xref: /openbmc/linux/kernel/sched/rt.c (revision 3471b9f7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7 
8 #include "pelt.h"
9 
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12 /* More than 4 hours if BW_SHIFT equals 20. */
13 static const u64 max_rt_runtime = MAX_BW;
14 
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16 
17 struct rt_bandwidth def_rt_bandwidth;
18 
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21 	struct rt_bandwidth *rt_b =
22 		container_of(timer, struct rt_bandwidth, rt_period_timer);
23 	int idle = 0;
24 	int overrun;
25 
26 	raw_spin_lock(&rt_b->rt_runtime_lock);
27 	for (;;) {
28 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29 		if (!overrun)
30 			break;
31 
32 		raw_spin_unlock(&rt_b->rt_runtime_lock);
33 		idle = do_sched_rt_period_timer(rt_b, overrun);
34 		raw_spin_lock(&rt_b->rt_runtime_lock);
35 	}
36 	if (idle)
37 		rt_b->rt_period_active = 0;
38 	raw_spin_unlock(&rt_b->rt_runtime_lock);
39 
40 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42 
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45 	rt_b->rt_period = ns_to_ktime(period);
46 	rt_b->rt_runtime = runtime;
47 
48 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
49 
50 	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
51 		     HRTIMER_MODE_REL_HARD);
52 	rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54 
55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
58 		return;
59 
60 	raw_spin_lock(&rt_b->rt_runtime_lock);
61 	if (!rt_b->rt_period_active) {
62 		rt_b->rt_period_active = 1;
63 		/*
64 		 * SCHED_DEADLINE updates the bandwidth, as a run away
65 		 * RT task with a DL task could hog a CPU. But DL does
66 		 * not reset the period. If a deadline task was running
67 		 * without an RT task running, it can cause RT tasks to
68 		 * throttle when they start up. Kick the timer right away
69 		 * to update the period.
70 		 */
71 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
72 		hrtimer_start_expires(&rt_b->rt_period_timer,
73 				      HRTIMER_MODE_ABS_PINNED_HARD);
74 	}
75 	raw_spin_unlock(&rt_b->rt_runtime_lock);
76 }
77 
78 void init_rt_rq(struct rt_rq *rt_rq)
79 {
80 	struct rt_prio_array *array;
81 	int i;
82 
83 	array = &rt_rq->active;
84 	for (i = 0; i < MAX_RT_PRIO; i++) {
85 		INIT_LIST_HEAD(array->queue + i);
86 		__clear_bit(i, array->bitmap);
87 	}
88 	/* delimiter for bitsearch: */
89 	__set_bit(MAX_RT_PRIO, array->bitmap);
90 
91 #if defined CONFIG_SMP
92 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
93 	rt_rq->highest_prio.next = MAX_RT_PRIO;
94 	rt_rq->rt_nr_migratory = 0;
95 	rt_rq->overloaded = 0;
96 	plist_head_init(&rt_rq->pushable_tasks);
97 #endif /* CONFIG_SMP */
98 	/* We start is dequeued state, because no RT tasks are queued */
99 	rt_rq->rt_queued = 0;
100 
101 	rt_rq->rt_time = 0;
102 	rt_rq->rt_throttled = 0;
103 	rt_rq->rt_runtime = 0;
104 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
105 }
106 
107 #ifdef CONFIG_RT_GROUP_SCHED
108 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
109 {
110 	hrtimer_cancel(&rt_b->rt_period_timer);
111 }
112 
113 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
114 
115 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
116 {
117 #ifdef CONFIG_SCHED_DEBUG
118 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
119 #endif
120 	return container_of(rt_se, struct task_struct, rt);
121 }
122 
123 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
124 {
125 	return rt_rq->rq;
126 }
127 
128 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
129 {
130 	return rt_se->rt_rq;
131 }
132 
133 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
134 {
135 	struct rt_rq *rt_rq = rt_se->rt_rq;
136 
137 	return rt_rq->rq;
138 }
139 
140 void free_rt_sched_group(struct task_group *tg)
141 {
142 	int i;
143 
144 	if (tg->rt_se)
145 		destroy_rt_bandwidth(&tg->rt_bandwidth);
146 
147 	for_each_possible_cpu(i) {
148 		if (tg->rt_rq)
149 			kfree(tg->rt_rq[i]);
150 		if (tg->rt_se)
151 			kfree(tg->rt_se[i]);
152 	}
153 
154 	kfree(tg->rt_rq);
155 	kfree(tg->rt_se);
156 }
157 
158 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
159 		struct sched_rt_entity *rt_se, int cpu,
160 		struct sched_rt_entity *parent)
161 {
162 	struct rq *rq = cpu_rq(cpu);
163 
164 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
165 	rt_rq->rt_nr_boosted = 0;
166 	rt_rq->rq = rq;
167 	rt_rq->tg = tg;
168 
169 	tg->rt_rq[cpu] = rt_rq;
170 	tg->rt_se[cpu] = rt_se;
171 
172 	if (!rt_se)
173 		return;
174 
175 	if (!parent)
176 		rt_se->rt_rq = &rq->rt;
177 	else
178 		rt_se->rt_rq = parent->my_q;
179 
180 	rt_se->my_q = rt_rq;
181 	rt_se->parent = parent;
182 	INIT_LIST_HEAD(&rt_se->run_list);
183 }
184 
185 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
186 {
187 	struct rt_rq *rt_rq;
188 	struct sched_rt_entity *rt_se;
189 	int i;
190 
191 	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
192 	if (!tg->rt_rq)
193 		goto err;
194 	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
195 	if (!tg->rt_se)
196 		goto err;
197 
198 	init_rt_bandwidth(&tg->rt_bandwidth,
199 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
200 
201 	for_each_possible_cpu(i) {
202 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
203 				     GFP_KERNEL, cpu_to_node(i));
204 		if (!rt_rq)
205 			goto err;
206 
207 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
208 				     GFP_KERNEL, cpu_to_node(i));
209 		if (!rt_se)
210 			goto err_free_rq;
211 
212 		init_rt_rq(rt_rq);
213 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
214 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
215 	}
216 
217 	return 1;
218 
219 err_free_rq:
220 	kfree(rt_rq);
221 err:
222 	return 0;
223 }
224 
225 #else /* CONFIG_RT_GROUP_SCHED */
226 
227 #define rt_entity_is_task(rt_se) (1)
228 
229 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
230 {
231 	return container_of(rt_se, struct task_struct, rt);
232 }
233 
234 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
235 {
236 	return container_of(rt_rq, struct rq, rt);
237 }
238 
239 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
240 {
241 	struct task_struct *p = rt_task_of(rt_se);
242 
243 	return task_rq(p);
244 }
245 
246 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
247 {
248 	struct rq *rq = rq_of_rt_se(rt_se);
249 
250 	return &rq->rt;
251 }
252 
253 void free_rt_sched_group(struct task_group *tg) { }
254 
255 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
256 {
257 	return 1;
258 }
259 #endif /* CONFIG_RT_GROUP_SCHED */
260 
261 #ifdef CONFIG_SMP
262 
263 static void pull_rt_task(struct rq *this_rq);
264 
265 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
266 {
267 	/* Try to pull RT tasks here if we lower this rq's prio */
268 	return rq->rt.highest_prio.curr > prev->prio;
269 }
270 
271 static inline int rt_overloaded(struct rq *rq)
272 {
273 	return atomic_read(&rq->rd->rto_count);
274 }
275 
276 static inline void rt_set_overload(struct rq *rq)
277 {
278 	if (!rq->online)
279 		return;
280 
281 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
282 	/*
283 	 * Make sure the mask is visible before we set
284 	 * the overload count. That is checked to determine
285 	 * if we should look at the mask. It would be a shame
286 	 * if we looked at the mask, but the mask was not
287 	 * updated yet.
288 	 *
289 	 * Matched by the barrier in pull_rt_task().
290 	 */
291 	smp_wmb();
292 	atomic_inc(&rq->rd->rto_count);
293 }
294 
295 static inline void rt_clear_overload(struct rq *rq)
296 {
297 	if (!rq->online)
298 		return;
299 
300 	/* the order here really doesn't matter */
301 	atomic_dec(&rq->rd->rto_count);
302 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
303 }
304 
305 static void update_rt_migration(struct rt_rq *rt_rq)
306 {
307 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
308 		if (!rt_rq->overloaded) {
309 			rt_set_overload(rq_of_rt_rq(rt_rq));
310 			rt_rq->overloaded = 1;
311 		}
312 	} else if (rt_rq->overloaded) {
313 		rt_clear_overload(rq_of_rt_rq(rt_rq));
314 		rt_rq->overloaded = 0;
315 	}
316 }
317 
318 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
319 {
320 	struct task_struct *p;
321 
322 	if (!rt_entity_is_task(rt_se))
323 		return;
324 
325 	p = rt_task_of(rt_se);
326 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
327 
328 	rt_rq->rt_nr_total++;
329 	if (p->nr_cpus_allowed > 1)
330 		rt_rq->rt_nr_migratory++;
331 
332 	update_rt_migration(rt_rq);
333 }
334 
335 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
336 {
337 	struct task_struct *p;
338 
339 	if (!rt_entity_is_task(rt_se))
340 		return;
341 
342 	p = rt_task_of(rt_se);
343 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
344 
345 	rt_rq->rt_nr_total--;
346 	if (p->nr_cpus_allowed > 1)
347 		rt_rq->rt_nr_migratory--;
348 
349 	update_rt_migration(rt_rq);
350 }
351 
352 static inline int has_pushable_tasks(struct rq *rq)
353 {
354 	return !plist_head_empty(&rq->rt.pushable_tasks);
355 }
356 
357 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
358 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
359 
360 static void push_rt_tasks(struct rq *);
361 static void pull_rt_task(struct rq *);
362 
363 static inline void rt_queue_push_tasks(struct rq *rq)
364 {
365 	if (!has_pushable_tasks(rq))
366 		return;
367 
368 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
369 }
370 
371 static inline void rt_queue_pull_task(struct rq *rq)
372 {
373 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
374 }
375 
376 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
377 {
378 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
379 	plist_node_init(&p->pushable_tasks, p->prio);
380 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
381 
382 	/* Update the highest prio pushable task */
383 	if (p->prio < rq->rt.highest_prio.next)
384 		rq->rt.highest_prio.next = p->prio;
385 }
386 
387 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
388 {
389 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
390 
391 	/* Update the new highest prio pushable task */
392 	if (has_pushable_tasks(rq)) {
393 		p = plist_first_entry(&rq->rt.pushable_tasks,
394 				      struct task_struct, pushable_tasks);
395 		rq->rt.highest_prio.next = p->prio;
396 	} else
397 		rq->rt.highest_prio.next = MAX_RT_PRIO;
398 }
399 
400 #else
401 
402 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
403 {
404 }
405 
406 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
407 {
408 }
409 
410 static inline
411 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
412 {
413 }
414 
415 static inline
416 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
417 {
418 }
419 
420 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
421 {
422 	return false;
423 }
424 
425 static inline void pull_rt_task(struct rq *this_rq)
426 {
427 }
428 
429 static inline void rt_queue_push_tasks(struct rq *rq)
430 {
431 }
432 #endif /* CONFIG_SMP */
433 
434 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
435 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
436 
437 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
438 {
439 	return rt_se->on_rq;
440 }
441 
442 #ifdef CONFIG_UCLAMP_TASK
443 /*
444  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
445  * settings.
446  *
447  * This check is only important for heterogeneous systems where uclamp_min value
448  * is higher than the capacity of a @cpu. For non-heterogeneous system this
449  * function will always return true.
450  *
451  * The function will return true if the capacity of the @cpu is >= the
452  * uclamp_min and false otherwise.
453  *
454  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
455  * > uclamp_max.
456  */
457 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
458 {
459 	unsigned int min_cap;
460 	unsigned int max_cap;
461 	unsigned int cpu_cap;
462 
463 	/* Only heterogeneous systems can benefit from this check */
464 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
465 		return true;
466 
467 	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
468 	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
469 
470 	cpu_cap = capacity_orig_of(cpu);
471 
472 	return cpu_cap >= min(min_cap, max_cap);
473 }
474 #else
475 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
476 {
477 	return true;
478 }
479 #endif
480 
481 #ifdef CONFIG_RT_GROUP_SCHED
482 
483 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
484 {
485 	if (!rt_rq->tg)
486 		return RUNTIME_INF;
487 
488 	return rt_rq->rt_runtime;
489 }
490 
491 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
492 {
493 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
494 }
495 
496 typedef struct task_group *rt_rq_iter_t;
497 
498 static inline struct task_group *next_task_group(struct task_group *tg)
499 {
500 	do {
501 		tg = list_entry_rcu(tg->list.next,
502 			typeof(struct task_group), list);
503 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
504 
505 	if (&tg->list == &task_groups)
506 		tg = NULL;
507 
508 	return tg;
509 }
510 
511 #define for_each_rt_rq(rt_rq, iter, rq)					\
512 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
513 		(iter = next_task_group(iter)) &&			\
514 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
515 
516 #define for_each_sched_rt_entity(rt_se) \
517 	for (; rt_se; rt_se = rt_se->parent)
518 
519 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
520 {
521 	return rt_se->my_q;
522 }
523 
524 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
525 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
526 
527 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
528 {
529 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
530 	struct rq *rq = rq_of_rt_rq(rt_rq);
531 	struct sched_rt_entity *rt_se;
532 
533 	int cpu = cpu_of(rq);
534 
535 	rt_se = rt_rq->tg->rt_se[cpu];
536 
537 	if (rt_rq->rt_nr_running) {
538 		if (!rt_se)
539 			enqueue_top_rt_rq(rt_rq);
540 		else if (!on_rt_rq(rt_se))
541 			enqueue_rt_entity(rt_se, 0);
542 
543 		if (rt_rq->highest_prio.curr < curr->prio)
544 			resched_curr(rq);
545 	}
546 }
547 
548 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
549 {
550 	struct sched_rt_entity *rt_se;
551 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
552 
553 	rt_se = rt_rq->tg->rt_se[cpu];
554 
555 	if (!rt_se) {
556 		dequeue_top_rt_rq(rt_rq);
557 		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
558 		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
559 	}
560 	else if (on_rt_rq(rt_se))
561 		dequeue_rt_entity(rt_se, 0);
562 }
563 
564 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
565 {
566 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
567 }
568 
569 static int rt_se_boosted(struct sched_rt_entity *rt_se)
570 {
571 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
572 	struct task_struct *p;
573 
574 	if (rt_rq)
575 		return !!rt_rq->rt_nr_boosted;
576 
577 	p = rt_task_of(rt_se);
578 	return p->prio != p->normal_prio;
579 }
580 
581 #ifdef CONFIG_SMP
582 static inline const struct cpumask *sched_rt_period_mask(void)
583 {
584 	return this_rq()->rd->span;
585 }
586 #else
587 static inline const struct cpumask *sched_rt_period_mask(void)
588 {
589 	return cpu_online_mask;
590 }
591 #endif
592 
593 static inline
594 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
595 {
596 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
597 }
598 
599 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
600 {
601 	return &rt_rq->tg->rt_bandwidth;
602 }
603 
604 #else /* !CONFIG_RT_GROUP_SCHED */
605 
606 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
607 {
608 	return rt_rq->rt_runtime;
609 }
610 
611 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
612 {
613 	return ktime_to_ns(def_rt_bandwidth.rt_period);
614 }
615 
616 typedef struct rt_rq *rt_rq_iter_t;
617 
618 #define for_each_rt_rq(rt_rq, iter, rq) \
619 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
620 
621 #define for_each_sched_rt_entity(rt_se) \
622 	for (; rt_se; rt_se = NULL)
623 
624 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
625 {
626 	return NULL;
627 }
628 
629 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
630 {
631 	struct rq *rq = rq_of_rt_rq(rt_rq);
632 
633 	if (!rt_rq->rt_nr_running)
634 		return;
635 
636 	enqueue_top_rt_rq(rt_rq);
637 	resched_curr(rq);
638 }
639 
640 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
641 {
642 	dequeue_top_rt_rq(rt_rq);
643 }
644 
645 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
646 {
647 	return rt_rq->rt_throttled;
648 }
649 
650 static inline const struct cpumask *sched_rt_period_mask(void)
651 {
652 	return cpu_online_mask;
653 }
654 
655 static inline
656 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
657 {
658 	return &cpu_rq(cpu)->rt;
659 }
660 
661 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
662 {
663 	return &def_rt_bandwidth;
664 }
665 
666 #endif /* CONFIG_RT_GROUP_SCHED */
667 
668 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
669 {
670 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
671 
672 	return (hrtimer_active(&rt_b->rt_period_timer) ||
673 		rt_rq->rt_time < rt_b->rt_runtime);
674 }
675 
676 #ifdef CONFIG_SMP
677 /*
678  * We ran out of runtime, see if we can borrow some from our neighbours.
679  */
680 static void do_balance_runtime(struct rt_rq *rt_rq)
681 {
682 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
683 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
684 	int i, weight;
685 	u64 rt_period;
686 
687 	weight = cpumask_weight(rd->span);
688 
689 	raw_spin_lock(&rt_b->rt_runtime_lock);
690 	rt_period = ktime_to_ns(rt_b->rt_period);
691 	for_each_cpu(i, rd->span) {
692 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
693 		s64 diff;
694 
695 		if (iter == rt_rq)
696 			continue;
697 
698 		raw_spin_lock(&iter->rt_runtime_lock);
699 		/*
700 		 * Either all rqs have inf runtime and there's nothing to steal
701 		 * or __disable_runtime() below sets a specific rq to inf to
702 		 * indicate its been disabled and disalow stealing.
703 		 */
704 		if (iter->rt_runtime == RUNTIME_INF)
705 			goto next;
706 
707 		/*
708 		 * From runqueues with spare time, take 1/n part of their
709 		 * spare time, but no more than our period.
710 		 */
711 		diff = iter->rt_runtime - iter->rt_time;
712 		if (diff > 0) {
713 			diff = div_u64((u64)diff, weight);
714 			if (rt_rq->rt_runtime + diff > rt_period)
715 				diff = rt_period - rt_rq->rt_runtime;
716 			iter->rt_runtime -= diff;
717 			rt_rq->rt_runtime += diff;
718 			if (rt_rq->rt_runtime == rt_period) {
719 				raw_spin_unlock(&iter->rt_runtime_lock);
720 				break;
721 			}
722 		}
723 next:
724 		raw_spin_unlock(&iter->rt_runtime_lock);
725 	}
726 	raw_spin_unlock(&rt_b->rt_runtime_lock);
727 }
728 
729 /*
730  * Ensure this RQ takes back all the runtime it lend to its neighbours.
731  */
732 static void __disable_runtime(struct rq *rq)
733 {
734 	struct root_domain *rd = rq->rd;
735 	rt_rq_iter_t iter;
736 	struct rt_rq *rt_rq;
737 
738 	if (unlikely(!scheduler_running))
739 		return;
740 
741 	for_each_rt_rq(rt_rq, iter, rq) {
742 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
743 		s64 want;
744 		int i;
745 
746 		raw_spin_lock(&rt_b->rt_runtime_lock);
747 		raw_spin_lock(&rt_rq->rt_runtime_lock);
748 		/*
749 		 * Either we're all inf and nobody needs to borrow, or we're
750 		 * already disabled and thus have nothing to do, or we have
751 		 * exactly the right amount of runtime to take out.
752 		 */
753 		if (rt_rq->rt_runtime == RUNTIME_INF ||
754 				rt_rq->rt_runtime == rt_b->rt_runtime)
755 			goto balanced;
756 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
757 
758 		/*
759 		 * Calculate the difference between what we started out with
760 		 * and what we current have, that's the amount of runtime
761 		 * we lend and now have to reclaim.
762 		 */
763 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
764 
765 		/*
766 		 * Greedy reclaim, take back as much as we can.
767 		 */
768 		for_each_cpu(i, rd->span) {
769 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
770 			s64 diff;
771 
772 			/*
773 			 * Can't reclaim from ourselves or disabled runqueues.
774 			 */
775 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
776 				continue;
777 
778 			raw_spin_lock(&iter->rt_runtime_lock);
779 			if (want > 0) {
780 				diff = min_t(s64, iter->rt_runtime, want);
781 				iter->rt_runtime -= diff;
782 				want -= diff;
783 			} else {
784 				iter->rt_runtime -= want;
785 				want -= want;
786 			}
787 			raw_spin_unlock(&iter->rt_runtime_lock);
788 
789 			if (!want)
790 				break;
791 		}
792 
793 		raw_spin_lock(&rt_rq->rt_runtime_lock);
794 		/*
795 		 * We cannot be left wanting - that would mean some runtime
796 		 * leaked out of the system.
797 		 */
798 		BUG_ON(want);
799 balanced:
800 		/*
801 		 * Disable all the borrow logic by pretending we have inf
802 		 * runtime - in which case borrowing doesn't make sense.
803 		 */
804 		rt_rq->rt_runtime = RUNTIME_INF;
805 		rt_rq->rt_throttled = 0;
806 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
807 		raw_spin_unlock(&rt_b->rt_runtime_lock);
808 
809 		/* Make rt_rq available for pick_next_task() */
810 		sched_rt_rq_enqueue(rt_rq);
811 	}
812 }
813 
814 static void __enable_runtime(struct rq *rq)
815 {
816 	rt_rq_iter_t iter;
817 	struct rt_rq *rt_rq;
818 
819 	if (unlikely(!scheduler_running))
820 		return;
821 
822 	/*
823 	 * Reset each runqueue's bandwidth settings
824 	 */
825 	for_each_rt_rq(rt_rq, iter, rq) {
826 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
827 
828 		raw_spin_lock(&rt_b->rt_runtime_lock);
829 		raw_spin_lock(&rt_rq->rt_runtime_lock);
830 		rt_rq->rt_runtime = rt_b->rt_runtime;
831 		rt_rq->rt_time = 0;
832 		rt_rq->rt_throttled = 0;
833 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
834 		raw_spin_unlock(&rt_b->rt_runtime_lock);
835 	}
836 }
837 
838 static void balance_runtime(struct rt_rq *rt_rq)
839 {
840 	if (!sched_feat(RT_RUNTIME_SHARE))
841 		return;
842 
843 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
844 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
845 		do_balance_runtime(rt_rq);
846 		raw_spin_lock(&rt_rq->rt_runtime_lock);
847 	}
848 }
849 #else /* !CONFIG_SMP */
850 static inline void balance_runtime(struct rt_rq *rt_rq) {}
851 #endif /* CONFIG_SMP */
852 
853 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
854 {
855 	int i, idle = 1, throttled = 0;
856 	const struct cpumask *span;
857 
858 	span = sched_rt_period_mask();
859 #ifdef CONFIG_RT_GROUP_SCHED
860 	/*
861 	 * FIXME: isolated CPUs should really leave the root task group,
862 	 * whether they are isolcpus or were isolated via cpusets, lest
863 	 * the timer run on a CPU which does not service all runqueues,
864 	 * potentially leaving other CPUs indefinitely throttled.  If
865 	 * isolation is really required, the user will turn the throttle
866 	 * off to kill the perturbations it causes anyway.  Meanwhile,
867 	 * this maintains functionality for boot and/or troubleshooting.
868 	 */
869 	if (rt_b == &root_task_group.rt_bandwidth)
870 		span = cpu_online_mask;
871 #endif
872 	for_each_cpu(i, span) {
873 		int enqueue = 0;
874 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
875 		struct rq *rq = rq_of_rt_rq(rt_rq);
876 		int skip;
877 
878 		/*
879 		 * When span == cpu_online_mask, taking each rq->lock
880 		 * can be time-consuming. Try to avoid it when possible.
881 		 */
882 		raw_spin_lock(&rt_rq->rt_runtime_lock);
883 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
884 			rt_rq->rt_runtime = rt_b->rt_runtime;
885 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
886 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
887 		if (skip)
888 			continue;
889 
890 		raw_spin_lock(&rq->lock);
891 		update_rq_clock(rq);
892 
893 		if (rt_rq->rt_time) {
894 			u64 runtime;
895 
896 			raw_spin_lock(&rt_rq->rt_runtime_lock);
897 			if (rt_rq->rt_throttled)
898 				balance_runtime(rt_rq);
899 			runtime = rt_rq->rt_runtime;
900 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
901 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
902 				rt_rq->rt_throttled = 0;
903 				enqueue = 1;
904 
905 				/*
906 				 * When we're idle and a woken (rt) task is
907 				 * throttled check_preempt_curr() will set
908 				 * skip_update and the time between the wakeup
909 				 * and this unthrottle will get accounted as
910 				 * 'runtime'.
911 				 */
912 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
913 					rq_clock_cancel_skipupdate(rq);
914 			}
915 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
916 				idle = 0;
917 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
918 		} else if (rt_rq->rt_nr_running) {
919 			idle = 0;
920 			if (!rt_rq_throttled(rt_rq))
921 				enqueue = 1;
922 		}
923 		if (rt_rq->rt_throttled)
924 			throttled = 1;
925 
926 		if (enqueue)
927 			sched_rt_rq_enqueue(rt_rq);
928 		raw_spin_unlock(&rq->lock);
929 	}
930 
931 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
932 		return 1;
933 
934 	return idle;
935 }
936 
937 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
938 {
939 #ifdef CONFIG_RT_GROUP_SCHED
940 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
941 
942 	if (rt_rq)
943 		return rt_rq->highest_prio.curr;
944 #endif
945 
946 	return rt_task_of(rt_se)->prio;
947 }
948 
949 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
950 {
951 	u64 runtime = sched_rt_runtime(rt_rq);
952 
953 	if (rt_rq->rt_throttled)
954 		return rt_rq_throttled(rt_rq);
955 
956 	if (runtime >= sched_rt_period(rt_rq))
957 		return 0;
958 
959 	balance_runtime(rt_rq);
960 	runtime = sched_rt_runtime(rt_rq);
961 	if (runtime == RUNTIME_INF)
962 		return 0;
963 
964 	if (rt_rq->rt_time > runtime) {
965 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
966 
967 		/*
968 		 * Don't actually throttle groups that have no runtime assigned
969 		 * but accrue some time due to boosting.
970 		 */
971 		if (likely(rt_b->rt_runtime)) {
972 			rt_rq->rt_throttled = 1;
973 			printk_deferred_once("sched: RT throttling activated\n");
974 		} else {
975 			/*
976 			 * In case we did anyway, make it go away,
977 			 * replenishment is a joke, since it will replenish us
978 			 * with exactly 0 ns.
979 			 */
980 			rt_rq->rt_time = 0;
981 		}
982 
983 		if (rt_rq_throttled(rt_rq)) {
984 			sched_rt_rq_dequeue(rt_rq);
985 			return 1;
986 		}
987 	}
988 
989 	return 0;
990 }
991 
992 /*
993  * Update the current task's runtime statistics. Skip current tasks that
994  * are not in our scheduling class.
995  */
996 static void update_curr_rt(struct rq *rq)
997 {
998 	struct task_struct *curr = rq->curr;
999 	struct sched_rt_entity *rt_se = &curr->rt;
1000 	u64 delta_exec;
1001 	u64 now;
1002 
1003 	if (curr->sched_class != &rt_sched_class)
1004 		return;
1005 
1006 	now = rq_clock_task(rq);
1007 	delta_exec = now - curr->se.exec_start;
1008 	if (unlikely((s64)delta_exec <= 0))
1009 		return;
1010 
1011 	schedstat_set(curr->se.statistics.exec_max,
1012 		      max(curr->se.statistics.exec_max, delta_exec));
1013 
1014 	curr->se.sum_exec_runtime += delta_exec;
1015 	account_group_exec_runtime(curr, delta_exec);
1016 
1017 	curr->se.exec_start = now;
1018 	cgroup_account_cputime(curr, delta_exec);
1019 
1020 	if (!rt_bandwidth_enabled())
1021 		return;
1022 
1023 	for_each_sched_rt_entity(rt_se) {
1024 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1025 
1026 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1027 			raw_spin_lock(&rt_rq->rt_runtime_lock);
1028 			rt_rq->rt_time += delta_exec;
1029 			if (sched_rt_runtime_exceeded(rt_rq))
1030 				resched_curr(rq);
1031 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1032 		}
1033 	}
1034 }
1035 
1036 static void
1037 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1038 {
1039 	struct rq *rq = rq_of_rt_rq(rt_rq);
1040 
1041 	BUG_ON(&rq->rt != rt_rq);
1042 
1043 	if (!rt_rq->rt_queued)
1044 		return;
1045 
1046 	BUG_ON(!rq->nr_running);
1047 
1048 	sub_nr_running(rq, rt_rq->rt_nr_running);
1049 	rt_rq->rt_queued = 0;
1050 
1051 }
1052 
1053 static void
1054 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1055 {
1056 	struct rq *rq = rq_of_rt_rq(rt_rq);
1057 
1058 	BUG_ON(&rq->rt != rt_rq);
1059 
1060 	if (rt_rq->rt_queued)
1061 		return;
1062 
1063 	if (rt_rq_throttled(rt_rq))
1064 		return;
1065 
1066 	if (rt_rq->rt_nr_running) {
1067 		add_nr_running(rq, rt_rq->rt_nr_running);
1068 		rt_rq->rt_queued = 1;
1069 	}
1070 
1071 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1072 	cpufreq_update_util(rq, 0);
1073 }
1074 
1075 #if defined CONFIG_SMP
1076 
1077 static void
1078 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1079 {
1080 	struct rq *rq = rq_of_rt_rq(rt_rq);
1081 
1082 #ifdef CONFIG_RT_GROUP_SCHED
1083 	/*
1084 	 * Change rq's cpupri only if rt_rq is the top queue.
1085 	 */
1086 	if (&rq->rt != rt_rq)
1087 		return;
1088 #endif
1089 	if (rq->online && prio < prev_prio)
1090 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1091 }
1092 
1093 static void
1094 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1095 {
1096 	struct rq *rq = rq_of_rt_rq(rt_rq);
1097 
1098 #ifdef CONFIG_RT_GROUP_SCHED
1099 	/*
1100 	 * Change rq's cpupri only if rt_rq is the top queue.
1101 	 */
1102 	if (&rq->rt != rt_rq)
1103 		return;
1104 #endif
1105 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1106 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1107 }
1108 
1109 #else /* CONFIG_SMP */
1110 
1111 static inline
1112 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1113 static inline
1114 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1115 
1116 #endif /* CONFIG_SMP */
1117 
1118 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1119 static void
1120 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1121 {
1122 	int prev_prio = rt_rq->highest_prio.curr;
1123 
1124 	if (prio < prev_prio)
1125 		rt_rq->highest_prio.curr = prio;
1126 
1127 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1128 }
1129 
1130 static void
1131 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1132 {
1133 	int prev_prio = rt_rq->highest_prio.curr;
1134 
1135 	if (rt_rq->rt_nr_running) {
1136 
1137 		WARN_ON(prio < prev_prio);
1138 
1139 		/*
1140 		 * This may have been our highest task, and therefore
1141 		 * we may have some recomputation to do
1142 		 */
1143 		if (prio == prev_prio) {
1144 			struct rt_prio_array *array = &rt_rq->active;
1145 
1146 			rt_rq->highest_prio.curr =
1147 				sched_find_first_bit(array->bitmap);
1148 		}
1149 
1150 	} else
1151 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1152 
1153 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1154 }
1155 
1156 #else
1157 
1158 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1159 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1160 
1161 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1162 
1163 #ifdef CONFIG_RT_GROUP_SCHED
1164 
1165 static void
1166 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1167 {
1168 	if (rt_se_boosted(rt_se))
1169 		rt_rq->rt_nr_boosted++;
1170 
1171 	if (rt_rq->tg)
1172 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1173 }
1174 
1175 static void
1176 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1177 {
1178 	if (rt_se_boosted(rt_se))
1179 		rt_rq->rt_nr_boosted--;
1180 
1181 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1182 }
1183 
1184 #else /* CONFIG_RT_GROUP_SCHED */
1185 
1186 static void
1187 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1188 {
1189 	start_rt_bandwidth(&def_rt_bandwidth);
1190 }
1191 
1192 static inline
1193 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1194 
1195 #endif /* CONFIG_RT_GROUP_SCHED */
1196 
1197 static inline
1198 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1199 {
1200 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1201 
1202 	if (group_rq)
1203 		return group_rq->rt_nr_running;
1204 	else
1205 		return 1;
1206 }
1207 
1208 static inline
1209 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1210 {
1211 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1212 	struct task_struct *tsk;
1213 
1214 	if (group_rq)
1215 		return group_rq->rr_nr_running;
1216 
1217 	tsk = rt_task_of(rt_se);
1218 
1219 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1220 }
1221 
1222 static inline
1223 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1224 {
1225 	int prio = rt_se_prio(rt_se);
1226 
1227 	WARN_ON(!rt_prio(prio));
1228 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1229 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1230 
1231 	inc_rt_prio(rt_rq, prio);
1232 	inc_rt_migration(rt_se, rt_rq);
1233 	inc_rt_group(rt_se, rt_rq);
1234 }
1235 
1236 static inline
1237 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1238 {
1239 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1240 	WARN_ON(!rt_rq->rt_nr_running);
1241 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1242 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1243 
1244 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1245 	dec_rt_migration(rt_se, rt_rq);
1246 	dec_rt_group(rt_se, rt_rq);
1247 }
1248 
1249 /*
1250  * Change rt_se->run_list location unless SAVE && !MOVE
1251  *
1252  * assumes ENQUEUE/DEQUEUE flags match
1253  */
1254 static inline bool move_entity(unsigned int flags)
1255 {
1256 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1257 		return false;
1258 
1259 	return true;
1260 }
1261 
1262 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1263 {
1264 	list_del_init(&rt_se->run_list);
1265 
1266 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1267 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1268 
1269 	rt_se->on_list = 0;
1270 }
1271 
1272 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1273 {
1274 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1275 	struct rt_prio_array *array = &rt_rq->active;
1276 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1277 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1278 
1279 	/*
1280 	 * Don't enqueue the group if its throttled, or when empty.
1281 	 * The latter is a consequence of the former when a child group
1282 	 * get throttled and the current group doesn't have any other
1283 	 * active members.
1284 	 */
1285 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1286 		if (rt_se->on_list)
1287 			__delist_rt_entity(rt_se, array);
1288 		return;
1289 	}
1290 
1291 	if (move_entity(flags)) {
1292 		WARN_ON_ONCE(rt_se->on_list);
1293 		if (flags & ENQUEUE_HEAD)
1294 			list_add(&rt_se->run_list, queue);
1295 		else
1296 			list_add_tail(&rt_se->run_list, queue);
1297 
1298 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1299 		rt_se->on_list = 1;
1300 	}
1301 	rt_se->on_rq = 1;
1302 
1303 	inc_rt_tasks(rt_se, rt_rq);
1304 }
1305 
1306 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1307 {
1308 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1309 	struct rt_prio_array *array = &rt_rq->active;
1310 
1311 	if (move_entity(flags)) {
1312 		WARN_ON_ONCE(!rt_se->on_list);
1313 		__delist_rt_entity(rt_se, array);
1314 	}
1315 	rt_se->on_rq = 0;
1316 
1317 	dec_rt_tasks(rt_se, rt_rq);
1318 }
1319 
1320 /*
1321  * Because the prio of an upper entry depends on the lower
1322  * entries, we must remove entries top - down.
1323  */
1324 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1325 {
1326 	struct sched_rt_entity *back = NULL;
1327 
1328 	for_each_sched_rt_entity(rt_se) {
1329 		rt_se->back = back;
1330 		back = rt_se;
1331 	}
1332 
1333 	dequeue_top_rt_rq(rt_rq_of_se(back));
1334 
1335 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1336 		if (on_rt_rq(rt_se))
1337 			__dequeue_rt_entity(rt_se, flags);
1338 	}
1339 }
1340 
1341 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1342 {
1343 	struct rq *rq = rq_of_rt_se(rt_se);
1344 
1345 	dequeue_rt_stack(rt_se, flags);
1346 	for_each_sched_rt_entity(rt_se)
1347 		__enqueue_rt_entity(rt_se, flags);
1348 	enqueue_top_rt_rq(&rq->rt);
1349 }
1350 
1351 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1352 {
1353 	struct rq *rq = rq_of_rt_se(rt_se);
1354 
1355 	dequeue_rt_stack(rt_se, flags);
1356 
1357 	for_each_sched_rt_entity(rt_se) {
1358 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1359 
1360 		if (rt_rq && rt_rq->rt_nr_running)
1361 			__enqueue_rt_entity(rt_se, flags);
1362 	}
1363 	enqueue_top_rt_rq(&rq->rt);
1364 }
1365 
1366 /*
1367  * Adding/removing a task to/from a priority array:
1368  */
1369 static void
1370 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1371 {
1372 	struct sched_rt_entity *rt_se = &p->rt;
1373 
1374 	if (flags & ENQUEUE_WAKEUP)
1375 		rt_se->timeout = 0;
1376 
1377 	enqueue_rt_entity(rt_se, flags);
1378 
1379 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1380 		enqueue_pushable_task(rq, p);
1381 }
1382 
1383 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1384 {
1385 	struct sched_rt_entity *rt_se = &p->rt;
1386 
1387 	update_curr_rt(rq);
1388 	dequeue_rt_entity(rt_se, flags);
1389 
1390 	dequeue_pushable_task(rq, p);
1391 }
1392 
1393 /*
1394  * Put task to the head or the end of the run list without the overhead of
1395  * dequeue followed by enqueue.
1396  */
1397 static void
1398 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1399 {
1400 	if (on_rt_rq(rt_se)) {
1401 		struct rt_prio_array *array = &rt_rq->active;
1402 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1403 
1404 		if (head)
1405 			list_move(&rt_se->run_list, queue);
1406 		else
1407 			list_move_tail(&rt_se->run_list, queue);
1408 	}
1409 }
1410 
1411 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1412 {
1413 	struct sched_rt_entity *rt_se = &p->rt;
1414 	struct rt_rq *rt_rq;
1415 
1416 	for_each_sched_rt_entity(rt_se) {
1417 		rt_rq = rt_rq_of_se(rt_se);
1418 		requeue_rt_entity(rt_rq, rt_se, head);
1419 	}
1420 }
1421 
1422 static void yield_task_rt(struct rq *rq)
1423 {
1424 	requeue_task_rt(rq, rq->curr, 0);
1425 }
1426 
1427 #ifdef CONFIG_SMP
1428 static int find_lowest_rq(struct task_struct *task);
1429 
1430 static int
1431 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1432 {
1433 	struct task_struct *curr;
1434 	struct rq *rq;
1435 	bool test;
1436 
1437 	/* For anything but wake ups, just return the task_cpu */
1438 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1439 		goto out;
1440 
1441 	rq = cpu_rq(cpu);
1442 
1443 	rcu_read_lock();
1444 	curr = READ_ONCE(rq->curr); /* unlocked access */
1445 
1446 	/*
1447 	 * If the current task on @p's runqueue is an RT task, then
1448 	 * try to see if we can wake this RT task up on another
1449 	 * runqueue. Otherwise simply start this RT task
1450 	 * on its current runqueue.
1451 	 *
1452 	 * We want to avoid overloading runqueues. If the woken
1453 	 * task is a higher priority, then it will stay on this CPU
1454 	 * and the lower prio task should be moved to another CPU.
1455 	 * Even though this will probably make the lower prio task
1456 	 * lose its cache, we do not want to bounce a higher task
1457 	 * around just because it gave up its CPU, perhaps for a
1458 	 * lock?
1459 	 *
1460 	 * For equal prio tasks, we just let the scheduler sort it out.
1461 	 *
1462 	 * Otherwise, just let it ride on the affined RQ and the
1463 	 * post-schedule router will push the preempted task away
1464 	 *
1465 	 * This test is optimistic, if we get it wrong the load-balancer
1466 	 * will have to sort it out.
1467 	 *
1468 	 * We take into account the capacity of the CPU to ensure it fits the
1469 	 * requirement of the task - which is only important on heterogeneous
1470 	 * systems like big.LITTLE.
1471 	 */
1472 	test = curr &&
1473 	       unlikely(rt_task(curr)) &&
1474 	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1475 
1476 	if (test || !rt_task_fits_capacity(p, cpu)) {
1477 		int target = find_lowest_rq(p);
1478 
1479 		/*
1480 		 * Bail out if we were forcing a migration to find a better
1481 		 * fitting CPU but our search failed.
1482 		 */
1483 		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1484 			goto out_unlock;
1485 
1486 		/*
1487 		 * Don't bother moving it if the destination CPU is
1488 		 * not running a lower priority task.
1489 		 */
1490 		if (target != -1 &&
1491 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1492 			cpu = target;
1493 	}
1494 
1495 out_unlock:
1496 	rcu_read_unlock();
1497 
1498 out:
1499 	return cpu;
1500 }
1501 
1502 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1503 {
1504 	/*
1505 	 * Current can't be migrated, useless to reschedule,
1506 	 * let's hope p can move out.
1507 	 */
1508 	if (rq->curr->nr_cpus_allowed == 1 ||
1509 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1510 		return;
1511 
1512 	/*
1513 	 * p is migratable, so let's not schedule it and
1514 	 * see if it is pushed or pulled somewhere else.
1515 	 */
1516 	if (p->nr_cpus_allowed != 1 &&
1517 	    cpupri_find(&rq->rd->cpupri, p, NULL))
1518 		return;
1519 
1520 	/*
1521 	 * There appear to be other CPUs that can accept
1522 	 * the current task but none can run 'p', so lets reschedule
1523 	 * to try and push the current task away:
1524 	 */
1525 	requeue_task_rt(rq, p, 1);
1526 	resched_curr(rq);
1527 }
1528 
1529 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1530 {
1531 	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1532 		/*
1533 		 * This is OK, because current is on_cpu, which avoids it being
1534 		 * picked for load-balance and preemption/IRQs are still
1535 		 * disabled avoiding further scheduler activity on it and we've
1536 		 * not yet started the picking loop.
1537 		 */
1538 		rq_unpin_lock(rq, rf);
1539 		pull_rt_task(rq);
1540 		rq_repin_lock(rq, rf);
1541 	}
1542 
1543 	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1544 }
1545 #endif /* CONFIG_SMP */
1546 
1547 /*
1548  * Preempt the current task with a newly woken task if needed:
1549  */
1550 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1551 {
1552 	if (p->prio < rq->curr->prio) {
1553 		resched_curr(rq);
1554 		return;
1555 	}
1556 
1557 #ifdef CONFIG_SMP
1558 	/*
1559 	 * If:
1560 	 *
1561 	 * - the newly woken task is of equal priority to the current task
1562 	 * - the newly woken task is non-migratable while current is migratable
1563 	 * - current will be preempted on the next reschedule
1564 	 *
1565 	 * we should check to see if current can readily move to a different
1566 	 * cpu.  If so, we will reschedule to allow the push logic to try
1567 	 * to move current somewhere else, making room for our non-migratable
1568 	 * task.
1569 	 */
1570 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1571 		check_preempt_equal_prio(rq, p);
1572 #endif
1573 }
1574 
1575 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1576 {
1577 	p->se.exec_start = rq_clock_task(rq);
1578 
1579 	/* The running task is never eligible for pushing */
1580 	dequeue_pushable_task(rq, p);
1581 
1582 	if (!first)
1583 		return;
1584 
1585 	/*
1586 	 * If prev task was rt, put_prev_task() has already updated the
1587 	 * utilization. We only care of the case where we start to schedule a
1588 	 * rt task
1589 	 */
1590 	if (rq->curr->sched_class != &rt_sched_class)
1591 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1592 
1593 	rt_queue_push_tasks(rq);
1594 }
1595 
1596 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1597 						   struct rt_rq *rt_rq)
1598 {
1599 	struct rt_prio_array *array = &rt_rq->active;
1600 	struct sched_rt_entity *next = NULL;
1601 	struct list_head *queue;
1602 	int idx;
1603 
1604 	idx = sched_find_first_bit(array->bitmap);
1605 	BUG_ON(idx >= MAX_RT_PRIO);
1606 
1607 	queue = array->queue + idx;
1608 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1609 
1610 	return next;
1611 }
1612 
1613 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1614 {
1615 	struct sched_rt_entity *rt_se;
1616 	struct rt_rq *rt_rq  = &rq->rt;
1617 
1618 	do {
1619 		rt_se = pick_next_rt_entity(rq, rt_rq);
1620 		BUG_ON(!rt_se);
1621 		rt_rq = group_rt_rq(rt_se);
1622 	} while (rt_rq);
1623 
1624 	return rt_task_of(rt_se);
1625 }
1626 
1627 static struct task_struct *pick_next_task_rt(struct rq *rq)
1628 {
1629 	struct task_struct *p;
1630 
1631 	if (!sched_rt_runnable(rq))
1632 		return NULL;
1633 
1634 	p = _pick_next_task_rt(rq);
1635 	set_next_task_rt(rq, p, true);
1636 	return p;
1637 }
1638 
1639 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1640 {
1641 	update_curr_rt(rq);
1642 
1643 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1644 
1645 	/*
1646 	 * The previous task needs to be made eligible for pushing
1647 	 * if it is still active
1648 	 */
1649 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1650 		enqueue_pushable_task(rq, p);
1651 }
1652 
1653 #ifdef CONFIG_SMP
1654 
1655 /* Only try algorithms three times */
1656 #define RT_MAX_TRIES 3
1657 
1658 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1659 {
1660 	if (!task_running(rq, p) &&
1661 	    cpumask_test_cpu(cpu, p->cpus_ptr))
1662 		return 1;
1663 
1664 	return 0;
1665 }
1666 
1667 /*
1668  * Return the highest pushable rq's task, which is suitable to be executed
1669  * on the CPU, NULL otherwise
1670  */
1671 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1672 {
1673 	struct plist_head *head = &rq->rt.pushable_tasks;
1674 	struct task_struct *p;
1675 
1676 	if (!has_pushable_tasks(rq))
1677 		return NULL;
1678 
1679 	plist_for_each_entry(p, head, pushable_tasks) {
1680 		if (pick_rt_task(rq, p, cpu))
1681 			return p;
1682 	}
1683 
1684 	return NULL;
1685 }
1686 
1687 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1688 
1689 static int find_lowest_rq(struct task_struct *task)
1690 {
1691 	struct sched_domain *sd;
1692 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1693 	int this_cpu = smp_processor_id();
1694 	int cpu      = task_cpu(task);
1695 	int ret;
1696 
1697 	/* Make sure the mask is initialized first */
1698 	if (unlikely(!lowest_mask))
1699 		return -1;
1700 
1701 	if (task->nr_cpus_allowed == 1)
1702 		return -1; /* No other targets possible */
1703 
1704 	/*
1705 	 * If we're on asym system ensure we consider the different capacities
1706 	 * of the CPUs when searching for the lowest_mask.
1707 	 */
1708 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1709 
1710 		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1711 					  task, lowest_mask,
1712 					  rt_task_fits_capacity);
1713 	} else {
1714 
1715 		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1716 				  task, lowest_mask);
1717 	}
1718 
1719 	if (!ret)
1720 		return -1; /* No targets found */
1721 
1722 	/*
1723 	 * At this point we have built a mask of CPUs representing the
1724 	 * lowest priority tasks in the system.  Now we want to elect
1725 	 * the best one based on our affinity and topology.
1726 	 *
1727 	 * We prioritize the last CPU that the task executed on since
1728 	 * it is most likely cache-hot in that location.
1729 	 */
1730 	if (cpumask_test_cpu(cpu, lowest_mask))
1731 		return cpu;
1732 
1733 	/*
1734 	 * Otherwise, we consult the sched_domains span maps to figure
1735 	 * out which CPU is logically closest to our hot cache data.
1736 	 */
1737 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1738 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1739 
1740 	rcu_read_lock();
1741 	for_each_domain(cpu, sd) {
1742 		if (sd->flags & SD_WAKE_AFFINE) {
1743 			int best_cpu;
1744 
1745 			/*
1746 			 * "this_cpu" is cheaper to preempt than a
1747 			 * remote processor.
1748 			 */
1749 			if (this_cpu != -1 &&
1750 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1751 				rcu_read_unlock();
1752 				return this_cpu;
1753 			}
1754 
1755 			best_cpu = cpumask_first_and(lowest_mask,
1756 						     sched_domain_span(sd));
1757 			if (best_cpu < nr_cpu_ids) {
1758 				rcu_read_unlock();
1759 				return best_cpu;
1760 			}
1761 		}
1762 	}
1763 	rcu_read_unlock();
1764 
1765 	/*
1766 	 * And finally, if there were no matches within the domains
1767 	 * just give the caller *something* to work with from the compatible
1768 	 * locations.
1769 	 */
1770 	if (this_cpu != -1)
1771 		return this_cpu;
1772 
1773 	cpu = cpumask_any(lowest_mask);
1774 	if (cpu < nr_cpu_ids)
1775 		return cpu;
1776 
1777 	return -1;
1778 }
1779 
1780 /* Will lock the rq it finds */
1781 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1782 {
1783 	struct rq *lowest_rq = NULL;
1784 	int tries;
1785 	int cpu;
1786 
1787 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1788 		cpu = find_lowest_rq(task);
1789 
1790 		if ((cpu == -1) || (cpu == rq->cpu))
1791 			break;
1792 
1793 		lowest_rq = cpu_rq(cpu);
1794 
1795 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1796 			/*
1797 			 * Target rq has tasks of equal or higher priority,
1798 			 * retrying does not release any lock and is unlikely
1799 			 * to yield a different result.
1800 			 */
1801 			lowest_rq = NULL;
1802 			break;
1803 		}
1804 
1805 		/* if the prio of this runqueue changed, try again */
1806 		if (double_lock_balance(rq, lowest_rq)) {
1807 			/*
1808 			 * We had to unlock the run queue. In
1809 			 * the mean time, task could have
1810 			 * migrated already or had its affinity changed.
1811 			 * Also make sure that it wasn't scheduled on its rq.
1812 			 */
1813 			if (unlikely(task_rq(task) != rq ||
1814 				     !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
1815 				     task_running(rq, task) ||
1816 				     !rt_task(task) ||
1817 				     !task_on_rq_queued(task))) {
1818 
1819 				double_unlock_balance(rq, lowest_rq);
1820 				lowest_rq = NULL;
1821 				break;
1822 			}
1823 		}
1824 
1825 		/* If this rq is still suitable use it. */
1826 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1827 			break;
1828 
1829 		/* try again */
1830 		double_unlock_balance(rq, lowest_rq);
1831 		lowest_rq = NULL;
1832 	}
1833 
1834 	return lowest_rq;
1835 }
1836 
1837 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1838 {
1839 	struct task_struct *p;
1840 
1841 	if (!has_pushable_tasks(rq))
1842 		return NULL;
1843 
1844 	p = plist_first_entry(&rq->rt.pushable_tasks,
1845 			      struct task_struct, pushable_tasks);
1846 
1847 	BUG_ON(rq->cpu != task_cpu(p));
1848 	BUG_ON(task_current(rq, p));
1849 	BUG_ON(p->nr_cpus_allowed <= 1);
1850 
1851 	BUG_ON(!task_on_rq_queued(p));
1852 	BUG_ON(!rt_task(p));
1853 
1854 	return p;
1855 }
1856 
1857 /*
1858  * If the current CPU has more than one RT task, see if the non
1859  * running task can migrate over to a CPU that is running a task
1860  * of lesser priority.
1861  */
1862 static int push_rt_task(struct rq *rq)
1863 {
1864 	struct task_struct *next_task;
1865 	struct rq *lowest_rq;
1866 	int ret = 0;
1867 
1868 	if (!rq->rt.overloaded)
1869 		return 0;
1870 
1871 	next_task = pick_next_pushable_task(rq);
1872 	if (!next_task)
1873 		return 0;
1874 
1875 retry:
1876 	if (WARN_ON(next_task == rq->curr))
1877 		return 0;
1878 
1879 	/*
1880 	 * It's possible that the next_task slipped in of
1881 	 * higher priority than current. If that's the case
1882 	 * just reschedule current.
1883 	 */
1884 	if (unlikely(next_task->prio < rq->curr->prio)) {
1885 		resched_curr(rq);
1886 		return 0;
1887 	}
1888 
1889 	/* We might release rq lock */
1890 	get_task_struct(next_task);
1891 
1892 	/* find_lock_lowest_rq locks the rq if found */
1893 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1894 	if (!lowest_rq) {
1895 		struct task_struct *task;
1896 		/*
1897 		 * find_lock_lowest_rq releases rq->lock
1898 		 * so it is possible that next_task has migrated.
1899 		 *
1900 		 * We need to make sure that the task is still on the same
1901 		 * run-queue and is also still the next task eligible for
1902 		 * pushing.
1903 		 */
1904 		task = pick_next_pushable_task(rq);
1905 		if (task == next_task) {
1906 			/*
1907 			 * The task hasn't migrated, and is still the next
1908 			 * eligible task, but we failed to find a run-queue
1909 			 * to push it to.  Do not retry in this case, since
1910 			 * other CPUs will pull from us when ready.
1911 			 */
1912 			goto out;
1913 		}
1914 
1915 		if (!task)
1916 			/* No more tasks, just exit */
1917 			goto out;
1918 
1919 		/*
1920 		 * Something has shifted, try again.
1921 		 */
1922 		put_task_struct(next_task);
1923 		next_task = task;
1924 		goto retry;
1925 	}
1926 
1927 	deactivate_task(rq, next_task, 0);
1928 	set_task_cpu(next_task, lowest_rq->cpu);
1929 	activate_task(lowest_rq, next_task, 0);
1930 	ret = 1;
1931 
1932 	resched_curr(lowest_rq);
1933 
1934 	double_unlock_balance(rq, lowest_rq);
1935 
1936 out:
1937 	put_task_struct(next_task);
1938 
1939 	return ret;
1940 }
1941 
1942 static void push_rt_tasks(struct rq *rq)
1943 {
1944 	/* push_rt_task will return true if it moved an RT */
1945 	while (push_rt_task(rq))
1946 		;
1947 }
1948 
1949 #ifdef HAVE_RT_PUSH_IPI
1950 
1951 /*
1952  * When a high priority task schedules out from a CPU and a lower priority
1953  * task is scheduled in, a check is made to see if there's any RT tasks
1954  * on other CPUs that are waiting to run because a higher priority RT task
1955  * is currently running on its CPU. In this case, the CPU with multiple RT
1956  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1957  * up that may be able to run one of its non-running queued RT tasks.
1958  *
1959  * All CPUs with overloaded RT tasks need to be notified as there is currently
1960  * no way to know which of these CPUs have the highest priority task waiting
1961  * to run. Instead of trying to take a spinlock on each of these CPUs,
1962  * which has shown to cause large latency when done on machines with many
1963  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1964  * RT tasks waiting to run.
1965  *
1966  * Just sending an IPI to each of the CPUs is also an issue, as on large
1967  * count CPU machines, this can cause an IPI storm on a CPU, especially
1968  * if its the only CPU with multiple RT tasks queued, and a large number
1969  * of CPUs scheduling a lower priority task at the same time.
1970  *
1971  * Each root domain has its own irq work function that can iterate over
1972  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1973  * tassk must be checked if there's one or many CPUs that are lowering
1974  * their priority, there's a single irq work iterator that will try to
1975  * push off RT tasks that are waiting to run.
1976  *
1977  * When a CPU schedules a lower priority task, it will kick off the
1978  * irq work iterator that will jump to each CPU with overloaded RT tasks.
1979  * As it only takes the first CPU that schedules a lower priority task
1980  * to start the process, the rto_start variable is incremented and if
1981  * the atomic result is one, then that CPU will try to take the rto_lock.
1982  * This prevents high contention on the lock as the process handles all
1983  * CPUs scheduling lower priority tasks.
1984  *
1985  * All CPUs that are scheduling a lower priority task will increment the
1986  * rt_loop_next variable. This will make sure that the irq work iterator
1987  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1988  * priority task, even if the iterator is in the middle of a scan. Incrementing
1989  * the rt_loop_next will cause the iterator to perform another scan.
1990  *
1991  */
1992 static int rto_next_cpu(struct root_domain *rd)
1993 {
1994 	int next;
1995 	int cpu;
1996 
1997 	/*
1998 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1999 	 * rt_next_cpu() will simply return the first CPU found in
2000 	 * the rto_mask.
2001 	 *
2002 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2003 	 * will return the next CPU found in the rto_mask.
2004 	 *
2005 	 * If there are no more CPUs left in the rto_mask, then a check is made
2006 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2007 	 * the rto_lock held, but any CPU may increment the rto_loop_next
2008 	 * without any locking.
2009 	 */
2010 	for (;;) {
2011 
2012 		/* When rto_cpu is -1 this acts like cpumask_first() */
2013 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2014 
2015 		rd->rto_cpu = cpu;
2016 
2017 		if (cpu < nr_cpu_ids)
2018 			return cpu;
2019 
2020 		rd->rto_cpu = -1;
2021 
2022 		/*
2023 		 * ACQUIRE ensures we see the @rto_mask changes
2024 		 * made prior to the @next value observed.
2025 		 *
2026 		 * Matches WMB in rt_set_overload().
2027 		 */
2028 		next = atomic_read_acquire(&rd->rto_loop_next);
2029 
2030 		if (rd->rto_loop == next)
2031 			break;
2032 
2033 		rd->rto_loop = next;
2034 	}
2035 
2036 	return -1;
2037 }
2038 
2039 static inline bool rto_start_trylock(atomic_t *v)
2040 {
2041 	return !atomic_cmpxchg_acquire(v, 0, 1);
2042 }
2043 
2044 static inline void rto_start_unlock(atomic_t *v)
2045 {
2046 	atomic_set_release(v, 0);
2047 }
2048 
2049 static void tell_cpu_to_push(struct rq *rq)
2050 {
2051 	int cpu = -1;
2052 
2053 	/* Keep the loop going if the IPI is currently active */
2054 	atomic_inc(&rq->rd->rto_loop_next);
2055 
2056 	/* Only one CPU can initiate a loop at a time */
2057 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2058 		return;
2059 
2060 	raw_spin_lock(&rq->rd->rto_lock);
2061 
2062 	/*
2063 	 * The rto_cpu is updated under the lock, if it has a valid CPU
2064 	 * then the IPI is still running and will continue due to the
2065 	 * update to loop_next, and nothing needs to be done here.
2066 	 * Otherwise it is finishing up and an ipi needs to be sent.
2067 	 */
2068 	if (rq->rd->rto_cpu < 0)
2069 		cpu = rto_next_cpu(rq->rd);
2070 
2071 	raw_spin_unlock(&rq->rd->rto_lock);
2072 
2073 	rto_start_unlock(&rq->rd->rto_loop_start);
2074 
2075 	if (cpu >= 0) {
2076 		/* Make sure the rd does not get freed while pushing */
2077 		sched_get_rd(rq->rd);
2078 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2079 	}
2080 }
2081 
2082 /* Called from hardirq context */
2083 void rto_push_irq_work_func(struct irq_work *work)
2084 {
2085 	struct root_domain *rd =
2086 		container_of(work, struct root_domain, rto_push_work);
2087 	struct rq *rq;
2088 	int cpu;
2089 
2090 	rq = this_rq();
2091 
2092 	/*
2093 	 * We do not need to grab the lock to check for has_pushable_tasks.
2094 	 * When it gets updated, a check is made if a push is possible.
2095 	 */
2096 	if (has_pushable_tasks(rq)) {
2097 		raw_spin_lock(&rq->lock);
2098 		push_rt_tasks(rq);
2099 		raw_spin_unlock(&rq->lock);
2100 	}
2101 
2102 	raw_spin_lock(&rd->rto_lock);
2103 
2104 	/* Pass the IPI to the next rt overloaded queue */
2105 	cpu = rto_next_cpu(rd);
2106 
2107 	raw_spin_unlock(&rd->rto_lock);
2108 
2109 	if (cpu < 0) {
2110 		sched_put_rd(rd);
2111 		return;
2112 	}
2113 
2114 	/* Try the next RT overloaded CPU */
2115 	irq_work_queue_on(&rd->rto_push_work, cpu);
2116 }
2117 #endif /* HAVE_RT_PUSH_IPI */
2118 
2119 static void pull_rt_task(struct rq *this_rq)
2120 {
2121 	int this_cpu = this_rq->cpu, cpu;
2122 	bool resched = false;
2123 	struct task_struct *p;
2124 	struct rq *src_rq;
2125 	int rt_overload_count = rt_overloaded(this_rq);
2126 
2127 	if (likely(!rt_overload_count))
2128 		return;
2129 
2130 	/*
2131 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2132 	 * see overloaded we must also see the rto_mask bit.
2133 	 */
2134 	smp_rmb();
2135 
2136 	/* If we are the only overloaded CPU do nothing */
2137 	if (rt_overload_count == 1 &&
2138 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2139 		return;
2140 
2141 #ifdef HAVE_RT_PUSH_IPI
2142 	if (sched_feat(RT_PUSH_IPI)) {
2143 		tell_cpu_to_push(this_rq);
2144 		return;
2145 	}
2146 #endif
2147 
2148 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2149 		if (this_cpu == cpu)
2150 			continue;
2151 
2152 		src_rq = cpu_rq(cpu);
2153 
2154 		/*
2155 		 * Don't bother taking the src_rq->lock if the next highest
2156 		 * task is known to be lower-priority than our current task.
2157 		 * This may look racy, but if this value is about to go
2158 		 * logically higher, the src_rq will push this task away.
2159 		 * And if its going logically lower, we do not care
2160 		 */
2161 		if (src_rq->rt.highest_prio.next >=
2162 		    this_rq->rt.highest_prio.curr)
2163 			continue;
2164 
2165 		/*
2166 		 * We can potentially drop this_rq's lock in
2167 		 * double_lock_balance, and another CPU could
2168 		 * alter this_rq
2169 		 */
2170 		double_lock_balance(this_rq, src_rq);
2171 
2172 		/*
2173 		 * We can pull only a task, which is pushable
2174 		 * on its rq, and no others.
2175 		 */
2176 		p = pick_highest_pushable_task(src_rq, this_cpu);
2177 
2178 		/*
2179 		 * Do we have an RT task that preempts
2180 		 * the to-be-scheduled task?
2181 		 */
2182 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2183 			WARN_ON(p == src_rq->curr);
2184 			WARN_ON(!task_on_rq_queued(p));
2185 
2186 			/*
2187 			 * There's a chance that p is higher in priority
2188 			 * than what's currently running on its CPU.
2189 			 * This is just that p is wakeing up and hasn't
2190 			 * had a chance to schedule. We only pull
2191 			 * p if it is lower in priority than the
2192 			 * current task on the run queue
2193 			 */
2194 			if (p->prio < src_rq->curr->prio)
2195 				goto skip;
2196 
2197 			resched = true;
2198 
2199 			deactivate_task(src_rq, p, 0);
2200 			set_task_cpu(p, this_cpu);
2201 			activate_task(this_rq, p, 0);
2202 			/*
2203 			 * We continue with the search, just in
2204 			 * case there's an even higher prio task
2205 			 * in another runqueue. (low likelihood
2206 			 * but possible)
2207 			 */
2208 		}
2209 skip:
2210 		double_unlock_balance(this_rq, src_rq);
2211 	}
2212 
2213 	if (resched)
2214 		resched_curr(this_rq);
2215 }
2216 
2217 /*
2218  * If we are not running and we are not going to reschedule soon, we should
2219  * try to push tasks away now
2220  */
2221 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2222 {
2223 	bool need_to_push = !task_running(rq, p) &&
2224 			    !test_tsk_need_resched(rq->curr) &&
2225 			    p->nr_cpus_allowed > 1 &&
2226 			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2227 			    (rq->curr->nr_cpus_allowed < 2 ||
2228 			     rq->curr->prio <= p->prio);
2229 
2230 	if (need_to_push)
2231 		push_rt_tasks(rq);
2232 }
2233 
2234 /* Assumes rq->lock is held */
2235 static void rq_online_rt(struct rq *rq)
2236 {
2237 	if (rq->rt.overloaded)
2238 		rt_set_overload(rq);
2239 
2240 	__enable_runtime(rq);
2241 
2242 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2243 }
2244 
2245 /* Assumes rq->lock is held */
2246 static void rq_offline_rt(struct rq *rq)
2247 {
2248 	if (rq->rt.overloaded)
2249 		rt_clear_overload(rq);
2250 
2251 	__disable_runtime(rq);
2252 
2253 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2254 }
2255 
2256 /*
2257  * When switch from the rt queue, we bring ourselves to a position
2258  * that we might want to pull RT tasks from other runqueues.
2259  */
2260 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2261 {
2262 	/*
2263 	 * If there are other RT tasks then we will reschedule
2264 	 * and the scheduling of the other RT tasks will handle
2265 	 * the balancing. But if we are the last RT task
2266 	 * we may need to handle the pulling of RT tasks
2267 	 * now.
2268 	 */
2269 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2270 		return;
2271 
2272 	rt_queue_pull_task(rq);
2273 }
2274 
2275 void __init init_sched_rt_class(void)
2276 {
2277 	unsigned int i;
2278 
2279 	for_each_possible_cpu(i) {
2280 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2281 					GFP_KERNEL, cpu_to_node(i));
2282 	}
2283 }
2284 #endif /* CONFIG_SMP */
2285 
2286 /*
2287  * When switching a task to RT, we may overload the runqueue
2288  * with RT tasks. In this case we try to push them off to
2289  * other runqueues.
2290  */
2291 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2292 {
2293 	/*
2294 	 * If we are already running, then there's nothing
2295 	 * that needs to be done. But if we are not running
2296 	 * we may need to preempt the current running task.
2297 	 * If that current running task is also an RT task
2298 	 * then see if we can move to another run queue.
2299 	 */
2300 	if (task_on_rq_queued(p) && rq->curr != p) {
2301 #ifdef CONFIG_SMP
2302 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2303 			rt_queue_push_tasks(rq);
2304 #endif /* CONFIG_SMP */
2305 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2306 			resched_curr(rq);
2307 	}
2308 }
2309 
2310 /*
2311  * Priority of the task has changed. This may cause
2312  * us to initiate a push or pull.
2313  */
2314 static void
2315 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2316 {
2317 	if (!task_on_rq_queued(p))
2318 		return;
2319 
2320 	if (rq->curr == p) {
2321 #ifdef CONFIG_SMP
2322 		/*
2323 		 * If our priority decreases while running, we
2324 		 * may need to pull tasks to this runqueue.
2325 		 */
2326 		if (oldprio < p->prio)
2327 			rt_queue_pull_task(rq);
2328 
2329 		/*
2330 		 * If there's a higher priority task waiting to run
2331 		 * then reschedule.
2332 		 */
2333 		if (p->prio > rq->rt.highest_prio.curr)
2334 			resched_curr(rq);
2335 #else
2336 		/* For UP simply resched on drop of prio */
2337 		if (oldprio < p->prio)
2338 			resched_curr(rq);
2339 #endif /* CONFIG_SMP */
2340 	} else {
2341 		/*
2342 		 * This task is not running, but if it is
2343 		 * greater than the current running task
2344 		 * then reschedule.
2345 		 */
2346 		if (p->prio < rq->curr->prio)
2347 			resched_curr(rq);
2348 	}
2349 }
2350 
2351 #ifdef CONFIG_POSIX_TIMERS
2352 static void watchdog(struct rq *rq, struct task_struct *p)
2353 {
2354 	unsigned long soft, hard;
2355 
2356 	/* max may change after cur was read, this will be fixed next tick */
2357 	soft = task_rlimit(p, RLIMIT_RTTIME);
2358 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2359 
2360 	if (soft != RLIM_INFINITY) {
2361 		unsigned long next;
2362 
2363 		if (p->rt.watchdog_stamp != jiffies) {
2364 			p->rt.timeout++;
2365 			p->rt.watchdog_stamp = jiffies;
2366 		}
2367 
2368 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2369 		if (p->rt.timeout > next) {
2370 			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2371 						    p->se.sum_exec_runtime);
2372 		}
2373 	}
2374 }
2375 #else
2376 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2377 #endif
2378 
2379 /*
2380  * scheduler tick hitting a task of our scheduling class.
2381  *
2382  * NOTE: This function can be called remotely by the tick offload that
2383  * goes along full dynticks. Therefore no local assumption can be made
2384  * and everything must be accessed through the @rq and @curr passed in
2385  * parameters.
2386  */
2387 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2388 {
2389 	struct sched_rt_entity *rt_se = &p->rt;
2390 
2391 	update_curr_rt(rq);
2392 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2393 
2394 	watchdog(rq, p);
2395 
2396 	/*
2397 	 * RR tasks need a special form of timeslice management.
2398 	 * FIFO tasks have no timeslices.
2399 	 */
2400 	if (p->policy != SCHED_RR)
2401 		return;
2402 
2403 	if (--p->rt.time_slice)
2404 		return;
2405 
2406 	p->rt.time_slice = sched_rr_timeslice;
2407 
2408 	/*
2409 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2410 	 * the only element on the queue
2411 	 */
2412 	for_each_sched_rt_entity(rt_se) {
2413 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2414 			requeue_task_rt(rq, p, 0);
2415 			resched_curr(rq);
2416 			return;
2417 		}
2418 	}
2419 }
2420 
2421 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2422 {
2423 	/*
2424 	 * Time slice is 0 for SCHED_FIFO tasks
2425 	 */
2426 	if (task->policy == SCHED_RR)
2427 		return sched_rr_timeslice;
2428 	else
2429 		return 0;
2430 }
2431 
2432 const struct sched_class rt_sched_class = {
2433 	.next			= &fair_sched_class,
2434 	.enqueue_task		= enqueue_task_rt,
2435 	.dequeue_task		= dequeue_task_rt,
2436 	.yield_task		= yield_task_rt,
2437 
2438 	.check_preempt_curr	= check_preempt_curr_rt,
2439 
2440 	.pick_next_task		= pick_next_task_rt,
2441 	.put_prev_task		= put_prev_task_rt,
2442 	.set_next_task          = set_next_task_rt,
2443 
2444 #ifdef CONFIG_SMP
2445 	.balance		= balance_rt,
2446 	.select_task_rq		= select_task_rq_rt,
2447 	.set_cpus_allowed       = set_cpus_allowed_common,
2448 	.rq_online              = rq_online_rt,
2449 	.rq_offline             = rq_offline_rt,
2450 	.task_woken		= task_woken_rt,
2451 	.switched_from		= switched_from_rt,
2452 #endif
2453 
2454 	.task_tick		= task_tick_rt,
2455 
2456 	.get_rr_interval	= get_rr_interval_rt,
2457 
2458 	.prio_changed		= prio_changed_rt,
2459 	.switched_to		= switched_to_rt,
2460 
2461 	.update_curr		= update_curr_rt,
2462 
2463 #ifdef CONFIG_UCLAMP_TASK
2464 	.uclamp_enabled		= 1,
2465 #endif
2466 };
2467 
2468 #ifdef CONFIG_RT_GROUP_SCHED
2469 /*
2470  * Ensure that the real time constraints are schedulable.
2471  */
2472 static DEFINE_MUTEX(rt_constraints_mutex);
2473 
2474 static inline int tg_has_rt_tasks(struct task_group *tg)
2475 {
2476 	struct task_struct *task;
2477 	struct css_task_iter it;
2478 	int ret = 0;
2479 
2480 	/*
2481 	 * Autogroups do not have RT tasks; see autogroup_create().
2482 	 */
2483 	if (task_group_is_autogroup(tg))
2484 		return 0;
2485 
2486 	css_task_iter_start(&tg->css, 0, &it);
2487 	while (!ret && (task = css_task_iter_next(&it)))
2488 		ret |= rt_task(task);
2489 	css_task_iter_end(&it);
2490 
2491 	return ret;
2492 }
2493 
2494 struct rt_schedulable_data {
2495 	struct task_group *tg;
2496 	u64 rt_period;
2497 	u64 rt_runtime;
2498 };
2499 
2500 static int tg_rt_schedulable(struct task_group *tg, void *data)
2501 {
2502 	struct rt_schedulable_data *d = data;
2503 	struct task_group *child;
2504 	unsigned long total, sum = 0;
2505 	u64 period, runtime;
2506 
2507 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2508 	runtime = tg->rt_bandwidth.rt_runtime;
2509 
2510 	if (tg == d->tg) {
2511 		period = d->rt_period;
2512 		runtime = d->rt_runtime;
2513 	}
2514 
2515 	/*
2516 	 * Cannot have more runtime than the period.
2517 	 */
2518 	if (runtime > period && runtime != RUNTIME_INF)
2519 		return -EINVAL;
2520 
2521 	/*
2522 	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2523 	 */
2524 	if (rt_bandwidth_enabled() && !runtime &&
2525 	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2526 		return -EBUSY;
2527 
2528 	total = to_ratio(period, runtime);
2529 
2530 	/*
2531 	 * Nobody can have more than the global setting allows.
2532 	 */
2533 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2534 		return -EINVAL;
2535 
2536 	/*
2537 	 * The sum of our children's runtime should not exceed our own.
2538 	 */
2539 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2540 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2541 		runtime = child->rt_bandwidth.rt_runtime;
2542 
2543 		if (child == d->tg) {
2544 			period = d->rt_period;
2545 			runtime = d->rt_runtime;
2546 		}
2547 
2548 		sum += to_ratio(period, runtime);
2549 	}
2550 
2551 	if (sum > total)
2552 		return -EINVAL;
2553 
2554 	return 0;
2555 }
2556 
2557 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2558 {
2559 	int ret;
2560 
2561 	struct rt_schedulable_data data = {
2562 		.tg = tg,
2563 		.rt_period = period,
2564 		.rt_runtime = runtime,
2565 	};
2566 
2567 	rcu_read_lock();
2568 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2569 	rcu_read_unlock();
2570 
2571 	return ret;
2572 }
2573 
2574 static int tg_set_rt_bandwidth(struct task_group *tg,
2575 		u64 rt_period, u64 rt_runtime)
2576 {
2577 	int i, err = 0;
2578 
2579 	/*
2580 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2581 	 * kernel creating (and or operating) RT threads.
2582 	 */
2583 	if (tg == &root_task_group && rt_runtime == 0)
2584 		return -EINVAL;
2585 
2586 	/* No period doesn't make any sense. */
2587 	if (rt_period == 0)
2588 		return -EINVAL;
2589 
2590 	/*
2591 	 * Bound quota to defend quota against overflow during bandwidth shift.
2592 	 */
2593 	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2594 		return -EINVAL;
2595 
2596 	mutex_lock(&rt_constraints_mutex);
2597 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2598 	if (err)
2599 		goto unlock;
2600 
2601 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2602 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2603 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2604 
2605 	for_each_possible_cpu(i) {
2606 		struct rt_rq *rt_rq = tg->rt_rq[i];
2607 
2608 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2609 		rt_rq->rt_runtime = rt_runtime;
2610 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2611 	}
2612 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2613 unlock:
2614 	mutex_unlock(&rt_constraints_mutex);
2615 
2616 	return err;
2617 }
2618 
2619 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2620 {
2621 	u64 rt_runtime, rt_period;
2622 
2623 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2624 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2625 	if (rt_runtime_us < 0)
2626 		rt_runtime = RUNTIME_INF;
2627 	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2628 		return -EINVAL;
2629 
2630 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2631 }
2632 
2633 long sched_group_rt_runtime(struct task_group *tg)
2634 {
2635 	u64 rt_runtime_us;
2636 
2637 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2638 		return -1;
2639 
2640 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2641 	do_div(rt_runtime_us, NSEC_PER_USEC);
2642 	return rt_runtime_us;
2643 }
2644 
2645 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2646 {
2647 	u64 rt_runtime, rt_period;
2648 
2649 	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2650 		return -EINVAL;
2651 
2652 	rt_period = rt_period_us * NSEC_PER_USEC;
2653 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2654 
2655 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2656 }
2657 
2658 long sched_group_rt_period(struct task_group *tg)
2659 {
2660 	u64 rt_period_us;
2661 
2662 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2663 	do_div(rt_period_us, NSEC_PER_USEC);
2664 	return rt_period_us;
2665 }
2666 
2667 static int sched_rt_global_constraints(void)
2668 {
2669 	int ret = 0;
2670 
2671 	mutex_lock(&rt_constraints_mutex);
2672 	ret = __rt_schedulable(NULL, 0, 0);
2673 	mutex_unlock(&rt_constraints_mutex);
2674 
2675 	return ret;
2676 }
2677 
2678 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2679 {
2680 	/* Don't accept realtime tasks when there is no way for them to run */
2681 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2682 		return 0;
2683 
2684 	return 1;
2685 }
2686 
2687 #else /* !CONFIG_RT_GROUP_SCHED */
2688 static int sched_rt_global_constraints(void)
2689 {
2690 	unsigned long flags;
2691 	int i;
2692 
2693 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2694 	for_each_possible_cpu(i) {
2695 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2696 
2697 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2698 		rt_rq->rt_runtime = global_rt_runtime();
2699 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2700 	}
2701 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2702 
2703 	return 0;
2704 }
2705 #endif /* CONFIG_RT_GROUP_SCHED */
2706 
2707 static int sched_rt_global_validate(void)
2708 {
2709 	if (sysctl_sched_rt_period <= 0)
2710 		return -EINVAL;
2711 
2712 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2713 		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2714 		 ((u64)sysctl_sched_rt_runtime *
2715 			NSEC_PER_USEC > max_rt_runtime)))
2716 		return -EINVAL;
2717 
2718 	return 0;
2719 }
2720 
2721 static void sched_rt_do_global(void)
2722 {
2723 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2724 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2725 }
2726 
2727 int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2728 		size_t *lenp, loff_t *ppos)
2729 {
2730 	int old_period, old_runtime;
2731 	static DEFINE_MUTEX(mutex);
2732 	int ret;
2733 
2734 	mutex_lock(&mutex);
2735 	old_period = sysctl_sched_rt_period;
2736 	old_runtime = sysctl_sched_rt_runtime;
2737 
2738 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2739 
2740 	if (!ret && write) {
2741 		ret = sched_rt_global_validate();
2742 		if (ret)
2743 			goto undo;
2744 
2745 		ret = sched_dl_global_validate();
2746 		if (ret)
2747 			goto undo;
2748 
2749 		ret = sched_rt_global_constraints();
2750 		if (ret)
2751 			goto undo;
2752 
2753 		sched_rt_do_global();
2754 		sched_dl_do_global();
2755 	}
2756 	if (0) {
2757 undo:
2758 		sysctl_sched_rt_period = old_period;
2759 		sysctl_sched_rt_runtime = old_runtime;
2760 	}
2761 	mutex_unlock(&mutex);
2762 
2763 	return ret;
2764 }
2765 
2766 int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2767 		size_t *lenp, loff_t *ppos)
2768 {
2769 	int ret;
2770 	static DEFINE_MUTEX(mutex);
2771 
2772 	mutex_lock(&mutex);
2773 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2774 	/*
2775 	 * Make sure that internally we keep jiffies.
2776 	 * Also, writing zero resets the timeslice to default:
2777 	 */
2778 	if (!ret && write) {
2779 		sched_rr_timeslice =
2780 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2781 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2782 	}
2783 	mutex_unlock(&mutex);
2784 
2785 	return ret;
2786 }
2787 
2788 #ifdef CONFIG_SCHED_DEBUG
2789 void print_rt_stats(struct seq_file *m, int cpu)
2790 {
2791 	rt_rq_iter_t iter;
2792 	struct rt_rq *rt_rq;
2793 
2794 	rcu_read_lock();
2795 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2796 		print_rt_rq(m, cpu, rt_rq);
2797 	rcu_read_unlock();
2798 }
2799 #endif /* CONFIG_SCHED_DEBUG */
2800