1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 #include "sched.h" 7 8 int sched_rr_timeslice = RR_TIMESLICE; 9 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE; 10 11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 12 13 struct rt_bandwidth def_rt_bandwidth; 14 15 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 16 { 17 struct rt_bandwidth *rt_b = 18 container_of(timer, struct rt_bandwidth, rt_period_timer); 19 int idle = 0; 20 int overrun; 21 22 raw_spin_lock(&rt_b->rt_runtime_lock); 23 for (;;) { 24 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 25 if (!overrun) 26 break; 27 28 raw_spin_unlock(&rt_b->rt_runtime_lock); 29 idle = do_sched_rt_period_timer(rt_b, overrun); 30 raw_spin_lock(&rt_b->rt_runtime_lock); 31 } 32 if (idle) 33 rt_b->rt_period_active = 0; 34 raw_spin_unlock(&rt_b->rt_runtime_lock); 35 36 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 37 } 38 39 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 40 { 41 rt_b->rt_period = ns_to_ktime(period); 42 rt_b->rt_runtime = runtime; 43 44 raw_spin_lock_init(&rt_b->rt_runtime_lock); 45 46 hrtimer_init(&rt_b->rt_period_timer, 47 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 48 rt_b->rt_period_timer.function = sched_rt_period_timer; 49 } 50 51 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 52 { 53 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 54 return; 55 56 raw_spin_lock(&rt_b->rt_runtime_lock); 57 if (!rt_b->rt_period_active) { 58 rt_b->rt_period_active = 1; 59 /* 60 * SCHED_DEADLINE updates the bandwidth, as a run away 61 * RT task with a DL task could hog a CPU. But DL does 62 * not reset the period. If a deadline task was running 63 * without an RT task running, it can cause RT tasks to 64 * throttle when they start up. Kick the timer right away 65 * to update the period. 66 */ 67 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 68 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED); 69 } 70 raw_spin_unlock(&rt_b->rt_runtime_lock); 71 } 72 73 void init_rt_rq(struct rt_rq *rt_rq) 74 { 75 struct rt_prio_array *array; 76 int i; 77 78 array = &rt_rq->active; 79 for (i = 0; i < MAX_RT_PRIO; i++) { 80 INIT_LIST_HEAD(array->queue + i); 81 __clear_bit(i, array->bitmap); 82 } 83 /* delimiter for bitsearch: */ 84 __set_bit(MAX_RT_PRIO, array->bitmap); 85 86 #if defined CONFIG_SMP 87 rt_rq->highest_prio.curr = MAX_RT_PRIO; 88 rt_rq->highest_prio.next = MAX_RT_PRIO; 89 rt_rq->rt_nr_migratory = 0; 90 rt_rq->overloaded = 0; 91 plist_head_init(&rt_rq->pushable_tasks); 92 #endif /* CONFIG_SMP */ 93 /* We start is dequeued state, because no RT tasks are queued */ 94 rt_rq->rt_queued = 0; 95 96 rt_rq->rt_time = 0; 97 rt_rq->rt_throttled = 0; 98 rt_rq->rt_runtime = 0; 99 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 100 } 101 102 #ifdef CONFIG_RT_GROUP_SCHED 103 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 104 { 105 hrtimer_cancel(&rt_b->rt_period_timer); 106 } 107 108 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 109 110 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 111 { 112 #ifdef CONFIG_SCHED_DEBUG 113 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 114 #endif 115 return container_of(rt_se, struct task_struct, rt); 116 } 117 118 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 119 { 120 return rt_rq->rq; 121 } 122 123 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 124 { 125 return rt_se->rt_rq; 126 } 127 128 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 129 { 130 struct rt_rq *rt_rq = rt_se->rt_rq; 131 132 return rt_rq->rq; 133 } 134 135 void free_rt_sched_group(struct task_group *tg) 136 { 137 int i; 138 139 if (tg->rt_se) 140 destroy_rt_bandwidth(&tg->rt_bandwidth); 141 142 for_each_possible_cpu(i) { 143 if (tg->rt_rq) 144 kfree(tg->rt_rq[i]); 145 if (tg->rt_se) 146 kfree(tg->rt_se[i]); 147 } 148 149 kfree(tg->rt_rq); 150 kfree(tg->rt_se); 151 } 152 153 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 154 struct sched_rt_entity *rt_se, int cpu, 155 struct sched_rt_entity *parent) 156 { 157 struct rq *rq = cpu_rq(cpu); 158 159 rt_rq->highest_prio.curr = MAX_RT_PRIO; 160 rt_rq->rt_nr_boosted = 0; 161 rt_rq->rq = rq; 162 rt_rq->tg = tg; 163 164 tg->rt_rq[cpu] = rt_rq; 165 tg->rt_se[cpu] = rt_se; 166 167 if (!rt_se) 168 return; 169 170 if (!parent) 171 rt_se->rt_rq = &rq->rt; 172 else 173 rt_se->rt_rq = parent->my_q; 174 175 rt_se->my_q = rt_rq; 176 rt_se->parent = parent; 177 INIT_LIST_HEAD(&rt_se->run_list); 178 } 179 180 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 181 { 182 struct rt_rq *rt_rq; 183 struct sched_rt_entity *rt_se; 184 int i; 185 186 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); 187 if (!tg->rt_rq) 188 goto err; 189 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); 190 if (!tg->rt_se) 191 goto err; 192 193 init_rt_bandwidth(&tg->rt_bandwidth, 194 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 195 196 for_each_possible_cpu(i) { 197 rt_rq = kzalloc_node(sizeof(struct rt_rq), 198 GFP_KERNEL, cpu_to_node(i)); 199 if (!rt_rq) 200 goto err; 201 202 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 203 GFP_KERNEL, cpu_to_node(i)); 204 if (!rt_se) 205 goto err_free_rq; 206 207 init_rt_rq(rt_rq); 208 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 209 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 210 } 211 212 return 1; 213 214 err_free_rq: 215 kfree(rt_rq); 216 err: 217 return 0; 218 } 219 220 #else /* CONFIG_RT_GROUP_SCHED */ 221 222 #define rt_entity_is_task(rt_se) (1) 223 224 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 225 { 226 return container_of(rt_se, struct task_struct, rt); 227 } 228 229 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 230 { 231 return container_of(rt_rq, struct rq, rt); 232 } 233 234 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 235 { 236 struct task_struct *p = rt_task_of(rt_se); 237 238 return task_rq(p); 239 } 240 241 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 242 { 243 struct rq *rq = rq_of_rt_se(rt_se); 244 245 return &rq->rt; 246 } 247 248 void free_rt_sched_group(struct task_group *tg) { } 249 250 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 251 { 252 return 1; 253 } 254 #endif /* CONFIG_RT_GROUP_SCHED */ 255 256 #ifdef CONFIG_SMP 257 258 static void pull_rt_task(struct rq *this_rq); 259 260 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 261 { 262 /* Try to pull RT tasks here if we lower this rq's prio */ 263 return rq->rt.highest_prio.curr > prev->prio; 264 } 265 266 static inline int rt_overloaded(struct rq *rq) 267 { 268 return atomic_read(&rq->rd->rto_count); 269 } 270 271 static inline void rt_set_overload(struct rq *rq) 272 { 273 if (!rq->online) 274 return; 275 276 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 277 /* 278 * Make sure the mask is visible before we set 279 * the overload count. That is checked to determine 280 * if we should look at the mask. It would be a shame 281 * if we looked at the mask, but the mask was not 282 * updated yet. 283 * 284 * Matched by the barrier in pull_rt_task(). 285 */ 286 smp_wmb(); 287 atomic_inc(&rq->rd->rto_count); 288 } 289 290 static inline void rt_clear_overload(struct rq *rq) 291 { 292 if (!rq->online) 293 return; 294 295 /* the order here really doesn't matter */ 296 atomic_dec(&rq->rd->rto_count); 297 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 298 } 299 300 static void update_rt_migration(struct rt_rq *rt_rq) 301 { 302 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 303 if (!rt_rq->overloaded) { 304 rt_set_overload(rq_of_rt_rq(rt_rq)); 305 rt_rq->overloaded = 1; 306 } 307 } else if (rt_rq->overloaded) { 308 rt_clear_overload(rq_of_rt_rq(rt_rq)); 309 rt_rq->overloaded = 0; 310 } 311 } 312 313 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 314 { 315 struct task_struct *p; 316 317 if (!rt_entity_is_task(rt_se)) 318 return; 319 320 p = rt_task_of(rt_se); 321 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 322 323 rt_rq->rt_nr_total++; 324 if (p->nr_cpus_allowed > 1) 325 rt_rq->rt_nr_migratory++; 326 327 update_rt_migration(rt_rq); 328 } 329 330 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 331 { 332 struct task_struct *p; 333 334 if (!rt_entity_is_task(rt_se)) 335 return; 336 337 p = rt_task_of(rt_se); 338 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 339 340 rt_rq->rt_nr_total--; 341 if (p->nr_cpus_allowed > 1) 342 rt_rq->rt_nr_migratory--; 343 344 update_rt_migration(rt_rq); 345 } 346 347 static inline int has_pushable_tasks(struct rq *rq) 348 { 349 return !plist_head_empty(&rq->rt.pushable_tasks); 350 } 351 352 static DEFINE_PER_CPU(struct callback_head, rt_push_head); 353 static DEFINE_PER_CPU(struct callback_head, rt_pull_head); 354 355 static void push_rt_tasks(struct rq *); 356 static void pull_rt_task(struct rq *); 357 358 static inline void rt_queue_push_tasks(struct rq *rq) 359 { 360 if (!has_pushable_tasks(rq)) 361 return; 362 363 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 364 } 365 366 static inline void rt_queue_pull_task(struct rq *rq) 367 { 368 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 369 } 370 371 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 372 { 373 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 374 plist_node_init(&p->pushable_tasks, p->prio); 375 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 376 377 /* Update the highest prio pushable task */ 378 if (p->prio < rq->rt.highest_prio.next) 379 rq->rt.highest_prio.next = p->prio; 380 } 381 382 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 383 { 384 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 385 386 /* Update the new highest prio pushable task */ 387 if (has_pushable_tasks(rq)) { 388 p = plist_first_entry(&rq->rt.pushable_tasks, 389 struct task_struct, pushable_tasks); 390 rq->rt.highest_prio.next = p->prio; 391 } else 392 rq->rt.highest_prio.next = MAX_RT_PRIO; 393 } 394 395 #else 396 397 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 398 { 399 } 400 401 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 402 { 403 } 404 405 static inline 406 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 407 { 408 } 409 410 static inline 411 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 412 { 413 } 414 415 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 416 { 417 return false; 418 } 419 420 static inline void pull_rt_task(struct rq *this_rq) 421 { 422 } 423 424 static inline void rt_queue_push_tasks(struct rq *rq) 425 { 426 } 427 #endif /* CONFIG_SMP */ 428 429 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 430 static void dequeue_top_rt_rq(struct rt_rq *rt_rq); 431 432 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 433 { 434 return rt_se->on_rq; 435 } 436 437 #ifdef CONFIG_RT_GROUP_SCHED 438 439 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 440 { 441 if (!rt_rq->tg) 442 return RUNTIME_INF; 443 444 return rt_rq->rt_runtime; 445 } 446 447 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 448 { 449 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 450 } 451 452 typedef struct task_group *rt_rq_iter_t; 453 454 static inline struct task_group *next_task_group(struct task_group *tg) 455 { 456 do { 457 tg = list_entry_rcu(tg->list.next, 458 typeof(struct task_group), list); 459 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 460 461 if (&tg->list == &task_groups) 462 tg = NULL; 463 464 return tg; 465 } 466 467 #define for_each_rt_rq(rt_rq, iter, rq) \ 468 for (iter = container_of(&task_groups, typeof(*iter), list); \ 469 (iter = next_task_group(iter)) && \ 470 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 471 472 #define for_each_sched_rt_entity(rt_se) \ 473 for (; rt_se; rt_se = rt_se->parent) 474 475 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 476 { 477 return rt_se->my_q; 478 } 479 480 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 481 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 482 483 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 484 { 485 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 486 struct rq *rq = rq_of_rt_rq(rt_rq); 487 struct sched_rt_entity *rt_se; 488 489 int cpu = cpu_of(rq); 490 491 rt_se = rt_rq->tg->rt_se[cpu]; 492 493 if (rt_rq->rt_nr_running) { 494 if (!rt_se) 495 enqueue_top_rt_rq(rt_rq); 496 else if (!on_rt_rq(rt_se)) 497 enqueue_rt_entity(rt_se, 0); 498 499 if (rt_rq->highest_prio.curr < curr->prio) 500 resched_curr(rq); 501 } 502 } 503 504 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 505 { 506 struct sched_rt_entity *rt_se; 507 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 508 509 rt_se = rt_rq->tg->rt_se[cpu]; 510 511 if (!rt_se) 512 dequeue_top_rt_rq(rt_rq); 513 else if (on_rt_rq(rt_se)) 514 dequeue_rt_entity(rt_se, 0); 515 } 516 517 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 518 { 519 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 520 } 521 522 static int rt_se_boosted(struct sched_rt_entity *rt_se) 523 { 524 struct rt_rq *rt_rq = group_rt_rq(rt_se); 525 struct task_struct *p; 526 527 if (rt_rq) 528 return !!rt_rq->rt_nr_boosted; 529 530 p = rt_task_of(rt_se); 531 return p->prio != p->normal_prio; 532 } 533 534 #ifdef CONFIG_SMP 535 static inline const struct cpumask *sched_rt_period_mask(void) 536 { 537 return this_rq()->rd->span; 538 } 539 #else 540 static inline const struct cpumask *sched_rt_period_mask(void) 541 { 542 return cpu_online_mask; 543 } 544 #endif 545 546 static inline 547 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 548 { 549 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 550 } 551 552 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 553 { 554 return &rt_rq->tg->rt_bandwidth; 555 } 556 557 #else /* !CONFIG_RT_GROUP_SCHED */ 558 559 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 560 { 561 return rt_rq->rt_runtime; 562 } 563 564 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 565 { 566 return ktime_to_ns(def_rt_bandwidth.rt_period); 567 } 568 569 typedef struct rt_rq *rt_rq_iter_t; 570 571 #define for_each_rt_rq(rt_rq, iter, rq) \ 572 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 573 574 #define for_each_sched_rt_entity(rt_se) \ 575 for (; rt_se; rt_se = NULL) 576 577 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 578 { 579 return NULL; 580 } 581 582 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 583 { 584 struct rq *rq = rq_of_rt_rq(rt_rq); 585 586 if (!rt_rq->rt_nr_running) 587 return; 588 589 enqueue_top_rt_rq(rt_rq); 590 resched_curr(rq); 591 } 592 593 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 594 { 595 dequeue_top_rt_rq(rt_rq); 596 } 597 598 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 599 { 600 return rt_rq->rt_throttled; 601 } 602 603 static inline const struct cpumask *sched_rt_period_mask(void) 604 { 605 return cpu_online_mask; 606 } 607 608 static inline 609 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 610 { 611 return &cpu_rq(cpu)->rt; 612 } 613 614 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 615 { 616 return &def_rt_bandwidth; 617 } 618 619 #endif /* CONFIG_RT_GROUP_SCHED */ 620 621 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 622 { 623 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 624 625 return (hrtimer_active(&rt_b->rt_period_timer) || 626 rt_rq->rt_time < rt_b->rt_runtime); 627 } 628 629 #ifdef CONFIG_SMP 630 /* 631 * We ran out of runtime, see if we can borrow some from our neighbours. 632 */ 633 static void do_balance_runtime(struct rt_rq *rt_rq) 634 { 635 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 636 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 637 int i, weight; 638 u64 rt_period; 639 640 weight = cpumask_weight(rd->span); 641 642 raw_spin_lock(&rt_b->rt_runtime_lock); 643 rt_period = ktime_to_ns(rt_b->rt_period); 644 for_each_cpu(i, rd->span) { 645 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 646 s64 diff; 647 648 if (iter == rt_rq) 649 continue; 650 651 raw_spin_lock(&iter->rt_runtime_lock); 652 /* 653 * Either all rqs have inf runtime and there's nothing to steal 654 * or __disable_runtime() below sets a specific rq to inf to 655 * indicate its been disabled and disalow stealing. 656 */ 657 if (iter->rt_runtime == RUNTIME_INF) 658 goto next; 659 660 /* 661 * From runqueues with spare time, take 1/n part of their 662 * spare time, but no more than our period. 663 */ 664 diff = iter->rt_runtime - iter->rt_time; 665 if (diff > 0) { 666 diff = div_u64((u64)diff, weight); 667 if (rt_rq->rt_runtime + diff > rt_period) 668 diff = rt_period - rt_rq->rt_runtime; 669 iter->rt_runtime -= diff; 670 rt_rq->rt_runtime += diff; 671 if (rt_rq->rt_runtime == rt_period) { 672 raw_spin_unlock(&iter->rt_runtime_lock); 673 break; 674 } 675 } 676 next: 677 raw_spin_unlock(&iter->rt_runtime_lock); 678 } 679 raw_spin_unlock(&rt_b->rt_runtime_lock); 680 } 681 682 /* 683 * Ensure this RQ takes back all the runtime it lend to its neighbours. 684 */ 685 static void __disable_runtime(struct rq *rq) 686 { 687 struct root_domain *rd = rq->rd; 688 rt_rq_iter_t iter; 689 struct rt_rq *rt_rq; 690 691 if (unlikely(!scheduler_running)) 692 return; 693 694 for_each_rt_rq(rt_rq, iter, rq) { 695 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 696 s64 want; 697 int i; 698 699 raw_spin_lock(&rt_b->rt_runtime_lock); 700 raw_spin_lock(&rt_rq->rt_runtime_lock); 701 /* 702 * Either we're all inf and nobody needs to borrow, or we're 703 * already disabled and thus have nothing to do, or we have 704 * exactly the right amount of runtime to take out. 705 */ 706 if (rt_rq->rt_runtime == RUNTIME_INF || 707 rt_rq->rt_runtime == rt_b->rt_runtime) 708 goto balanced; 709 raw_spin_unlock(&rt_rq->rt_runtime_lock); 710 711 /* 712 * Calculate the difference between what we started out with 713 * and what we current have, that's the amount of runtime 714 * we lend and now have to reclaim. 715 */ 716 want = rt_b->rt_runtime - rt_rq->rt_runtime; 717 718 /* 719 * Greedy reclaim, take back as much as we can. 720 */ 721 for_each_cpu(i, rd->span) { 722 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 723 s64 diff; 724 725 /* 726 * Can't reclaim from ourselves or disabled runqueues. 727 */ 728 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 729 continue; 730 731 raw_spin_lock(&iter->rt_runtime_lock); 732 if (want > 0) { 733 diff = min_t(s64, iter->rt_runtime, want); 734 iter->rt_runtime -= diff; 735 want -= diff; 736 } else { 737 iter->rt_runtime -= want; 738 want -= want; 739 } 740 raw_spin_unlock(&iter->rt_runtime_lock); 741 742 if (!want) 743 break; 744 } 745 746 raw_spin_lock(&rt_rq->rt_runtime_lock); 747 /* 748 * We cannot be left wanting - that would mean some runtime 749 * leaked out of the system. 750 */ 751 BUG_ON(want); 752 balanced: 753 /* 754 * Disable all the borrow logic by pretending we have inf 755 * runtime - in which case borrowing doesn't make sense. 756 */ 757 rt_rq->rt_runtime = RUNTIME_INF; 758 rt_rq->rt_throttled = 0; 759 raw_spin_unlock(&rt_rq->rt_runtime_lock); 760 raw_spin_unlock(&rt_b->rt_runtime_lock); 761 762 /* Make rt_rq available for pick_next_task() */ 763 sched_rt_rq_enqueue(rt_rq); 764 } 765 } 766 767 static void __enable_runtime(struct rq *rq) 768 { 769 rt_rq_iter_t iter; 770 struct rt_rq *rt_rq; 771 772 if (unlikely(!scheduler_running)) 773 return; 774 775 /* 776 * Reset each runqueue's bandwidth settings 777 */ 778 for_each_rt_rq(rt_rq, iter, rq) { 779 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 780 781 raw_spin_lock(&rt_b->rt_runtime_lock); 782 raw_spin_lock(&rt_rq->rt_runtime_lock); 783 rt_rq->rt_runtime = rt_b->rt_runtime; 784 rt_rq->rt_time = 0; 785 rt_rq->rt_throttled = 0; 786 raw_spin_unlock(&rt_rq->rt_runtime_lock); 787 raw_spin_unlock(&rt_b->rt_runtime_lock); 788 } 789 } 790 791 static void balance_runtime(struct rt_rq *rt_rq) 792 { 793 if (!sched_feat(RT_RUNTIME_SHARE)) 794 return; 795 796 if (rt_rq->rt_time > rt_rq->rt_runtime) { 797 raw_spin_unlock(&rt_rq->rt_runtime_lock); 798 do_balance_runtime(rt_rq); 799 raw_spin_lock(&rt_rq->rt_runtime_lock); 800 } 801 } 802 #else /* !CONFIG_SMP */ 803 static inline void balance_runtime(struct rt_rq *rt_rq) {} 804 #endif /* CONFIG_SMP */ 805 806 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 807 { 808 int i, idle = 1, throttled = 0; 809 const struct cpumask *span; 810 811 span = sched_rt_period_mask(); 812 #ifdef CONFIG_RT_GROUP_SCHED 813 /* 814 * FIXME: isolated CPUs should really leave the root task group, 815 * whether they are isolcpus or were isolated via cpusets, lest 816 * the timer run on a CPU which does not service all runqueues, 817 * potentially leaving other CPUs indefinitely throttled. If 818 * isolation is really required, the user will turn the throttle 819 * off to kill the perturbations it causes anyway. Meanwhile, 820 * this maintains functionality for boot and/or troubleshooting. 821 */ 822 if (rt_b == &root_task_group.rt_bandwidth) 823 span = cpu_online_mask; 824 #endif 825 for_each_cpu(i, span) { 826 int enqueue = 0; 827 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 828 struct rq *rq = rq_of_rt_rq(rt_rq); 829 int skip; 830 831 /* 832 * When span == cpu_online_mask, taking each rq->lock 833 * can be time-consuming. Try to avoid it when possible. 834 */ 835 raw_spin_lock(&rt_rq->rt_runtime_lock); 836 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 837 raw_spin_unlock(&rt_rq->rt_runtime_lock); 838 if (skip) 839 continue; 840 841 raw_spin_lock(&rq->lock); 842 if (rt_rq->rt_time) { 843 u64 runtime; 844 845 raw_spin_lock(&rt_rq->rt_runtime_lock); 846 if (rt_rq->rt_throttled) 847 balance_runtime(rt_rq); 848 runtime = rt_rq->rt_runtime; 849 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 850 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 851 rt_rq->rt_throttled = 0; 852 enqueue = 1; 853 854 /* 855 * When we're idle and a woken (rt) task is 856 * throttled check_preempt_curr() will set 857 * skip_update and the time between the wakeup 858 * and this unthrottle will get accounted as 859 * 'runtime'. 860 */ 861 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 862 rq_clock_skip_update(rq, false); 863 } 864 if (rt_rq->rt_time || rt_rq->rt_nr_running) 865 idle = 0; 866 raw_spin_unlock(&rt_rq->rt_runtime_lock); 867 } else if (rt_rq->rt_nr_running) { 868 idle = 0; 869 if (!rt_rq_throttled(rt_rq)) 870 enqueue = 1; 871 } 872 if (rt_rq->rt_throttled) 873 throttled = 1; 874 875 if (enqueue) 876 sched_rt_rq_enqueue(rt_rq); 877 raw_spin_unlock(&rq->lock); 878 } 879 880 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 881 return 1; 882 883 return idle; 884 } 885 886 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 887 { 888 #ifdef CONFIG_RT_GROUP_SCHED 889 struct rt_rq *rt_rq = group_rt_rq(rt_se); 890 891 if (rt_rq) 892 return rt_rq->highest_prio.curr; 893 #endif 894 895 return rt_task_of(rt_se)->prio; 896 } 897 898 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 899 { 900 u64 runtime = sched_rt_runtime(rt_rq); 901 902 if (rt_rq->rt_throttled) 903 return rt_rq_throttled(rt_rq); 904 905 if (runtime >= sched_rt_period(rt_rq)) 906 return 0; 907 908 balance_runtime(rt_rq); 909 runtime = sched_rt_runtime(rt_rq); 910 if (runtime == RUNTIME_INF) 911 return 0; 912 913 if (rt_rq->rt_time > runtime) { 914 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 915 916 /* 917 * Don't actually throttle groups that have no runtime assigned 918 * but accrue some time due to boosting. 919 */ 920 if (likely(rt_b->rt_runtime)) { 921 rt_rq->rt_throttled = 1; 922 printk_deferred_once("sched: RT throttling activated\n"); 923 } else { 924 /* 925 * In case we did anyway, make it go away, 926 * replenishment is a joke, since it will replenish us 927 * with exactly 0 ns. 928 */ 929 rt_rq->rt_time = 0; 930 } 931 932 if (rt_rq_throttled(rt_rq)) { 933 sched_rt_rq_dequeue(rt_rq); 934 return 1; 935 } 936 } 937 938 return 0; 939 } 940 941 /* 942 * Update the current task's runtime statistics. Skip current tasks that 943 * are not in our scheduling class. 944 */ 945 static void update_curr_rt(struct rq *rq) 946 { 947 struct task_struct *curr = rq->curr; 948 struct sched_rt_entity *rt_se = &curr->rt; 949 u64 delta_exec; 950 u64 now; 951 952 if (curr->sched_class != &rt_sched_class) 953 return; 954 955 now = rq_clock_task(rq); 956 delta_exec = now - curr->se.exec_start; 957 if (unlikely((s64)delta_exec <= 0)) 958 return; 959 960 schedstat_set(curr->se.statistics.exec_max, 961 max(curr->se.statistics.exec_max, delta_exec)); 962 963 curr->se.sum_exec_runtime += delta_exec; 964 account_group_exec_runtime(curr, delta_exec); 965 966 curr->se.exec_start = now; 967 cgroup_account_cputime(curr, delta_exec); 968 969 sched_rt_avg_update(rq, delta_exec); 970 971 if (!rt_bandwidth_enabled()) 972 return; 973 974 for_each_sched_rt_entity(rt_se) { 975 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 976 977 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 978 raw_spin_lock(&rt_rq->rt_runtime_lock); 979 rt_rq->rt_time += delta_exec; 980 if (sched_rt_runtime_exceeded(rt_rq)) 981 resched_curr(rq); 982 raw_spin_unlock(&rt_rq->rt_runtime_lock); 983 } 984 } 985 } 986 987 static void 988 dequeue_top_rt_rq(struct rt_rq *rt_rq) 989 { 990 struct rq *rq = rq_of_rt_rq(rt_rq); 991 992 BUG_ON(&rq->rt != rt_rq); 993 994 if (!rt_rq->rt_queued) 995 return; 996 997 BUG_ON(!rq->nr_running); 998 999 sub_nr_running(rq, rt_rq->rt_nr_running); 1000 rt_rq->rt_queued = 0; 1001 1002 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 1003 cpufreq_update_util(rq, 0); 1004 } 1005 1006 static void 1007 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1008 { 1009 struct rq *rq = rq_of_rt_rq(rt_rq); 1010 1011 BUG_ON(&rq->rt != rt_rq); 1012 1013 if (rt_rq->rt_queued) 1014 return; 1015 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running) 1016 return; 1017 1018 add_nr_running(rq, rt_rq->rt_nr_running); 1019 rt_rq->rt_queued = 1; 1020 1021 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 1022 cpufreq_update_util(rq, 0); 1023 } 1024 1025 #if defined CONFIG_SMP 1026 1027 static void 1028 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1029 { 1030 struct rq *rq = rq_of_rt_rq(rt_rq); 1031 1032 #ifdef CONFIG_RT_GROUP_SCHED 1033 /* 1034 * Change rq's cpupri only if rt_rq is the top queue. 1035 */ 1036 if (&rq->rt != rt_rq) 1037 return; 1038 #endif 1039 if (rq->online && prio < prev_prio) 1040 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1041 } 1042 1043 static void 1044 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1045 { 1046 struct rq *rq = rq_of_rt_rq(rt_rq); 1047 1048 #ifdef CONFIG_RT_GROUP_SCHED 1049 /* 1050 * Change rq's cpupri only if rt_rq is the top queue. 1051 */ 1052 if (&rq->rt != rt_rq) 1053 return; 1054 #endif 1055 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1056 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1057 } 1058 1059 #else /* CONFIG_SMP */ 1060 1061 static inline 1062 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1063 static inline 1064 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1065 1066 #endif /* CONFIG_SMP */ 1067 1068 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1069 static void 1070 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1071 { 1072 int prev_prio = rt_rq->highest_prio.curr; 1073 1074 if (prio < prev_prio) 1075 rt_rq->highest_prio.curr = prio; 1076 1077 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1078 } 1079 1080 static void 1081 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1082 { 1083 int prev_prio = rt_rq->highest_prio.curr; 1084 1085 if (rt_rq->rt_nr_running) { 1086 1087 WARN_ON(prio < prev_prio); 1088 1089 /* 1090 * This may have been our highest task, and therefore 1091 * we may have some recomputation to do 1092 */ 1093 if (prio == prev_prio) { 1094 struct rt_prio_array *array = &rt_rq->active; 1095 1096 rt_rq->highest_prio.curr = 1097 sched_find_first_bit(array->bitmap); 1098 } 1099 1100 } else 1101 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1102 1103 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1104 } 1105 1106 #else 1107 1108 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1109 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1110 1111 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1112 1113 #ifdef CONFIG_RT_GROUP_SCHED 1114 1115 static void 1116 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1117 { 1118 if (rt_se_boosted(rt_se)) 1119 rt_rq->rt_nr_boosted++; 1120 1121 if (rt_rq->tg) 1122 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1123 } 1124 1125 static void 1126 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1127 { 1128 if (rt_se_boosted(rt_se)) 1129 rt_rq->rt_nr_boosted--; 1130 1131 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1132 } 1133 1134 #else /* CONFIG_RT_GROUP_SCHED */ 1135 1136 static void 1137 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1138 { 1139 start_rt_bandwidth(&def_rt_bandwidth); 1140 } 1141 1142 static inline 1143 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1144 1145 #endif /* CONFIG_RT_GROUP_SCHED */ 1146 1147 static inline 1148 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1149 { 1150 struct rt_rq *group_rq = group_rt_rq(rt_se); 1151 1152 if (group_rq) 1153 return group_rq->rt_nr_running; 1154 else 1155 return 1; 1156 } 1157 1158 static inline 1159 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1160 { 1161 struct rt_rq *group_rq = group_rt_rq(rt_se); 1162 struct task_struct *tsk; 1163 1164 if (group_rq) 1165 return group_rq->rr_nr_running; 1166 1167 tsk = rt_task_of(rt_se); 1168 1169 return (tsk->policy == SCHED_RR) ? 1 : 0; 1170 } 1171 1172 static inline 1173 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1174 { 1175 int prio = rt_se_prio(rt_se); 1176 1177 WARN_ON(!rt_prio(prio)); 1178 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1179 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1180 1181 inc_rt_prio(rt_rq, prio); 1182 inc_rt_migration(rt_se, rt_rq); 1183 inc_rt_group(rt_se, rt_rq); 1184 } 1185 1186 static inline 1187 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1188 { 1189 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1190 WARN_ON(!rt_rq->rt_nr_running); 1191 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1192 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1193 1194 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1195 dec_rt_migration(rt_se, rt_rq); 1196 dec_rt_group(rt_se, rt_rq); 1197 } 1198 1199 /* 1200 * Change rt_se->run_list location unless SAVE && !MOVE 1201 * 1202 * assumes ENQUEUE/DEQUEUE flags match 1203 */ 1204 static inline bool move_entity(unsigned int flags) 1205 { 1206 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1207 return false; 1208 1209 return true; 1210 } 1211 1212 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1213 { 1214 list_del_init(&rt_se->run_list); 1215 1216 if (list_empty(array->queue + rt_se_prio(rt_se))) 1217 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1218 1219 rt_se->on_list = 0; 1220 } 1221 1222 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1223 { 1224 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1225 struct rt_prio_array *array = &rt_rq->active; 1226 struct rt_rq *group_rq = group_rt_rq(rt_se); 1227 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1228 1229 /* 1230 * Don't enqueue the group if its throttled, or when empty. 1231 * The latter is a consequence of the former when a child group 1232 * get throttled and the current group doesn't have any other 1233 * active members. 1234 */ 1235 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1236 if (rt_se->on_list) 1237 __delist_rt_entity(rt_se, array); 1238 return; 1239 } 1240 1241 if (move_entity(flags)) { 1242 WARN_ON_ONCE(rt_se->on_list); 1243 if (flags & ENQUEUE_HEAD) 1244 list_add(&rt_se->run_list, queue); 1245 else 1246 list_add_tail(&rt_se->run_list, queue); 1247 1248 __set_bit(rt_se_prio(rt_se), array->bitmap); 1249 rt_se->on_list = 1; 1250 } 1251 rt_se->on_rq = 1; 1252 1253 inc_rt_tasks(rt_se, rt_rq); 1254 } 1255 1256 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1257 { 1258 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1259 struct rt_prio_array *array = &rt_rq->active; 1260 1261 if (move_entity(flags)) { 1262 WARN_ON_ONCE(!rt_se->on_list); 1263 __delist_rt_entity(rt_se, array); 1264 } 1265 rt_se->on_rq = 0; 1266 1267 dec_rt_tasks(rt_se, rt_rq); 1268 } 1269 1270 /* 1271 * Because the prio of an upper entry depends on the lower 1272 * entries, we must remove entries top - down. 1273 */ 1274 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1275 { 1276 struct sched_rt_entity *back = NULL; 1277 1278 for_each_sched_rt_entity(rt_se) { 1279 rt_se->back = back; 1280 back = rt_se; 1281 } 1282 1283 dequeue_top_rt_rq(rt_rq_of_se(back)); 1284 1285 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1286 if (on_rt_rq(rt_se)) 1287 __dequeue_rt_entity(rt_se, flags); 1288 } 1289 } 1290 1291 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1292 { 1293 struct rq *rq = rq_of_rt_se(rt_se); 1294 1295 dequeue_rt_stack(rt_se, flags); 1296 for_each_sched_rt_entity(rt_se) 1297 __enqueue_rt_entity(rt_se, flags); 1298 enqueue_top_rt_rq(&rq->rt); 1299 } 1300 1301 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1302 { 1303 struct rq *rq = rq_of_rt_se(rt_se); 1304 1305 dequeue_rt_stack(rt_se, flags); 1306 1307 for_each_sched_rt_entity(rt_se) { 1308 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1309 1310 if (rt_rq && rt_rq->rt_nr_running) 1311 __enqueue_rt_entity(rt_se, flags); 1312 } 1313 enqueue_top_rt_rq(&rq->rt); 1314 } 1315 1316 /* 1317 * Adding/removing a task to/from a priority array: 1318 */ 1319 static void 1320 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1321 { 1322 struct sched_rt_entity *rt_se = &p->rt; 1323 1324 if (flags & ENQUEUE_WAKEUP) 1325 rt_se->timeout = 0; 1326 1327 enqueue_rt_entity(rt_se, flags); 1328 1329 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1330 enqueue_pushable_task(rq, p); 1331 } 1332 1333 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1334 { 1335 struct sched_rt_entity *rt_se = &p->rt; 1336 1337 update_curr_rt(rq); 1338 dequeue_rt_entity(rt_se, flags); 1339 1340 dequeue_pushable_task(rq, p); 1341 } 1342 1343 /* 1344 * Put task to the head or the end of the run list without the overhead of 1345 * dequeue followed by enqueue. 1346 */ 1347 static void 1348 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1349 { 1350 if (on_rt_rq(rt_se)) { 1351 struct rt_prio_array *array = &rt_rq->active; 1352 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1353 1354 if (head) 1355 list_move(&rt_se->run_list, queue); 1356 else 1357 list_move_tail(&rt_se->run_list, queue); 1358 } 1359 } 1360 1361 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1362 { 1363 struct sched_rt_entity *rt_se = &p->rt; 1364 struct rt_rq *rt_rq; 1365 1366 for_each_sched_rt_entity(rt_se) { 1367 rt_rq = rt_rq_of_se(rt_se); 1368 requeue_rt_entity(rt_rq, rt_se, head); 1369 } 1370 } 1371 1372 static void yield_task_rt(struct rq *rq) 1373 { 1374 requeue_task_rt(rq, rq->curr, 0); 1375 } 1376 1377 #ifdef CONFIG_SMP 1378 static int find_lowest_rq(struct task_struct *task); 1379 1380 static int 1381 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1382 { 1383 struct task_struct *curr; 1384 struct rq *rq; 1385 1386 /* For anything but wake ups, just return the task_cpu */ 1387 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1388 goto out; 1389 1390 rq = cpu_rq(cpu); 1391 1392 rcu_read_lock(); 1393 curr = READ_ONCE(rq->curr); /* unlocked access */ 1394 1395 /* 1396 * If the current task on @p's runqueue is an RT task, then 1397 * try to see if we can wake this RT task up on another 1398 * runqueue. Otherwise simply start this RT task 1399 * on its current runqueue. 1400 * 1401 * We want to avoid overloading runqueues. If the woken 1402 * task is a higher priority, then it will stay on this CPU 1403 * and the lower prio task should be moved to another CPU. 1404 * Even though this will probably make the lower prio task 1405 * lose its cache, we do not want to bounce a higher task 1406 * around just because it gave up its CPU, perhaps for a 1407 * lock? 1408 * 1409 * For equal prio tasks, we just let the scheduler sort it out. 1410 * 1411 * Otherwise, just let it ride on the affined RQ and the 1412 * post-schedule router will push the preempted task away 1413 * 1414 * This test is optimistic, if we get it wrong the load-balancer 1415 * will have to sort it out. 1416 */ 1417 if (curr && unlikely(rt_task(curr)) && 1418 (curr->nr_cpus_allowed < 2 || 1419 curr->prio <= p->prio)) { 1420 int target = find_lowest_rq(p); 1421 1422 /* 1423 * Don't bother moving it if the destination CPU is 1424 * not running a lower priority task. 1425 */ 1426 if (target != -1 && 1427 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1428 cpu = target; 1429 } 1430 rcu_read_unlock(); 1431 1432 out: 1433 return cpu; 1434 } 1435 1436 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1437 { 1438 /* 1439 * Current can't be migrated, useless to reschedule, 1440 * let's hope p can move out. 1441 */ 1442 if (rq->curr->nr_cpus_allowed == 1 || 1443 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1444 return; 1445 1446 /* 1447 * p is migratable, so let's not schedule it and 1448 * see if it is pushed or pulled somewhere else. 1449 */ 1450 if (p->nr_cpus_allowed != 1 1451 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1452 return; 1453 1454 /* 1455 * There appear to be other CPUs that can accept 1456 * the current task but none can run 'p', so lets reschedule 1457 * to try and push the current task away: 1458 */ 1459 requeue_task_rt(rq, p, 1); 1460 resched_curr(rq); 1461 } 1462 1463 #endif /* CONFIG_SMP */ 1464 1465 /* 1466 * Preempt the current task with a newly woken task if needed: 1467 */ 1468 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1469 { 1470 if (p->prio < rq->curr->prio) { 1471 resched_curr(rq); 1472 return; 1473 } 1474 1475 #ifdef CONFIG_SMP 1476 /* 1477 * If: 1478 * 1479 * - the newly woken task is of equal priority to the current task 1480 * - the newly woken task is non-migratable while current is migratable 1481 * - current will be preempted on the next reschedule 1482 * 1483 * we should check to see if current can readily move to a different 1484 * cpu. If so, we will reschedule to allow the push logic to try 1485 * to move current somewhere else, making room for our non-migratable 1486 * task. 1487 */ 1488 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1489 check_preempt_equal_prio(rq, p); 1490 #endif 1491 } 1492 1493 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1494 struct rt_rq *rt_rq) 1495 { 1496 struct rt_prio_array *array = &rt_rq->active; 1497 struct sched_rt_entity *next = NULL; 1498 struct list_head *queue; 1499 int idx; 1500 1501 idx = sched_find_first_bit(array->bitmap); 1502 BUG_ON(idx >= MAX_RT_PRIO); 1503 1504 queue = array->queue + idx; 1505 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1506 1507 return next; 1508 } 1509 1510 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1511 { 1512 struct sched_rt_entity *rt_se; 1513 struct task_struct *p; 1514 struct rt_rq *rt_rq = &rq->rt; 1515 1516 do { 1517 rt_se = pick_next_rt_entity(rq, rt_rq); 1518 BUG_ON(!rt_se); 1519 rt_rq = group_rt_rq(rt_se); 1520 } while (rt_rq); 1521 1522 p = rt_task_of(rt_se); 1523 p->se.exec_start = rq_clock_task(rq); 1524 1525 return p; 1526 } 1527 1528 static struct task_struct * 1529 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 1530 { 1531 struct task_struct *p; 1532 struct rt_rq *rt_rq = &rq->rt; 1533 1534 if (need_pull_rt_task(rq, prev)) { 1535 /* 1536 * This is OK, because current is on_cpu, which avoids it being 1537 * picked for load-balance and preemption/IRQs are still 1538 * disabled avoiding further scheduler activity on it and we're 1539 * being very careful to re-start the picking loop. 1540 */ 1541 rq_unpin_lock(rq, rf); 1542 pull_rt_task(rq); 1543 rq_repin_lock(rq, rf); 1544 /* 1545 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1546 * means a dl or stop task can slip in, in which case we need 1547 * to re-start task selection. 1548 */ 1549 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) || 1550 rq->dl.dl_nr_running)) 1551 return RETRY_TASK; 1552 } 1553 1554 /* 1555 * We may dequeue prev's rt_rq in put_prev_task(). 1556 * So, we update time before rt_nr_running check. 1557 */ 1558 if (prev->sched_class == &rt_sched_class) 1559 update_curr_rt(rq); 1560 1561 if (!rt_rq->rt_queued) 1562 return NULL; 1563 1564 put_prev_task(rq, prev); 1565 1566 p = _pick_next_task_rt(rq); 1567 1568 /* The running task is never eligible for pushing */ 1569 dequeue_pushable_task(rq, p); 1570 1571 rt_queue_push_tasks(rq); 1572 1573 return p; 1574 } 1575 1576 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1577 { 1578 update_curr_rt(rq); 1579 1580 /* 1581 * The previous task needs to be made eligible for pushing 1582 * if it is still active 1583 */ 1584 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1585 enqueue_pushable_task(rq, p); 1586 } 1587 1588 #ifdef CONFIG_SMP 1589 1590 /* Only try algorithms three times */ 1591 #define RT_MAX_TRIES 3 1592 1593 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1594 { 1595 if (!task_running(rq, p) && 1596 cpumask_test_cpu(cpu, &p->cpus_allowed)) 1597 return 1; 1598 1599 return 0; 1600 } 1601 1602 /* 1603 * Return the highest pushable rq's task, which is suitable to be executed 1604 * on the CPU, NULL otherwise 1605 */ 1606 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1607 { 1608 struct plist_head *head = &rq->rt.pushable_tasks; 1609 struct task_struct *p; 1610 1611 if (!has_pushable_tasks(rq)) 1612 return NULL; 1613 1614 plist_for_each_entry(p, head, pushable_tasks) { 1615 if (pick_rt_task(rq, p, cpu)) 1616 return p; 1617 } 1618 1619 return NULL; 1620 } 1621 1622 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1623 1624 static int find_lowest_rq(struct task_struct *task) 1625 { 1626 struct sched_domain *sd; 1627 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1628 int this_cpu = smp_processor_id(); 1629 int cpu = task_cpu(task); 1630 1631 /* Make sure the mask is initialized first */ 1632 if (unlikely(!lowest_mask)) 1633 return -1; 1634 1635 if (task->nr_cpus_allowed == 1) 1636 return -1; /* No other targets possible */ 1637 1638 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1639 return -1; /* No targets found */ 1640 1641 /* 1642 * At this point we have built a mask of CPUs representing the 1643 * lowest priority tasks in the system. Now we want to elect 1644 * the best one based on our affinity and topology. 1645 * 1646 * We prioritize the last CPU that the task executed on since 1647 * it is most likely cache-hot in that location. 1648 */ 1649 if (cpumask_test_cpu(cpu, lowest_mask)) 1650 return cpu; 1651 1652 /* 1653 * Otherwise, we consult the sched_domains span maps to figure 1654 * out which CPU is logically closest to our hot cache data. 1655 */ 1656 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1657 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1658 1659 rcu_read_lock(); 1660 for_each_domain(cpu, sd) { 1661 if (sd->flags & SD_WAKE_AFFINE) { 1662 int best_cpu; 1663 1664 /* 1665 * "this_cpu" is cheaper to preempt than a 1666 * remote processor. 1667 */ 1668 if (this_cpu != -1 && 1669 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1670 rcu_read_unlock(); 1671 return this_cpu; 1672 } 1673 1674 best_cpu = cpumask_first_and(lowest_mask, 1675 sched_domain_span(sd)); 1676 if (best_cpu < nr_cpu_ids) { 1677 rcu_read_unlock(); 1678 return best_cpu; 1679 } 1680 } 1681 } 1682 rcu_read_unlock(); 1683 1684 /* 1685 * And finally, if there were no matches within the domains 1686 * just give the caller *something* to work with from the compatible 1687 * locations. 1688 */ 1689 if (this_cpu != -1) 1690 return this_cpu; 1691 1692 cpu = cpumask_any(lowest_mask); 1693 if (cpu < nr_cpu_ids) 1694 return cpu; 1695 1696 return -1; 1697 } 1698 1699 /* Will lock the rq it finds */ 1700 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1701 { 1702 struct rq *lowest_rq = NULL; 1703 int tries; 1704 int cpu; 1705 1706 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1707 cpu = find_lowest_rq(task); 1708 1709 if ((cpu == -1) || (cpu == rq->cpu)) 1710 break; 1711 1712 lowest_rq = cpu_rq(cpu); 1713 1714 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1715 /* 1716 * Target rq has tasks of equal or higher priority, 1717 * retrying does not release any lock and is unlikely 1718 * to yield a different result. 1719 */ 1720 lowest_rq = NULL; 1721 break; 1722 } 1723 1724 /* if the prio of this runqueue changed, try again */ 1725 if (double_lock_balance(rq, lowest_rq)) { 1726 /* 1727 * We had to unlock the run queue. In 1728 * the mean time, task could have 1729 * migrated already or had its affinity changed. 1730 * Also make sure that it wasn't scheduled on its rq. 1731 */ 1732 if (unlikely(task_rq(task) != rq || 1733 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) || 1734 task_running(rq, task) || 1735 !rt_task(task) || 1736 !task_on_rq_queued(task))) { 1737 1738 double_unlock_balance(rq, lowest_rq); 1739 lowest_rq = NULL; 1740 break; 1741 } 1742 } 1743 1744 /* If this rq is still suitable use it. */ 1745 if (lowest_rq->rt.highest_prio.curr > task->prio) 1746 break; 1747 1748 /* try again */ 1749 double_unlock_balance(rq, lowest_rq); 1750 lowest_rq = NULL; 1751 } 1752 1753 return lowest_rq; 1754 } 1755 1756 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1757 { 1758 struct task_struct *p; 1759 1760 if (!has_pushable_tasks(rq)) 1761 return NULL; 1762 1763 p = plist_first_entry(&rq->rt.pushable_tasks, 1764 struct task_struct, pushable_tasks); 1765 1766 BUG_ON(rq->cpu != task_cpu(p)); 1767 BUG_ON(task_current(rq, p)); 1768 BUG_ON(p->nr_cpus_allowed <= 1); 1769 1770 BUG_ON(!task_on_rq_queued(p)); 1771 BUG_ON(!rt_task(p)); 1772 1773 return p; 1774 } 1775 1776 /* 1777 * If the current CPU has more than one RT task, see if the non 1778 * running task can migrate over to a CPU that is running a task 1779 * of lesser priority. 1780 */ 1781 static int push_rt_task(struct rq *rq) 1782 { 1783 struct task_struct *next_task; 1784 struct rq *lowest_rq; 1785 int ret = 0; 1786 1787 if (!rq->rt.overloaded) 1788 return 0; 1789 1790 next_task = pick_next_pushable_task(rq); 1791 if (!next_task) 1792 return 0; 1793 1794 retry: 1795 if (unlikely(next_task == rq->curr)) { 1796 WARN_ON(1); 1797 return 0; 1798 } 1799 1800 /* 1801 * It's possible that the next_task slipped in of 1802 * higher priority than current. If that's the case 1803 * just reschedule current. 1804 */ 1805 if (unlikely(next_task->prio < rq->curr->prio)) { 1806 resched_curr(rq); 1807 return 0; 1808 } 1809 1810 /* We might release rq lock */ 1811 get_task_struct(next_task); 1812 1813 /* find_lock_lowest_rq locks the rq if found */ 1814 lowest_rq = find_lock_lowest_rq(next_task, rq); 1815 if (!lowest_rq) { 1816 struct task_struct *task; 1817 /* 1818 * find_lock_lowest_rq releases rq->lock 1819 * so it is possible that next_task has migrated. 1820 * 1821 * We need to make sure that the task is still on the same 1822 * run-queue and is also still the next task eligible for 1823 * pushing. 1824 */ 1825 task = pick_next_pushable_task(rq); 1826 if (task == next_task) { 1827 /* 1828 * The task hasn't migrated, and is still the next 1829 * eligible task, but we failed to find a run-queue 1830 * to push it to. Do not retry in this case, since 1831 * other CPUs will pull from us when ready. 1832 */ 1833 goto out; 1834 } 1835 1836 if (!task) 1837 /* No more tasks, just exit */ 1838 goto out; 1839 1840 /* 1841 * Something has shifted, try again. 1842 */ 1843 put_task_struct(next_task); 1844 next_task = task; 1845 goto retry; 1846 } 1847 1848 deactivate_task(rq, next_task, 0); 1849 set_task_cpu(next_task, lowest_rq->cpu); 1850 activate_task(lowest_rq, next_task, 0); 1851 ret = 1; 1852 1853 resched_curr(lowest_rq); 1854 1855 double_unlock_balance(rq, lowest_rq); 1856 1857 out: 1858 put_task_struct(next_task); 1859 1860 return ret; 1861 } 1862 1863 static void push_rt_tasks(struct rq *rq) 1864 { 1865 /* push_rt_task will return true if it moved an RT */ 1866 while (push_rt_task(rq)) 1867 ; 1868 } 1869 1870 #ifdef HAVE_RT_PUSH_IPI 1871 1872 /* 1873 * When a high priority task schedules out from a CPU and a lower priority 1874 * task is scheduled in, a check is made to see if there's any RT tasks 1875 * on other CPUs that are waiting to run because a higher priority RT task 1876 * is currently running on its CPU. In this case, the CPU with multiple RT 1877 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 1878 * up that may be able to run one of its non-running queued RT tasks. 1879 * 1880 * All CPUs with overloaded RT tasks need to be notified as there is currently 1881 * no way to know which of these CPUs have the highest priority task waiting 1882 * to run. Instead of trying to take a spinlock on each of these CPUs, 1883 * which has shown to cause large latency when done on machines with many 1884 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 1885 * RT tasks waiting to run. 1886 * 1887 * Just sending an IPI to each of the CPUs is also an issue, as on large 1888 * count CPU machines, this can cause an IPI storm on a CPU, especially 1889 * if its the only CPU with multiple RT tasks queued, and a large number 1890 * of CPUs scheduling a lower priority task at the same time. 1891 * 1892 * Each root domain has its own irq work function that can iterate over 1893 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 1894 * tassk must be checked if there's one or many CPUs that are lowering 1895 * their priority, there's a single irq work iterator that will try to 1896 * push off RT tasks that are waiting to run. 1897 * 1898 * When a CPU schedules a lower priority task, it will kick off the 1899 * irq work iterator that will jump to each CPU with overloaded RT tasks. 1900 * As it only takes the first CPU that schedules a lower priority task 1901 * to start the process, the rto_start variable is incremented and if 1902 * the atomic result is one, then that CPU will try to take the rto_lock. 1903 * This prevents high contention on the lock as the process handles all 1904 * CPUs scheduling lower priority tasks. 1905 * 1906 * All CPUs that are scheduling a lower priority task will increment the 1907 * rt_loop_next variable. This will make sure that the irq work iterator 1908 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 1909 * priority task, even if the iterator is in the middle of a scan. Incrementing 1910 * the rt_loop_next will cause the iterator to perform another scan. 1911 * 1912 */ 1913 static int rto_next_cpu(struct root_domain *rd) 1914 { 1915 int next; 1916 int cpu; 1917 1918 /* 1919 * When starting the IPI RT pushing, the rto_cpu is set to -1, 1920 * rt_next_cpu() will simply return the first CPU found in 1921 * the rto_mask. 1922 * 1923 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it 1924 * will return the next CPU found in the rto_mask. 1925 * 1926 * If there are no more CPUs left in the rto_mask, then a check is made 1927 * against rto_loop and rto_loop_next. rto_loop is only updated with 1928 * the rto_lock held, but any CPU may increment the rto_loop_next 1929 * without any locking. 1930 */ 1931 for (;;) { 1932 1933 /* When rto_cpu is -1 this acts like cpumask_first() */ 1934 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 1935 1936 rd->rto_cpu = cpu; 1937 1938 if (cpu < nr_cpu_ids) 1939 return cpu; 1940 1941 rd->rto_cpu = -1; 1942 1943 /* 1944 * ACQUIRE ensures we see the @rto_mask changes 1945 * made prior to the @next value observed. 1946 * 1947 * Matches WMB in rt_set_overload(). 1948 */ 1949 next = atomic_read_acquire(&rd->rto_loop_next); 1950 1951 if (rd->rto_loop == next) 1952 break; 1953 1954 rd->rto_loop = next; 1955 } 1956 1957 return -1; 1958 } 1959 1960 static inline bool rto_start_trylock(atomic_t *v) 1961 { 1962 return !atomic_cmpxchg_acquire(v, 0, 1); 1963 } 1964 1965 static inline void rto_start_unlock(atomic_t *v) 1966 { 1967 atomic_set_release(v, 0); 1968 } 1969 1970 static void tell_cpu_to_push(struct rq *rq) 1971 { 1972 int cpu = -1; 1973 1974 /* Keep the loop going if the IPI is currently active */ 1975 atomic_inc(&rq->rd->rto_loop_next); 1976 1977 /* Only one CPU can initiate a loop at a time */ 1978 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 1979 return; 1980 1981 raw_spin_lock(&rq->rd->rto_lock); 1982 1983 /* 1984 * The rto_cpu is updated under the lock, if it has a valid CPU 1985 * then the IPI is still running and will continue due to the 1986 * update to loop_next, and nothing needs to be done here. 1987 * Otherwise it is finishing up and an ipi needs to be sent. 1988 */ 1989 if (rq->rd->rto_cpu < 0) 1990 cpu = rto_next_cpu(rq->rd); 1991 1992 raw_spin_unlock(&rq->rd->rto_lock); 1993 1994 rto_start_unlock(&rq->rd->rto_loop_start); 1995 1996 if (cpu >= 0) { 1997 /* Make sure the rd does not get freed while pushing */ 1998 sched_get_rd(rq->rd); 1999 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 2000 } 2001 } 2002 2003 /* Called from hardirq context */ 2004 void rto_push_irq_work_func(struct irq_work *work) 2005 { 2006 struct root_domain *rd = 2007 container_of(work, struct root_domain, rto_push_work); 2008 struct rq *rq; 2009 int cpu; 2010 2011 rq = this_rq(); 2012 2013 /* 2014 * We do not need to grab the lock to check for has_pushable_tasks. 2015 * When it gets updated, a check is made if a push is possible. 2016 */ 2017 if (has_pushable_tasks(rq)) { 2018 raw_spin_lock(&rq->lock); 2019 push_rt_tasks(rq); 2020 raw_spin_unlock(&rq->lock); 2021 } 2022 2023 raw_spin_lock(&rd->rto_lock); 2024 2025 /* Pass the IPI to the next rt overloaded queue */ 2026 cpu = rto_next_cpu(rd); 2027 2028 raw_spin_unlock(&rd->rto_lock); 2029 2030 if (cpu < 0) { 2031 sched_put_rd(rd); 2032 return; 2033 } 2034 2035 /* Try the next RT overloaded CPU */ 2036 irq_work_queue_on(&rd->rto_push_work, cpu); 2037 } 2038 #endif /* HAVE_RT_PUSH_IPI */ 2039 2040 static void pull_rt_task(struct rq *this_rq) 2041 { 2042 int this_cpu = this_rq->cpu, cpu; 2043 bool resched = false; 2044 struct task_struct *p; 2045 struct rq *src_rq; 2046 int rt_overload_count = rt_overloaded(this_rq); 2047 2048 if (likely(!rt_overload_count)) 2049 return; 2050 2051 /* 2052 * Match the barrier from rt_set_overloaded; this guarantees that if we 2053 * see overloaded we must also see the rto_mask bit. 2054 */ 2055 smp_rmb(); 2056 2057 /* If we are the only overloaded CPU do nothing */ 2058 if (rt_overload_count == 1 && 2059 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2060 return; 2061 2062 #ifdef HAVE_RT_PUSH_IPI 2063 if (sched_feat(RT_PUSH_IPI)) { 2064 tell_cpu_to_push(this_rq); 2065 return; 2066 } 2067 #endif 2068 2069 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2070 if (this_cpu == cpu) 2071 continue; 2072 2073 src_rq = cpu_rq(cpu); 2074 2075 /* 2076 * Don't bother taking the src_rq->lock if the next highest 2077 * task is known to be lower-priority than our current task. 2078 * This may look racy, but if this value is about to go 2079 * logically higher, the src_rq will push this task away. 2080 * And if its going logically lower, we do not care 2081 */ 2082 if (src_rq->rt.highest_prio.next >= 2083 this_rq->rt.highest_prio.curr) 2084 continue; 2085 2086 /* 2087 * We can potentially drop this_rq's lock in 2088 * double_lock_balance, and another CPU could 2089 * alter this_rq 2090 */ 2091 double_lock_balance(this_rq, src_rq); 2092 2093 /* 2094 * We can pull only a task, which is pushable 2095 * on its rq, and no others. 2096 */ 2097 p = pick_highest_pushable_task(src_rq, this_cpu); 2098 2099 /* 2100 * Do we have an RT task that preempts 2101 * the to-be-scheduled task? 2102 */ 2103 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2104 WARN_ON(p == src_rq->curr); 2105 WARN_ON(!task_on_rq_queued(p)); 2106 2107 /* 2108 * There's a chance that p is higher in priority 2109 * than what's currently running on its CPU. 2110 * This is just that p is wakeing up and hasn't 2111 * had a chance to schedule. We only pull 2112 * p if it is lower in priority than the 2113 * current task on the run queue 2114 */ 2115 if (p->prio < src_rq->curr->prio) 2116 goto skip; 2117 2118 resched = true; 2119 2120 deactivate_task(src_rq, p, 0); 2121 set_task_cpu(p, this_cpu); 2122 activate_task(this_rq, p, 0); 2123 /* 2124 * We continue with the search, just in 2125 * case there's an even higher prio task 2126 * in another runqueue. (low likelihood 2127 * but possible) 2128 */ 2129 } 2130 skip: 2131 double_unlock_balance(this_rq, src_rq); 2132 } 2133 2134 if (resched) 2135 resched_curr(this_rq); 2136 } 2137 2138 /* 2139 * If we are not running and we are not going to reschedule soon, we should 2140 * try to push tasks away now 2141 */ 2142 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2143 { 2144 if (!task_running(rq, p) && 2145 !test_tsk_need_resched(rq->curr) && 2146 p->nr_cpus_allowed > 1 && 2147 (dl_task(rq->curr) || rt_task(rq->curr)) && 2148 (rq->curr->nr_cpus_allowed < 2 || 2149 rq->curr->prio <= p->prio)) 2150 push_rt_tasks(rq); 2151 } 2152 2153 /* Assumes rq->lock is held */ 2154 static void rq_online_rt(struct rq *rq) 2155 { 2156 if (rq->rt.overloaded) 2157 rt_set_overload(rq); 2158 2159 __enable_runtime(rq); 2160 2161 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2162 } 2163 2164 /* Assumes rq->lock is held */ 2165 static void rq_offline_rt(struct rq *rq) 2166 { 2167 if (rq->rt.overloaded) 2168 rt_clear_overload(rq); 2169 2170 __disable_runtime(rq); 2171 2172 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2173 } 2174 2175 /* 2176 * When switch from the rt queue, we bring ourselves to a position 2177 * that we might want to pull RT tasks from other runqueues. 2178 */ 2179 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2180 { 2181 /* 2182 * If there are other RT tasks then we will reschedule 2183 * and the scheduling of the other RT tasks will handle 2184 * the balancing. But if we are the last RT task 2185 * we may need to handle the pulling of RT tasks 2186 * now. 2187 */ 2188 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2189 return; 2190 2191 rt_queue_pull_task(rq); 2192 } 2193 2194 void __init init_sched_rt_class(void) 2195 { 2196 unsigned int i; 2197 2198 for_each_possible_cpu(i) { 2199 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2200 GFP_KERNEL, cpu_to_node(i)); 2201 } 2202 } 2203 #endif /* CONFIG_SMP */ 2204 2205 /* 2206 * When switching a task to RT, we may overload the runqueue 2207 * with RT tasks. In this case we try to push them off to 2208 * other runqueues. 2209 */ 2210 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2211 { 2212 /* 2213 * If we are already running, then there's nothing 2214 * that needs to be done. But if we are not running 2215 * we may need to preempt the current running task. 2216 * If that current running task is also an RT task 2217 * then see if we can move to another run queue. 2218 */ 2219 if (task_on_rq_queued(p) && rq->curr != p) { 2220 #ifdef CONFIG_SMP 2221 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2222 rt_queue_push_tasks(rq); 2223 #endif /* CONFIG_SMP */ 2224 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) 2225 resched_curr(rq); 2226 } 2227 } 2228 2229 /* 2230 * Priority of the task has changed. This may cause 2231 * us to initiate a push or pull. 2232 */ 2233 static void 2234 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2235 { 2236 if (!task_on_rq_queued(p)) 2237 return; 2238 2239 if (rq->curr == p) { 2240 #ifdef CONFIG_SMP 2241 /* 2242 * If our priority decreases while running, we 2243 * may need to pull tasks to this runqueue. 2244 */ 2245 if (oldprio < p->prio) 2246 rt_queue_pull_task(rq); 2247 2248 /* 2249 * If there's a higher priority task waiting to run 2250 * then reschedule. 2251 */ 2252 if (p->prio > rq->rt.highest_prio.curr) 2253 resched_curr(rq); 2254 #else 2255 /* For UP simply resched on drop of prio */ 2256 if (oldprio < p->prio) 2257 resched_curr(rq); 2258 #endif /* CONFIG_SMP */ 2259 } else { 2260 /* 2261 * This task is not running, but if it is 2262 * greater than the current running task 2263 * then reschedule. 2264 */ 2265 if (p->prio < rq->curr->prio) 2266 resched_curr(rq); 2267 } 2268 } 2269 2270 #ifdef CONFIG_POSIX_TIMERS 2271 static void watchdog(struct rq *rq, struct task_struct *p) 2272 { 2273 unsigned long soft, hard; 2274 2275 /* max may change after cur was read, this will be fixed next tick */ 2276 soft = task_rlimit(p, RLIMIT_RTTIME); 2277 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2278 2279 if (soft != RLIM_INFINITY) { 2280 unsigned long next; 2281 2282 if (p->rt.watchdog_stamp != jiffies) { 2283 p->rt.timeout++; 2284 p->rt.watchdog_stamp = jiffies; 2285 } 2286 2287 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2288 if (p->rt.timeout > next) 2289 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 2290 } 2291 } 2292 #else 2293 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2294 #endif 2295 2296 /* 2297 * scheduler tick hitting a task of our scheduling class. 2298 * 2299 * NOTE: This function can be called remotely by the tick offload that 2300 * goes along full dynticks. Therefore no local assumption can be made 2301 * and everything must be accessed through the @rq and @curr passed in 2302 * parameters. 2303 */ 2304 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2305 { 2306 struct sched_rt_entity *rt_se = &p->rt; 2307 2308 update_curr_rt(rq); 2309 2310 watchdog(rq, p); 2311 2312 /* 2313 * RR tasks need a special form of timeslice management. 2314 * FIFO tasks have no timeslices. 2315 */ 2316 if (p->policy != SCHED_RR) 2317 return; 2318 2319 if (--p->rt.time_slice) 2320 return; 2321 2322 p->rt.time_slice = sched_rr_timeslice; 2323 2324 /* 2325 * Requeue to the end of queue if we (and all of our ancestors) are not 2326 * the only element on the queue 2327 */ 2328 for_each_sched_rt_entity(rt_se) { 2329 if (rt_se->run_list.prev != rt_se->run_list.next) { 2330 requeue_task_rt(rq, p, 0); 2331 resched_curr(rq); 2332 return; 2333 } 2334 } 2335 } 2336 2337 static void set_curr_task_rt(struct rq *rq) 2338 { 2339 struct task_struct *p = rq->curr; 2340 2341 p->se.exec_start = rq_clock_task(rq); 2342 2343 /* The running task is never eligible for pushing */ 2344 dequeue_pushable_task(rq, p); 2345 } 2346 2347 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2348 { 2349 /* 2350 * Time slice is 0 for SCHED_FIFO tasks 2351 */ 2352 if (task->policy == SCHED_RR) 2353 return sched_rr_timeslice; 2354 else 2355 return 0; 2356 } 2357 2358 const struct sched_class rt_sched_class = { 2359 .next = &fair_sched_class, 2360 .enqueue_task = enqueue_task_rt, 2361 .dequeue_task = dequeue_task_rt, 2362 .yield_task = yield_task_rt, 2363 2364 .check_preempt_curr = check_preempt_curr_rt, 2365 2366 .pick_next_task = pick_next_task_rt, 2367 .put_prev_task = put_prev_task_rt, 2368 2369 #ifdef CONFIG_SMP 2370 .select_task_rq = select_task_rq_rt, 2371 2372 .set_cpus_allowed = set_cpus_allowed_common, 2373 .rq_online = rq_online_rt, 2374 .rq_offline = rq_offline_rt, 2375 .task_woken = task_woken_rt, 2376 .switched_from = switched_from_rt, 2377 #endif 2378 2379 .set_curr_task = set_curr_task_rt, 2380 .task_tick = task_tick_rt, 2381 2382 .get_rr_interval = get_rr_interval_rt, 2383 2384 .prio_changed = prio_changed_rt, 2385 .switched_to = switched_to_rt, 2386 2387 .update_curr = update_curr_rt, 2388 }; 2389 2390 #ifdef CONFIG_RT_GROUP_SCHED 2391 /* 2392 * Ensure that the real time constraints are schedulable. 2393 */ 2394 static DEFINE_MUTEX(rt_constraints_mutex); 2395 2396 /* Must be called with tasklist_lock held */ 2397 static inline int tg_has_rt_tasks(struct task_group *tg) 2398 { 2399 struct task_struct *g, *p; 2400 2401 /* 2402 * Autogroups do not have RT tasks; see autogroup_create(). 2403 */ 2404 if (task_group_is_autogroup(tg)) 2405 return 0; 2406 2407 for_each_process_thread(g, p) { 2408 if (rt_task(p) && task_group(p) == tg) 2409 return 1; 2410 } 2411 2412 return 0; 2413 } 2414 2415 struct rt_schedulable_data { 2416 struct task_group *tg; 2417 u64 rt_period; 2418 u64 rt_runtime; 2419 }; 2420 2421 static int tg_rt_schedulable(struct task_group *tg, void *data) 2422 { 2423 struct rt_schedulable_data *d = data; 2424 struct task_group *child; 2425 unsigned long total, sum = 0; 2426 u64 period, runtime; 2427 2428 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2429 runtime = tg->rt_bandwidth.rt_runtime; 2430 2431 if (tg == d->tg) { 2432 period = d->rt_period; 2433 runtime = d->rt_runtime; 2434 } 2435 2436 /* 2437 * Cannot have more runtime than the period. 2438 */ 2439 if (runtime > period && runtime != RUNTIME_INF) 2440 return -EINVAL; 2441 2442 /* 2443 * Ensure we don't starve existing RT tasks. 2444 */ 2445 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 2446 return -EBUSY; 2447 2448 total = to_ratio(period, runtime); 2449 2450 /* 2451 * Nobody can have more than the global setting allows. 2452 */ 2453 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2454 return -EINVAL; 2455 2456 /* 2457 * The sum of our children's runtime should not exceed our own. 2458 */ 2459 list_for_each_entry_rcu(child, &tg->children, siblings) { 2460 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2461 runtime = child->rt_bandwidth.rt_runtime; 2462 2463 if (child == d->tg) { 2464 period = d->rt_period; 2465 runtime = d->rt_runtime; 2466 } 2467 2468 sum += to_ratio(period, runtime); 2469 } 2470 2471 if (sum > total) 2472 return -EINVAL; 2473 2474 return 0; 2475 } 2476 2477 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2478 { 2479 int ret; 2480 2481 struct rt_schedulable_data data = { 2482 .tg = tg, 2483 .rt_period = period, 2484 .rt_runtime = runtime, 2485 }; 2486 2487 rcu_read_lock(); 2488 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2489 rcu_read_unlock(); 2490 2491 return ret; 2492 } 2493 2494 static int tg_set_rt_bandwidth(struct task_group *tg, 2495 u64 rt_period, u64 rt_runtime) 2496 { 2497 int i, err = 0; 2498 2499 /* 2500 * Disallowing the root group RT runtime is BAD, it would disallow the 2501 * kernel creating (and or operating) RT threads. 2502 */ 2503 if (tg == &root_task_group && rt_runtime == 0) 2504 return -EINVAL; 2505 2506 /* No period doesn't make any sense. */ 2507 if (rt_period == 0) 2508 return -EINVAL; 2509 2510 mutex_lock(&rt_constraints_mutex); 2511 read_lock(&tasklist_lock); 2512 err = __rt_schedulable(tg, rt_period, rt_runtime); 2513 if (err) 2514 goto unlock; 2515 2516 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2517 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2518 tg->rt_bandwidth.rt_runtime = rt_runtime; 2519 2520 for_each_possible_cpu(i) { 2521 struct rt_rq *rt_rq = tg->rt_rq[i]; 2522 2523 raw_spin_lock(&rt_rq->rt_runtime_lock); 2524 rt_rq->rt_runtime = rt_runtime; 2525 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2526 } 2527 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2528 unlock: 2529 read_unlock(&tasklist_lock); 2530 mutex_unlock(&rt_constraints_mutex); 2531 2532 return err; 2533 } 2534 2535 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2536 { 2537 u64 rt_runtime, rt_period; 2538 2539 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2540 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2541 if (rt_runtime_us < 0) 2542 rt_runtime = RUNTIME_INF; 2543 2544 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2545 } 2546 2547 long sched_group_rt_runtime(struct task_group *tg) 2548 { 2549 u64 rt_runtime_us; 2550 2551 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2552 return -1; 2553 2554 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2555 do_div(rt_runtime_us, NSEC_PER_USEC); 2556 return rt_runtime_us; 2557 } 2558 2559 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2560 { 2561 u64 rt_runtime, rt_period; 2562 2563 rt_period = rt_period_us * NSEC_PER_USEC; 2564 rt_runtime = tg->rt_bandwidth.rt_runtime; 2565 2566 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2567 } 2568 2569 long sched_group_rt_period(struct task_group *tg) 2570 { 2571 u64 rt_period_us; 2572 2573 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2574 do_div(rt_period_us, NSEC_PER_USEC); 2575 return rt_period_us; 2576 } 2577 2578 static int sched_rt_global_constraints(void) 2579 { 2580 int ret = 0; 2581 2582 mutex_lock(&rt_constraints_mutex); 2583 read_lock(&tasklist_lock); 2584 ret = __rt_schedulable(NULL, 0, 0); 2585 read_unlock(&tasklist_lock); 2586 mutex_unlock(&rt_constraints_mutex); 2587 2588 return ret; 2589 } 2590 2591 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2592 { 2593 /* Don't accept realtime tasks when there is no way for them to run */ 2594 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2595 return 0; 2596 2597 return 1; 2598 } 2599 2600 #else /* !CONFIG_RT_GROUP_SCHED */ 2601 static int sched_rt_global_constraints(void) 2602 { 2603 unsigned long flags; 2604 int i; 2605 2606 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2607 for_each_possible_cpu(i) { 2608 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2609 2610 raw_spin_lock(&rt_rq->rt_runtime_lock); 2611 rt_rq->rt_runtime = global_rt_runtime(); 2612 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2613 } 2614 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2615 2616 return 0; 2617 } 2618 #endif /* CONFIG_RT_GROUP_SCHED */ 2619 2620 static int sched_rt_global_validate(void) 2621 { 2622 if (sysctl_sched_rt_period <= 0) 2623 return -EINVAL; 2624 2625 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2626 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 2627 return -EINVAL; 2628 2629 return 0; 2630 } 2631 2632 static void sched_rt_do_global(void) 2633 { 2634 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 2635 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 2636 } 2637 2638 int sched_rt_handler(struct ctl_table *table, int write, 2639 void __user *buffer, size_t *lenp, 2640 loff_t *ppos) 2641 { 2642 int old_period, old_runtime; 2643 static DEFINE_MUTEX(mutex); 2644 int ret; 2645 2646 mutex_lock(&mutex); 2647 old_period = sysctl_sched_rt_period; 2648 old_runtime = sysctl_sched_rt_runtime; 2649 2650 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2651 2652 if (!ret && write) { 2653 ret = sched_rt_global_validate(); 2654 if (ret) 2655 goto undo; 2656 2657 ret = sched_dl_global_validate(); 2658 if (ret) 2659 goto undo; 2660 2661 ret = sched_rt_global_constraints(); 2662 if (ret) 2663 goto undo; 2664 2665 sched_rt_do_global(); 2666 sched_dl_do_global(); 2667 } 2668 if (0) { 2669 undo: 2670 sysctl_sched_rt_period = old_period; 2671 sysctl_sched_rt_runtime = old_runtime; 2672 } 2673 mutex_unlock(&mutex); 2674 2675 return ret; 2676 } 2677 2678 int sched_rr_handler(struct ctl_table *table, int write, 2679 void __user *buffer, size_t *lenp, 2680 loff_t *ppos) 2681 { 2682 int ret; 2683 static DEFINE_MUTEX(mutex); 2684 2685 mutex_lock(&mutex); 2686 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2687 /* 2688 * Make sure that internally we keep jiffies. 2689 * Also, writing zero resets the timeslice to default: 2690 */ 2691 if (!ret && write) { 2692 sched_rr_timeslice = 2693 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 2694 msecs_to_jiffies(sysctl_sched_rr_timeslice); 2695 } 2696 mutex_unlock(&mutex); 2697 2698 return ret; 2699 } 2700 2701 #ifdef CONFIG_SCHED_DEBUG 2702 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2703 2704 void print_rt_stats(struct seq_file *m, int cpu) 2705 { 2706 rt_rq_iter_t iter; 2707 struct rt_rq *rt_rq; 2708 2709 rcu_read_lock(); 2710 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2711 print_rt_rq(m, cpu, rt_rq); 2712 rcu_read_unlock(); 2713 } 2714 #endif /* CONFIG_SCHED_DEBUG */ 2715