xref: /openbmc/linux/kernel/sched/rt.c (revision 2eb0f624b709e78ec8e2f4c3412947703db99301)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7 
8 int sched_rr_timeslice = RR_TIMESLICE;
9 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
10 
11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12 
13 struct rt_bandwidth def_rt_bandwidth;
14 
15 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
16 {
17 	struct rt_bandwidth *rt_b =
18 		container_of(timer, struct rt_bandwidth, rt_period_timer);
19 	int idle = 0;
20 	int overrun;
21 
22 	raw_spin_lock(&rt_b->rt_runtime_lock);
23 	for (;;) {
24 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
25 		if (!overrun)
26 			break;
27 
28 		raw_spin_unlock(&rt_b->rt_runtime_lock);
29 		idle = do_sched_rt_period_timer(rt_b, overrun);
30 		raw_spin_lock(&rt_b->rt_runtime_lock);
31 	}
32 	if (idle)
33 		rt_b->rt_period_active = 0;
34 	raw_spin_unlock(&rt_b->rt_runtime_lock);
35 
36 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
37 }
38 
39 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
40 {
41 	rt_b->rt_period = ns_to_ktime(period);
42 	rt_b->rt_runtime = runtime;
43 
44 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
45 
46 	hrtimer_init(&rt_b->rt_period_timer,
47 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
48 	rt_b->rt_period_timer.function = sched_rt_period_timer;
49 }
50 
51 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
52 {
53 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
54 		return;
55 
56 	raw_spin_lock(&rt_b->rt_runtime_lock);
57 	if (!rt_b->rt_period_active) {
58 		rt_b->rt_period_active = 1;
59 		/*
60 		 * SCHED_DEADLINE updates the bandwidth, as a run away
61 		 * RT task with a DL task could hog a CPU. But DL does
62 		 * not reset the period. If a deadline task was running
63 		 * without an RT task running, it can cause RT tasks to
64 		 * throttle when they start up. Kick the timer right away
65 		 * to update the period.
66 		 */
67 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
68 		hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
69 	}
70 	raw_spin_unlock(&rt_b->rt_runtime_lock);
71 }
72 
73 void init_rt_rq(struct rt_rq *rt_rq)
74 {
75 	struct rt_prio_array *array;
76 	int i;
77 
78 	array = &rt_rq->active;
79 	for (i = 0; i < MAX_RT_PRIO; i++) {
80 		INIT_LIST_HEAD(array->queue + i);
81 		__clear_bit(i, array->bitmap);
82 	}
83 	/* delimiter for bitsearch: */
84 	__set_bit(MAX_RT_PRIO, array->bitmap);
85 
86 #if defined CONFIG_SMP
87 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
88 	rt_rq->highest_prio.next = MAX_RT_PRIO;
89 	rt_rq->rt_nr_migratory = 0;
90 	rt_rq->overloaded = 0;
91 	plist_head_init(&rt_rq->pushable_tasks);
92 #endif /* CONFIG_SMP */
93 	/* We start is dequeued state, because no RT tasks are queued */
94 	rt_rq->rt_queued = 0;
95 
96 	rt_rq->rt_time = 0;
97 	rt_rq->rt_throttled = 0;
98 	rt_rq->rt_runtime = 0;
99 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
100 }
101 
102 #ifdef CONFIG_RT_GROUP_SCHED
103 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
104 {
105 	hrtimer_cancel(&rt_b->rt_period_timer);
106 }
107 
108 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
109 
110 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
111 {
112 #ifdef CONFIG_SCHED_DEBUG
113 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
114 #endif
115 	return container_of(rt_se, struct task_struct, rt);
116 }
117 
118 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
119 {
120 	return rt_rq->rq;
121 }
122 
123 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
124 {
125 	return rt_se->rt_rq;
126 }
127 
128 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
129 {
130 	struct rt_rq *rt_rq = rt_se->rt_rq;
131 
132 	return rt_rq->rq;
133 }
134 
135 void free_rt_sched_group(struct task_group *tg)
136 {
137 	int i;
138 
139 	if (tg->rt_se)
140 		destroy_rt_bandwidth(&tg->rt_bandwidth);
141 
142 	for_each_possible_cpu(i) {
143 		if (tg->rt_rq)
144 			kfree(tg->rt_rq[i]);
145 		if (tg->rt_se)
146 			kfree(tg->rt_se[i]);
147 	}
148 
149 	kfree(tg->rt_rq);
150 	kfree(tg->rt_se);
151 }
152 
153 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
154 		struct sched_rt_entity *rt_se, int cpu,
155 		struct sched_rt_entity *parent)
156 {
157 	struct rq *rq = cpu_rq(cpu);
158 
159 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
160 	rt_rq->rt_nr_boosted = 0;
161 	rt_rq->rq = rq;
162 	rt_rq->tg = tg;
163 
164 	tg->rt_rq[cpu] = rt_rq;
165 	tg->rt_se[cpu] = rt_se;
166 
167 	if (!rt_se)
168 		return;
169 
170 	if (!parent)
171 		rt_se->rt_rq = &rq->rt;
172 	else
173 		rt_se->rt_rq = parent->my_q;
174 
175 	rt_se->my_q = rt_rq;
176 	rt_se->parent = parent;
177 	INIT_LIST_HEAD(&rt_se->run_list);
178 }
179 
180 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
181 {
182 	struct rt_rq *rt_rq;
183 	struct sched_rt_entity *rt_se;
184 	int i;
185 
186 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
187 	if (!tg->rt_rq)
188 		goto err;
189 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
190 	if (!tg->rt_se)
191 		goto err;
192 
193 	init_rt_bandwidth(&tg->rt_bandwidth,
194 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
195 
196 	for_each_possible_cpu(i) {
197 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
198 				     GFP_KERNEL, cpu_to_node(i));
199 		if (!rt_rq)
200 			goto err;
201 
202 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
203 				     GFP_KERNEL, cpu_to_node(i));
204 		if (!rt_se)
205 			goto err_free_rq;
206 
207 		init_rt_rq(rt_rq);
208 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
209 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
210 	}
211 
212 	return 1;
213 
214 err_free_rq:
215 	kfree(rt_rq);
216 err:
217 	return 0;
218 }
219 
220 #else /* CONFIG_RT_GROUP_SCHED */
221 
222 #define rt_entity_is_task(rt_se) (1)
223 
224 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
225 {
226 	return container_of(rt_se, struct task_struct, rt);
227 }
228 
229 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
230 {
231 	return container_of(rt_rq, struct rq, rt);
232 }
233 
234 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
235 {
236 	struct task_struct *p = rt_task_of(rt_se);
237 
238 	return task_rq(p);
239 }
240 
241 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
242 {
243 	struct rq *rq = rq_of_rt_se(rt_se);
244 
245 	return &rq->rt;
246 }
247 
248 void free_rt_sched_group(struct task_group *tg) { }
249 
250 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
251 {
252 	return 1;
253 }
254 #endif /* CONFIG_RT_GROUP_SCHED */
255 
256 #ifdef CONFIG_SMP
257 
258 static void pull_rt_task(struct rq *this_rq);
259 
260 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
261 {
262 	/* Try to pull RT tasks here if we lower this rq's prio */
263 	return rq->rt.highest_prio.curr > prev->prio;
264 }
265 
266 static inline int rt_overloaded(struct rq *rq)
267 {
268 	return atomic_read(&rq->rd->rto_count);
269 }
270 
271 static inline void rt_set_overload(struct rq *rq)
272 {
273 	if (!rq->online)
274 		return;
275 
276 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
277 	/*
278 	 * Make sure the mask is visible before we set
279 	 * the overload count. That is checked to determine
280 	 * if we should look at the mask. It would be a shame
281 	 * if we looked at the mask, but the mask was not
282 	 * updated yet.
283 	 *
284 	 * Matched by the barrier in pull_rt_task().
285 	 */
286 	smp_wmb();
287 	atomic_inc(&rq->rd->rto_count);
288 }
289 
290 static inline void rt_clear_overload(struct rq *rq)
291 {
292 	if (!rq->online)
293 		return;
294 
295 	/* the order here really doesn't matter */
296 	atomic_dec(&rq->rd->rto_count);
297 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
298 }
299 
300 static void update_rt_migration(struct rt_rq *rt_rq)
301 {
302 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
303 		if (!rt_rq->overloaded) {
304 			rt_set_overload(rq_of_rt_rq(rt_rq));
305 			rt_rq->overloaded = 1;
306 		}
307 	} else if (rt_rq->overloaded) {
308 		rt_clear_overload(rq_of_rt_rq(rt_rq));
309 		rt_rq->overloaded = 0;
310 	}
311 }
312 
313 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
314 {
315 	struct task_struct *p;
316 
317 	if (!rt_entity_is_task(rt_se))
318 		return;
319 
320 	p = rt_task_of(rt_se);
321 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
322 
323 	rt_rq->rt_nr_total++;
324 	if (p->nr_cpus_allowed > 1)
325 		rt_rq->rt_nr_migratory++;
326 
327 	update_rt_migration(rt_rq);
328 }
329 
330 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
331 {
332 	struct task_struct *p;
333 
334 	if (!rt_entity_is_task(rt_se))
335 		return;
336 
337 	p = rt_task_of(rt_se);
338 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
339 
340 	rt_rq->rt_nr_total--;
341 	if (p->nr_cpus_allowed > 1)
342 		rt_rq->rt_nr_migratory--;
343 
344 	update_rt_migration(rt_rq);
345 }
346 
347 static inline int has_pushable_tasks(struct rq *rq)
348 {
349 	return !plist_head_empty(&rq->rt.pushable_tasks);
350 }
351 
352 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
353 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
354 
355 static void push_rt_tasks(struct rq *);
356 static void pull_rt_task(struct rq *);
357 
358 static inline void rt_queue_push_tasks(struct rq *rq)
359 {
360 	if (!has_pushable_tasks(rq))
361 		return;
362 
363 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
364 }
365 
366 static inline void rt_queue_pull_task(struct rq *rq)
367 {
368 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
369 }
370 
371 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
372 {
373 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
374 	plist_node_init(&p->pushable_tasks, p->prio);
375 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
376 
377 	/* Update the highest prio pushable task */
378 	if (p->prio < rq->rt.highest_prio.next)
379 		rq->rt.highest_prio.next = p->prio;
380 }
381 
382 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
383 {
384 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
385 
386 	/* Update the new highest prio pushable task */
387 	if (has_pushable_tasks(rq)) {
388 		p = plist_first_entry(&rq->rt.pushable_tasks,
389 				      struct task_struct, pushable_tasks);
390 		rq->rt.highest_prio.next = p->prio;
391 	} else
392 		rq->rt.highest_prio.next = MAX_RT_PRIO;
393 }
394 
395 #else
396 
397 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
398 {
399 }
400 
401 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
402 {
403 }
404 
405 static inline
406 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
407 {
408 }
409 
410 static inline
411 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
412 {
413 }
414 
415 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
416 {
417 	return false;
418 }
419 
420 static inline void pull_rt_task(struct rq *this_rq)
421 {
422 }
423 
424 static inline void rt_queue_push_tasks(struct rq *rq)
425 {
426 }
427 #endif /* CONFIG_SMP */
428 
429 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
430 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
431 
432 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
433 {
434 	return rt_se->on_rq;
435 }
436 
437 #ifdef CONFIG_RT_GROUP_SCHED
438 
439 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
440 {
441 	if (!rt_rq->tg)
442 		return RUNTIME_INF;
443 
444 	return rt_rq->rt_runtime;
445 }
446 
447 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
448 {
449 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
450 }
451 
452 typedef struct task_group *rt_rq_iter_t;
453 
454 static inline struct task_group *next_task_group(struct task_group *tg)
455 {
456 	do {
457 		tg = list_entry_rcu(tg->list.next,
458 			typeof(struct task_group), list);
459 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
460 
461 	if (&tg->list == &task_groups)
462 		tg = NULL;
463 
464 	return tg;
465 }
466 
467 #define for_each_rt_rq(rt_rq, iter, rq)					\
468 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
469 		(iter = next_task_group(iter)) &&			\
470 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
471 
472 #define for_each_sched_rt_entity(rt_se) \
473 	for (; rt_se; rt_se = rt_se->parent)
474 
475 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
476 {
477 	return rt_se->my_q;
478 }
479 
480 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
481 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
482 
483 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
484 {
485 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
486 	struct rq *rq = rq_of_rt_rq(rt_rq);
487 	struct sched_rt_entity *rt_se;
488 
489 	int cpu = cpu_of(rq);
490 
491 	rt_se = rt_rq->tg->rt_se[cpu];
492 
493 	if (rt_rq->rt_nr_running) {
494 		if (!rt_se)
495 			enqueue_top_rt_rq(rt_rq);
496 		else if (!on_rt_rq(rt_se))
497 			enqueue_rt_entity(rt_se, 0);
498 
499 		if (rt_rq->highest_prio.curr < curr->prio)
500 			resched_curr(rq);
501 	}
502 }
503 
504 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
505 {
506 	struct sched_rt_entity *rt_se;
507 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
508 
509 	rt_se = rt_rq->tg->rt_se[cpu];
510 
511 	if (!rt_se)
512 		dequeue_top_rt_rq(rt_rq);
513 	else if (on_rt_rq(rt_se))
514 		dequeue_rt_entity(rt_se, 0);
515 }
516 
517 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
518 {
519 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
520 }
521 
522 static int rt_se_boosted(struct sched_rt_entity *rt_se)
523 {
524 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
525 	struct task_struct *p;
526 
527 	if (rt_rq)
528 		return !!rt_rq->rt_nr_boosted;
529 
530 	p = rt_task_of(rt_se);
531 	return p->prio != p->normal_prio;
532 }
533 
534 #ifdef CONFIG_SMP
535 static inline const struct cpumask *sched_rt_period_mask(void)
536 {
537 	return this_rq()->rd->span;
538 }
539 #else
540 static inline const struct cpumask *sched_rt_period_mask(void)
541 {
542 	return cpu_online_mask;
543 }
544 #endif
545 
546 static inline
547 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
548 {
549 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
550 }
551 
552 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
553 {
554 	return &rt_rq->tg->rt_bandwidth;
555 }
556 
557 #else /* !CONFIG_RT_GROUP_SCHED */
558 
559 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
560 {
561 	return rt_rq->rt_runtime;
562 }
563 
564 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
565 {
566 	return ktime_to_ns(def_rt_bandwidth.rt_period);
567 }
568 
569 typedef struct rt_rq *rt_rq_iter_t;
570 
571 #define for_each_rt_rq(rt_rq, iter, rq) \
572 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
573 
574 #define for_each_sched_rt_entity(rt_se) \
575 	for (; rt_se; rt_se = NULL)
576 
577 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
578 {
579 	return NULL;
580 }
581 
582 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
583 {
584 	struct rq *rq = rq_of_rt_rq(rt_rq);
585 
586 	if (!rt_rq->rt_nr_running)
587 		return;
588 
589 	enqueue_top_rt_rq(rt_rq);
590 	resched_curr(rq);
591 }
592 
593 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
594 {
595 	dequeue_top_rt_rq(rt_rq);
596 }
597 
598 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
599 {
600 	return rt_rq->rt_throttled;
601 }
602 
603 static inline const struct cpumask *sched_rt_period_mask(void)
604 {
605 	return cpu_online_mask;
606 }
607 
608 static inline
609 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
610 {
611 	return &cpu_rq(cpu)->rt;
612 }
613 
614 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
615 {
616 	return &def_rt_bandwidth;
617 }
618 
619 #endif /* CONFIG_RT_GROUP_SCHED */
620 
621 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
622 {
623 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
624 
625 	return (hrtimer_active(&rt_b->rt_period_timer) ||
626 		rt_rq->rt_time < rt_b->rt_runtime);
627 }
628 
629 #ifdef CONFIG_SMP
630 /*
631  * We ran out of runtime, see if we can borrow some from our neighbours.
632  */
633 static void do_balance_runtime(struct rt_rq *rt_rq)
634 {
635 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
636 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
637 	int i, weight;
638 	u64 rt_period;
639 
640 	weight = cpumask_weight(rd->span);
641 
642 	raw_spin_lock(&rt_b->rt_runtime_lock);
643 	rt_period = ktime_to_ns(rt_b->rt_period);
644 	for_each_cpu(i, rd->span) {
645 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
646 		s64 diff;
647 
648 		if (iter == rt_rq)
649 			continue;
650 
651 		raw_spin_lock(&iter->rt_runtime_lock);
652 		/*
653 		 * Either all rqs have inf runtime and there's nothing to steal
654 		 * or __disable_runtime() below sets a specific rq to inf to
655 		 * indicate its been disabled and disalow stealing.
656 		 */
657 		if (iter->rt_runtime == RUNTIME_INF)
658 			goto next;
659 
660 		/*
661 		 * From runqueues with spare time, take 1/n part of their
662 		 * spare time, but no more than our period.
663 		 */
664 		diff = iter->rt_runtime - iter->rt_time;
665 		if (diff > 0) {
666 			diff = div_u64((u64)diff, weight);
667 			if (rt_rq->rt_runtime + diff > rt_period)
668 				diff = rt_period - rt_rq->rt_runtime;
669 			iter->rt_runtime -= diff;
670 			rt_rq->rt_runtime += diff;
671 			if (rt_rq->rt_runtime == rt_period) {
672 				raw_spin_unlock(&iter->rt_runtime_lock);
673 				break;
674 			}
675 		}
676 next:
677 		raw_spin_unlock(&iter->rt_runtime_lock);
678 	}
679 	raw_spin_unlock(&rt_b->rt_runtime_lock);
680 }
681 
682 /*
683  * Ensure this RQ takes back all the runtime it lend to its neighbours.
684  */
685 static void __disable_runtime(struct rq *rq)
686 {
687 	struct root_domain *rd = rq->rd;
688 	rt_rq_iter_t iter;
689 	struct rt_rq *rt_rq;
690 
691 	if (unlikely(!scheduler_running))
692 		return;
693 
694 	for_each_rt_rq(rt_rq, iter, rq) {
695 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
696 		s64 want;
697 		int i;
698 
699 		raw_spin_lock(&rt_b->rt_runtime_lock);
700 		raw_spin_lock(&rt_rq->rt_runtime_lock);
701 		/*
702 		 * Either we're all inf and nobody needs to borrow, or we're
703 		 * already disabled and thus have nothing to do, or we have
704 		 * exactly the right amount of runtime to take out.
705 		 */
706 		if (rt_rq->rt_runtime == RUNTIME_INF ||
707 				rt_rq->rt_runtime == rt_b->rt_runtime)
708 			goto balanced;
709 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
710 
711 		/*
712 		 * Calculate the difference between what we started out with
713 		 * and what we current have, that's the amount of runtime
714 		 * we lend and now have to reclaim.
715 		 */
716 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
717 
718 		/*
719 		 * Greedy reclaim, take back as much as we can.
720 		 */
721 		for_each_cpu(i, rd->span) {
722 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
723 			s64 diff;
724 
725 			/*
726 			 * Can't reclaim from ourselves or disabled runqueues.
727 			 */
728 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
729 				continue;
730 
731 			raw_spin_lock(&iter->rt_runtime_lock);
732 			if (want > 0) {
733 				diff = min_t(s64, iter->rt_runtime, want);
734 				iter->rt_runtime -= diff;
735 				want -= diff;
736 			} else {
737 				iter->rt_runtime -= want;
738 				want -= want;
739 			}
740 			raw_spin_unlock(&iter->rt_runtime_lock);
741 
742 			if (!want)
743 				break;
744 		}
745 
746 		raw_spin_lock(&rt_rq->rt_runtime_lock);
747 		/*
748 		 * We cannot be left wanting - that would mean some runtime
749 		 * leaked out of the system.
750 		 */
751 		BUG_ON(want);
752 balanced:
753 		/*
754 		 * Disable all the borrow logic by pretending we have inf
755 		 * runtime - in which case borrowing doesn't make sense.
756 		 */
757 		rt_rq->rt_runtime = RUNTIME_INF;
758 		rt_rq->rt_throttled = 0;
759 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
760 		raw_spin_unlock(&rt_b->rt_runtime_lock);
761 
762 		/* Make rt_rq available for pick_next_task() */
763 		sched_rt_rq_enqueue(rt_rq);
764 	}
765 }
766 
767 static void __enable_runtime(struct rq *rq)
768 {
769 	rt_rq_iter_t iter;
770 	struct rt_rq *rt_rq;
771 
772 	if (unlikely(!scheduler_running))
773 		return;
774 
775 	/*
776 	 * Reset each runqueue's bandwidth settings
777 	 */
778 	for_each_rt_rq(rt_rq, iter, rq) {
779 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
780 
781 		raw_spin_lock(&rt_b->rt_runtime_lock);
782 		raw_spin_lock(&rt_rq->rt_runtime_lock);
783 		rt_rq->rt_runtime = rt_b->rt_runtime;
784 		rt_rq->rt_time = 0;
785 		rt_rq->rt_throttled = 0;
786 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
787 		raw_spin_unlock(&rt_b->rt_runtime_lock);
788 	}
789 }
790 
791 static void balance_runtime(struct rt_rq *rt_rq)
792 {
793 	if (!sched_feat(RT_RUNTIME_SHARE))
794 		return;
795 
796 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
797 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
798 		do_balance_runtime(rt_rq);
799 		raw_spin_lock(&rt_rq->rt_runtime_lock);
800 	}
801 }
802 #else /* !CONFIG_SMP */
803 static inline void balance_runtime(struct rt_rq *rt_rq) {}
804 #endif /* CONFIG_SMP */
805 
806 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
807 {
808 	int i, idle = 1, throttled = 0;
809 	const struct cpumask *span;
810 
811 	span = sched_rt_period_mask();
812 #ifdef CONFIG_RT_GROUP_SCHED
813 	/*
814 	 * FIXME: isolated CPUs should really leave the root task group,
815 	 * whether they are isolcpus or were isolated via cpusets, lest
816 	 * the timer run on a CPU which does not service all runqueues,
817 	 * potentially leaving other CPUs indefinitely throttled.  If
818 	 * isolation is really required, the user will turn the throttle
819 	 * off to kill the perturbations it causes anyway.  Meanwhile,
820 	 * this maintains functionality for boot and/or troubleshooting.
821 	 */
822 	if (rt_b == &root_task_group.rt_bandwidth)
823 		span = cpu_online_mask;
824 #endif
825 	for_each_cpu(i, span) {
826 		int enqueue = 0;
827 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
828 		struct rq *rq = rq_of_rt_rq(rt_rq);
829 		int skip;
830 
831 		/*
832 		 * When span == cpu_online_mask, taking each rq->lock
833 		 * can be time-consuming. Try to avoid it when possible.
834 		 */
835 		raw_spin_lock(&rt_rq->rt_runtime_lock);
836 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
837 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
838 		if (skip)
839 			continue;
840 
841 		raw_spin_lock(&rq->lock);
842 		if (rt_rq->rt_time) {
843 			u64 runtime;
844 
845 			raw_spin_lock(&rt_rq->rt_runtime_lock);
846 			if (rt_rq->rt_throttled)
847 				balance_runtime(rt_rq);
848 			runtime = rt_rq->rt_runtime;
849 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
850 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
851 				rt_rq->rt_throttled = 0;
852 				enqueue = 1;
853 
854 				/*
855 				 * When we're idle and a woken (rt) task is
856 				 * throttled check_preempt_curr() will set
857 				 * skip_update and the time between the wakeup
858 				 * and this unthrottle will get accounted as
859 				 * 'runtime'.
860 				 */
861 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
862 					rq_clock_skip_update(rq, false);
863 			}
864 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
865 				idle = 0;
866 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
867 		} else if (rt_rq->rt_nr_running) {
868 			idle = 0;
869 			if (!rt_rq_throttled(rt_rq))
870 				enqueue = 1;
871 		}
872 		if (rt_rq->rt_throttled)
873 			throttled = 1;
874 
875 		if (enqueue)
876 			sched_rt_rq_enqueue(rt_rq);
877 		raw_spin_unlock(&rq->lock);
878 	}
879 
880 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
881 		return 1;
882 
883 	return idle;
884 }
885 
886 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
887 {
888 #ifdef CONFIG_RT_GROUP_SCHED
889 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
890 
891 	if (rt_rq)
892 		return rt_rq->highest_prio.curr;
893 #endif
894 
895 	return rt_task_of(rt_se)->prio;
896 }
897 
898 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
899 {
900 	u64 runtime = sched_rt_runtime(rt_rq);
901 
902 	if (rt_rq->rt_throttled)
903 		return rt_rq_throttled(rt_rq);
904 
905 	if (runtime >= sched_rt_period(rt_rq))
906 		return 0;
907 
908 	balance_runtime(rt_rq);
909 	runtime = sched_rt_runtime(rt_rq);
910 	if (runtime == RUNTIME_INF)
911 		return 0;
912 
913 	if (rt_rq->rt_time > runtime) {
914 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
915 
916 		/*
917 		 * Don't actually throttle groups that have no runtime assigned
918 		 * but accrue some time due to boosting.
919 		 */
920 		if (likely(rt_b->rt_runtime)) {
921 			rt_rq->rt_throttled = 1;
922 			printk_deferred_once("sched: RT throttling activated\n");
923 		} else {
924 			/*
925 			 * In case we did anyway, make it go away,
926 			 * replenishment is a joke, since it will replenish us
927 			 * with exactly 0 ns.
928 			 */
929 			rt_rq->rt_time = 0;
930 		}
931 
932 		if (rt_rq_throttled(rt_rq)) {
933 			sched_rt_rq_dequeue(rt_rq);
934 			return 1;
935 		}
936 	}
937 
938 	return 0;
939 }
940 
941 /*
942  * Update the current task's runtime statistics. Skip current tasks that
943  * are not in our scheduling class.
944  */
945 static void update_curr_rt(struct rq *rq)
946 {
947 	struct task_struct *curr = rq->curr;
948 	struct sched_rt_entity *rt_se = &curr->rt;
949 	u64 delta_exec;
950 	u64 now;
951 
952 	if (curr->sched_class != &rt_sched_class)
953 		return;
954 
955 	now = rq_clock_task(rq);
956 	delta_exec = now - curr->se.exec_start;
957 	if (unlikely((s64)delta_exec <= 0))
958 		return;
959 
960 	schedstat_set(curr->se.statistics.exec_max,
961 		      max(curr->se.statistics.exec_max, delta_exec));
962 
963 	curr->se.sum_exec_runtime += delta_exec;
964 	account_group_exec_runtime(curr, delta_exec);
965 
966 	curr->se.exec_start = now;
967 	cgroup_account_cputime(curr, delta_exec);
968 
969 	sched_rt_avg_update(rq, delta_exec);
970 
971 	if (!rt_bandwidth_enabled())
972 		return;
973 
974 	for_each_sched_rt_entity(rt_se) {
975 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
976 
977 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
978 			raw_spin_lock(&rt_rq->rt_runtime_lock);
979 			rt_rq->rt_time += delta_exec;
980 			if (sched_rt_runtime_exceeded(rt_rq))
981 				resched_curr(rq);
982 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
983 		}
984 	}
985 }
986 
987 static void
988 dequeue_top_rt_rq(struct rt_rq *rt_rq)
989 {
990 	struct rq *rq = rq_of_rt_rq(rt_rq);
991 
992 	BUG_ON(&rq->rt != rt_rq);
993 
994 	if (!rt_rq->rt_queued)
995 		return;
996 
997 	BUG_ON(!rq->nr_running);
998 
999 	sub_nr_running(rq, rt_rq->rt_nr_running);
1000 	rt_rq->rt_queued = 0;
1001 
1002 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1003 	cpufreq_update_util(rq, 0);
1004 }
1005 
1006 static void
1007 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1008 {
1009 	struct rq *rq = rq_of_rt_rq(rt_rq);
1010 
1011 	BUG_ON(&rq->rt != rt_rq);
1012 
1013 	if (rt_rq->rt_queued)
1014 		return;
1015 	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1016 		return;
1017 
1018 	add_nr_running(rq, rt_rq->rt_nr_running);
1019 	rt_rq->rt_queued = 1;
1020 
1021 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1022 	cpufreq_update_util(rq, 0);
1023 }
1024 
1025 #if defined CONFIG_SMP
1026 
1027 static void
1028 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1029 {
1030 	struct rq *rq = rq_of_rt_rq(rt_rq);
1031 
1032 #ifdef CONFIG_RT_GROUP_SCHED
1033 	/*
1034 	 * Change rq's cpupri only if rt_rq is the top queue.
1035 	 */
1036 	if (&rq->rt != rt_rq)
1037 		return;
1038 #endif
1039 	if (rq->online && prio < prev_prio)
1040 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1041 }
1042 
1043 static void
1044 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1045 {
1046 	struct rq *rq = rq_of_rt_rq(rt_rq);
1047 
1048 #ifdef CONFIG_RT_GROUP_SCHED
1049 	/*
1050 	 * Change rq's cpupri only if rt_rq is the top queue.
1051 	 */
1052 	if (&rq->rt != rt_rq)
1053 		return;
1054 #endif
1055 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1056 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1057 }
1058 
1059 #else /* CONFIG_SMP */
1060 
1061 static inline
1062 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1063 static inline
1064 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1065 
1066 #endif /* CONFIG_SMP */
1067 
1068 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1069 static void
1070 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1071 {
1072 	int prev_prio = rt_rq->highest_prio.curr;
1073 
1074 	if (prio < prev_prio)
1075 		rt_rq->highest_prio.curr = prio;
1076 
1077 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1078 }
1079 
1080 static void
1081 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1082 {
1083 	int prev_prio = rt_rq->highest_prio.curr;
1084 
1085 	if (rt_rq->rt_nr_running) {
1086 
1087 		WARN_ON(prio < prev_prio);
1088 
1089 		/*
1090 		 * This may have been our highest task, and therefore
1091 		 * we may have some recomputation to do
1092 		 */
1093 		if (prio == prev_prio) {
1094 			struct rt_prio_array *array = &rt_rq->active;
1095 
1096 			rt_rq->highest_prio.curr =
1097 				sched_find_first_bit(array->bitmap);
1098 		}
1099 
1100 	} else
1101 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1102 
1103 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1104 }
1105 
1106 #else
1107 
1108 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1109 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1110 
1111 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1112 
1113 #ifdef CONFIG_RT_GROUP_SCHED
1114 
1115 static void
1116 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1117 {
1118 	if (rt_se_boosted(rt_se))
1119 		rt_rq->rt_nr_boosted++;
1120 
1121 	if (rt_rq->tg)
1122 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1123 }
1124 
1125 static void
1126 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1127 {
1128 	if (rt_se_boosted(rt_se))
1129 		rt_rq->rt_nr_boosted--;
1130 
1131 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1132 }
1133 
1134 #else /* CONFIG_RT_GROUP_SCHED */
1135 
1136 static void
1137 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1138 {
1139 	start_rt_bandwidth(&def_rt_bandwidth);
1140 }
1141 
1142 static inline
1143 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1144 
1145 #endif /* CONFIG_RT_GROUP_SCHED */
1146 
1147 static inline
1148 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1149 {
1150 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1151 
1152 	if (group_rq)
1153 		return group_rq->rt_nr_running;
1154 	else
1155 		return 1;
1156 }
1157 
1158 static inline
1159 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1160 {
1161 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1162 	struct task_struct *tsk;
1163 
1164 	if (group_rq)
1165 		return group_rq->rr_nr_running;
1166 
1167 	tsk = rt_task_of(rt_se);
1168 
1169 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1170 }
1171 
1172 static inline
1173 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1174 {
1175 	int prio = rt_se_prio(rt_se);
1176 
1177 	WARN_ON(!rt_prio(prio));
1178 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1179 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1180 
1181 	inc_rt_prio(rt_rq, prio);
1182 	inc_rt_migration(rt_se, rt_rq);
1183 	inc_rt_group(rt_se, rt_rq);
1184 }
1185 
1186 static inline
1187 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1188 {
1189 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1190 	WARN_ON(!rt_rq->rt_nr_running);
1191 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1192 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1193 
1194 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1195 	dec_rt_migration(rt_se, rt_rq);
1196 	dec_rt_group(rt_se, rt_rq);
1197 }
1198 
1199 /*
1200  * Change rt_se->run_list location unless SAVE && !MOVE
1201  *
1202  * assumes ENQUEUE/DEQUEUE flags match
1203  */
1204 static inline bool move_entity(unsigned int flags)
1205 {
1206 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1207 		return false;
1208 
1209 	return true;
1210 }
1211 
1212 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1213 {
1214 	list_del_init(&rt_se->run_list);
1215 
1216 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1217 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1218 
1219 	rt_se->on_list = 0;
1220 }
1221 
1222 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1223 {
1224 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1225 	struct rt_prio_array *array = &rt_rq->active;
1226 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1227 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1228 
1229 	/*
1230 	 * Don't enqueue the group if its throttled, or when empty.
1231 	 * The latter is a consequence of the former when a child group
1232 	 * get throttled and the current group doesn't have any other
1233 	 * active members.
1234 	 */
1235 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1236 		if (rt_se->on_list)
1237 			__delist_rt_entity(rt_se, array);
1238 		return;
1239 	}
1240 
1241 	if (move_entity(flags)) {
1242 		WARN_ON_ONCE(rt_se->on_list);
1243 		if (flags & ENQUEUE_HEAD)
1244 			list_add(&rt_se->run_list, queue);
1245 		else
1246 			list_add_tail(&rt_se->run_list, queue);
1247 
1248 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1249 		rt_se->on_list = 1;
1250 	}
1251 	rt_se->on_rq = 1;
1252 
1253 	inc_rt_tasks(rt_se, rt_rq);
1254 }
1255 
1256 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1257 {
1258 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1259 	struct rt_prio_array *array = &rt_rq->active;
1260 
1261 	if (move_entity(flags)) {
1262 		WARN_ON_ONCE(!rt_se->on_list);
1263 		__delist_rt_entity(rt_se, array);
1264 	}
1265 	rt_se->on_rq = 0;
1266 
1267 	dec_rt_tasks(rt_se, rt_rq);
1268 }
1269 
1270 /*
1271  * Because the prio of an upper entry depends on the lower
1272  * entries, we must remove entries top - down.
1273  */
1274 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1275 {
1276 	struct sched_rt_entity *back = NULL;
1277 
1278 	for_each_sched_rt_entity(rt_se) {
1279 		rt_se->back = back;
1280 		back = rt_se;
1281 	}
1282 
1283 	dequeue_top_rt_rq(rt_rq_of_se(back));
1284 
1285 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1286 		if (on_rt_rq(rt_se))
1287 			__dequeue_rt_entity(rt_se, flags);
1288 	}
1289 }
1290 
1291 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1292 {
1293 	struct rq *rq = rq_of_rt_se(rt_se);
1294 
1295 	dequeue_rt_stack(rt_se, flags);
1296 	for_each_sched_rt_entity(rt_se)
1297 		__enqueue_rt_entity(rt_se, flags);
1298 	enqueue_top_rt_rq(&rq->rt);
1299 }
1300 
1301 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1302 {
1303 	struct rq *rq = rq_of_rt_se(rt_se);
1304 
1305 	dequeue_rt_stack(rt_se, flags);
1306 
1307 	for_each_sched_rt_entity(rt_se) {
1308 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1309 
1310 		if (rt_rq && rt_rq->rt_nr_running)
1311 			__enqueue_rt_entity(rt_se, flags);
1312 	}
1313 	enqueue_top_rt_rq(&rq->rt);
1314 }
1315 
1316 /*
1317  * Adding/removing a task to/from a priority array:
1318  */
1319 static void
1320 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1321 {
1322 	struct sched_rt_entity *rt_se = &p->rt;
1323 
1324 	if (flags & ENQUEUE_WAKEUP)
1325 		rt_se->timeout = 0;
1326 
1327 	enqueue_rt_entity(rt_se, flags);
1328 
1329 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1330 		enqueue_pushable_task(rq, p);
1331 }
1332 
1333 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1334 {
1335 	struct sched_rt_entity *rt_se = &p->rt;
1336 
1337 	update_curr_rt(rq);
1338 	dequeue_rt_entity(rt_se, flags);
1339 
1340 	dequeue_pushable_task(rq, p);
1341 }
1342 
1343 /*
1344  * Put task to the head or the end of the run list without the overhead of
1345  * dequeue followed by enqueue.
1346  */
1347 static void
1348 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1349 {
1350 	if (on_rt_rq(rt_se)) {
1351 		struct rt_prio_array *array = &rt_rq->active;
1352 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1353 
1354 		if (head)
1355 			list_move(&rt_se->run_list, queue);
1356 		else
1357 			list_move_tail(&rt_se->run_list, queue);
1358 	}
1359 }
1360 
1361 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1362 {
1363 	struct sched_rt_entity *rt_se = &p->rt;
1364 	struct rt_rq *rt_rq;
1365 
1366 	for_each_sched_rt_entity(rt_se) {
1367 		rt_rq = rt_rq_of_se(rt_se);
1368 		requeue_rt_entity(rt_rq, rt_se, head);
1369 	}
1370 }
1371 
1372 static void yield_task_rt(struct rq *rq)
1373 {
1374 	requeue_task_rt(rq, rq->curr, 0);
1375 }
1376 
1377 #ifdef CONFIG_SMP
1378 static int find_lowest_rq(struct task_struct *task);
1379 
1380 static int
1381 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1382 {
1383 	struct task_struct *curr;
1384 	struct rq *rq;
1385 
1386 	/* For anything but wake ups, just return the task_cpu */
1387 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1388 		goto out;
1389 
1390 	rq = cpu_rq(cpu);
1391 
1392 	rcu_read_lock();
1393 	curr = READ_ONCE(rq->curr); /* unlocked access */
1394 
1395 	/*
1396 	 * If the current task on @p's runqueue is an RT task, then
1397 	 * try to see if we can wake this RT task up on another
1398 	 * runqueue. Otherwise simply start this RT task
1399 	 * on its current runqueue.
1400 	 *
1401 	 * We want to avoid overloading runqueues. If the woken
1402 	 * task is a higher priority, then it will stay on this CPU
1403 	 * and the lower prio task should be moved to another CPU.
1404 	 * Even though this will probably make the lower prio task
1405 	 * lose its cache, we do not want to bounce a higher task
1406 	 * around just because it gave up its CPU, perhaps for a
1407 	 * lock?
1408 	 *
1409 	 * For equal prio tasks, we just let the scheduler sort it out.
1410 	 *
1411 	 * Otherwise, just let it ride on the affined RQ and the
1412 	 * post-schedule router will push the preempted task away
1413 	 *
1414 	 * This test is optimistic, if we get it wrong the load-balancer
1415 	 * will have to sort it out.
1416 	 */
1417 	if (curr && unlikely(rt_task(curr)) &&
1418 	    (curr->nr_cpus_allowed < 2 ||
1419 	     curr->prio <= p->prio)) {
1420 		int target = find_lowest_rq(p);
1421 
1422 		/*
1423 		 * Don't bother moving it if the destination CPU is
1424 		 * not running a lower priority task.
1425 		 */
1426 		if (target != -1 &&
1427 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1428 			cpu = target;
1429 	}
1430 	rcu_read_unlock();
1431 
1432 out:
1433 	return cpu;
1434 }
1435 
1436 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1437 {
1438 	/*
1439 	 * Current can't be migrated, useless to reschedule,
1440 	 * let's hope p can move out.
1441 	 */
1442 	if (rq->curr->nr_cpus_allowed == 1 ||
1443 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1444 		return;
1445 
1446 	/*
1447 	 * p is migratable, so let's not schedule it and
1448 	 * see if it is pushed or pulled somewhere else.
1449 	 */
1450 	if (p->nr_cpus_allowed != 1
1451 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1452 		return;
1453 
1454 	/*
1455 	 * There appear to be other CPUs that can accept
1456 	 * the current task but none can run 'p', so lets reschedule
1457 	 * to try and push the current task away:
1458 	 */
1459 	requeue_task_rt(rq, p, 1);
1460 	resched_curr(rq);
1461 }
1462 
1463 #endif /* CONFIG_SMP */
1464 
1465 /*
1466  * Preempt the current task with a newly woken task if needed:
1467  */
1468 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1469 {
1470 	if (p->prio < rq->curr->prio) {
1471 		resched_curr(rq);
1472 		return;
1473 	}
1474 
1475 #ifdef CONFIG_SMP
1476 	/*
1477 	 * If:
1478 	 *
1479 	 * - the newly woken task is of equal priority to the current task
1480 	 * - the newly woken task is non-migratable while current is migratable
1481 	 * - current will be preempted on the next reschedule
1482 	 *
1483 	 * we should check to see if current can readily move to a different
1484 	 * cpu.  If so, we will reschedule to allow the push logic to try
1485 	 * to move current somewhere else, making room for our non-migratable
1486 	 * task.
1487 	 */
1488 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1489 		check_preempt_equal_prio(rq, p);
1490 #endif
1491 }
1492 
1493 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1494 						   struct rt_rq *rt_rq)
1495 {
1496 	struct rt_prio_array *array = &rt_rq->active;
1497 	struct sched_rt_entity *next = NULL;
1498 	struct list_head *queue;
1499 	int idx;
1500 
1501 	idx = sched_find_first_bit(array->bitmap);
1502 	BUG_ON(idx >= MAX_RT_PRIO);
1503 
1504 	queue = array->queue + idx;
1505 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1506 
1507 	return next;
1508 }
1509 
1510 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1511 {
1512 	struct sched_rt_entity *rt_se;
1513 	struct task_struct *p;
1514 	struct rt_rq *rt_rq  = &rq->rt;
1515 
1516 	do {
1517 		rt_se = pick_next_rt_entity(rq, rt_rq);
1518 		BUG_ON(!rt_se);
1519 		rt_rq = group_rt_rq(rt_se);
1520 	} while (rt_rq);
1521 
1522 	p = rt_task_of(rt_se);
1523 	p->se.exec_start = rq_clock_task(rq);
1524 
1525 	return p;
1526 }
1527 
1528 static struct task_struct *
1529 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1530 {
1531 	struct task_struct *p;
1532 	struct rt_rq *rt_rq = &rq->rt;
1533 
1534 	if (need_pull_rt_task(rq, prev)) {
1535 		/*
1536 		 * This is OK, because current is on_cpu, which avoids it being
1537 		 * picked for load-balance and preemption/IRQs are still
1538 		 * disabled avoiding further scheduler activity on it and we're
1539 		 * being very careful to re-start the picking loop.
1540 		 */
1541 		rq_unpin_lock(rq, rf);
1542 		pull_rt_task(rq);
1543 		rq_repin_lock(rq, rf);
1544 		/*
1545 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1546 		 * means a dl or stop task can slip in, in which case we need
1547 		 * to re-start task selection.
1548 		 */
1549 		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1550 			     rq->dl.dl_nr_running))
1551 			return RETRY_TASK;
1552 	}
1553 
1554 	/*
1555 	 * We may dequeue prev's rt_rq in put_prev_task().
1556 	 * So, we update time before rt_nr_running check.
1557 	 */
1558 	if (prev->sched_class == &rt_sched_class)
1559 		update_curr_rt(rq);
1560 
1561 	if (!rt_rq->rt_queued)
1562 		return NULL;
1563 
1564 	put_prev_task(rq, prev);
1565 
1566 	p = _pick_next_task_rt(rq);
1567 
1568 	/* The running task is never eligible for pushing */
1569 	dequeue_pushable_task(rq, p);
1570 
1571 	rt_queue_push_tasks(rq);
1572 
1573 	return p;
1574 }
1575 
1576 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1577 {
1578 	update_curr_rt(rq);
1579 
1580 	/*
1581 	 * The previous task needs to be made eligible for pushing
1582 	 * if it is still active
1583 	 */
1584 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1585 		enqueue_pushable_task(rq, p);
1586 }
1587 
1588 #ifdef CONFIG_SMP
1589 
1590 /* Only try algorithms three times */
1591 #define RT_MAX_TRIES 3
1592 
1593 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1594 {
1595 	if (!task_running(rq, p) &&
1596 	    cpumask_test_cpu(cpu, &p->cpus_allowed))
1597 		return 1;
1598 
1599 	return 0;
1600 }
1601 
1602 /*
1603  * Return the highest pushable rq's task, which is suitable to be executed
1604  * on the CPU, NULL otherwise
1605  */
1606 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1607 {
1608 	struct plist_head *head = &rq->rt.pushable_tasks;
1609 	struct task_struct *p;
1610 
1611 	if (!has_pushable_tasks(rq))
1612 		return NULL;
1613 
1614 	plist_for_each_entry(p, head, pushable_tasks) {
1615 		if (pick_rt_task(rq, p, cpu))
1616 			return p;
1617 	}
1618 
1619 	return NULL;
1620 }
1621 
1622 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1623 
1624 static int find_lowest_rq(struct task_struct *task)
1625 {
1626 	struct sched_domain *sd;
1627 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1628 	int this_cpu = smp_processor_id();
1629 	int cpu      = task_cpu(task);
1630 
1631 	/* Make sure the mask is initialized first */
1632 	if (unlikely(!lowest_mask))
1633 		return -1;
1634 
1635 	if (task->nr_cpus_allowed == 1)
1636 		return -1; /* No other targets possible */
1637 
1638 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1639 		return -1; /* No targets found */
1640 
1641 	/*
1642 	 * At this point we have built a mask of CPUs representing the
1643 	 * lowest priority tasks in the system.  Now we want to elect
1644 	 * the best one based on our affinity and topology.
1645 	 *
1646 	 * We prioritize the last CPU that the task executed on since
1647 	 * it is most likely cache-hot in that location.
1648 	 */
1649 	if (cpumask_test_cpu(cpu, lowest_mask))
1650 		return cpu;
1651 
1652 	/*
1653 	 * Otherwise, we consult the sched_domains span maps to figure
1654 	 * out which CPU is logically closest to our hot cache data.
1655 	 */
1656 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1657 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1658 
1659 	rcu_read_lock();
1660 	for_each_domain(cpu, sd) {
1661 		if (sd->flags & SD_WAKE_AFFINE) {
1662 			int best_cpu;
1663 
1664 			/*
1665 			 * "this_cpu" is cheaper to preempt than a
1666 			 * remote processor.
1667 			 */
1668 			if (this_cpu != -1 &&
1669 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1670 				rcu_read_unlock();
1671 				return this_cpu;
1672 			}
1673 
1674 			best_cpu = cpumask_first_and(lowest_mask,
1675 						     sched_domain_span(sd));
1676 			if (best_cpu < nr_cpu_ids) {
1677 				rcu_read_unlock();
1678 				return best_cpu;
1679 			}
1680 		}
1681 	}
1682 	rcu_read_unlock();
1683 
1684 	/*
1685 	 * And finally, if there were no matches within the domains
1686 	 * just give the caller *something* to work with from the compatible
1687 	 * locations.
1688 	 */
1689 	if (this_cpu != -1)
1690 		return this_cpu;
1691 
1692 	cpu = cpumask_any(lowest_mask);
1693 	if (cpu < nr_cpu_ids)
1694 		return cpu;
1695 
1696 	return -1;
1697 }
1698 
1699 /* Will lock the rq it finds */
1700 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1701 {
1702 	struct rq *lowest_rq = NULL;
1703 	int tries;
1704 	int cpu;
1705 
1706 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1707 		cpu = find_lowest_rq(task);
1708 
1709 		if ((cpu == -1) || (cpu == rq->cpu))
1710 			break;
1711 
1712 		lowest_rq = cpu_rq(cpu);
1713 
1714 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1715 			/*
1716 			 * Target rq has tasks of equal or higher priority,
1717 			 * retrying does not release any lock and is unlikely
1718 			 * to yield a different result.
1719 			 */
1720 			lowest_rq = NULL;
1721 			break;
1722 		}
1723 
1724 		/* if the prio of this runqueue changed, try again */
1725 		if (double_lock_balance(rq, lowest_rq)) {
1726 			/*
1727 			 * We had to unlock the run queue. In
1728 			 * the mean time, task could have
1729 			 * migrated already or had its affinity changed.
1730 			 * Also make sure that it wasn't scheduled on its rq.
1731 			 */
1732 			if (unlikely(task_rq(task) != rq ||
1733 				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1734 				     task_running(rq, task) ||
1735 				     !rt_task(task) ||
1736 				     !task_on_rq_queued(task))) {
1737 
1738 				double_unlock_balance(rq, lowest_rq);
1739 				lowest_rq = NULL;
1740 				break;
1741 			}
1742 		}
1743 
1744 		/* If this rq is still suitable use it. */
1745 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1746 			break;
1747 
1748 		/* try again */
1749 		double_unlock_balance(rq, lowest_rq);
1750 		lowest_rq = NULL;
1751 	}
1752 
1753 	return lowest_rq;
1754 }
1755 
1756 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1757 {
1758 	struct task_struct *p;
1759 
1760 	if (!has_pushable_tasks(rq))
1761 		return NULL;
1762 
1763 	p = plist_first_entry(&rq->rt.pushable_tasks,
1764 			      struct task_struct, pushable_tasks);
1765 
1766 	BUG_ON(rq->cpu != task_cpu(p));
1767 	BUG_ON(task_current(rq, p));
1768 	BUG_ON(p->nr_cpus_allowed <= 1);
1769 
1770 	BUG_ON(!task_on_rq_queued(p));
1771 	BUG_ON(!rt_task(p));
1772 
1773 	return p;
1774 }
1775 
1776 /*
1777  * If the current CPU has more than one RT task, see if the non
1778  * running task can migrate over to a CPU that is running a task
1779  * of lesser priority.
1780  */
1781 static int push_rt_task(struct rq *rq)
1782 {
1783 	struct task_struct *next_task;
1784 	struct rq *lowest_rq;
1785 	int ret = 0;
1786 
1787 	if (!rq->rt.overloaded)
1788 		return 0;
1789 
1790 	next_task = pick_next_pushable_task(rq);
1791 	if (!next_task)
1792 		return 0;
1793 
1794 retry:
1795 	if (unlikely(next_task == rq->curr)) {
1796 		WARN_ON(1);
1797 		return 0;
1798 	}
1799 
1800 	/*
1801 	 * It's possible that the next_task slipped in of
1802 	 * higher priority than current. If that's the case
1803 	 * just reschedule current.
1804 	 */
1805 	if (unlikely(next_task->prio < rq->curr->prio)) {
1806 		resched_curr(rq);
1807 		return 0;
1808 	}
1809 
1810 	/* We might release rq lock */
1811 	get_task_struct(next_task);
1812 
1813 	/* find_lock_lowest_rq locks the rq if found */
1814 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1815 	if (!lowest_rq) {
1816 		struct task_struct *task;
1817 		/*
1818 		 * find_lock_lowest_rq releases rq->lock
1819 		 * so it is possible that next_task has migrated.
1820 		 *
1821 		 * We need to make sure that the task is still on the same
1822 		 * run-queue and is also still the next task eligible for
1823 		 * pushing.
1824 		 */
1825 		task = pick_next_pushable_task(rq);
1826 		if (task == next_task) {
1827 			/*
1828 			 * The task hasn't migrated, and is still the next
1829 			 * eligible task, but we failed to find a run-queue
1830 			 * to push it to.  Do not retry in this case, since
1831 			 * other CPUs will pull from us when ready.
1832 			 */
1833 			goto out;
1834 		}
1835 
1836 		if (!task)
1837 			/* No more tasks, just exit */
1838 			goto out;
1839 
1840 		/*
1841 		 * Something has shifted, try again.
1842 		 */
1843 		put_task_struct(next_task);
1844 		next_task = task;
1845 		goto retry;
1846 	}
1847 
1848 	deactivate_task(rq, next_task, 0);
1849 	set_task_cpu(next_task, lowest_rq->cpu);
1850 	activate_task(lowest_rq, next_task, 0);
1851 	ret = 1;
1852 
1853 	resched_curr(lowest_rq);
1854 
1855 	double_unlock_balance(rq, lowest_rq);
1856 
1857 out:
1858 	put_task_struct(next_task);
1859 
1860 	return ret;
1861 }
1862 
1863 static void push_rt_tasks(struct rq *rq)
1864 {
1865 	/* push_rt_task will return true if it moved an RT */
1866 	while (push_rt_task(rq))
1867 		;
1868 }
1869 
1870 #ifdef HAVE_RT_PUSH_IPI
1871 
1872 /*
1873  * When a high priority task schedules out from a CPU and a lower priority
1874  * task is scheduled in, a check is made to see if there's any RT tasks
1875  * on other CPUs that are waiting to run because a higher priority RT task
1876  * is currently running on its CPU. In this case, the CPU with multiple RT
1877  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1878  * up that may be able to run one of its non-running queued RT tasks.
1879  *
1880  * All CPUs with overloaded RT tasks need to be notified as there is currently
1881  * no way to know which of these CPUs have the highest priority task waiting
1882  * to run. Instead of trying to take a spinlock on each of these CPUs,
1883  * which has shown to cause large latency when done on machines with many
1884  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1885  * RT tasks waiting to run.
1886  *
1887  * Just sending an IPI to each of the CPUs is also an issue, as on large
1888  * count CPU machines, this can cause an IPI storm on a CPU, especially
1889  * if its the only CPU with multiple RT tasks queued, and a large number
1890  * of CPUs scheduling a lower priority task at the same time.
1891  *
1892  * Each root domain has its own irq work function that can iterate over
1893  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1894  * tassk must be checked if there's one or many CPUs that are lowering
1895  * their priority, there's a single irq work iterator that will try to
1896  * push off RT tasks that are waiting to run.
1897  *
1898  * When a CPU schedules a lower priority task, it will kick off the
1899  * irq work iterator that will jump to each CPU with overloaded RT tasks.
1900  * As it only takes the first CPU that schedules a lower priority task
1901  * to start the process, the rto_start variable is incremented and if
1902  * the atomic result is one, then that CPU will try to take the rto_lock.
1903  * This prevents high contention on the lock as the process handles all
1904  * CPUs scheduling lower priority tasks.
1905  *
1906  * All CPUs that are scheduling a lower priority task will increment the
1907  * rt_loop_next variable. This will make sure that the irq work iterator
1908  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1909  * priority task, even if the iterator is in the middle of a scan. Incrementing
1910  * the rt_loop_next will cause the iterator to perform another scan.
1911  *
1912  */
1913 static int rto_next_cpu(struct root_domain *rd)
1914 {
1915 	int next;
1916 	int cpu;
1917 
1918 	/*
1919 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1920 	 * rt_next_cpu() will simply return the first CPU found in
1921 	 * the rto_mask.
1922 	 *
1923 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1924 	 * will return the next CPU found in the rto_mask.
1925 	 *
1926 	 * If there are no more CPUs left in the rto_mask, then a check is made
1927 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
1928 	 * the rto_lock held, but any CPU may increment the rto_loop_next
1929 	 * without any locking.
1930 	 */
1931 	for (;;) {
1932 
1933 		/* When rto_cpu is -1 this acts like cpumask_first() */
1934 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1935 
1936 		rd->rto_cpu = cpu;
1937 
1938 		if (cpu < nr_cpu_ids)
1939 			return cpu;
1940 
1941 		rd->rto_cpu = -1;
1942 
1943 		/*
1944 		 * ACQUIRE ensures we see the @rto_mask changes
1945 		 * made prior to the @next value observed.
1946 		 *
1947 		 * Matches WMB in rt_set_overload().
1948 		 */
1949 		next = atomic_read_acquire(&rd->rto_loop_next);
1950 
1951 		if (rd->rto_loop == next)
1952 			break;
1953 
1954 		rd->rto_loop = next;
1955 	}
1956 
1957 	return -1;
1958 }
1959 
1960 static inline bool rto_start_trylock(atomic_t *v)
1961 {
1962 	return !atomic_cmpxchg_acquire(v, 0, 1);
1963 }
1964 
1965 static inline void rto_start_unlock(atomic_t *v)
1966 {
1967 	atomic_set_release(v, 0);
1968 }
1969 
1970 static void tell_cpu_to_push(struct rq *rq)
1971 {
1972 	int cpu = -1;
1973 
1974 	/* Keep the loop going if the IPI is currently active */
1975 	atomic_inc(&rq->rd->rto_loop_next);
1976 
1977 	/* Only one CPU can initiate a loop at a time */
1978 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
1979 		return;
1980 
1981 	raw_spin_lock(&rq->rd->rto_lock);
1982 
1983 	/*
1984 	 * The rto_cpu is updated under the lock, if it has a valid CPU
1985 	 * then the IPI is still running and will continue due to the
1986 	 * update to loop_next, and nothing needs to be done here.
1987 	 * Otherwise it is finishing up and an ipi needs to be sent.
1988 	 */
1989 	if (rq->rd->rto_cpu < 0)
1990 		cpu = rto_next_cpu(rq->rd);
1991 
1992 	raw_spin_unlock(&rq->rd->rto_lock);
1993 
1994 	rto_start_unlock(&rq->rd->rto_loop_start);
1995 
1996 	if (cpu >= 0) {
1997 		/* Make sure the rd does not get freed while pushing */
1998 		sched_get_rd(rq->rd);
1999 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2000 	}
2001 }
2002 
2003 /* Called from hardirq context */
2004 void rto_push_irq_work_func(struct irq_work *work)
2005 {
2006 	struct root_domain *rd =
2007 		container_of(work, struct root_domain, rto_push_work);
2008 	struct rq *rq;
2009 	int cpu;
2010 
2011 	rq = this_rq();
2012 
2013 	/*
2014 	 * We do not need to grab the lock to check for has_pushable_tasks.
2015 	 * When it gets updated, a check is made if a push is possible.
2016 	 */
2017 	if (has_pushable_tasks(rq)) {
2018 		raw_spin_lock(&rq->lock);
2019 		push_rt_tasks(rq);
2020 		raw_spin_unlock(&rq->lock);
2021 	}
2022 
2023 	raw_spin_lock(&rd->rto_lock);
2024 
2025 	/* Pass the IPI to the next rt overloaded queue */
2026 	cpu = rto_next_cpu(rd);
2027 
2028 	raw_spin_unlock(&rd->rto_lock);
2029 
2030 	if (cpu < 0) {
2031 		sched_put_rd(rd);
2032 		return;
2033 	}
2034 
2035 	/* Try the next RT overloaded CPU */
2036 	irq_work_queue_on(&rd->rto_push_work, cpu);
2037 }
2038 #endif /* HAVE_RT_PUSH_IPI */
2039 
2040 static void pull_rt_task(struct rq *this_rq)
2041 {
2042 	int this_cpu = this_rq->cpu, cpu;
2043 	bool resched = false;
2044 	struct task_struct *p;
2045 	struct rq *src_rq;
2046 	int rt_overload_count = rt_overloaded(this_rq);
2047 
2048 	if (likely(!rt_overload_count))
2049 		return;
2050 
2051 	/*
2052 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2053 	 * see overloaded we must also see the rto_mask bit.
2054 	 */
2055 	smp_rmb();
2056 
2057 	/* If we are the only overloaded CPU do nothing */
2058 	if (rt_overload_count == 1 &&
2059 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2060 		return;
2061 
2062 #ifdef HAVE_RT_PUSH_IPI
2063 	if (sched_feat(RT_PUSH_IPI)) {
2064 		tell_cpu_to_push(this_rq);
2065 		return;
2066 	}
2067 #endif
2068 
2069 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2070 		if (this_cpu == cpu)
2071 			continue;
2072 
2073 		src_rq = cpu_rq(cpu);
2074 
2075 		/*
2076 		 * Don't bother taking the src_rq->lock if the next highest
2077 		 * task is known to be lower-priority than our current task.
2078 		 * This may look racy, but if this value is about to go
2079 		 * logically higher, the src_rq will push this task away.
2080 		 * And if its going logically lower, we do not care
2081 		 */
2082 		if (src_rq->rt.highest_prio.next >=
2083 		    this_rq->rt.highest_prio.curr)
2084 			continue;
2085 
2086 		/*
2087 		 * We can potentially drop this_rq's lock in
2088 		 * double_lock_balance, and another CPU could
2089 		 * alter this_rq
2090 		 */
2091 		double_lock_balance(this_rq, src_rq);
2092 
2093 		/*
2094 		 * We can pull only a task, which is pushable
2095 		 * on its rq, and no others.
2096 		 */
2097 		p = pick_highest_pushable_task(src_rq, this_cpu);
2098 
2099 		/*
2100 		 * Do we have an RT task that preempts
2101 		 * the to-be-scheduled task?
2102 		 */
2103 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2104 			WARN_ON(p == src_rq->curr);
2105 			WARN_ON(!task_on_rq_queued(p));
2106 
2107 			/*
2108 			 * There's a chance that p is higher in priority
2109 			 * than what's currently running on its CPU.
2110 			 * This is just that p is wakeing up and hasn't
2111 			 * had a chance to schedule. We only pull
2112 			 * p if it is lower in priority than the
2113 			 * current task on the run queue
2114 			 */
2115 			if (p->prio < src_rq->curr->prio)
2116 				goto skip;
2117 
2118 			resched = true;
2119 
2120 			deactivate_task(src_rq, p, 0);
2121 			set_task_cpu(p, this_cpu);
2122 			activate_task(this_rq, p, 0);
2123 			/*
2124 			 * We continue with the search, just in
2125 			 * case there's an even higher prio task
2126 			 * in another runqueue. (low likelihood
2127 			 * but possible)
2128 			 */
2129 		}
2130 skip:
2131 		double_unlock_balance(this_rq, src_rq);
2132 	}
2133 
2134 	if (resched)
2135 		resched_curr(this_rq);
2136 }
2137 
2138 /*
2139  * If we are not running and we are not going to reschedule soon, we should
2140  * try to push tasks away now
2141  */
2142 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2143 {
2144 	if (!task_running(rq, p) &&
2145 	    !test_tsk_need_resched(rq->curr) &&
2146 	    p->nr_cpus_allowed > 1 &&
2147 	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2148 	    (rq->curr->nr_cpus_allowed < 2 ||
2149 	     rq->curr->prio <= p->prio))
2150 		push_rt_tasks(rq);
2151 }
2152 
2153 /* Assumes rq->lock is held */
2154 static void rq_online_rt(struct rq *rq)
2155 {
2156 	if (rq->rt.overloaded)
2157 		rt_set_overload(rq);
2158 
2159 	__enable_runtime(rq);
2160 
2161 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2162 }
2163 
2164 /* Assumes rq->lock is held */
2165 static void rq_offline_rt(struct rq *rq)
2166 {
2167 	if (rq->rt.overloaded)
2168 		rt_clear_overload(rq);
2169 
2170 	__disable_runtime(rq);
2171 
2172 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2173 }
2174 
2175 /*
2176  * When switch from the rt queue, we bring ourselves to a position
2177  * that we might want to pull RT tasks from other runqueues.
2178  */
2179 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2180 {
2181 	/*
2182 	 * If there are other RT tasks then we will reschedule
2183 	 * and the scheduling of the other RT tasks will handle
2184 	 * the balancing. But if we are the last RT task
2185 	 * we may need to handle the pulling of RT tasks
2186 	 * now.
2187 	 */
2188 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2189 		return;
2190 
2191 	rt_queue_pull_task(rq);
2192 }
2193 
2194 void __init init_sched_rt_class(void)
2195 {
2196 	unsigned int i;
2197 
2198 	for_each_possible_cpu(i) {
2199 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2200 					GFP_KERNEL, cpu_to_node(i));
2201 	}
2202 }
2203 #endif /* CONFIG_SMP */
2204 
2205 /*
2206  * When switching a task to RT, we may overload the runqueue
2207  * with RT tasks. In this case we try to push them off to
2208  * other runqueues.
2209  */
2210 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2211 {
2212 	/*
2213 	 * If we are already running, then there's nothing
2214 	 * that needs to be done. But if we are not running
2215 	 * we may need to preempt the current running task.
2216 	 * If that current running task is also an RT task
2217 	 * then see if we can move to another run queue.
2218 	 */
2219 	if (task_on_rq_queued(p) && rq->curr != p) {
2220 #ifdef CONFIG_SMP
2221 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2222 			rt_queue_push_tasks(rq);
2223 #endif /* CONFIG_SMP */
2224 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2225 			resched_curr(rq);
2226 	}
2227 }
2228 
2229 /*
2230  * Priority of the task has changed. This may cause
2231  * us to initiate a push or pull.
2232  */
2233 static void
2234 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2235 {
2236 	if (!task_on_rq_queued(p))
2237 		return;
2238 
2239 	if (rq->curr == p) {
2240 #ifdef CONFIG_SMP
2241 		/*
2242 		 * If our priority decreases while running, we
2243 		 * may need to pull tasks to this runqueue.
2244 		 */
2245 		if (oldprio < p->prio)
2246 			rt_queue_pull_task(rq);
2247 
2248 		/*
2249 		 * If there's a higher priority task waiting to run
2250 		 * then reschedule.
2251 		 */
2252 		if (p->prio > rq->rt.highest_prio.curr)
2253 			resched_curr(rq);
2254 #else
2255 		/* For UP simply resched on drop of prio */
2256 		if (oldprio < p->prio)
2257 			resched_curr(rq);
2258 #endif /* CONFIG_SMP */
2259 	} else {
2260 		/*
2261 		 * This task is not running, but if it is
2262 		 * greater than the current running task
2263 		 * then reschedule.
2264 		 */
2265 		if (p->prio < rq->curr->prio)
2266 			resched_curr(rq);
2267 	}
2268 }
2269 
2270 #ifdef CONFIG_POSIX_TIMERS
2271 static void watchdog(struct rq *rq, struct task_struct *p)
2272 {
2273 	unsigned long soft, hard;
2274 
2275 	/* max may change after cur was read, this will be fixed next tick */
2276 	soft = task_rlimit(p, RLIMIT_RTTIME);
2277 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2278 
2279 	if (soft != RLIM_INFINITY) {
2280 		unsigned long next;
2281 
2282 		if (p->rt.watchdog_stamp != jiffies) {
2283 			p->rt.timeout++;
2284 			p->rt.watchdog_stamp = jiffies;
2285 		}
2286 
2287 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2288 		if (p->rt.timeout > next)
2289 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2290 	}
2291 }
2292 #else
2293 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2294 #endif
2295 
2296 /*
2297  * scheduler tick hitting a task of our scheduling class.
2298  *
2299  * NOTE: This function can be called remotely by the tick offload that
2300  * goes along full dynticks. Therefore no local assumption can be made
2301  * and everything must be accessed through the @rq and @curr passed in
2302  * parameters.
2303  */
2304 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2305 {
2306 	struct sched_rt_entity *rt_se = &p->rt;
2307 
2308 	update_curr_rt(rq);
2309 
2310 	watchdog(rq, p);
2311 
2312 	/*
2313 	 * RR tasks need a special form of timeslice management.
2314 	 * FIFO tasks have no timeslices.
2315 	 */
2316 	if (p->policy != SCHED_RR)
2317 		return;
2318 
2319 	if (--p->rt.time_slice)
2320 		return;
2321 
2322 	p->rt.time_slice = sched_rr_timeslice;
2323 
2324 	/*
2325 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2326 	 * the only element on the queue
2327 	 */
2328 	for_each_sched_rt_entity(rt_se) {
2329 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2330 			requeue_task_rt(rq, p, 0);
2331 			resched_curr(rq);
2332 			return;
2333 		}
2334 	}
2335 }
2336 
2337 static void set_curr_task_rt(struct rq *rq)
2338 {
2339 	struct task_struct *p = rq->curr;
2340 
2341 	p->se.exec_start = rq_clock_task(rq);
2342 
2343 	/* The running task is never eligible for pushing */
2344 	dequeue_pushable_task(rq, p);
2345 }
2346 
2347 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2348 {
2349 	/*
2350 	 * Time slice is 0 for SCHED_FIFO tasks
2351 	 */
2352 	if (task->policy == SCHED_RR)
2353 		return sched_rr_timeslice;
2354 	else
2355 		return 0;
2356 }
2357 
2358 const struct sched_class rt_sched_class = {
2359 	.next			= &fair_sched_class,
2360 	.enqueue_task		= enqueue_task_rt,
2361 	.dequeue_task		= dequeue_task_rt,
2362 	.yield_task		= yield_task_rt,
2363 
2364 	.check_preempt_curr	= check_preempt_curr_rt,
2365 
2366 	.pick_next_task		= pick_next_task_rt,
2367 	.put_prev_task		= put_prev_task_rt,
2368 
2369 #ifdef CONFIG_SMP
2370 	.select_task_rq		= select_task_rq_rt,
2371 
2372 	.set_cpus_allowed       = set_cpus_allowed_common,
2373 	.rq_online              = rq_online_rt,
2374 	.rq_offline             = rq_offline_rt,
2375 	.task_woken		= task_woken_rt,
2376 	.switched_from		= switched_from_rt,
2377 #endif
2378 
2379 	.set_curr_task          = set_curr_task_rt,
2380 	.task_tick		= task_tick_rt,
2381 
2382 	.get_rr_interval	= get_rr_interval_rt,
2383 
2384 	.prio_changed		= prio_changed_rt,
2385 	.switched_to		= switched_to_rt,
2386 
2387 	.update_curr		= update_curr_rt,
2388 };
2389 
2390 #ifdef CONFIG_RT_GROUP_SCHED
2391 /*
2392  * Ensure that the real time constraints are schedulable.
2393  */
2394 static DEFINE_MUTEX(rt_constraints_mutex);
2395 
2396 /* Must be called with tasklist_lock held */
2397 static inline int tg_has_rt_tasks(struct task_group *tg)
2398 {
2399 	struct task_struct *g, *p;
2400 
2401 	/*
2402 	 * Autogroups do not have RT tasks; see autogroup_create().
2403 	 */
2404 	if (task_group_is_autogroup(tg))
2405 		return 0;
2406 
2407 	for_each_process_thread(g, p) {
2408 		if (rt_task(p) && task_group(p) == tg)
2409 			return 1;
2410 	}
2411 
2412 	return 0;
2413 }
2414 
2415 struct rt_schedulable_data {
2416 	struct task_group *tg;
2417 	u64 rt_period;
2418 	u64 rt_runtime;
2419 };
2420 
2421 static int tg_rt_schedulable(struct task_group *tg, void *data)
2422 {
2423 	struct rt_schedulable_data *d = data;
2424 	struct task_group *child;
2425 	unsigned long total, sum = 0;
2426 	u64 period, runtime;
2427 
2428 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2429 	runtime = tg->rt_bandwidth.rt_runtime;
2430 
2431 	if (tg == d->tg) {
2432 		period = d->rt_period;
2433 		runtime = d->rt_runtime;
2434 	}
2435 
2436 	/*
2437 	 * Cannot have more runtime than the period.
2438 	 */
2439 	if (runtime > period && runtime != RUNTIME_INF)
2440 		return -EINVAL;
2441 
2442 	/*
2443 	 * Ensure we don't starve existing RT tasks.
2444 	 */
2445 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2446 		return -EBUSY;
2447 
2448 	total = to_ratio(period, runtime);
2449 
2450 	/*
2451 	 * Nobody can have more than the global setting allows.
2452 	 */
2453 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2454 		return -EINVAL;
2455 
2456 	/*
2457 	 * The sum of our children's runtime should not exceed our own.
2458 	 */
2459 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2460 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2461 		runtime = child->rt_bandwidth.rt_runtime;
2462 
2463 		if (child == d->tg) {
2464 			period = d->rt_period;
2465 			runtime = d->rt_runtime;
2466 		}
2467 
2468 		sum += to_ratio(period, runtime);
2469 	}
2470 
2471 	if (sum > total)
2472 		return -EINVAL;
2473 
2474 	return 0;
2475 }
2476 
2477 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2478 {
2479 	int ret;
2480 
2481 	struct rt_schedulable_data data = {
2482 		.tg = tg,
2483 		.rt_period = period,
2484 		.rt_runtime = runtime,
2485 	};
2486 
2487 	rcu_read_lock();
2488 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2489 	rcu_read_unlock();
2490 
2491 	return ret;
2492 }
2493 
2494 static int tg_set_rt_bandwidth(struct task_group *tg,
2495 		u64 rt_period, u64 rt_runtime)
2496 {
2497 	int i, err = 0;
2498 
2499 	/*
2500 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2501 	 * kernel creating (and or operating) RT threads.
2502 	 */
2503 	if (tg == &root_task_group && rt_runtime == 0)
2504 		return -EINVAL;
2505 
2506 	/* No period doesn't make any sense. */
2507 	if (rt_period == 0)
2508 		return -EINVAL;
2509 
2510 	mutex_lock(&rt_constraints_mutex);
2511 	read_lock(&tasklist_lock);
2512 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2513 	if (err)
2514 		goto unlock;
2515 
2516 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2517 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2518 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2519 
2520 	for_each_possible_cpu(i) {
2521 		struct rt_rq *rt_rq = tg->rt_rq[i];
2522 
2523 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2524 		rt_rq->rt_runtime = rt_runtime;
2525 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2526 	}
2527 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2528 unlock:
2529 	read_unlock(&tasklist_lock);
2530 	mutex_unlock(&rt_constraints_mutex);
2531 
2532 	return err;
2533 }
2534 
2535 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2536 {
2537 	u64 rt_runtime, rt_period;
2538 
2539 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2540 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2541 	if (rt_runtime_us < 0)
2542 		rt_runtime = RUNTIME_INF;
2543 
2544 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2545 }
2546 
2547 long sched_group_rt_runtime(struct task_group *tg)
2548 {
2549 	u64 rt_runtime_us;
2550 
2551 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2552 		return -1;
2553 
2554 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2555 	do_div(rt_runtime_us, NSEC_PER_USEC);
2556 	return rt_runtime_us;
2557 }
2558 
2559 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2560 {
2561 	u64 rt_runtime, rt_period;
2562 
2563 	rt_period = rt_period_us * NSEC_PER_USEC;
2564 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2565 
2566 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2567 }
2568 
2569 long sched_group_rt_period(struct task_group *tg)
2570 {
2571 	u64 rt_period_us;
2572 
2573 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2574 	do_div(rt_period_us, NSEC_PER_USEC);
2575 	return rt_period_us;
2576 }
2577 
2578 static int sched_rt_global_constraints(void)
2579 {
2580 	int ret = 0;
2581 
2582 	mutex_lock(&rt_constraints_mutex);
2583 	read_lock(&tasklist_lock);
2584 	ret = __rt_schedulable(NULL, 0, 0);
2585 	read_unlock(&tasklist_lock);
2586 	mutex_unlock(&rt_constraints_mutex);
2587 
2588 	return ret;
2589 }
2590 
2591 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2592 {
2593 	/* Don't accept realtime tasks when there is no way for them to run */
2594 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2595 		return 0;
2596 
2597 	return 1;
2598 }
2599 
2600 #else /* !CONFIG_RT_GROUP_SCHED */
2601 static int sched_rt_global_constraints(void)
2602 {
2603 	unsigned long flags;
2604 	int i;
2605 
2606 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2607 	for_each_possible_cpu(i) {
2608 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2609 
2610 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2611 		rt_rq->rt_runtime = global_rt_runtime();
2612 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2613 	}
2614 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2615 
2616 	return 0;
2617 }
2618 #endif /* CONFIG_RT_GROUP_SCHED */
2619 
2620 static int sched_rt_global_validate(void)
2621 {
2622 	if (sysctl_sched_rt_period <= 0)
2623 		return -EINVAL;
2624 
2625 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2626 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2627 		return -EINVAL;
2628 
2629 	return 0;
2630 }
2631 
2632 static void sched_rt_do_global(void)
2633 {
2634 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2635 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2636 }
2637 
2638 int sched_rt_handler(struct ctl_table *table, int write,
2639 		void __user *buffer, size_t *lenp,
2640 		loff_t *ppos)
2641 {
2642 	int old_period, old_runtime;
2643 	static DEFINE_MUTEX(mutex);
2644 	int ret;
2645 
2646 	mutex_lock(&mutex);
2647 	old_period = sysctl_sched_rt_period;
2648 	old_runtime = sysctl_sched_rt_runtime;
2649 
2650 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2651 
2652 	if (!ret && write) {
2653 		ret = sched_rt_global_validate();
2654 		if (ret)
2655 			goto undo;
2656 
2657 		ret = sched_dl_global_validate();
2658 		if (ret)
2659 			goto undo;
2660 
2661 		ret = sched_rt_global_constraints();
2662 		if (ret)
2663 			goto undo;
2664 
2665 		sched_rt_do_global();
2666 		sched_dl_do_global();
2667 	}
2668 	if (0) {
2669 undo:
2670 		sysctl_sched_rt_period = old_period;
2671 		sysctl_sched_rt_runtime = old_runtime;
2672 	}
2673 	mutex_unlock(&mutex);
2674 
2675 	return ret;
2676 }
2677 
2678 int sched_rr_handler(struct ctl_table *table, int write,
2679 		void __user *buffer, size_t *lenp,
2680 		loff_t *ppos)
2681 {
2682 	int ret;
2683 	static DEFINE_MUTEX(mutex);
2684 
2685 	mutex_lock(&mutex);
2686 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2687 	/*
2688 	 * Make sure that internally we keep jiffies.
2689 	 * Also, writing zero resets the timeslice to default:
2690 	 */
2691 	if (!ret && write) {
2692 		sched_rr_timeslice =
2693 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2694 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2695 	}
2696 	mutex_unlock(&mutex);
2697 
2698 	return ret;
2699 }
2700 
2701 #ifdef CONFIG_SCHED_DEBUG
2702 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2703 
2704 void print_rt_stats(struct seq_file *m, int cpu)
2705 {
2706 	rt_rq_iter_t iter;
2707 	struct rt_rq *rt_rq;
2708 
2709 	rcu_read_lock();
2710 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2711 		print_rt_rq(m, cpu, rt_rq);
2712 	rcu_read_unlock();
2713 }
2714 #endif /* CONFIG_SCHED_DEBUG */
2715