {
1177 	int prev_prio = rt_rq->highest_prio.curr;
1178 
1179 	if (prio < prev_prio)
1180 		rt_rq->highest_prio.curr = prio;
1181 
1182 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1183 }
1184 
1185 static void
1186 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1187 {
1188 	int prev_prio = rt_rq->highest_prio.curr;
1189 
1190 	if (rt_rq->rt_nr_running) {
1191 
1192 		WARN_ON(prio < prev_prio);
1193 
1194 		/*
1195 		 * This may have been our highest task, and therefore
1196 		 * we may have some recomputation to do
1197 		 */
1198 		if (prio == prev_prio) {
1199 			struct rt_prio_array *array = &rt_rq->active;
1200 
1201 			rt_rq->highest_prio.curr =
1202 				sched_find_first_bit(array->bitmap);
1203 		}
1204 
1205 	} else {
1206 		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1207 	}
1208 
1209 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1210 }
1211 
1212 #else
1213 
1214 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1215 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1216 
1217 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1218 
1219 #ifdef CONFIG_RT_GROUP_SCHED
1220 
1221 static void
1222 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1223 {
1224 	if (rt_se_boosted(rt_se))
1225 		rt_rq->rt_nr_boosted++;
1226 
1227 	if (rt_rq->tg)
1228 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1229 }
1230 
1231 static void
1232 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1233 {
1234 	if (rt_se_boosted(rt_se))
1235 		rt_rq->rt_nr_boosted--;
1236 
1237 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1238 }
1239 
1240 #else /* CONFIG_RT_GROUP_SCHED */
1241 
1242 static void
1243 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1244 {
1245 	start_rt_bandwidth(&def_rt_bandwidth);
1246 }
1247 
1248 static inline
1249 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1250 
1251 #endif /* CONFIG_RT_GROUP_SCHED */
1252 
1253 static inline
1254 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1255 {
1256 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1257 
1258 	if (group_rq)
1259 		return group_rq->rt_nr_running;
1260 	else
1261 		return 1;
1262 }
1263 
1264 static inline
1265 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1266 {
1267 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1268 	struct task_struct *tsk;
1269 
1270 	if (group_rq)
1271 		return group_rq->rr_nr_running;
1272 
1273 	tsk = rt_task_of(rt_se);
1274 
1275 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1276 }
1277 
1278 static inline
1279 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1280 {
1281 	int prio = rt_se_prio(rt_se);
1282 
1283 	WARN_ON(!rt_prio(prio));
1284 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1285 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1286 
1287 	inc_rt_prio(rt_rq, prio);
1288 	inc_rt_migration(rt_se, rt_rq);
1289 	inc_rt_group(rt_se, rt_rq);
1290 }
1291 
1292 static inline
1293 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1294 {
1295 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1296 	WARN_ON(!rt_rq->rt_nr_running);
1297 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1298 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1299 
1300 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1301 	dec_rt_migration(rt_se, rt_rq);
1302 	dec_rt_group(rt_se, rt_rq);
1303 }
1304 
1305 /*
1306  * Change rt_se->run_list location unless SAVE && !MOVE
1307  *
1308  * assumes ENQUEUE/DEQUEUE flags match
1309  */
1310 static inline bool move_entity(unsigned int flags)
1311 {
1312 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1313 		return false;
1314 
1315 	return true;
1316 }
1317 
1318 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1319 {
1320 	list_del_init(&rt_se->run_list);
1321 
1322 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1323 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1324 
1325 	rt_se->on_list = 0;
1326 }
1327 
1328 static inline struct sched_statistics *
1329 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1330 {
1331 #ifdef CONFIG_RT_GROUP_SCHED
1332 	/* schedstats is not supported for rt group. */
1333 	if (!rt_entity_is_task(rt_se))
1334 		return NULL;
1335 #endif
1336 
1337 	return &rt_task_of(rt_se)->stats;
1338 }
1339 
1340 static inline void
1341 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1342 {
1343 	struct sched_statistics *stats;
1344 	struct task_struct *p = NULL;
1345 
1346 	if (!schedstat_enabled())
1347 		return;
1348 
1349 	if (rt_entity_is_task(rt_se))
1350 		p = rt_task_of(rt_se);
1351 
1352 	stats = __schedstats_from_rt_se(rt_se);
1353 	if (!stats)
1354 		return;
1355 
1356 	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1357 }
1358 
1359 static inline void
1360 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1361 {
1362 	struct sched_statistics *stats;
1363 	struct task_struct *p = NULL;
1364 
1365 	if (!schedstat_enabled())
1366 		return;
1367 
1368 	if (rt_entity_is_task(rt_se))
1369 		p = rt_task_of(rt_se);
1370 
1371 	stats = __schedstats_from_rt_se(rt_se);
1372 	if (!stats)
1373 		return;
1374 
1375 	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1376 }
1377 
1378 static inline void
1379 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1380 			int flags)
1381 {
1382 	if (!schedstat_enabled())
1383 		return;
1384 
1385 	if (flags & ENQUEUE_WAKEUP)
1386 		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1387 }
1388 
1389 static inline void
1390 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1391 {
1392 	struct sched_statistics *stats;
1393 	struct task_struct *p = NULL;
1394 
1395 	if (!schedstat_enabled())
1396 		return;
1397 
1398 	if (rt_entity_is_task(rt_se))
1399 		p = rt_task_of(rt_se);
1400 
1401 	stats = __schedstats_from_rt_se(rt_se);
1402 	if (!stats)
1403 		return;
1404 
1405 	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1406 }
1407 
1408 static inline void
1409 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1410 			int flags)
1411 {
1412 	struct task_struct *p = NULL;
1413 
1414 	if (!schedstat_enabled())
1415 		return;
1416 
1417 	if (rt_entity_is_task(rt_se))
1418 		p = rt_task_of(rt_se);
1419 
1420 	if ((flags & DEQUEUE_SLEEP) && p) {
1421 		unsigned int state;
1422 
1423 		state = READ_ONCE(p->__state);
1424 		if (state & TASK_INTERRUPTIBLE)
1425 			__schedstat_set(p->stats.sleep_start,
1426 					rq_clock(rq_of_rt_rq(rt_rq)));
1427 
1428 		if (state & TASK_UNINTERRUPTIBLE)
1429 			__schedstat_set(p->stats.block_start,
1430 					rq_clock(rq_of_rt_rq(rt_rq)));
1431 	}
1432 }
1433 
1434 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1435 {
1436 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1437 	struct rt_prio_array *array = &rt_rq->active;
1438 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1439 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1440 
1441 	/*
1442 	 * Don't enqueue the group if its throttled, or when empty.
1443 	 * The latter is a consequence of the former when a child group
1444 	 * get throttled and the current group doesn't have any other
1445 	 * active members.
1446 	 */
1447 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1448 		if (rt_se->on_list)
1449 			__delist_rt_entity(rt_se, array);
1450 		return;
1451 	}
1452 
1453 	if (move_entity(flags)) {
1454 		WARN_ON_ONCE(rt_se->on_list);
1455 		if (flags & ENQUEUE_HEAD)
1456 			list_add(&rt_se->run_list, queue);
1457 		else
1458 			list_add_tail(&rt_se->run_list, queue);
1459 
1460 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1461 		rt_se->on_list = 1;
1462 	}
1463 	rt_se->on_rq = 1;
1464 
1465 	inc_rt_tasks(rt_se, rt_rq);
1466 }
1467 
1468 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1469 {
1470 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1471 	struct rt_prio_array *array = &rt_rq->active;
1472 
1473 	if (move_entity(flags)) {
1474 		WARN_ON_ONCE(!rt_se->on_list);
1475 		__delist_rt_entity(rt_se, array);
1476 	}
1477 	rt_se->on_rq = 0;
1478 
1479 	dec_rt_tasks(rt_se, rt_rq);
1480 }
1481 
1482 /*
1483  * Because the prio of an upper entry depends on the lower
1484  * entries, we must remove entries top - down.
1485  */
1486 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1487 {
1488 	struct sched_rt_entity *back = NULL;
1489 
1490 	for_each_sched_rt_entity(rt_se) {
1491 		rt_se->back = back;
1492 		back = rt_se;
1493 	}
1494 
1495 	dequeue_top_rt_rq(rt_rq_of_se(back));
1496 
1497 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1498 		if (on_rt_rq(rt_se))
1499 			__dequeue_rt_entity(rt_se, flags);
1500 	}
1501 }
1502 
1503 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1504 {
1505 	struct rq *rq = rq_of_rt_se(rt_se);
1506 
1507 	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1508 
1509 	dequeue_rt_stack(rt_se, flags);
1510 	for_each_sched_rt_entity(rt_se)
1511 		__enqueue_rt_entity(rt_se, flags);
1512 	enqueue_top_rt_rq(&rq->rt);
1513 }
1514 
1515 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1516 {
1517 	struct rq *rq = rq_of_rt_se(rt_se);
1518 
1519 	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1520 
1521 	dequeue_rt_stack(rt_se, flags);
1522 
1523 	for_each_sched_rt_entity(rt_se) {
1524 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1525 
1526 		if (rt_rq && rt_rq->rt_nr_running)
1527 			__enqueue_rt_entity(rt_se, flags);
1528 	}
1529 	enqueue_top_rt_rq(&rq->rt);
1530 }
1531 
1532 /*
1533  * Adding/removing a task to/from a priority array:
1534  */
1535 static void
1536 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1537 {
1538 	struct sched_rt_entity *rt_se = &p->rt;
1539 
1540 	if (flags & ENQUEUE_WAKEUP)
1541 		rt_se->timeout = 0;
1542 
1543 	check_schedstat_required();
1544 	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1545 
1546 	enqueue_rt_entity(rt_se, flags);
1547 
1548 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1549 		enqueue_pushable_task(rq, p);
1550 }
1551 
1552 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1553 {
1554 	struct sched_rt_entity *rt_se = &p->rt;
1555 
1556 	update_curr_rt(rq);
1557 	dequeue_rt_entity(rt_se, flags);
1558 
1559 	dequeue_pushable_task(rq, p);
1560 }
1561 
1562 /*
1563  * Put task to the head or the end of the run list without the overhead of
1564  * dequeue followed by enqueue.
1565  */
1566 static void
1567 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1568 {
1569 	if (on_rt_rq(rt_se)) {
1570 		struct rt_prio_array *array = &rt_rq->active;
1571 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1572 
1573 		if (head)
1574 			list_move(&rt_se->run_list, queue);
1575 		else
1576 			list_move_tail(&rt_se->run_list, queue);
1577 	}
1578 }
1579 
1580 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1581 {
1582 	struct sched_rt_entity *rt_se = &p->rt;
1583 	struct rt_rq *rt_rq;
1584 
1585 	for_each_sched_rt_entity(rt_se) {
1586 		rt_rq = rt_rq_of_se(rt_se);
1587 		requeue_rt_entity(rt_rq, rt_se, head);
1588 	}
1589 }
1590 
1591 static void yield_task_rt(struct rq *rq)
1592 {
1593 	requeue_task_rt(rq, rq->curr, 0);
1594 }
1595 
1596 #ifdef CONFIG_SMP
1597 static int find_lowest_rq(struct task_struct *task);
1598 
1599 static int
1600 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1601 {
1602 	struct task_struct *curr;
1603 	struct rq *rq;
1604 	bool test;
1605 
1606 	/* For anything but wake ups, just return the task_cpu */
1607 	if (!(flags & (WF_TTWU | WF_FORK)))
1608 		goto out;
1609 
1610 	rq = cpu_rq(cpu);
1611 
1612 	rcu_read_lock();
1613 	curr = READ_ONCE(rq->curr); /* unlocked access */
1614 
1615 	/*
1616 	 * If the current task on @p's runqueue is an RT task, then
1617 	 * try to see if we can wake this RT task up on another
1618 	 * runqueue. Otherwise simply start this RT task
1619 	 * on its current runqueue.
1620 	 *
1621 	 * We want to avoid overloading runqueues. If the woken
1622 	 * task is a higher priority, then it will stay on this CPU
1623 	 * and the lower prio task should be moved to another CPU.
1624 	 * Even though this will probably make the lower prio task
1625 	 * lose its cache, we do not want to bounce a higher task
1626 	 * around just because it gave up its CPU, perhaps for a
1627 	 * lock?
1628 	 *
1629 	 * For equal prio tasks, we just let the scheduler sort it out.
1630 	 *
1631 	 * Otherwise, just let it ride on the affined RQ and the
1632 	 * post-schedule router will push the preempted task away
1633 	 *
1634 	 * This test is optimistic, if we get it wrong the load-balancer
1635 	 * will have to sort it out.
1636 	 *
1637 	 * We take into account the capacity of the CPU to ensure it fits the
1638 	 * requirement of the task - which is only important on heterogeneous
1639 	 * systems like big.LITTLE.
1640 	 */
1641 	test = curr &&
1642 	       unlikely(rt_task(curr)) &&
1643 	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1644 
1645 	if (test || !rt_task_fits_capacity(p, cpu)) {
1646 		int target = find_lowest_rq(p);
1647 
1648 		/*
1649 		 * Bail out if we were forcing a migration to find a better
1650 		 * fitting CPU but our search failed.
1651 		 */
1652 		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1653 			goto out_unlock;
1654 
1655 		/*
1656 		 * Don't bother moving it if the destination CPU is
1657 		 * not running a lower priority task.
1658 		 */
1659 		if (target != -1 &&
1660 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1661 			cpu = target;
1662 	}
1663 
1664 out_unlock:
1665 	rcu_read_unlock();
1666 
1667 out:
1668 	return cpu;
1669 }
1670 
1671 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1672 {
1673 	/*
1674 	 * Current can't be migrated, useless to reschedule,
1675 	 * let's hope p can move out.
1676 	 */
1677 	if (rq->curr->nr_cpus_allowed == 1 ||
1678 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1679 		return;
1680 
1681 	/*
1682 	 * p is migratable, so let's not schedule it and
1683 	 * see if it is pushed or pulled somewhere else.
1684 	 */
1685 	if (p->nr_cpus_allowed != 1 &&
1686 	    cpupri_find(&rq->rd->cpupri, p, NULL))
1687 		return;
1688 
1689 	/*
1690 	 * There appear to be other CPUs that can accept
1691 	 * the current task but none can run 'p', so lets reschedule
1692 	 * to try and push the current task away:
1693 	 */
1694 	requeue_task_rt(rq, p, 1);
1695 	resched_curr(rq);
1696 }
1697 
1698 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1699 {
1700 	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1701 		/*
1702 		 * This is OK, because current is on_cpu, which avoids it being
1703 		 * picked for load-balance and preemption/IRQs are still
1704 		 * disabled avoiding further scheduler activity on it and we've
1705 		 * not yet started the picking loop.
1706 		 */
1707 		rq_unpin_lock(rq, rf);
1708 		pull_rt_task(rq);
1709 		rq_repin_lock(rq, rf);
1710 	}
1711 
1712 	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1713 }
1714 #endif /* CONFIG_SMP */
1715 
1716 /*
1717  * Preempt the current task with a newly woken task if needed:
1718  */
1719 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1720 {
1721 	if (p->prio < rq->curr->prio) {
1722 		resched_curr(rq);
1723 		return;
1724 	}
1725 
1726 #ifdef CONFIG_SMP
1727 	/*
1728 	 * If:
1729 	 *
1730 	 * - the newly woken task is of equal priority to the current task
1731 	 * - the newly woken task is non-migratable while current is migratable
1732 	 * - current will be preempted on the next reschedule
1733 	 *
1734 	 * we should check to see if current can readily move to a different
1735 	 * cpu.  If so, we will reschedule to allow the push logic to try
1736 	 * to move current somewhere else, making room for our non-migratable
1737 	 * task.
1738 	 */
1739 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1740 		check_preempt_equal_prio(rq, p);
1741 #endif
1742 }
1743 
1744 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1745 {
1746 	struct sched_rt_entity *rt_se = &p->rt;
1747 	struct rt_rq *rt_rq = &rq->rt;
1748 
1749 	p->se.exec_start = rq_clock_task(rq);
1750 	if (on_rt_rq(&p->rt))
1751 		update_stats_wait_end_rt(rt_rq, rt_se);
1752 
1753 	/* The running task is never eligible for pushing */
1754 	dequeue_pushable_task(rq, p);
1755 
1756 	if (!first)
1757 		return;
1758 
1759 	/*
1760 	 * If prev task was rt, put_prev_task() has already updated the
1761 	 * utilization. We only care of the case where we start to schedule a
1762 	 * rt task
1763 	 */
1764 	if (rq->curr->sched_class != &rt_sched_class)
1765 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1766 
1767 	rt_queue_push_tasks(rq);
1768 }
1769 
1770 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1771 {
1772 	struct rt_prio_array *array = &rt_rq->active;
1773 	struct sched_rt_entity *next = NULL;
1774 	struct list_head *queue;
1775 	int idx;
1776 
1777 	idx = sched_find_first_bit(array->bitmap);
1778 	BUG_ON(idx >= MAX_RT_PRIO);
1779 
1780 	queue = array->queue + idx;
1781 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1782 
1783 	return next;
1784 }
1785 
1786 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1787 {
1788 	struct sched_rt_entity *rt_se;
1789 	struct rt_rq *rt_rq  = &rq->rt;
1790 
1791 	do {
1792 		rt_se = pick_next_rt_entity(rt_rq);
1793 		BUG_ON(!rt_se);
1794 		rt_rq = group_rt_rq(rt_se);
1795 	} while (rt_rq);
1796 
1797 	return rt_task_of(rt_se);
1798 }
1799 
1800 static struct task_struct *pick_task_rt(struct rq *rq)
1801 {
1802 	struct task_struct *p;
1803 
1804 	if (!sched_rt_runnable(rq))
1805 		return NULL;
1806 
1807 	p = _pick_next_task_rt(rq);
1808 
1809 	return p;
1810 }
1811 
1812 static struct task_struct *pick_next_task_rt(struct rq *rq)
1813 {
1814 	struct task_struct *p = pick_task_rt(rq);
1815 
1816 	if (p)
1817 		set_next_task_rt(rq, p, true);
1818 
1819 	return p;
1820 }
1821 
1822 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1823 {
1824 	struct sched_rt_entity *rt_se = &p->rt;
1825 	struct rt_rq *rt_rq = &rq->rt;
1826 
1827 	if (on_rt_rq(&p->rt))
1828 		update_stats_wait_start_rt(rt_rq, rt_se);
1829 
1830 	update_curr_rt(rq);
1831 
1832 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1833 
1834 	/*
1835 	 * The previous task needs to be made eligible for pushing
1836 	 * if it is still active
1837 	 */
1838 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1839 		enqueue_pushable_task(rq, p);
1840 }
1841 
1842 #ifdef CONFIG_SMP
1843 
1844 /* Only try algorithms three times */
1845 #define RT_MAX_TRIES 3
1846 
1847 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1848 {
1849 	if (!task_running(rq, p) &&
1850 	    cpumask_test_cpu(cpu, &p->cpus_mask))
1851 		return 1;
1852 
1853 	return 0;
1854 }
1855 
1856 /*
1857  * Return the highest pushable rq's task, which is suitable to be executed
1858  * on the CPU, NULL otherwise
1859  */
1860 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1861 {
1862 	struct plist_head *head = &rq->rt.pushable_tasks;
1863 	struct task_struct *p;
1864 
1865 	if (!has_pushable_tasks(rq))
1866 		return NULL;
1867 
1868 	plist_for_each_entry(p, head, pushable_tasks) {
1869 		if (pick_rt_task(rq, p, cpu))
1870 			return p;
1871 	}
1872 
1873 	return NULL;
1874 }
1875 
1876 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1877 
1878 static int find_lowest_rq(struct task_struct *task)
1879 {
1880 	struct sched_domain *sd;
1881 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1882 	int this_cpu = smp_processor_id();
1883 	int cpu      = task_cpu(task);
1884 	int ret;
1885 
1886 	/* Make sure the mask is initialized first */
1887 	if (unlikely(!lowest_mask))
1888 		return -1;
1889 
1890 	if (task->nr_cpus_allowed == 1)
1891 		return -1; /* No other targets possible */
1892 
1893 	/*
1894 	 * If we're on asym system ensure we consider the different capacities
1895 	 * of the CPUs when searching for the lowest_mask.
1896 	 */
1897 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1898 
1899 		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1900 					  task, lowest_mask,
1901 					  rt_task_fits_capacity);
1902 	} else {
1903 
1904 		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1905 				  task, lowest_mask);
1906 	}
1907 
1908 	if (!ret)
1909 		return -1; /* No targets found */
1910 
1911 	/*
1912 	 * At this point we have built a mask of CPUs representing the
1913 	 * lowest priority tasks in the system.  Now we want to elect
1914 	 * the best one based on our affinity and topology.
1915 	 *
1916 	 * We prioritize the last CPU that the task executed on since
1917 	 * it is most likely cache-hot in that location.
1918 	 */
1919 	if (cpumask_test_cpu(cpu, lowest_mask))
1920 		return cpu;
1921 
1922 	/*
1923 	 * Otherwise, we consult the sched_domains span maps to figure
1924 	 * out which CPU is logically closest to our hot cache data.
1925 	 */
1926 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1927 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1928 
1929 	rcu_read_lock();
1930 	for_each_domain(cpu, sd) {
1931 		if (sd->flags & SD_WAKE_AFFINE) {
1932 			int best_cpu;
1933 
1934 			/*
1935 			 * "this_cpu" is cheaper to preempt than a
1936 			 * remote processor.
1937 			 */
1938 			if (this_cpu != -1 &&
1939 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1940 				rcu_read_unlock();
1941 				return this_cpu;
1942 			}
1943 
1944 			best_cpu = cpumask_any_and_distribute(lowest_mask,
1945 							      sched_domain_span(sd));
1946 			if (best_cpu < nr_cpu_ids) {
1947 				rcu_read_unlock();
1948 				return best_cpu;
1949 			}
1950 		}
1951 	}
1952 	rcu_read_unlock();
1953 
1954 	/*
1955 	 * And finally, if there were no matches within the domains
1956 	 * just give the caller *something* to work with from the compatible
1957 	 * locations.
1958 	 */
1959 	if (this_cpu != -1)
1960 		return this_cpu;
1961 
1962 	cpu = cpumask_any_distribute(lowest_mask);
1963 	if (cpu < nr_cpu_ids)
1964 		return cpu;
1965 
1966 	return -1;
1967 }
1968 
1969 /* Will lock the rq it finds */
1970 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1971 {
1972 	struct rq *lowest_rq = NULL;
1973 	int tries;
1974 	int cpu;
1975 
1976 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1977 		cpu = find_lowest_rq(task);
1978 
1979 		if ((cpu == -1) || (cpu == rq->cpu))
1980 			break;
1981 
1982 		lowest_rq = cpu_rq(cpu);
1983 
1984 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1985 			/*
1986 			 * Target rq has tasks of equal or higher priority,
1987 			 * retrying does not release any lock and is unlikely
1988 			 * to yield a different result.
1989 			 */
1990 			lowest_rq = NULL;
1991 			break;
1992 		}
1993 
1994 		/* if the prio of this runqueue changed, try again */
1995 		if (double_lock_balance(rq, lowest_rq)) {
1996 			/*
1997 			 * We had to unlock the run queue. In
1998 			 * the mean time, task could have
1999 			 * migrated already or had its affinity changed.
2000 			 * Also make sure that it wasn't scheduled on its rq.
2001 			 */
2002 			if (unlikely(task_rq(task) != rq ||
2003 				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
2004 				     task_running(rq, task) ||
2005 				     !rt_task(task) ||
2006 				     !task_on_rq_queued(task))) {
2007 
2008 				double_unlock_balance(rq, lowest_rq);
2009 				lowest_rq = NULL;
2010 				break;
2011 			}
2012 		}
2013 
2014 		/* If this rq is still suitable use it. */
2015 		if (lowest_rq->rt.highest_prio.curr > task->prio)
2016 			break;
2017 
2018 		/* try again */
2019 		double_unlock_balance(rq, lowest_rq);
2020 		lowest_rq = NULL;
2021 	}
2022 
2023 	return lowest_rq;
2024 }
2025 
2026 static struct task_struct *pick_next_pushable_task(struct rq *rq)
2027 {
2028 	struct task_struct *p;
2029 
2030 	if (!has_pushable_tasks(rq))
2031 		return NULL;
2032 
2033 	p = plist_first_entry(&rq->rt.pushable_tasks,
2034 			      struct task_struct, pushable_tasks);
2035 
2036 	BUG_ON(rq->cpu != task_cpu(p));
2037 	BUG_ON(task_current(rq, p));
2038 	BUG_ON(p->nr_cpus_allowed <= 1);
2039 
2040 	BUG_ON(!task_on_rq_queued(p));
2041 	BUG_ON(!rt_task(p));
2042 
2043 	return p;
2044 }
2045 
2046 /*
2047  * If the current CPU has more than one RT task, see if the non
2048  * running task can migrate over to a CPU that is running a task
2049  * of lesser priority.
2050  */
2051 static int push_rt_task(struct rq *rq, bool pull)
2052 {
2053 	struct task_struct *next_task;
2054 	struct rq *lowest_rq;
2055 	int ret = 0;
2056 
2057 	if (!rq->rt.overloaded)
2058 		return 0;
2059 
2060 	next_task = pick_next_pushable_task(rq);
2061 	if (!next_task)
2062 		return 0;
2063 
2064 retry:
2065 	/*
2066 	 * It's possible that the next_task slipped in of
2067 	 * higher priority than current. If that's the case
2068 	 * just reschedule current.
2069 	 */
2070 	if (unlikely(next_task->prio < rq->curr->prio)) {
2071 		resched_curr(rq);
2072 		return 0;
2073 	}
2074 
2075 	if (is_migration_disabled(next_task)) {
2076 		struct task_struct *push_task = NULL;
2077 		int cpu;
2078 
2079 		if (!pull || rq->push_busy)
2080 			return 0;
2081 
2082 		/*
2083 		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2084 		 * make sense. Per the above priority check, curr has to
2085 		 * be of higher priority than next_task, so no need to
2086 		 * reschedule when bailing out.
2087 		 *
2088 		 * Note that the stoppers are masqueraded as SCHED_FIFO
2089 		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2090 		 */
2091 		if (rq->curr->sched_class != &rt_sched_class)
2092 			return 0;
2093 
2094 		cpu = find_lowest_rq(rq->curr);
2095 		if (cpu == -1 || cpu == rq->cpu)
2096 			return 0;
2097 
2098 		/*
2099 		 * Given we found a CPU with lower priority than @next_task,
2100 		 * therefore it should be running. However we cannot migrate it
2101 		 * to this other CPU, instead attempt to push the current
2102 		 * running task on this CPU away.
2103 		 */
2104 		push_task = get_push_task(rq);
2105 		if (push_task) {
2106 			raw_spin_rq_unlock(rq);
2107 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2108 					    push_task, &rq->push_work);
2109 			raw_spin_rq_lock(rq);
2110 		}
2111 
2112 		return 0;
2113 	}
2114 
2115 	if (WARN_ON(next_task == rq->curr))
2116 		return 0;
2117 
2118 	/* We might release rq lock */
2119 	get_task_struct(next_task);
2120 
2121 	/* find_lock_lowest_rq locks the rq if found */
2122 	lowest_rq = find_lock_lowest_rq(next_task, rq);
2123 	if (!lowest_rq) {
2124 		struct task_struct *task;
2125 		/*
2126 		 * find_lock_lowest_rq releases rq->lock
2127 		 * so it is possible that next_task has migrated.
2128 		 *
2129 		 * We need to make sure that the task is still on the same
2130 		 * run-queue and is also still the next task eligible for
2131 		 * pushing.
2132 		 */
2133 		task = pick_next_pushable_task(rq);
2134 		if (task == next_task) {
2135 			/*
2136 			 * The task hasn't migrated, and is still the next
2137 			 * eligible task, but we failed to find a run-queue
2138 			 * to push it to.  Do not retry in this case, since
2139 			 * other CPUs will pull from us when ready.
2140 			 */
2141 			goto out;
2142 		}
2143 
2144 		if (!task)
2145 			/* No more tasks, just exit */
2146 			goto out;
2147 
2148 		/*
2149 		 * Something has shifted, try again.
2150 		 */
2151 		put_task_struct(next_task);
2152 		next_task = task;
2153 		goto retry;
2154 	}
2155 
2156 	deactivate_task(rq, next_task, 0);
2157 	set_task_cpu(next_task, lowest_rq->cpu);
2158 	activate_task(lowest_rq, next_task, 0);
2159 	resched_curr(lowest_rq);
2160 	ret = 1;
2161 
2162 	double_unlock_balance(rq, lowest_rq);
2163 out:
2164 	put_task_struct(next_task);
2165 
2166 	return ret;
2167 }
2168 
2169 static void push_rt_tasks(struct rq *rq)
2170 {
2171 	/* push_rt_task will return true if it moved an RT */
2172 	while (push_rt_task(rq, false))
2173 		;
2174 }
2175 
2176 #ifdef HAVE_RT_PUSH_IPI
2177 
2178 /*
2179  * When a high priority task schedules out from a CPU and a lower priority
2180  * task is scheduled in, a check is made to see if there's any RT tasks
2181  * on other CPUs that are waiting to run because a higher priority RT task
2182  * is currently running on its CPU. In this case, the CPU with multiple RT
2183  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2184  * up that may be able to run one of its non-running queued RT tasks.
2185  *
2186  * All CPUs with overloaded RT tasks need to be notified as there is currently
2187  * no way to know which of these CPUs have the highest priority task waiting
2188  * to run. Instead of trying to take a spinlock on each of these CPUs,
2189  * which has shown to cause large latency when done on machines with many
2190  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2191  * RT tasks waiting to run.
2192  *
2193  * Just sending an IPI to each of the CPUs is also an issue, as on large
2194  * count CPU machines, this can cause an IPI storm on a CPU, especially
2195  * if its the only CPU with multiple RT tasks queued, and a large number
2196  * of CPUs scheduling a lower priority task at the same time.
2197  *
2198  * Each root domain has its own irq work function that can iterate over
2199  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2200  * task must be checked if there's one or many CPUs that are lowering
2201  * their priority, there's a single irq work iterator that will try to
2202  * push off RT tasks that are waiting to run.
2203  *
2204  * When a CPU schedules a lower priority task, it will kick off the
2205  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2206  * As it only takes the first CPU that schedules a lower priority task
2207  * to start the process, the rto_start variable is incremented and if
2208  * the atomic result is one, then that CPU will try to take the rto_lock.
2209  * This prevents high contention on the lock as the process handles all
2210  * CPUs scheduling lower priority tasks.
2211  *
2212  * All CPUs that are scheduling a lower priority task will increment the
2213  * rt_loop_next variable. This will make sure that the irq work iterator
2214  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2215  * priority task, even if the iterator is in the middle of a scan. Incrementing
2216  * the rt_loop_next will cause the iterator to perform another scan.
2217  *
2218  */
2219 static int rto_next_cpu(struct root_domain *rd)
2220 {
2221 	int next;
2222 	int cpu;
2223 
2224 	/*
2225 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2226 	 * rt_next_cpu() will simply return the first CPU found in
2227 	 * the rto_mask.
2228 	 *
2229 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2230 	 * will return the next CPU found in the rto_mask.
2231 	 *
2232 	 * If there are no more CPUs left in the rto_mask, then a check is made
2233 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2234 	 * the rto_lock held, but any CPU may increment the rto_loop_next
2235 	 * without any locking.
2236 	 */
2237 	for (;;) {
2238 
2239 		/* When rto_cpu is -1 this acts like cpumask_first() */
2240 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2241 
2242 		rd->rto_cpu = cpu;
2243 
2244 		if (cpu < nr_cpu_ids)
2245 			return cpu;
2246 
2247 		rd->rto_cpu = -1;
2248 
2249 		/*
2250 		 * ACQUIRE ensures we see the @rto_mask changes
2251 		 * made prior to the @next value observed.
2252 		 *
2253 		 * Matches WMB in rt_set_overload().
2254 		 */
2255 		next = atomic_read_acquire(&rd->rto_loop_next);
2256 
2257 		if (rd->rto_loop == next)
2258 			break;
2259 
2260 		rd->rto_loop = next;
2261 	}
2262 
2263 	return -1;
2264 }
2265 
2266 static inline bool rto_start_trylock(atomic_t *v)
2267 {
2268 	return !atomic_cmpxchg_acquire(v, 0, 1);
2269 }
2270 
2271 static inline void rto_start_unlock(atomic_t *v)
2272 {
2273 	atomic_set_release(v, 0);
2274 }
2275 
2276 static void tell_cpu_to_push(struct rq *rq)
2277 {
2278 	int cpu = -1;
2279 
2280 	/* Keep the loop going if the IPI is currently active */
2281 	atomic_inc(&rq->rd->rto_loop_next);
2282 
2283 	/* Only one CPU can initiate a loop at a time */
2284 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2285 		return;
2286 
2287 	raw_spin_lock(&rq->rd->rto_lock);
2288 
2289 	/*
2290 	 * The rto_cpu is updated under the lock, if it has a valid CPU
2291 	 * then the IPI is still running and will continue due to the
2292 	 * update to loop_next, and nothing needs to be done here.
2293 	 * Otherwise it is finishing up and an ipi needs to be sent.
2294 	 */
2295 	if (rq->rd->rto_cpu < 0)
2296 		cpu = rto_next_cpu(rq->rd);
2297 
2298 	raw_spin_unlock(&rq->rd->rto_lock);
2299 
2300 	rto_start_unlock(&rq->rd->rto_loop_start);
2301 
2302 	if (cpu >= 0) {
2303 		/* Make sure the rd does not get freed while pushing */
2304 		sched_get_rd(rq->rd);
2305 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2306 	}
2307 }
2308 
2309 /* Called from hardirq context */
2310 void rto_push_irq_work_func(struct irq_work *work)
2311 {
2312 	struct root_domain *rd =
2313 		container_of(work, struct root_domain, rto_push_work);
2314 	struct rq *rq;
2315 	int cpu;
2316 
2317 	rq = this_rq();
2318 
2319 	/*
2320 	 * We do not need to grab the lock to check for has_pushable_tasks.
2321 	 * When it gets updated, a check is made if a push is possible.
2322 	 */
2323 	if (has_pushable_tasks(rq)) {
2324 		raw_spin_rq_lock(rq);
2325 		while (push_rt_task(rq, true))
2326 			;
2327 		raw_spin_rq_unlock(rq);
2328 	}
2329 
2330 	raw_spin_lock(&rd->rto_lock);
2331 
2332 	/* Pass the IPI to the next rt overloaded queue */
2333 	cpu = rto_next_cpu(rd);
2334 
2335 	raw_spin_unlock(&rd->rto_lock);
2336 
2337 	if (cpu < 0) {
2338 		sched_put_rd(rd);
2339 		return;
2340 	}
2341 
2342 	/* Try the next RT overloaded CPU */
2343 	irq_work_queue_on(&rd->rto_push_work, cpu);
2344 }
2345 #endif /* HAVE_RT_PUSH_IPI */
2346 
2347 static void pull_rt_task(struct rq *this_rq)
2348 {
2349 	int this_cpu = this_rq->cpu, cpu;
2350 	bool resched = false;
2351 	struct task_struct *p, *push_task;
2352 	struct rq *src_rq;
2353 	int rt_overload_count = rt_overloaded(this_rq);
2354 
2355 	if (likely(!rt_overload_count))
2356 		return;
2357 
2358 	/*
2359 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2360 	 * see overloaded we must also see the rto_mask bit.
2361 	 */
2362 	smp_rmb();
2363 
2364 	/* If we are the only overloaded CPU do nothing */
2365 	if (rt_overload_count == 1 &&
2366 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2367 		return;
2368 
2369 #ifdef HAVE_RT_PUSH_IPI
2370 	if (sched_feat(RT_PUSH_IPI)) {
2371 		tell_cpu_to_push(this_rq);
2372 		return;
2373 	}
2374 #endif
2375 
2376 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2377 		if (this_cpu == cpu)
2378 			continue;
2379 
2380 		src_rq = cpu_rq(cpu);
2381 
2382 		/*
2383 		 * Don't bother taking the src_rq->lock if the next highest
2384 		 * task is known to be lower-priority than our current task.
2385 		 * This may look racy, but if this value is about to go
2386 		 * logically higher, the src_rq will push this task away.
2387 		 * And if its going logically lower, we do not care
2388 		 */
2389 		if (src_rq->rt.highest_prio.next >=
2390 		    this_rq->rt.highest_prio.curr)
2391 			continue;
2392 
2393 		/*
2394 		 * We can potentially drop this_rq's lock in
2395 		 * double_lock_balance, and another CPU could
2396 		 * alter this_rq
2397 		 */
2398 		push_task = NULL;
2399 		double_lock_balance(this_rq, src_rq);
2400 
2401 		/*
2402 		 * We can pull only a task, which is pushable
2403 		 * on its rq, and no others.
2404 		 */
2405 		p = pick_highest_pushable_task(src_rq, this_cpu);
2406 
2407 		/*
2408 		 * Do we have an RT task that preempts
2409 		 * the to-be-scheduled task?
2410 		 */
2411 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2412 			WARN_ON(p == src_rq->curr);
2413 			WARN_ON(!task_on_rq_queued(p));
2414 
2415 			/*
2416 			 * There's a chance that p is higher in priority
2417 			 * than what's currently running on its CPU.
2418 			 * This is just that p is waking up and hasn't
2419 			 * had a chance to schedule. We only pull
2420 			 * p if it is lower in priority than the
2421 			 * current task on the run queue
2422 			 */
2423 			if (p->prio < src_rq->curr->prio)
2424 				goto skip;
2425 
2426 			if (is_migration_disabled(p)) {
2427 				push_task = get_push_task(src_rq);
2428 			} else {
2429 				deactivate_task(src_rq, p, 0);
2430 				set_task_cpu(p, this_cpu);
2431 				activate_task(this_rq, p, 0);
2432 				resched = true;
2433 			}
2434 			/*
2435 			 * We continue with the search, just in
2436 			 * case there's an even higher prio task
2437 			 * in another runqueue. (low likelihood
2438 			 * but possible)
2439 			 */
2440 		}
2441 skip:
2442 		double_unlock_balance(this_rq, src_rq);
2443 
2444 		if (push_task) {
2445 			raw_spin_rq_unlock(this_rq);
2446 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2447 					    push_task, &src_rq->push_work);
2448 			raw_spin_rq_lock(this_rq);
2449 		}
2450 	}
2451 
2452 	if (resched)
2453 		resched_curr(this_rq);
2454 }
2455 
2456 /*
2457  * If we are not running and we are not going to reschedule soon, we should
2458  * try to push tasks away now
2459  */
2460 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2461 {
2462 	bool need_to_push = !task_running(rq, p) &&
2463 			    !test_tsk_need_resched(rq->curr) &&
2464 			    p->nr_cpus_allowed > 1 &&
2465 			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2466 			    (rq->curr->nr_cpus_allowed < 2 ||
2467 			     rq->curr->prio <= p->prio);
2468 
2469 	if (need_to_push)
2470 		push_rt_tasks(rq);
2471 }
2472 
2473 /* Assumes rq->lock is held */
2474 static void rq_online_rt(struct rq *rq)
2475 {
2476 	if (rq->rt.overloaded)
2477 		rt_set_overload(rq);
2478 
2479 	__enable_runtime(rq);
2480 
2481 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2482 }
2483 
2484 /* Assumes rq->lock is held */
2485 static void rq_offline_rt(struct rq *rq)
2486 {
2487 	if (rq->rt.overloaded)
2488 		rt_clear_overload(rq);
2489 
2490 	__disable_runtime(rq);
2491 
2492 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2493 }
2494 
2495 /*
2496  * When switch from the rt queue, we bring ourselves to a position
2497  * that we might want to pull RT tasks from other runqueues.
2498  */
2499 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2500 {
2501 	/*
2502 	 * If there are other RT tasks then we will reschedule
2503 	 * and the scheduling of the other RT tasks will handle
2504 	 * the balancing. But if we are the last RT task
2505 	 * we may need to handle the pulling of RT tasks
2506 	 * now.
2507 	 */
2508 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2509 		return;
2510 
2511 	rt_queue_pull_task(rq);
2512 }
2513 
2514 void __init init_sched_rt_class(void)
2515 {
2516 	unsigned int i;
2517 
2518 	for_each_possible_cpu(i) {
2519 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2520 					GFP_KERNEL, cpu_to_node(i));
2521 	}
2522 }
2523 #endif /* CONFIG_SMP */
2524 
2525 /*
2526  * When switching a task to RT, we may overload the runqueue
2527  * with RT tasks. In this case we try to push them off to
2528  * other runqueues.
2529  */
2530 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2531 {
2532 	/*
2533 	 * If we are running, update the avg_rt tracking, as the running time
2534 	 * will now on be accounted into the latter.
2535 	 */
2536 	if (task_current(rq, p)) {
2537 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2538 		return;
2539 	}
2540 
2541 	/*
2542 	 * If we are not running we may need to preempt the current
2543 	 * running task. If that current running task is also an RT task
2544 	 * then see if we can move to another run queue.
2545 	 */
2546 	if (task_on_rq_queued(p)) {
2547 #ifdef CONFIG_SMP
2548 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2549 			rt_queue_push_tasks(rq);
2550 #endif /* CONFIG_SMP */
2551 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2552 			resched_curr(rq);
2553 	}
2554 }
2555 
2556 /*
2557  * Priority of the task has changed. This may cause
2558  * us to initiate a push or pull.
2559  */
2560 static void
2561 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2562 {
2563 	if (!task_on_rq_queued(p))
2564 		return;
2565 
2566 	if (task_current(rq, p)) {
2567 #ifdef CONFIG_SMP
2568 		/*
2569 		 * If our priority decreases while running, we
2570 		 * may need to pull tasks to this runqueue.
2571 		 */
2572 		if (oldprio < p->prio)
2573 			rt_queue_pull_task(rq);
2574 
2575 		/*
2576 		 * If there's a higher priority task waiting to run
2577 		 * then reschedule.
2578 		 */
2579 		if (p->prio > rq->rt.highest_prio.curr)
2580 			resched_curr(rq);
2581 #else
2582 		/* For UP simply resched on drop of prio */
2583 		if (oldprio < p->prio)
2584 			resched_curr(rq);
2585 #endif /* CONFIG_SMP */
2586 	} else {
2587 		/*
2588 		 * This task is not running, but if it is
2589 		 * greater than the current running task
2590 		 * then reschedule.
2591 		 */
2592 		if (p->prio < rq->curr->prio)
2593 			resched_curr(rq);
2594 	}
2595 }
2596 
2597 #ifdef CONFIG_POSIX_TIMERS
2598 static void watchdog(struct rq *rq, struct task_struct *p)
2599 {
2600 	unsigned long soft, hard;
2601 
2602 	/* max may change after cur was read, this will be fixed next tick */
2603 	soft = task_rlimit(p, RLIMIT_RTTIME);
2604 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2605 
2606 	if (soft != RLIM_INFINITY) {
2607 		unsigned long next;
2608 
2609 		if (p->rt.watchdog_stamp != jiffies) {
2610 			p->rt.timeout++;
2611 			p->rt.watchdog_stamp = jiffies;
2612 		}
2613 
2614 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2615 		if (p->rt.timeout > next) {
2616 			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2617 						    p->se.sum_exec_runtime);
2618 		}
2619 	}
2620 }
2621 #else
2622 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2623 #endif
2624 
2625 /*
2626  * scheduler tick hitting a task of our scheduling class.
2627  *
2628  * NOTE: This function can be called remotely by the tick offload that
2629  * goes along full dynticks. Therefore no local assumption can be made
2630  * and everything must be accessed through the @rq and @curr passed in
2631  * parameters.
2632  */
2633 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2634 {
2635 	struct sched_rt_entity *rt_se = &p->rt;
2636 
2637 	update_curr_rt(rq);
2638 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2639 
2640 	watchdog(rq, p);
2641 
2642 	/*
2643 	 * RR tasks need a special form of timeslice management.
2644 	 * FIFO tasks have no timeslices.
2645 	 */
2646 	if (p->policy != SCHED_RR)
2647 		return;
2648 
2649 	if (--p->rt.time_slice)
2650 		return;
2651 
2652 	p->rt.time_slice = sched_rr_timeslice;
2653 
2654 	/*
2655 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2656 	 * the only element on the queue
2657 	 */
2658 	for_each_sched_rt_entity(rt_se) {
2659 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2660 			requeue_task_rt(rq, p, 0);
2661 			resched_curr(rq);
2662 			return;
2663 		}
2664 	}
2665 }
2666 
2667 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2668 {
2669 	/*
2670 	 * Time slice is 0 for SCHED_FIFO tasks
2671 	 */
2672 	if (task->policy == SCHED_RR)
2673 		return sched_rr_timeslice;
2674 	else
2675 		return 0;
2676 }
2677 
2678 DEFINE_SCHED_CLASS(rt) = {
2679 
2680 	.enqueue_task		= enqueue_task_rt,
2681 	.dequeue_task		= dequeue_task_rt,
2682 	.yield_task		= yield_task_rt,
2683 
2684 	.check_preempt_curr	= check_preempt_curr_rt,
2685 
2686 	.pick_next_task		= pick_next_task_rt,
2687 	.put_prev_task		= put_prev_task_rt,
2688 	.set_next_task          = set_next_task_rt,
2689 
2690 #ifdef CONFIG_SMP
2691 	.balance		= balance_rt,
2692 	.pick_task		= pick_task_rt,
2693 	.select_task_rq		= select_task_rq_rt,
2694 	.set_cpus_allowed       = set_cpus_allowed_common,
2695 	.rq_online              = rq_online_rt,
2696 	.rq_offline             = rq_offline_rt,
2697 	.task_woken		= task_woken_rt,
2698 	.switched_from		= switched_from_rt,
2699 	.find_lock_rq		= find_lock_lowest_rq,
2700 #endif
2701 
2702 	.task_tick		= task_tick_rt,
2703 
2704 	.get_rr_interval	= get_rr_interval_rt,
2705 
2706 	.prio_changed		= prio_changed_rt,
2707 	.switched_to		= switched_to_rt,
2708 
2709 	.update_curr		= update_curr_rt,
2710 
2711 #ifdef CONFIG_UCLAMP_TASK
2712 	.uclamp_enabled		= 1,
2713 #endif
2714 };
2715 
2716 #ifdef CONFIG_RT_GROUP_SCHED
2717 /*
2718  * Ensure that the real time constraints are schedulable.
2719  */
2720 static DEFINE_MUTEX(rt_constraints_mutex);
2721 
2722 static inline int tg_has_rt_tasks(struct task_group *tg)
2723 {
2724 	struct task_struct *task;
2725 	struct css_task_iter it;
2726 	int ret = 0;
2727 
2728 	/*
2729 	 * Autogroups do not have RT tasks; see autogroup_create().
2730 	 */
2731 	if (task_group_is_autogroup(tg))
2732 		return 0;
2733 
2734 	css_task_iter_start(&tg->css, 0, &it);
2735 	while (!ret && (task = css_task_iter_next(&it)))
2736 		ret |= rt_task(task);
2737 	css_task_iter_end(&it);
2738 
2739 	return ret;
2740 }
2741 
2742 struct rt_schedulable_data {
2743 	struct task_group *tg;
2744 	u64 rt_period;
2745 	u64 rt_runtime;
2746 };
2747 
2748 static int tg_rt_schedulable(struct task_group *tg, void *data)
2749 {
2750 	struct rt_schedulable_data *d = data;
2751 	struct task_group *child;
2752 	unsigned long total, sum = 0;
2753 	u64 period, runtime;
2754 
2755 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2756 	runtime = tg->rt_bandwidth.rt_runtime;
2757 
2758 	if (tg == d->tg) {
2759 		period = d->rt_period;
2760 		runtime = d->rt_runtime;
2761 	}
2762 
2763 	/*
2764 	 * Cannot have more runtime than the period.
2765 	 */
2766 	if (runtime > period && runtime != RUNTIME_INF)
2767 		return -EINVAL;
2768 
2769 	/*
2770 	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2771 	 */
2772 	if (rt_bandwidth_enabled() && !runtime &&
2773 	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2774 		return -EBUSY;
2775 
2776 	total = to_ratio(period, runtime);
2777 
2778 	/*
2779 	 * Nobody can have more than the global setting allows.
2780 	 */
2781 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2782 		return -EINVAL;
2783 
2784 	/*
2785 	 * The sum of our children's runtime should not exceed our own.
2786 	 */
2787 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2788 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2789 		runtime = child->rt_bandwidth.rt_runtime;
2790 
2791 		if (child == d->tg) {
2792 			period = d->rt_period;
2793 			runtime = d->rt_runtime;
2794 		}
2795 
2796 		sum += to_ratio(period, runtime);
2797 	}
2798 
2799 	if (sum > total)
2800 		return -EINVAL;
2801 
2802 	return 0;
2803 }
2804 
2805 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2806 {
2807 	int ret;
2808 
2809 	struct rt_schedulable_data data = {
2810 		.tg = tg,
2811 		.rt_period = period,
2812 		.rt_runtime = runtime,
2813 	};
2814 
2815 	rcu_read_lock();
2816 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2817 	rcu_read_unlock();
2818 
2819 	return ret;
2820 }
2821 
2822 static int tg_set_rt_bandwidth(struct task_group *tg,
2823 		u64 rt_period, u64 rt_runtime)
2824 {
2825 	int i, err = 0;
2826 
2827 	/*
2828 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2829 	 * kernel creating (and or operating) RT threads.
2830 	 */
2831 	if (tg == &root_task_group && rt_runtime == 0)
2832 		return -EINVAL;
2833 
2834 	/* No period doesn't make any sense. */
2835 	if (rt_period == 0)
2836 		return -EINVAL;
2837 
2838 	/*
2839 	 * Bound quota to defend quota against overflow during bandwidth shift.
2840 	 */
2841 	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2842 		return -EINVAL;
2843 
2844 	mutex_lock(&rt_constraints_mutex);
2845 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2846 	if (err)
2847 		goto unlock;
2848 
2849 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2850 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2851 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2852 
2853 	for_each_possible_cpu(i) {
2854 		struct rt_rq *rt_rq = tg->rt_rq[i];
2855 
2856 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2857 		rt_rq->rt_runtime = rt_runtime;
2858 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2859 	}
2860 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2861 unlock:
2862 	mutex_unlock(&rt_constraints_mutex);
2863 
2864 	return err;
2865 }
2866 
2867 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2868 {
2869 	u64 rt_runtime, rt_period;
2870 
2871 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2872 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2873 	if (rt_runtime_us < 0)
2874 		rt_runtime = RUNTIME_INF;
2875 	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2876 		return -EINVAL;
2877 
2878 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2879 }
2880 
2881 long sched_group_rt_runtime(struct task_group *tg)
2882 {
2883 	u64 rt_runtime_us;
2884 
2885 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2886 		return -1;
2887 
2888 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2889 	do_div(rt_runtime_us, NSEC_PER_USEC);
2890 	return rt_runtime_us;
2891 }
2892 
2893 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2894 {
2895 	u64 rt_runtime, rt_period;
2896 
2897 	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2898 		return -EINVAL;
2899 
2900 	rt_period = rt_period_us * NSEC_PER_USEC;
2901 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2902 
2903 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2904 }
2905 
2906 long sched_group_rt_period(struct task_group *tg)
2907 {
2908 	u64 rt_period_us;
2909 
2910 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2911 	do_div(rt_period_us, NSEC_PER_USEC);
2912 	return rt_period_us;
2913 }
2914 
2915 #ifdef CONFIG_SYSCTL
2916 static int sched_rt_global_constraints(void)
2917 {
2918 	int ret = 0;
2919 
2920 	mutex_lock(&rt_constraints_mutex);
2921 	ret = __rt_schedulable(NULL, 0, 0);
2922 	mutex_unlock(&rt_constraints_mutex);
2923 
2924 	return ret;
2925 }
2926 #endif /* CONFIG_SYSCTL */
2927 
2928 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2929 {
2930 	/* Don't accept realtime tasks when there is no way for them to run */
2931 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2932 		return 0;
2933 
2934 	return 1;
2935 }
2936 
2937 #else /* !CONFIG_RT_GROUP_SCHED */
2938 
2939 #ifdef CONFIG_SYSCTL
2940 static int sched_rt_global_constraints(void)
2941 {
2942 	unsigned long flags;
2943 	int i;
2944 
2945 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2946 	for_each_possible_cpu(i) {
2947 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2948 
2949 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2950 		rt_rq->rt_runtime = global_rt_runtime();
2951 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2952 	}
2953 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2954 
2955 	return 0;
2956 }
2957 #endif /* CONFIG_SYSCTL */
2958 #endif /* CONFIG_RT_GROUP_SCHED */
2959 
2960 #ifdef CONFIG_SYSCTL
2961 static int sched_rt_global_validate(void)
2962 {
2963 	if (sysctl_sched_rt_period <= 0)
2964 		return -EINVAL;
2965 
2966 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2967 		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2968 		 ((u64)sysctl_sched_rt_runtime *
2969 			NSEC_PER_USEC > max_rt_runtime)))
2970 		return -EINVAL;
2971 
2972 	return 0;
2973 }
2974 
2975 static void sched_rt_do_global(void)
2976 {
2977 	unsigned long flags;
2978 
2979 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2980 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2981 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2982 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2983 }
2984 
2985 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2986 		size_t *lenp, loff_t *ppos)
2987 {
2988 	int old_period, old_runtime;
2989 	static DEFINE_MUTEX(mutex);
2990 	int ret;
2991 
2992 	mutex_lock(&mutex);
2993 	old_period = sysctl_sched_rt_period;
2994 	old_runtime = sysctl_sched_rt_runtime;
2995 
2996 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2997 
2998 	if (!ret && write) {
2999 		ret = sched_rt_global_validate();
3000 		if (ret)
3001 			goto undo;
3002 
3003 		ret = sched_dl_global_validate();
3004 		if (ret)
3005 			goto undo;
3006 
3007 		ret = sched_rt_global_constraints();
3008 		if (ret)
3009 			goto undo;
3010 
3011 		sched_rt_do_global();
3012 		sched_dl_do_global();
3013 	}
3014 	if (0) {
3015 undo:
3016 		sysctl_sched_rt_period = old_period;
3017 		sysctl_sched_rt_runtime = old_runtime;
3018 	}
3019 	mutex_unlock(&mutex);
3020 
3021 	return ret;
3022 }
3023 
3024 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3025 		size_t *lenp, loff_t *ppos)
3026 {
3027 	int ret;
3028 	static DEFINE_MUTEX(mutex);
3029 
3030 	mutex_lock(&mutex);
3031 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
3032 	/*
3033 	 * Make sure that internally we keep jiffies.
3034 	 * Also, writing zero resets the timeslice to default:
3035 	 */
3036 	if (!ret && write) {
3037 		sched_rr_timeslice =
3038 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3039 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
3040 	}
3041 	mutex_unlock(&mutex);
3042 
3043 	return ret;
3044 }
3045 #endif /* CONFIG_SYSCTL */
3046 
3047 #ifdef CONFIG_SCHED_DEBUG
3048 void print_rt_stats(struct seq_file *m, int cpu)
3049 {
3050 	rt_rq_iter_t iter;
3051 	struct rt_rq *rt_rq;
3052 
3053 	rcu_read_lock();
3054 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3055 		print_rt_rq(m, cpu, rt_rq);
3056 	rcu_read_unlock();
3057 }
3058 #endif /* CONFIG_SCHED_DEBUG */
3059