1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 #include "sched.h" 7 8 #include "pelt.h" 9 10 int sched_rr_timeslice = RR_TIMESLICE; 11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE; 12 /* More than 4 hours if BW_SHIFT equals 20. */ 13 static const u64 max_rt_runtime = MAX_BW; 14 15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 16 17 struct rt_bandwidth def_rt_bandwidth; 18 19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 20 { 21 struct rt_bandwidth *rt_b = 22 container_of(timer, struct rt_bandwidth, rt_period_timer); 23 int idle = 0; 24 int overrun; 25 26 raw_spin_lock(&rt_b->rt_runtime_lock); 27 for (;;) { 28 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 29 if (!overrun) 30 break; 31 32 raw_spin_unlock(&rt_b->rt_runtime_lock); 33 idle = do_sched_rt_period_timer(rt_b, overrun); 34 raw_spin_lock(&rt_b->rt_runtime_lock); 35 } 36 if (idle) 37 rt_b->rt_period_active = 0; 38 raw_spin_unlock(&rt_b->rt_runtime_lock); 39 40 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 41 } 42 43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 44 { 45 rt_b->rt_period = ns_to_ktime(period); 46 rt_b->rt_runtime = runtime; 47 48 raw_spin_lock_init(&rt_b->rt_runtime_lock); 49 50 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC, 51 HRTIMER_MODE_REL_HARD); 52 rt_b->rt_period_timer.function = sched_rt_period_timer; 53 } 54 55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 56 { 57 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 58 return; 59 60 raw_spin_lock(&rt_b->rt_runtime_lock); 61 if (!rt_b->rt_period_active) { 62 rt_b->rt_period_active = 1; 63 /* 64 * SCHED_DEADLINE updates the bandwidth, as a run away 65 * RT task with a DL task could hog a CPU. But DL does 66 * not reset the period. If a deadline task was running 67 * without an RT task running, it can cause RT tasks to 68 * throttle when they start up. Kick the timer right away 69 * to update the period. 70 */ 71 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 72 hrtimer_start_expires(&rt_b->rt_period_timer, 73 HRTIMER_MODE_ABS_PINNED_HARD); 74 } 75 raw_spin_unlock(&rt_b->rt_runtime_lock); 76 } 77 78 void init_rt_rq(struct rt_rq *rt_rq) 79 { 80 struct rt_prio_array *array; 81 int i; 82 83 array = &rt_rq->active; 84 for (i = 0; i < MAX_RT_PRIO; i++) { 85 INIT_LIST_HEAD(array->queue + i); 86 __clear_bit(i, array->bitmap); 87 } 88 /* delimiter for bitsearch: */ 89 __set_bit(MAX_RT_PRIO, array->bitmap); 90 91 #if defined CONFIG_SMP 92 rt_rq->highest_prio.curr = MAX_RT_PRIO; 93 rt_rq->highest_prio.next = MAX_RT_PRIO; 94 rt_rq->rt_nr_migratory = 0; 95 rt_rq->overloaded = 0; 96 plist_head_init(&rt_rq->pushable_tasks); 97 #endif /* CONFIG_SMP */ 98 /* We start is dequeued state, because no RT tasks are queued */ 99 rt_rq->rt_queued = 0; 100 101 rt_rq->rt_time = 0; 102 rt_rq->rt_throttled = 0; 103 rt_rq->rt_runtime = 0; 104 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 105 } 106 107 #ifdef CONFIG_RT_GROUP_SCHED 108 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 109 { 110 hrtimer_cancel(&rt_b->rt_period_timer); 111 } 112 113 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 114 115 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 116 { 117 #ifdef CONFIG_SCHED_DEBUG 118 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 119 #endif 120 return container_of(rt_se, struct task_struct, rt); 121 } 122 123 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 124 { 125 return rt_rq->rq; 126 } 127 128 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 129 { 130 return rt_se->rt_rq; 131 } 132 133 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 134 { 135 struct rt_rq *rt_rq = rt_se->rt_rq; 136 137 return rt_rq->rq; 138 } 139 140 void free_rt_sched_group(struct task_group *tg) 141 { 142 int i; 143 144 if (tg->rt_se) 145 destroy_rt_bandwidth(&tg->rt_bandwidth); 146 147 for_each_possible_cpu(i) { 148 if (tg->rt_rq) 149 kfree(tg->rt_rq[i]); 150 if (tg->rt_se) 151 kfree(tg->rt_se[i]); 152 } 153 154 kfree(tg->rt_rq); 155 kfree(tg->rt_se); 156 } 157 158 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 159 struct sched_rt_entity *rt_se, int cpu, 160 struct sched_rt_entity *parent) 161 { 162 struct rq *rq = cpu_rq(cpu); 163 164 rt_rq->highest_prio.curr = MAX_RT_PRIO; 165 rt_rq->rt_nr_boosted = 0; 166 rt_rq->rq = rq; 167 rt_rq->tg = tg; 168 169 tg->rt_rq[cpu] = rt_rq; 170 tg->rt_se[cpu] = rt_se; 171 172 if (!rt_se) 173 return; 174 175 if (!parent) 176 rt_se->rt_rq = &rq->rt; 177 else 178 rt_se->rt_rq = parent->my_q; 179 180 rt_se->my_q = rt_rq; 181 rt_se->parent = parent; 182 INIT_LIST_HEAD(&rt_se->run_list); 183 } 184 185 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 186 { 187 struct rt_rq *rt_rq; 188 struct sched_rt_entity *rt_se; 189 int i; 190 191 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); 192 if (!tg->rt_rq) 193 goto err; 194 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); 195 if (!tg->rt_se) 196 goto err; 197 198 init_rt_bandwidth(&tg->rt_bandwidth, 199 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 200 201 for_each_possible_cpu(i) { 202 rt_rq = kzalloc_node(sizeof(struct rt_rq), 203 GFP_KERNEL, cpu_to_node(i)); 204 if (!rt_rq) 205 goto err; 206 207 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 208 GFP_KERNEL, cpu_to_node(i)); 209 if (!rt_se) 210 goto err_free_rq; 211 212 init_rt_rq(rt_rq); 213 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 214 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 215 } 216 217 return 1; 218 219 err_free_rq: 220 kfree(rt_rq); 221 err: 222 return 0; 223 } 224 225 #else /* CONFIG_RT_GROUP_SCHED */ 226 227 #define rt_entity_is_task(rt_se) (1) 228 229 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 230 { 231 return container_of(rt_se, struct task_struct, rt); 232 } 233 234 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 235 { 236 return container_of(rt_rq, struct rq, rt); 237 } 238 239 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 240 { 241 struct task_struct *p = rt_task_of(rt_se); 242 243 return task_rq(p); 244 } 245 246 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 247 { 248 struct rq *rq = rq_of_rt_se(rt_se); 249 250 return &rq->rt; 251 } 252 253 void free_rt_sched_group(struct task_group *tg) { } 254 255 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 256 { 257 return 1; 258 } 259 #endif /* CONFIG_RT_GROUP_SCHED */ 260 261 #ifdef CONFIG_SMP 262 263 static void pull_rt_task(struct rq *this_rq); 264 265 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 266 { 267 /* Try to pull RT tasks here if we lower this rq's prio */ 268 return rq->rt.highest_prio.curr > prev->prio; 269 } 270 271 static inline int rt_overloaded(struct rq *rq) 272 { 273 return atomic_read(&rq->rd->rto_count); 274 } 275 276 static inline void rt_set_overload(struct rq *rq) 277 { 278 if (!rq->online) 279 return; 280 281 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 282 /* 283 * Make sure the mask is visible before we set 284 * the overload count. That is checked to determine 285 * if we should look at the mask. It would be a shame 286 * if we looked at the mask, but the mask was not 287 * updated yet. 288 * 289 * Matched by the barrier in pull_rt_task(). 290 */ 291 smp_wmb(); 292 atomic_inc(&rq->rd->rto_count); 293 } 294 295 static inline void rt_clear_overload(struct rq *rq) 296 { 297 if (!rq->online) 298 return; 299 300 /* the order here really doesn't matter */ 301 atomic_dec(&rq->rd->rto_count); 302 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 303 } 304 305 static void update_rt_migration(struct rt_rq *rt_rq) 306 { 307 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 308 if (!rt_rq->overloaded) { 309 rt_set_overload(rq_of_rt_rq(rt_rq)); 310 rt_rq->overloaded = 1; 311 } 312 } else if (rt_rq->overloaded) { 313 rt_clear_overload(rq_of_rt_rq(rt_rq)); 314 rt_rq->overloaded = 0; 315 } 316 } 317 318 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 319 { 320 struct task_struct *p; 321 322 if (!rt_entity_is_task(rt_se)) 323 return; 324 325 p = rt_task_of(rt_se); 326 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 327 328 rt_rq->rt_nr_total++; 329 if (p->nr_cpus_allowed > 1) 330 rt_rq->rt_nr_migratory++; 331 332 update_rt_migration(rt_rq); 333 } 334 335 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 336 { 337 struct task_struct *p; 338 339 if (!rt_entity_is_task(rt_se)) 340 return; 341 342 p = rt_task_of(rt_se); 343 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 344 345 rt_rq->rt_nr_total--; 346 if (p->nr_cpus_allowed > 1) 347 rt_rq->rt_nr_migratory--; 348 349 update_rt_migration(rt_rq); 350 } 351 352 static inline int has_pushable_tasks(struct rq *rq) 353 { 354 return !plist_head_empty(&rq->rt.pushable_tasks); 355 } 356 357 static DEFINE_PER_CPU(struct callback_head, rt_push_head); 358 static DEFINE_PER_CPU(struct callback_head, rt_pull_head); 359 360 static void push_rt_tasks(struct rq *); 361 static void pull_rt_task(struct rq *); 362 363 static inline void rt_queue_push_tasks(struct rq *rq) 364 { 365 if (!has_pushable_tasks(rq)) 366 return; 367 368 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 369 } 370 371 static inline void rt_queue_pull_task(struct rq *rq) 372 { 373 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 374 } 375 376 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 377 { 378 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 379 plist_node_init(&p->pushable_tasks, p->prio); 380 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 381 382 /* Update the highest prio pushable task */ 383 if (p->prio < rq->rt.highest_prio.next) 384 rq->rt.highest_prio.next = p->prio; 385 } 386 387 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 388 { 389 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 390 391 /* Update the new highest prio pushable task */ 392 if (has_pushable_tasks(rq)) { 393 p = plist_first_entry(&rq->rt.pushable_tasks, 394 struct task_struct, pushable_tasks); 395 rq->rt.highest_prio.next = p->prio; 396 } else 397 rq->rt.highest_prio.next = MAX_RT_PRIO; 398 } 399 400 #else 401 402 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 403 { 404 } 405 406 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 407 { 408 } 409 410 static inline 411 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 412 { 413 } 414 415 static inline 416 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 417 { 418 } 419 420 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 421 { 422 return false; 423 } 424 425 static inline void pull_rt_task(struct rq *this_rq) 426 { 427 } 428 429 static inline void rt_queue_push_tasks(struct rq *rq) 430 { 431 } 432 #endif /* CONFIG_SMP */ 433 434 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 435 static void dequeue_top_rt_rq(struct rt_rq *rt_rq); 436 437 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 438 { 439 return rt_se->on_rq; 440 } 441 442 #ifdef CONFIG_UCLAMP_TASK 443 /* 444 * Verify the fitness of task @p to run on @cpu taking into account the uclamp 445 * settings. 446 * 447 * This check is only important for heterogeneous systems where uclamp_min value 448 * is higher than the capacity of a @cpu. For non-heterogeneous system this 449 * function will always return true. 450 * 451 * The function will return true if the capacity of the @cpu is >= the 452 * uclamp_min and false otherwise. 453 * 454 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min 455 * > uclamp_max. 456 */ 457 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 458 { 459 unsigned int min_cap; 460 unsigned int max_cap; 461 unsigned int cpu_cap; 462 463 /* Only heterogeneous systems can benefit from this check */ 464 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 465 return true; 466 467 min_cap = uclamp_eff_value(p, UCLAMP_MIN); 468 max_cap = uclamp_eff_value(p, UCLAMP_MAX); 469 470 cpu_cap = capacity_orig_of(cpu); 471 472 return cpu_cap >= min(min_cap, max_cap); 473 } 474 #else 475 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 476 { 477 return true; 478 } 479 #endif 480 481 #ifdef CONFIG_RT_GROUP_SCHED 482 483 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 484 { 485 if (!rt_rq->tg) 486 return RUNTIME_INF; 487 488 return rt_rq->rt_runtime; 489 } 490 491 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 492 { 493 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 494 } 495 496 typedef struct task_group *rt_rq_iter_t; 497 498 static inline struct task_group *next_task_group(struct task_group *tg) 499 { 500 do { 501 tg = list_entry_rcu(tg->list.next, 502 typeof(struct task_group), list); 503 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 504 505 if (&tg->list == &task_groups) 506 tg = NULL; 507 508 return tg; 509 } 510 511 #define for_each_rt_rq(rt_rq, iter, rq) \ 512 for (iter = container_of(&task_groups, typeof(*iter), list); \ 513 (iter = next_task_group(iter)) && \ 514 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 515 516 #define for_each_sched_rt_entity(rt_se) \ 517 for (; rt_se; rt_se = rt_se->parent) 518 519 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 520 { 521 return rt_se->my_q; 522 } 523 524 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 525 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 526 527 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 528 { 529 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 530 struct rq *rq = rq_of_rt_rq(rt_rq); 531 struct sched_rt_entity *rt_se; 532 533 int cpu = cpu_of(rq); 534 535 rt_se = rt_rq->tg->rt_se[cpu]; 536 537 if (rt_rq->rt_nr_running) { 538 if (!rt_se) 539 enqueue_top_rt_rq(rt_rq); 540 else if (!on_rt_rq(rt_se)) 541 enqueue_rt_entity(rt_se, 0); 542 543 if (rt_rq->highest_prio.curr < curr->prio) 544 resched_curr(rq); 545 } 546 } 547 548 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 549 { 550 struct sched_rt_entity *rt_se; 551 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 552 553 rt_se = rt_rq->tg->rt_se[cpu]; 554 555 if (!rt_se) { 556 dequeue_top_rt_rq(rt_rq); 557 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 558 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); 559 } 560 else if (on_rt_rq(rt_se)) 561 dequeue_rt_entity(rt_se, 0); 562 } 563 564 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 565 { 566 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 567 } 568 569 static int rt_se_boosted(struct sched_rt_entity *rt_se) 570 { 571 struct rt_rq *rt_rq = group_rt_rq(rt_se); 572 struct task_struct *p; 573 574 if (rt_rq) 575 return !!rt_rq->rt_nr_boosted; 576 577 p = rt_task_of(rt_se); 578 return p->prio != p->normal_prio; 579 } 580 581 #ifdef CONFIG_SMP 582 static inline const struct cpumask *sched_rt_period_mask(void) 583 { 584 return this_rq()->rd->span; 585 } 586 #else 587 static inline const struct cpumask *sched_rt_period_mask(void) 588 { 589 return cpu_online_mask; 590 } 591 #endif 592 593 static inline 594 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 595 { 596 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 597 } 598 599 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 600 { 601 return &rt_rq->tg->rt_bandwidth; 602 } 603 604 #else /* !CONFIG_RT_GROUP_SCHED */ 605 606 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 607 { 608 return rt_rq->rt_runtime; 609 } 610 611 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 612 { 613 return ktime_to_ns(def_rt_bandwidth.rt_period); 614 } 615 616 typedef struct rt_rq *rt_rq_iter_t; 617 618 #define for_each_rt_rq(rt_rq, iter, rq) \ 619 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 620 621 #define for_each_sched_rt_entity(rt_se) \ 622 for (; rt_se; rt_se = NULL) 623 624 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 625 { 626 return NULL; 627 } 628 629 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 630 { 631 struct rq *rq = rq_of_rt_rq(rt_rq); 632 633 if (!rt_rq->rt_nr_running) 634 return; 635 636 enqueue_top_rt_rq(rt_rq); 637 resched_curr(rq); 638 } 639 640 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 641 { 642 dequeue_top_rt_rq(rt_rq); 643 } 644 645 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 646 { 647 return rt_rq->rt_throttled; 648 } 649 650 static inline const struct cpumask *sched_rt_period_mask(void) 651 { 652 return cpu_online_mask; 653 } 654 655 static inline 656 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 657 { 658 return &cpu_rq(cpu)->rt; 659 } 660 661 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 662 { 663 return &def_rt_bandwidth; 664 } 665 666 #endif /* CONFIG_RT_GROUP_SCHED */ 667 668 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 669 { 670 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 671 672 return (hrtimer_active(&rt_b->rt_period_timer) || 673 rt_rq->rt_time < rt_b->rt_runtime); 674 } 675 676 #ifdef CONFIG_SMP 677 /* 678 * We ran out of runtime, see if we can borrow some from our neighbours. 679 */ 680 static void do_balance_runtime(struct rt_rq *rt_rq) 681 { 682 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 683 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 684 int i, weight; 685 u64 rt_period; 686 687 weight = cpumask_weight(rd->span); 688 689 raw_spin_lock(&rt_b->rt_runtime_lock); 690 rt_period = ktime_to_ns(rt_b->rt_period); 691 for_each_cpu(i, rd->span) { 692 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 693 s64 diff; 694 695 if (iter == rt_rq) 696 continue; 697 698 raw_spin_lock(&iter->rt_runtime_lock); 699 /* 700 * Either all rqs have inf runtime and there's nothing to steal 701 * or __disable_runtime() below sets a specific rq to inf to 702 * indicate its been disabled and disalow stealing. 703 */ 704 if (iter->rt_runtime == RUNTIME_INF) 705 goto next; 706 707 /* 708 * From runqueues with spare time, take 1/n part of their 709 * spare time, but no more than our period. 710 */ 711 diff = iter->rt_runtime - iter->rt_time; 712 if (diff > 0) { 713 diff = div_u64((u64)diff, weight); 714 if (rt_rq->rt_runtime + diff > rt_period) 715 diff = rt_period - rt_rq->rt_runtime; 716 iter->rt_runtime -= diff; 717 rt_rq->rt_runtime += diff; 718 if (rt_rq->rt_runtime == rt_period) { 719 raw_spin_unlock(&iter->rt_runtime_lock); 720 break; 721 } 722 } 723 next: 724 raw_spin_unlock(&iter->rt_runtime_lock); 725 } 726 raw_spin_unlock(&rt_b->rt_runtime_lock); 727 } 728 729 /* 730 * Ensure this RQ takes back all the runtime it lend to its neighbours. 731 */ 732 static void __disable_runtime(struct rq *rq) 733 { 734 struct root_domain *rd = rq->rd; 735 rt_rq_iter_t iter; 736 struct rt_rq *rt_rq; 737 738 if (unlikely(!scheduler_running)) 739 return; 740 741 for_each_rt_rq(rt_rq, iter, rq) { 742 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 743 s64 want; 744 int i; 745 746 raw_spin_lock(&rt_b->rt_runtime_lock); 747 raw_spin_lock(&rt_rq->rt_runtime_lock); 748 /* 749 * Either we're all inf and nobody needs to borrow, or we're 750 * already disabled and thus have nothing to do, or we have 751 * exactly the right amount of runtime to take out. 752 */ 753 if (rt_rq->rt_runtime == RUNTIME_INF || 754 rt_rq->rt_runtime == rt_b->rt_runtime) 755 goto balanced; 756 raw_spin_unlock(&rt_rq->rt_runtime_lock); 757 758 /* 759 * Calculate the difference between what we started out with 760 * and what we current have, that's the amount of runtime 761 * we lend and now have to reclaim. 762 */ 763 want = rt_b->rt_runtime - rt_rq->rt_runtime; 764 765 /* 766 * Greedy reclaim, take back as much as we can. 767 */ 768 for_each_cpu(i, rd->span) { 769 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 770 s64 diff; 771 772 /* 773 * Can't reclaim from ourselves or disabled runqueues. 774 */ 775 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 776 continue; 777 778 raw_spin_lock(&iter->rt_runtime_lock); 779 if (want > 0) { 780 diff = min_t(s64, iter->rt_runtime, want); 781 iter->rt_runtime -= diff; 782 want -= diff; 783 } else { 784 iter->rt_runtime -= want; 785 want -= want; 786 } 787 raw_spin_unlock(&iter->rt_runtime_lock); 788 789 if (!want) 790 break; 791 } 792 793 raw_spin_lock(&rt_rq->rt_runtime_lock); 794 /* 795 * We cannot be left wanting - that would mean some runtime 796 * leaked out of the system. 797 */ 798 BUG_ON(want); 799 balanced: 800 /* 801 * Disable all the borrow logic by pretending we have inf 802 * runtime - in which case borrowing doesn't make sense. 803 */ 804 rt_rq->rt_runtime = RUNTIME_INF; 805 rt_rq->rt_throttled = 0; 806 raw_spin_unlock(&rt_rq->rt_runtime_lock); 807 raw_spin_unlock(&rt_b->rt_runtime_lock); 808 809 /* Make rt_rq available for pick_next_task() */ 810 sched_rt_rq_enqueue(rt_rq); 811 } 812 } 813 814 static void __enable_runtime(struct rq *rq) 815 { 816 rt_rq_iter_t iter; 817 struct rt_rq *rt_rq; 818 819 if (unlikely(!scheduler_running)) 820 return; 821 822 /* 823 * Reset each runqueue's bandwidth settings 824 */ 825 for_each_rt_rq(rt_rq, iter, rq) { 826 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 827 828 raw_spin_lock(&rt_b->rt_runtime_lock); 829 raw_spin_lock(&rt_rq->rt_runtime_lock); 830 rt_rq->rt_runtime = rt_b->rt_runtime; 831 rt_rq->rt_time = 0; 832 rt_rq->rt_throttled = 0; 833 raw_spin_unlock(&rt_rq->rt_runtime_lock); 834 raw_spin_unlock(&rt_b->rt_runtime_lock); 835 } 836 } 837 838 static void balance_runtime(struct rt_rq *rt_rq) 839 { 840 if (!sched_feat(RT_RUNTIME_SHARE)) 841 return; 842 843 if (rt_rq->rt_time > rt_rq->rt_runtime) { 844 raw_spin_unlock(&rt_rq->rt_runtime_lock); 845 do_balance_runtime(rt_rq); 846 raw_spin_lock(&rt_rq->rt_runtime_lock); 847 } 848 } 849 #else /* !CONFIG_SMP */ 850 static inline void balance_runtime(struct rt_rq *rt_rq) {} 851 #endif /* CONFIG_SMP */ 852 853 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 854 { 855 int i, idle = 1, throttled = 0; 856 const struct cpumask *span; 857 858 span = sched_rt_period_mask(); 859 #ifdef CONFIG_RT_GROUP_SCHED 860 /* 861 * FIXME: isolated CPUs should really leave the root task group, 862 * whether they are isolcpus or were isolated via cpusets, lest 863 * the timer run on a CPU which does not service all runqueues, 864 * potentially leaving other CPUs indefinitely throttled. If 865 * isolation is really required, the user will turn the throttle 866 * off to kill the perturbations it causes anyway. Meanwhile, 867 * this maintains functionality for boot and/or troubleshooting. 868 */ 869 if (rt_b == &root_task_group.rt_bandwidth) 870 span = cpu_online_mask; 871 #endif 872 for_each_cpu(i, span) { 873 int enqueue = 0; 874 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 875 struct rq *rq = rq_of_rt_rq(rt_rq); 876 int skip; 877 878 /* 879 * When span == cpu_online_mask, taking each rq->lock 880 * can be time-consuming. Try to avoid it when possible. 881 */ 882 raw_spin_lock(&rt_rq->rt_runtime_lock); 883 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) 884 rt_rq->rt_runtime = rt_b->rt_runtime; 885 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 886 raw_spin_unlock(&rt_rq->rt_runtime_lock); 887 if (skip) 888 continue; 889 890 raw_spin_lock(&rq->lock); 891 update_rq_clock(rq); 892 893 if (rt_rq->rt_time) { 894 u64 runtime; 895 896 raw_spin_lock(&rt_rq->rt_runtime_lock); 897 if (rt_rq->rt_throttled) 898 balance_runtime(rt_rq); 899 runtime = rt_rq->rt_runtime; 900 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 901 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 902 rt_rq->rt_throttled = 0; 903 enqueue = 1; 904 905 /* 906 * When we're idle and a woken (rt) task is 907 * throttled check_preempt_curr() will set 908 * skip_update and the time between the wakeup 909 * and this unthrottle will get accounted as 910 * 'runtime'. 911 */ 912 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 913 rq_clock_cancel_skipupdate(rq); 914 } 915 if (rt_rq->rt_time || rt_rq->rt_nr_running) 916 idle = 0; 917 raw_spin_unlock(&rt_rq->rt_runtime_lock); 918 } else if (rt_rq->rt_nr_running) { 919 idle = 0; 920 if (!rt_rq_throttled(rt_rq)) 921 enqueue = 1; 922 } 923 if (rt_rq->rt_throttled) 924 throttled = 1; 925 926 if (enqueue) 927 sched_rt_rq_enqueue(rt_rq); 928 raw_spin_unlock(&rq->lock); 929 } 930 931 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 932 return 1; 933 934 return idle; 935 } 936 937 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 938 { 939 #ifdef CONFIG_RT_GROUP_SCHED 940 struct rt_rq *rt_rq = group_rt_rq(rt_se); 941 942 if (rt_rq) 943 return rt_rq->highest_prio.curr; 944 #endif 945 946 return rt_task_of(rt_se)->prio; 947 } 948 949 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 950 { 951 u64 runtime = sched_rt_runtime(rt_rq); 952 953 if (rt_rq->rt_throttled) 954 return rt_rq_throttled(rt_rq); 955 956 if (runtime >= sched_rt_period(rt_rq)) 957 return 0; 958 959 balance_runtime(rt_rq); 960 runtime = sched_rt_runtime(rt_rq); 961 if (runtime == RUNTIME_INF) 962 return 0; 963 964 if (rt_rq->rt_time > runtime) { 965 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 966 967 /* 968 * Don't actually throttle groups that have no runtime assigned 969 * but accrue some time due to boosting. 970 */ 971 if (likely(rt_b->rt_runtime)) { 972 rt_rq->rt_throttled = 1; 973 printk_deferred_once("sched: RT throttling activated\n"); 974 } else { 975 /* 976 * In case we did anyway, make it go away, 977 * replenishment is a joke, since it will replenish us 978 * with exactly 0 ns. 979 */ 980 rt_rq->rt_time = 0; 981 } 982 983 if (rt_rq_throttled(rt_rq)) { 984 sched_rt_rq_dequeue(rt_rq); 985 return 1; 986 } 987 } 988 989 return 0; 990 } 991 992 /* 993 * Update the current task's runtime statistics. Skip current tasks that 994 * are not in our scheduling class. 995 */ 996 static void update_curr_rt(struct rq *rq) 997 { 998 struct task_struct *curr = rq->curr; 999 struct sched_rt_entity *rt_se = &curr->rt; 1000 u64 delta_exec; 1001 u64 now; 1002 1003 if (curr->sched_class != &rt_sched_class) 1004 return; 1005 1006 now = rq_clock_task(rq); 1007 delta_exec = now - curr->se.exec_start; 1008 if (unlikely((s64)delta_exec <= 0)) 1009 return; 1010 1011 schedstat_set(curr->se.statistics.exec_max, 1012 max(curr->se.statistics.exec_max, delta_exec)); 1013 1014 curr->se.sum_exec_runtime += delta_exec; 1015 account_group_exec_runtime(curr, delta_exec); 1016 1017 curr->se.exec_start = now; 1018 cgroup_account_cputime(curr, delta_exec); 1019 1020 if (!rt_bandwidth_enabled()) 1021 return; 1022 1023 for_each_sched_rt_entity(rt_se) { 1024 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1025 1026 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 1027 raw_spin_lock(&rt_rq->rt_runtime_lock); 1028 rt_rq->rt_time += delta_exec; 1029 if (sched_rt_runtime_exceeded(rt_rq)) 1030 resched_curr(rq); 1031 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1032 } 1033 } 1034 } 1035 1036 static void 1037 dequeue_top_rt_rq(struct rt_rq *rt_rq) 1038 { 1039 struct rq *rq = rq_of_rt_rq(rt_rq); 1040 1041 BUG_ON(&rq->rt != rt_rq); 1042 1043 if (!rt_rq->rt_queued) 1044 return; 1045 1046 BUG_ON(!rq->nr_running); 1047 1048 sub_nr_running(rq, rt_rq->rt_nr_running); 1049 rt_rq->rt_queued = 0; 1050 1051 } 1052 1053 static void 1054 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1055 { 1056 struct rq *rq = rq_of_rt_rq(rt_rq); 1057 1058 BUG_ON(&rq->rt != rt_rq); 1059 1060 if (rt_rq->rt_queued) 1061 return; 1062 1063 if (rt_rq_throttled(rt_rq)) 1064 return; 1065 1066 if (rt_rq->rt_nr_running) { 1067 add_nr_running(rq, rt_rq->rt_nr_running); 1068 rt_rq->rt_queued = 1; 1069 } 1070 1071 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 1072 cpufreq_update_util(rq, 0); 1073 } 1074 1075 #if defined CONFIG_SMP 1076 1077 static void 1078 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1079 { 1080 struct rq *rq = rq_of_rt_rq(rt_rq); 1081 1082 #ifdef CONFIG_RT_GROUP_SCHED 1083 /* 1084 * Change rq's cpupri only if rt_rq is the top queue. 1085 */ 1086 if (&rq->rt != rt_rq) 1087 return; 1088 #endif 1089 if (rq->online && prio < prev_prio) 1090 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1091 } 1092 1093 static void 1094 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1095 { 1096 struct rq *rq = rq_of_rt_rq(rt_rq); 1097 1098 #ifdef CONFIG_RT_GROUP_SCHED 1099 /* 1100 * Change rq's cpupri only if rt_rq is the top queue. 1101 */ 1102 if (&rq->rt != rt_rq) 1103 return; 1104 #endif 1105 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1106 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1107 } 1108 1109 #else /* CONFIG_SMP */ 1110 1111 static inline 1112 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1113 static inline 1114 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1115 1116 #endif /* CONFIG_SMP */ 1117 1118 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1119 static void 1120 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1121 { 1122 int prev_prio = rt_rq->highest_prio.curr; 1123 1124 if (prio < prev_prio) 1125 rt_rq->highest_prio.curr = prio; 1126 1127 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1128 } 1129 1130 static void 1131 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1132 { 1133 int prev_prio = rt_rq->highest_prio.curr; 1134 1135 if (rt_rq->rt_nr_running) { 1136 1137 WARN_ON(prio < prev_prio); 1138 1139 /* 1140 * This may have been our highest task, and therefore 1141 * we may have some recomputation to do 1142 */ 1143 if (prio == prev_prio) { 1144 struct rt_prio_array *array = &rt_rq->active; 1145 1146 rt_rq->highest_prio.curr = 1147 sched_find_first_bit(array->bitmap); 1148 } 1149 1150 } else 1151 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1152 1153 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1154 } 1155 1156 #else 1157 1158 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1159 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1160 1161 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1162 1163 #ifdef CONFIG_RT_GROUP_SCHED 1164 1165 static void 1166 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1167 { 1168 if (rt_se_boosted(rt_se)) 1169 rt_rq->rt_nr_boosted++; 1170 1171 if (rt_rq->tg) 1172 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1173 } 1174 1175 static void 1176 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1177 { 1178 if (rt_se_boosted(rt_se)) 1179 rt_rq->rt_nr_boosted--; 1180 1181 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1182 } 1183 1184 #else /* CONFIG_RT_GROUP_SCHED */ 1185 1186 static void 1187 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1188 { 1189 start_rt_bandwidth(&def_rt_bandwidth); 1190 } 1191 1192 static inline 1193 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1194 1195 #endif /* CONFIG_RT_GROUP_SCHED */ 1196 1197 static inline 1198 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1199 { 1200 struct rt_rq *group_rq = group_rt_rq(rt_se); 1201 1202 if (group_rq) 1203 return group_rq->rt_nr_running; 1204 else 1205 return 1; 1206 } 1207 1208 static inline 1209 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1210 { 1211 struct rt_rq *group_rq = group_rt_rq(rt_se); 1212 struct task_struct *tsk; 1213 1214 if (group_rq) 1215 return group_rq->rr_nr_running; 1216 1217 tsk = rt_task_of(rt_se); 1218 1219 return (tsk->policy == SCHED_RR) ? 1 : 0; 1220 } 1221 1222 static inline 1223 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1224 { 1225 int prio = rt_se_prio(rt_se); 1226 1227 WARN_ON(!rt_prio(prio)); 1228 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1229 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1230 1231 inc_rt_prio(rt_rq, prio); 1232 inc_rt_migration(rt_se, rt_rq); 1233 inc_rt_group(rt_se, rt_rq); 1234 } 1235 1236 static inline 1237 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1238 { 1239 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1240 WARN_ON(!rt_rq->rt_nr_running); 1241 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1242 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1243 1244 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1245 dec_rt_migration(rt_se, rt_rq); 1246 dec_rt_group(rt_se, rt_rq); 1247 } 1248 1249 /* 1250 * Change rt_se->run_list location unless SAVE && !MOVE 1251 * 1252 * assumes ENQUEUE/DEQUEUE flags match 1253 */ 1254 static inline bool move_entity(unsigned int flags) 1255 { 1256 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1257 return false; 1258 1259 return true; 1260 } 1261 1262 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1263 { 1264 list_del_init(&rt_se->run_list); 1265 1266 if (list_empty(array->queue + rt_se_prio(rt_se))) 1267 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1268 1269 rt_se->on_list = 0; 1270 } 1271 1272 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1273 { 1274 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1275 struct rt_prio_array *array = &rt_rq->active; 1276 struct rt_rq *group_rq = group_rt_rq(rt_se); 1277 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1278 1279 /* 1280 * Don't enqueue the group if its throttled, or when empty. 1281 * The latter is a consequence of the former when a child group 1282 * get throttled and the current group doesn't have any other 1283 * active members. 1284 */ 1285 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1286 if (rt_se->on_list) 1287 __delist_rt_entity(rt_se, array); 1288 return; 1289 } 1290 1291 if (move_entity(flags)) { 1292 WARN_ON_ONCE(rt_se->on_list); 1293 if (flags & ENQUEUE_HEAD) 1294 list_add(&rt_se->run_list, queue); 1295 else 1296 list_add_tail(&rt_se->run_list, queue); 1297 1298 __set_bit(rt_se_prio(rt_se), array->bitmap); 1299 rt_se->on_list = 1; 1300 } 1301 rt_se->on_rq = 1; 1302 1303 inc_rt_tasks(rt_se, rt_rq); 1304 } 1305 1306 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1307 { 1308 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1309 struct rt_prio_array *array = &rt_rq->active; 1310 1311 if (move_entity(flags)) { 1312 WARN_ON_ONCE(!rt_se->on_list); 1313 __delist_rt_entity(rt_se, array); 1314 } 1315 rt_se->on_rq = 0; 1316 1317 dec_rt_tasks(rt_se, rt_rq); 1318 } 1319 1320 /* 1321 * Because the prio of an upper entry depends on the lower 1322 * entries, we must remove entries top - down. 1323 */ 1324 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1325 { 1326 struct sched_rt_entity *back = NULL; 1327 1328 for_each_sched_rt_entity(rt_se) { 1329 rt_se->back = back; 1330 back = rt_se; 1331 } 1332 1333 dequeue_top_rt_rq(rt_rq_of_se(back)); 1334 1335 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1336 if (on_rt_rq(rt_se)) 1337 __dequeue_rt_entity(rt_se, flags); 1338 } 1339 } 1340 1341 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1342 { 1343 struct rq *rq = rq_of_rt_se(rt_se); 1344 1345 dequeue_rt_stack(rt_se, flags); 1346 for_each_sched_rt_entity(rt_se) 1347 __enqueue_rt_entity(rt_se, flags); 1348 enqueue_top_rt_rq(&rq->rt); 1349 } 1350 1351 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1352 { 1353 struct rq *rq = rq_of_rt_se(rt_se); 1354 1355 dequeue_rt_stack(rt_se, flags); 1356 1357 for_each_sched_rt_entity(rt_se) { 1358 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1359 1360 if (rt_rq && rt_rq->rt_nr_running) 1361 __enqueue_rt_entity(rt_se, flags); 1362 } 1363 enqueue_top_rt_rq(&rq->rt); 1364 } 1365 1366 /* 1367 * Adding/removing a task to/from a priority array: 1368 */ 1369 static void 1370 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1371 { 1372 struct sched_rt_entity *rt_se = &p->rt; 1373 1374 if (flags & ENQUEUE_WAKEUP) 1375 rt_se->timeout = 0; 1376 1377 enqueue_rt_entity(rt_se, flags); 1378 1379 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1380 enqueue_pushable_task(rq, p); 1381 } 1382 1383 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1384 { 1385 struct sched_rt_entity *rt_se = &p->rt; 1386 1387 update_curr_rt(rq); 1388 dequeue_rt_entity(rt_se, flags); 1389 1390 dequeue_pushable_task(rq, p); 1391 } 1392 1393 /* 1394 * Put task to the head or the end of the run list without the overhead of 1395 * dequeue followed by enqueue. 1396 */ 1397 static void 1398 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1399 { 1400 if (on_rt_rq(rt_se)) { 1401 struct rt_prio_array *array = &rt_rq->active; 1402 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1403 1404 if (head) 1405 list_move(&rt_se->run_list, queue); 1406 else 1407 list_move_tail(&rt_se->run_list, queue); 1408 } 1409 } 1410 1411 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1412 { 1413 struct sched_rt_entity *rt_se = &p->rt; 1414 struct rt_rq *rt_rq; 1415 1416 for_each_sched_rt_entity(rt_se) { 1417 rt_rq = rt_rq_of_se(rt_se); 1418 requeue_rt_entity(rt_rq, rt_se, head); 1419 } 1420 } 1421 1422 static void yield_task_rt(struct rq *rq) 1423 { 1424 requeue_task_rt(rq, rq->curr, 0); 1425 } 1426 1427 #ifdef CONFIG_SMP 1428 static int find_lowest_rq(struct task_struct *task); 1429 1430 static int 1431 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1432 { 1433 struct task_struct *curr; 1434 struct rq *rq; 1435 bool test; 1436 1437 /* For anything but wake ups, just return the task_cpu */ 1438 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1439 goto out; 1440 1441 rq = cpu_rq(cpu); 1442 1443 rcu_read_lock(); 1444 curr = READ_ONCE(rq->curr); /* unlocked access */ 1445 1446 /* 1447 * If the current task on @p's runqueue is an RT task, then 1448 * try to see if we can wake this RT task up on another 1449 * runqueue. Otherwise simply start this RT task 1450 * on its current runqueue. 1451 * 1452 * We want to avoid overloading runqueues. If the woken 1453 * task is a higher priority, then it will stay on this CPU 1454 * and the lower prio task should be moved to another CPU. 1455 * Even though this will probably make the lower prio task 1456 * lose its cache, we do not want to bounce a higher task 1457 * around just because it gave up its CPU, perhaps for a 1458 * lock? 1459 * 1460 * For equal prio tasks, we just let the scheduler sort it out. 1461 * 1462 * Otherwise, just let it ride on the affined RQ and the 1463 * post-schedule router will push the preempted task away 1464 * 1465 * This test is optimistic, if we get it wrong the load-balancer 1466 * will have to sort it out. 1467 * 1468 * We take into account the capacity of the CPU to ensure it fits the 1469 * requirement of the task - which is only important on heterogeneous 1470 * systems like big.LITTLE. 1471 */ 1472 test = curr && 1473 unlikely(rt_task(curr)) && 1474 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio); 1475 1476 if (test || !rt_task_fits_capacity(p, cpu)) { 1477 int target = find_lowest_rq(p); 1478 1479 /* 1480 * Bail out if we were forcing a migration to find a better 1481 * fitting CPU but our search failed. 1482 */ 1483 if (!test && target != -1 && !rt_task_fits_capacity(p, target)) 1484 goto out_unlock; 1485 1486 /* 1487 * Don't bother moving it if the destination CPU is 1488 * not running a lower priority task. 1489 */ 1490 if (target != -1 && 1491 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1492 cpu = target; 1493 } 1494 1495 out_unlock: 1496 rcu_read_unlock(); 1497 1498 out: 1499 return cpu; 1500 } 1501 1502 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1503 { 1504 /* 1505 * Current can't be migrated, useless to reschedule, 1506 * let's hope p can move out. 1507 */ 1508 if (rq->curr->nr_cpus_allowed == 1 || 1509 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1510 return; 1511 1512 /* 1513 * p is migratable, so let's not schedule it and 1514 * see if it is pushed or pulled somewhere else. 1515 */ 1516 if (p->nr_cpus_allowed != 1 && 1517 cpupri_find(&rq->rd->cpupri, p, NULL)) 1518 return; 1519 1520 /* 1521 * There appear to be other CPUs that can accept 1522 * the current task but none can run 'p', so lets reschedule 1523 * to try and push the current task away: 1524 */ 1525 requeue_task_rt(rq, p, 1); 1526 resched_curr(rq); 1527 } 1528 1529 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1530 { 1531 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) { 1532 /* 1533 * This is OK, because current is on_cpu, which avoids it being 1534 * picked for load-balance and preemption/IRQs are still 1535 * disabled avoiding further scheduler activity on it and we've 1536 * not yet started the picking loop. 1537 */ 1538 rq_unpin_lock(rq, rf); 1539 pull_rt_task(rq); 1540 rq_repin_lock(rq, rf); 1541 } 1542 1543 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq); 1544 } 1545 #endif /* CONFIG_SMP */ 1546 1547 /* 1548 * Preempt the current task with a newly woken task if needed: 1549 */ 1550 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1551 { 1552 if (p->prio < rq->curr->prio) { 1553 resched_curr(rq); 1554 return; 1555 } 1556 1557 #ifdef CONFIG_SMP 1558 /* 1559 * If: 1560 * 1561 * - the newly woken task is of equal priority to the current task 1562 * - the newly woken task is non-migratable while current is migratable 1563 * - current will be preempted on the next reschedule 1564 * 1565 * we should check to see if current can readily move to a different 1566 * cpu. If so, we will reschedule to allow the push logic to try 1567 * to move current somewhere else, making room for our non-migratable 1568 * task. 1569 */ 1570 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1571 check_preempt_equal_prio(rq, p); 1572 #endif 1573 } 1574 1575 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first) 1576 { 1577 p->se.exec_start = rq_clock_task(rq); 1578 1579 /* The running task is never eligible for pushing */ 1580 dequeue_pushable_task(rq, p); 1581 1582 if (!first) 1583 return; 1584 1585 /* 1586 * If prev task was rt, put_prev_task() has already updated the 1587 * utilization. We only care of the case where we start to schedule a 1588 * rt task 1589 */ 1590 if (rq->curr->sched_class != &rt_sched_class) 1591 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1592 1593 rt_queue_push_tasks(rq); 1594 } 1595 1596 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1597 struct rt_rq *rt_rq) 1598 { 1599 struct rt_prio_array *array = &rt_rq->active; 1600 struct sched_rt_entity *next = NULL; 1601 struct list_head *queue; 1602 int idx; 1603 1604 idx = sched_find_first_bit(array->bitmap); 1605 BUG_ON(idx >= MAX_RT_PRIO); 1606 1607 queue = array->queue + idx; 1608 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1609 1610 return next; 1611 } 1612 1613 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1614 { 1615 struct sched_rt_entity *rt_se; 1616 struct rt_rq *rt_rq = &rq->rt; 1617 1618 do { 1619 rt_se = pick_next_rt_entity(rq, rt_rq); 1620 BUG_ON(!rt_se); 1621 rt_rq = group_rt_rq(rt_se); 1622 } while (rt_rq); 1623 1624 return rt_task_of(rt_se); 1625 } 1626 1627 static struct task_struct *pick_next_task_rt(struct rq *rq) 1628 { 1629 struct task_struct *p; 1630 1631 if (!sched_rt_runnable(rq)) 1632 return NULL; 1633 1634 p = _pick_next_task_rt(rq); 1635 set_next_task_rt(rq, p, true); 1636 return p; 1637 } 1638 1639 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1640 { 1641 update_curr_rt(rq); 1642 1643 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1644 1645 /* 1646 * The previous task needs to be made eligible for pushing 1647 * if it is still active 1648 */ 1649 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1650 enqueue_pushable_task(rq, p); 1651 } 1652 1653 #ifdef CONFIG_SMP 1654 1655 /* Only try algorithms three times */ 1656 #define RT_MAX_TRIES 3 1657 1658 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1659 { 1660 if (!task_running(rq, p) && 1661 cpumask_test_cpu(cpu, p->cpus_ptr)) 1662 return 1; 1663 1664 return 0; 1665 } 1666 1667 /* 1668 * Return the highest pushable rq's task, which is suitable to be executed 1669 * on the CPU, NULL otherwise 1670 */ 1671 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1672 { 1673 struct plist_head *head = &rq->rt.pushable_tasks; 1674 struct task_struct *p; 1675 1676 if (!has_pushable_tasks(rq)) 1677 return NULL; 1678 1679 plist_for_each_entry(p, head, pushable_tasks) { 1680 if (pick_rt_task(rq, p, cpu)) 1681 return p; 1682 } 1683 1684 return NULL; 1685 } 1686 1687 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1688 1689 static int find_lowest_rq(struct task_struct *task) 1690 { 1691 struct sched_domain *sd; 1692 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1693 int this_cpu = smp_processor_id(); 1694 int cpu = task_cpu(task); 1695 int ret; 1696 1697 /* Make sure the mask is initialized first */ 1698 if (unlikely(!lowest_mask)) 1699 return -1; 1700 1701 if (task->nr_cpus_allowed == 1) 1702 return -1; /* No other targets possible */ 1703 1704 /* 1705 * If we're on asym system ensure we consider the different capacities 1706 * of the CPUs when searching for the lowest_mask. 1707 */ 1708 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 1709 1710 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri, 1711 task, lowest_mask, 1712 rt_task_fits_capacity); 1713 } else { 1714 1715 ret = cpupri_find(&task_rq(task)->rd->cpupri, 1716 task, lowest_mask); 1717 } 1718 1719 if (!ret) 1720 return -1; /* No targets found */ 1721 1722 /* 1723 * At this point we have built a mask of CPUs representing the 1724 * lowest priority tasks in the system. Now we want to elect 1725 * the best one based on our affinity and topology. 1726 * 1727 * We prioritize the last CPU that the task executed on since 1728 * it is most likely cache-hot in that location. 1729 */ 1730 if (cpumask_test_cpu(cpu, lowest_mask)) 1731 return cpu; 1732 1733 /* 1734 * Otherwise, we consult the sched_domains span maps to figure 1735 * out which CPU is logically closest to our hot cache data. 1736 */ 1737 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1738 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1739 1740 rcu_read_lock(); 1741 for_each_domain(cpu, sd) { 1742 if (sd->flags & SD_WAKE_AFFINE) { 1743 int best_cpu; 1744 1745 /* 1746 * "this_cpu" is cheaper to preempt than a 1747 * remote processor. 1748 */ 1749 if (this_cpu != -1 && 1750 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1751 rcu_read_unlock(); 1752 return this_cpu; 1753 } 1754 1755 best_cpu = cpumask_first_and(lowest_mask, 1756 sched_domain_span(sd)); 1757 if (best_cpu < nr_cpu_ids) { 1758 rcu_read_unlock(); 1759 return best_cpu; 1760 } 1761 } 1762 } 1763 rcu_read_unlock(); 1764 1765 /* 1766 * And finally, if there were no matches within the domains 1767 * just give the caller *something* to work with from the compatible 1768 * locations. 1769 */ 1770 if (this_cpu != -1) 1771 return this_cpu; 1772 1773 cpu = cpumask_any(lowest_mask); 1774 if (cpu < nr_cpu_ids) 1775 return cpu; 1776 1777 return -1; 1778 } 1779 1780 /* Will lock the rq it finds */ 1781 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1782 { 1783 struct rq *lowest_rq = NULL; 1784 int tries; 1785 int cpu; 1786 1787 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1788 cpu = find_lowest_rq(task); 1789 1790 if ((cpu == -1) || (cpu == rq->cpu)) 1791 break; 1792 1793 lowest_rq = cpu_rq(cpu); 1794 1795 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1796 /* 1797 * Target rq has tasks of equal or higher priority, 1798 * retrying does not release any lock and is unlikely 1799 * to yield a different result. 1800 */ 1801 lowest_rq = NULL; 1802 break; 1803 } 1804 1805 /* if the prio of this runqueue changed, try again */ 1806 if (double_lock_balance(rq, lowest_rq)) { 1807 /* 1808 * We had to unlock the run queue. In 1809 * the mean time, task could have 1810 * migrated already or had its affinity changed. 1811 * Also make sure that it wasn't scheduled on its rq. 1812 */ 1813 if (unlikely(task_rq(task) != rq || 1814 !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) || 1815 task_running(rq, task) || 1816 !rt_task(task) || 1817 !task_on_rq_queued(task))) { 1818 1819 double_unlock_balance(rq, lowest_rq); 1820 lowest_rq = NULL; 1821 break; 1822 } 1823 } 1824 1825 /* If this rq is still suitable use it. */ 1826 if (lowest_rq->rt.highest_prio.curr > task->prio) 1827 break; 1828 1829 /* try again */ 1830 double_unlock_balance(rq, lowest_rq); 1831 lowest_rq = NULL; 1832 } 1833 1834 return lowest_rq; 1835 } 1836 1837 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1838 { 1839 struct task_struct *p; 1840 1841 if (!has_pushable_tasks(rq)) 1842 return NULL; 1843 1844 p = plist_first_entry(&rq->rt.pushable_tasks, 1845 struct task_struct, pushable_tasks); 1846 1847 BUG_ON(rq->cpu != task_cpu(p)); 1848 BUG_ON(task_current(rq, p)); 1849 BUG_ON(p->nr_cpus_allowed <= 1); 1850 1851 BUG_ON(!task_on_rq_queued(p)); 1852 BUG_ON(!rt_task(p)); 1853 1854 return p; 1855 } 1856 1857 /* 1858 * If the current CPU has more than one RT task, see if the non 1859 * running task can migrate over to a CPU that is running a task 1860 * of lesser priority. 1861 */ 1862 static int push_rt_task(struct rq *rq) 1863 { 1864 struct task_struct *next_task; 1865 struct rq *lowest_rq; 1866 int ret = 0; 1867 1868 if (!rq->rt.overloaded) 1869 return 0; 1870 1871 next_task = pick_next_pushable_task(rq); 1872 if (!next_task) 1873 return 0; 1874 1875 retry: 1876 if (WARN_ON(next_task == rq->curr)) 1877 return 0; 1878 1879 /* 1880 * It's possible that the next_task slipped in of 1881 * higher priority than current. If that's the case 1882 * just reschedule current. 1883 */ 1884 if (unlikely(next_task->prio < rq->curr->prio)) { 1885 resched_curr(rq); 1886 return 0; 1887 } 1888 1889 /* We might release rq lock */ 1890 get_task_struct(next_task); 1891 1892 /* find_lock_lowest_rq locks the rq if found */ 1893 lowest_rq = find_lock_lowest_rq(next_task, rq); 1894 if (!lowest_rq) { 1895 struct task_struct *task; 1896 /* 1897 * find_lock_lowest_rq releases rq->lock 1898 * so it is possible that next_task has migrated. 1899 * 1900 * We need to make sure that the task is still on the same 1901 * run-queue and is also still the next task eligible for 1902 * pushing. 1903 */ 1904 task = pick_next_pushable_task(rq); 1905 if (task == next_task) { 1906 /* 1907 * The task hasn't migrated, and is still the next 1908 * eligible task, but we failed to find a run-queue 1909 * to push it to. Do not retry in this case, since 1910 * other CPUs will pull from us when ready. 1911 */ 1912 goto out; 1913 } 1914 1915 if (!task) 1916 /* No more tasks, just exit */ 1917 goto out; 1918 1919 /* 1920 * Something has shifted, try again. 1921 */ 1922 put_task_struct(next_task); 1923 next_task = task; 1924 goto retry; 1925 } 1926 1927 deactivate_task(rq, next_task, 0); 1928 set_task_cpu(next_task, lowest_rq->cpu); 1929 activate_task(lowest_rq, next_task, 0); 1930 ret = 1; 1931 1932 resched_curr(lowest_rq); 1933 1934 double_unlock_balance(rq, lowest_rq); 1935 1936 out: 1937 put_task_struct(next_task); 1938 1939 return ret; 1940 } 1941 1942 static void push_rt_tasks(struct rq *rq) 1943 { 1944 /* push_rt_task will return true if it moved an RT */ 1945 while (push_rt_task(rq)) 1946 ; 1947 } 1948 1949 #ifdef HAVE_RT_PUSH_IPI 1950 1951 /* 1952 * When a high priority task schedules out from a CPU and a lower priority 1953 * task is scheduled in, a check is made to see if there's any RT tasks 1954 * on other CPUs that are waiting to run because a higher priority RT task 1955 * is currently running on its CPU. In this case, the CPU with multiple RT 1956 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 1957 * up that may be able to run one of its non-running queued RT tasks. 1958 * 1959 * All CPUs with overloaded RT tasks need to be notified as there is currently 1960 * no way to know which of these CPUs have the highest priority task waiting 1961 * to run. Instead of trying to take a spinlock on each of these CPUs, 1962 * which has shown to cause large latency when done on machines with many 1963 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 1964 * RT tasks waiting to run. 1965 * 1966 * Just sending an IPI to each of the CPUs is also an issue, as on large 1967 * count CPU machines, this can cause an IPI storm on a CPU, especially 1968 * if its the only CPU with multiple RT tasks queued, and a large number 1969 * of CPUs scheduling a lower priority task at the same time. 1970 * 1971 * Each root domain has its own irq work function that can iterate over 1972 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 1973 * tassk must be checked if there's one or many CPUs that are lowering 1974 * their priority, there's a single irq work iterator that will try to 1975 * push off RT tasks that are waiting to run. 1976 * 1977 * When a CPU schedules a lower priority task, it will kick off the 1978 * irq work iterator that will jump to each CPU with overloaded RT tasks. 1979 * As it only takes the first CPU that schedules a lower priority task 1980 * to start the process, the rto_start variable is incremented and if 1981 * the atomic result is one, then that CPU will try to take the rto_lock. 1982 * This prevents high contention on the lock as the process handles all 1983 * CPUs scheduling lower priority tasks. 1984 * 1985 * All CPUs that are scheduling a lower priority task will increment the 1986 * rt_loop_next variable. This will make sure that the irq work iterator 1987 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 1988 * priority task, even if the iterator is in the middle of a scan. Incrementing 1989 * the rt_loop_next will cause the iterator to perform another scan. 1990 * 1991 */ 1992 static int rto_next_cpu(struct root_domain *rd) 1993 { 1994 int next; 1995 int cpu; 1996 1997 /* 1998 * When starting the IPI RT pushing, the rto_cpu is set to -1, 1999 * rt_next_cpu() will simply return the first CPU found in 2000 * the rto_mask. 2001 * 2002 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it 2003 * will return the next CPU found in the rto_mask. 2004 * 2005 * If there are no more CPUs left in the rto_mask, then a check is made 2006 * against rto_loop and rto_loop_next. rto_loop is only updated with 2007 * the rto_lock held, but any CPU may increment the rto_loop_next 2008 * without any locking. 2009 */ 2010 for (;;) { 2011 2012 /* When rto_cpu is -1 this acts like cpumask_first() */ 2013 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 2014 2015 rd->rto_cpu = cpu; 2016 2017 if (cpu < nr_cpu_ids) 2018 return cpu; 2019 2020 rd->rto_cpu = -1; 2021 2022 /* 2023 * ACQUIRE ensures we see the @rto_mask changes 2024 * made prior to the @next value observed. 2025 * 2026 * Matches WMB in rt_set_overload(). 2027 */ 2028 next = atomic_read_acquire(&rd->rto_loop_next); 2029 2030 if (rd->rto_loop == next) 2031 break; 2032 2033 rd->rto_loop = next; 2034 } 2035 2036 return -1; 2037 } 2038 2039 static inline bool rto_start_trylock(atomic_t *v) 2040 { 2041 return !atomic_cmpxchg_acquire(v, 0, 1); 2042 } 2043 2044 static inline void rto_start_unlock(atomic_t *v) 2045 { 2046 atomic_set_release(v, 0); 2047 } 2048 2049 static void tell_cpu_to_push(struct rq *rq) 2050 { 2051 int cpu = -1; 2052 2053 /* Keep the loop going if the IPI is currently active */ 2054 atomic_inc(&rq->rd->rto_loop_next); 2055 2056 /* Only one CPU can initiate a loop at a time */ 2057 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 2058 return; 2059 2060 raw_spin_lock(&rq->rd->rto_lock); 2061 2062 /* 2063 * The rto_cpu is updated under the lock, if it has a valid CPU 2064 * then the IPI is still running and will continue due to the 2065 * update to loop_next, and nothing needs to be done here. 2066 * Otherwise it is finishing up and an ipi needs to be sent. 2067 */ 2068 if (rq->rd->rto_cpu < 0) 2069 cpu = rto_next_cpu(rq->rd); 2070 2071 raw_spin_unlock(&rq->rd->rto_lock); 2072 2073 rto_start_unlock(&rq->rd->rto_loop_start); 2074 2075 if (cpu >= 0) { 2076 /* Make sure the rd does not get freed while pushing */ 2077 sched_get_rd(rq->rd); 2078 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 2079 } 2080 } 2081 2082 /* Called from hardirq context */ 2083 void rto_push_irq_work_func(struct irq_work *work) 2084 { 2085 struct root_domain *rd = 2086 container_of(work, struct root_domain, rto_push_work); 2087 struct rq *rq; 2088 int cpu; 2089 2090 rq = this_rq(); 2091 2092 /* 2093 * We do not need to grab the lock to check for has_pushable_tasks. 2094 * When it gets updated, a check is made if a push is possible. 2095 */ 2096 if (has_pushable_tasks(rq)) { 2097 raw_spin_lock(&rq->lock); 2098 push_rt_tasks(rq); 2099 raw_spin_unlock(&rq->lock); 2100 } 2101 2102 raw_spin_lock(&rd->rto_lock); 2103 2104 /* Pass the IPI to the next rt overloaded queue */ 2105 cpu = rto_next_cpu(rd); 2106 2107 raw_spin_unlock(&rd->rto_lock); 2108 2109 if (cpu < 0) { 2110 sched_put_rd(rd); 2111 return; 2112 } 2113 2114 /* Try the next RT overloaded CPU */ 2115 irq_work_queue_on(&rd->rto_push_work, cpu); 2116 } 2117 #endif /* HAVE_RT_PUSH_IPI */ 2118 2119 static void pull_rt_task(struct rq *this_rq) 2120 { 2121 int this_cpu = this_rq->cpu, cpu; 2122 bool resched = false; 2123 struct task_struct *p; 2124 struct rq *src_rq; 2125 int rt_overload_count = rt_overloaded(this_rq); 2126 2127 if (likely(!rt_overload_count)) 2128 return; 2129 2130 /* 2131 * Match the barrier from rt_set_overloaded; this guarantees that if we 2132 * see overloaded we must also see the rto_mask bit. 2133 */ 2134 smp_rmb(); 2135 2136 /* If we are the only overloaded CPU do nothing */ 2137 if (rt_overload_count == 1 && 2138 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2139 return; 2140 2141 #ifdef HAVE_RT_PUSH_IPI 2142 if (sched_feat(RT_PUSH_IPI)) { 2143 tell_cpu_to_push(this_rq); 2144 return; 2145 } 2146 #endif 2147 2148 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2149 if (this_cpu == cpu) 2150 continue; 2151 2152 src_rq = cpu_rq(cpu); 2153 2154 /* 2155 * Don't bother taking the src_rq->lock if the next highest 2156 * task is known to be lower-priority than our current task. 2157 * This may look racy, but if this value is about to go 2158 * logically higher, the src_rq will push this task away. 2159 * And if its going logically lower, we do not care 2160 */ 2161 if (src_rq->rt.highest_prio.next >= 2162 this_rq->rt.highest_prio.curr) 2163 continue; 2164 2165 /* 2166 * We can potentially drop this_rq's lock in 2167 * double_lock_balance, and another CPU could 2168 * alter this_rq 2169 */ 2170 double_lock_balance(this_rq, src_rq); 2171 2172 /* 2173 * We can pull only a task, which is pushable 2174 * on its rq, and no others. 2175 */ 2176 p = pick_highest_pushable_task(src_rq, this_cpu); 2177 2178 /* 2179 * Do we have an RT task that preempts 2180 * the to-be-scheduled task? 2181 */ 2182 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2183 WARN_ON(p == src_rq->curr); 2184 WARN_ON(!task_on_rq_queued(p)); 2185 2186 /* 2187 * There's a chance that p is higher in priority 2188 * than what's currently running on its CPU. 2189 * This is just that p is wakeing up and hasn't 2190 * had a chance to schedule. We only pull 2191 * p if it is lower in priority than the 2192 * current task on the run queue 2193 */ 2194 if (p->prio < src_rq->curr->prio) 2195 goto skip; 2196 2197 resched = true; 2198 2199 deactivate_task(src_rq, p, 0); 2200 set_task_cpu(p, this_cpu); 2201 activate_task(this_rq, p, 0); 2202 /* 2203 * We continue with the search, just in 2204 * case there's an even higher prio task 2205 * in another runqueue. (low likelihood 2206 * but possible) 2207 */ 2208 } 2209 skip: 2210 double_unlock_balance(this_rq, src_rq); 2211 } 2212 2213 if (resched) 2214 resched_curr(this_rq); 2215 } 2216 2217 /* 2218 * If we are not running and we are not going to reschedule soon, we should 2219 * try to push tasks away now 2220 */ 2221 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2222 { 2223 bool need_to_push = !task_running(rq, p) && 2224 !test_tsk_need_resched(rq->curr) && 2225 p->nr_cpus_allowed > 1 && 2226 (dl_task(rq->curr) || rt_task(rq->curr)) && 2227 (rq->curr->nr_cpus_allowed < 2 || 2228 rq->curr->prio <= p->prio); 2229 2230 if (need_to_push) 2231 push_rt_tasks(rq); 2232 } 2233 2234 /* Assumes rq->lock is held */ 2235 static void rq_online_rt(struct rq *rq) 2236 { 2237 if (rq->rt.overloaded) 2238 rt_set_overload(rq); 2239 2240 __enable_runtime(rq); 2241 2242 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2243 } 2244 2245 /* Assumes rq->lock is held */ 2246 static void rq_offline_rt(struct rq *rq) 2247 { 2248 if (rq->rt.overloaded) 2249 rt_clear_overload(rq); 2250 2251 __disable_runtime(rq); 2252 2253 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2254 } 2255 2256 /* 2257 * When switch from the rt queue, we bring ourselves to a position 2258 * that we might want to pull RT tasks from other runqueues. 2259 */ 2260 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2261 { 2262 /* 2263 * If there are other RT tasks then we will reschedule 2264 * and the scheduling of the other RT tasks will handle 2265 * the balancing. But if we are the last RT task 2266 * we may need to handle the pulling of RT tasks 2267 * now. 2268 */ 2269 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2270 return; 2271 2272 rt_queue_pull_task(rq); 2273 } 2274 2275 void __init init_sched_rt_class(void) 2276 { 2277 unsigned int i; 2278 2279 for_each_possible_cpu(i) { 2280 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2281 GFP_KERNEL, cpu_to_node(i)); 2282 } 2283 } 2284 #endif /* CONFIG_SMP */ 2285 2286 /* 2287 * When switching a task to RT, we may overload the runqueue 2288 * with RT tasks. In this case we try to push them off to 2289 * other runqueues. 2290 */ 2291 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2292 { 2293 /* 2294 * If we are already running, then there's nothing 2295 * that needs to be done. But if we are not running 2296 * we may need to preempt the current running task. 2297 * If that current running task is also an RT task 2298 * then see if we can move to another run queue. 2299 */ 2300 if (task_on_rq_queued(p) && rq->curr != p) { 2301 #ifdef CONFIG_SMP 2302 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2303 rt_queue_push_tasks(rq); 2304 #endif /* CONFIG_SMP */ 2305 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) 2306 resched_curr(rq); 2307 } 2308 } 2309 2310 /* 2311 * Priority of the task has changed. This may cause 2312 * us to initiate a push or pull. 2313 */ 2314 static void 2315 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2316 { 2317 if (!task_on_rq_queued(p)) 2318 return; 2319 2320 if (rq->curr == p) { 2321 #ifdef CONFIG_SMP 2322 /* 2323 * If our priority decreases while running, we 2324 * may need to pull tasks to this runqueue. 2325 */ 2326 if (oldprio < p->prio) 2327 rt_queue_pull_task(rq); 2328 2329 /* 2330 * If there's a higher priority task waiting to run 2331 * then reschedule. 2332 */ 2333 if (p->prio > rq->rt.highest_prio.curr) 2334 resched_curr(rq); 2335 #else 2336 /* For UP simply resched on drop of prio */ 2337 if (oldprio < p->prio) 2338 resched_curr(rq); 2339 #endif /* CONFIG_SMP */ 2340 } else { 2341 /* 2342 * This task is not running, but if it is 2343 * greater than the current running task 2344 * then reschedule. 2345 */ 2346 if (p->prio < rq->curr->prio) 2347 resched_curr(rq); 2348 } 2349 } 2350 2351 #ifdef CONFIG_POSIX_TIMERS 2352 static void watchdog(struct rq *rq, struct task_struct *p) 2353 { 2354 unsigned long soft, hard; 2355 2356 /* max may change after cur was read, this will be fixed next tick */ 2357 soft = task_rlimit(p, RLIMIT_RTTIME); 2358 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2359 2360 if (soft != RLIM_INFINITY) { 2361 unsigned long next; 2362 2363 if (p->rt.watchdog_stamp != jiffies) { 2364 p->rt.timeout++; 2365 p->rt.watchdog_stamp = jiffies; 2366 } 2367 2368 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2369 if (p->rt.timeout > next) { 2370 posix_cputimers_rt_watchdog(&p->posix_cputimers, 2371 p->se.sum_exec_runtime); 2372 } 2373 } 2374 } 2375 #else 2376 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2377 #endif 2378 2379 /* 2380 * scheduler tick hitting a task of our scheduling class. 2381 * 2382 * NOTE: This function can be called remotely by the tick offload that 2383 * goes along full dynticks. Therefore no local assumption can be made 2384 * and everything must be accessed through the @rq and @curr passed in 2385 * parameters. 2386 */ 2387 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2388 { 2389 struct sched_rt_entity *rt_se = &p->rt; 2390 2391 update_curr_rt(rq); 2392 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2393 2394 watchdog(rq, p); 2395 2396 /* 2397 * RR tasks need a special form of timeslice management. 2398 * FIFO tasks have no timeslices. 2399 */ 2400 if (p->policy != SCHED_RR) 2401 return; 2402 2403 if (--p->rt.time_slice) 2404 return; 2405 2406 p->rt.time_slice = sched_rr_timeslice; 2407 2408 /* 2409 * Requeue to the end of queue if we (and all of our ancestors) are not 2410 * the only element on the queue 2411 */ 2412 for_each_sched_rt_entity(rt_se) { 2413 if (rt_se->run_list.prev != rt_se->run_list.next) { 2414 requeue_task_rt(rq, p, 0); 2415 resched_curr(rq); 2416 return; 2417 } 2418 } 2419 } 2420 2421 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2422 { 2423 /* 2424 * Time slice is 0 for SCHED_FIFO tasks 2425 */ 2426 if (task->policy == SCHED_RR) 2427 return sched_rr_timeslice; 2428 else 2429 return 0; 2430 } 2431 2432 const struct sched_class rt_sched_class 2433 __attribute__((section("__rt_sched_class"))) = { 2434 .enqueue_task = enqueue_task_rt, 2435 .dequeue_task = dequeue_task_rt, 2436 .yield_task = yield_task_rt, 2437 2438 .check_preempt_curr = check_preempt_curr_rt, 2439 2440 .pick_next_task = pick_next_task_rt, 2441 .put_prev_task = put_prev_task_rt, 2442 .set_next_task = set_next_task_rt, 2443 2444 #ifdef CONFIG_SMP 2445 .balance = balance_rt, 2446 .select_task_rq = select_task_rq_rt, 2447 .set_cpus_allowed = set_cpus_allowed_common, 2448 .rq_online = rq_online_rt, 2449 .rq_offline = rq_offline_rt, 2450 .task_woken = task_woken_rt, 2451 .switched_from = switched_from_rt, 2452 #endif 2453 2454 .task_tick = task_tick_rt, 2455 2456 .get_rr_interval = get_rr_interval_rt, 2457 2458 .prio_changed = prio_changed_rt, 2459 .switched_to = switched_to_rt, 2460 2461 .update_curr = update_curr_rt, 2462 2463 #ifdef CONFIG_UCLAMP_TASK 2464 .uclamp_enabled = 1, 2465 #endif 2466 }; 2467 2468 #ifdef CONFIG_RT_GROUP_SCHED 2469 /* 2470 * Ensure that the real time constraints are schedulable. 2471 */ 2472 static DEFINE_MUTEX(rt_constraints_mutex); 2473 2474 static inline int tg_has_rt_tasks(struct task_group *tg) 2475 { 2476 struct task_struct *task; 2477 struct css_task_iter it; 2478 int ret = 0; 2479 2480 /* 2481 * Autogroups do not have RT tasks; see autogroup_create(). 2482 */ 2483 if (task_group_is_autogroup(tg)) 2484 return 0; 2485 2486 css_task_iter_start(&tg->css, 0, &it); 2487 while (!ret && (task = css_task_iter_next(&it))) 2488 ret |= rt_task(task); 2489 css_task_iter_end(&it); 2490 2491 return ret; 2492 } 2493 2494 struct rt_schedulable_data { 2495 struct task_group *tg; 2496 u64 rt_period; 2497 u64 rt_runtime; 2498 }; 2499 2500 static int tg_rt_schedulable(struct task_group *tg, void *data) 2501 { 2502 struct rt_schedulable_data *d = data; 2503 struct task_group *child; 2504 unsigned long total, sum = 0; 2505 u64 period, runtime; 2506 2507 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2508 runtime = tg->rt_bandwidth.rt_runtime; 2509 2510 if (tg == d->tg) { 2511 period = d->rt_period; 2512 runtime = d->rt_runtime; 2513 } 2514 2515 /* 2516 * Cannot have more runtime than the period. 2517 */ 2518 if (runtime > period && runtime != RUNTIME_INF) 2519 return -EINVAL; 2520 2521 /* 2522 * Ensure we don't starve existing RT tasks if runtime turns zero. 2523 */ 2524 if (rt_bandwidth_enabled() && !runtime && 2525 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg)) 2526 return -EBUSY; 2527 2528 total = to_ratio(period, runtime); 2529 2530 /* 2531 * Nobody can have more than the global setting allows. 2532 */ 2533 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2534 return -EINVAL; 2535 2536 /* 2537 * The sum of our children's runtime should not exceed our own. 2538 */ 2539 list_for_each_entry_rcu(child, &tg->children, siblings) { 2540 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2541 runtime = child->rt_bandwidth.rt_runtime; 2542 2543 if (child == d->tg) { 2544 period = d->rt_period; 2545 runtime = d->rt_runtime; 2546 } 2547 2548 sum += to_ratio(period, runtime); 2549 } 2550 2551 if (sum > total) 2552 return -EINVAL; 2553 2554 return 0; 2555 } 2556 2557 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2558 { 2559 int ret; 2560 2561 struct rt_schedulable_data data = { 2562 .tg = tg, 2563 .rt_period = period, 2564 .rt_runtime = runtime, 2565 }; 2566 2567 rcu_read_lock(); 2568 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2569 rcu_read_unlock(); 2570 2571 return ret; 2572 } 2573 2574 static int tg_set_rt_bandwidth(struct task_group *tg, 2575 u64 rt_period, u64 rt_runtime) 2576 { 2577 int i, err = 0; 2578 2579 /* 2580 * Disallowing the root group RT runtime is BAD, it would disallow the 2581 * kernel creating (and or operating) RT threads. 2582 */ 2583 if (tg == &root_task_group && rt_runtime == 0) 2584 return -EINVAL; 2585 2586 /* No period doesn't make any sense. */ 2587 if (rt_period == 0) 2588 return -EINVAL; 2589 2590 /* 2591 * Bound quota to defend quota against overflow during bandwidth shift. 2592 */ 2593 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime) 2594 return -EINVAL; 2595 2596 mutex_lock(&rt_constraints_mutex); 2597 err = __rt_schedulable(tg, rt_period, rt_runtime); 2598 if (err) 2599 goto unlock; 2600 2601 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2602 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2603 tg->rt_bandwidth.rt_runtime = rt_runtime; 2604 2605 for_each_possible_cpu(i) { 2606 struct rt_rq *rt_rq = tg->rt_rq[i]; 2607 2608 raw_spin_lock(&rt_rq->rt_runtime_lock); 2609 rt_rq->rt_runtime = rt_runtime; 2610 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2611 } 2612 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2613 unlock: 2614 mutex_unlock(&rt_constraints_mutex); 2615 2616 return err; 2617 } 2618 2619 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2620 { 2621 u64 rt_runtime, rt_period; 2622 2623 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2624 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2625 if (rt_runtime_us < 0) 2626 rt_runtime = RUNTIME_INF; 2627 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) 2628 return -EINVAL; 2629 2630 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2631 } 2632 2633 long sched_group_rt_runtime(struct task_group *tg) 2634 { 2635 u64 rt_runtime_us; 2636 2637 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2638 return -1; 2639 2640 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2641 do_div(rt_runtime_us, NSEC_PER_USEC); 2642 return rt_runtime_us; 2643 } 2644 2645 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2646 { 2647 u64 rt_runtime, rt_period; 2648 2649 if (rt_period_us > U64_MAX / NSEC_PER_USEC) 2650 return -EINVAL; 2651 2652 rt_period = rt_period_us * NSEC_PER_USEC; 2653 rt_runtime = tg->rt_bandwidth.rt_runtime; 2654 2655 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2656 } 2657 2658 long sched_group_rt_period(struct task_group *tg) 2659 { 2660 u64 rt_period_us; 2661 2662 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2663 do_div(rt_period_us, NSEC_PER_USEC); 2664 return rt_period_us; 2665 } 2666 2667 static int sched_rt_global_constraints(void) 2668 { 2669 int ret = 0; 2670 2671 mutex_lock(&rt_constraints_mutex); 2672 ret = __rt_schedulable(NULL, 0, 0); 2673 mutex_unlock(&rt_constraints_mutex); 2674 2675 return ret; 2676 } 2677 2678 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2679 { 2680 /* Don't accept realtime tasks when there is no way for them to run */ 2681 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2682 return 0; 2683 2684 return 1; 2685 } 2686 2687 #else /* !CONFIG_RT_GROUP_SCHED */ 2688 static int sched_rt_global_constraints(void) 2689 { 2690 unsigned long flags; 2691 int i; 2692 2693 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2694 for_each_possible_cpu(i) { 2695 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2696 2697 raw_spin_lock(&rt_rq->rt_runtime_lock); 2698 rt_rq->rt_runtime = global_rt_runtime(); 2699 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2700 } 2701 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2702 2703 return 0; 2704 } 2705 #endif /* CONFIG_RT_GROUP_SCHED */ 2706 2707 static int sched_rt_global_validate(void) 2708 { 2709 if (sysctl_sched_rt_period <= 0) 2710 return -EINVAL; 2711 2712 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2713 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) || 2714 ((u64)sysctl_sched_rt_runtime * 2715 NSEC_PER_USEC > max_rt_runtime))) 2716 return -EINVAL; 2717 2718 return 0; 2719 } 2720 2721 static void sched_rt_do_global(void) 2722 { 2723 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 2724 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 2725 } 2726 2727 int sched_rt_handler(struct ctl_table *table, int write, void *buffer, 2728 size_t *lenp, loff_t *ppos) 2729 { 2730 int old_period, old_runtime; 2731 static DEFINE_MUTEX(mutex); 2732 int ret; 2733 2734 mutex_lock(&mutex); 2735 old_period = sysctl_sched_rt_period; 2736 old_runtime = sysctl_sched_rt_runtime; 2737 2738 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2739 2740 if (!ret && write) { 2741 ret = sched_rt_global_validate(); 2742 if (ret) 2743 goto undo; 2744 2745 ret = sched_dl_global_validate(); 2746 if (ret) 2747 goto undo; 2748 2749 ret = sched_rt_global_constraints(); 2750 if (ret) 2751 goto undo; 2752 2753 sched_rt_do_global(); 2754 sched_dl_do_global(); 2755 } 2756 if (0) { 2757 undo: 2758 sysctl_sched_rt_period = old_period; 2759 sysctl_sched_rt_runtime = old_runtime; 2760 } 2761 mutex_unlock(&mutex); 2762 2763 return ret; 2764 } 2765 2766 int sched_rr_handler(struct ctl_table *table, int write, void *buffer, 2767 size_t *lenp, loff_t *ppos) 2768 { 2769 int ret; 2770 static DEFINE_MUTEX(mutex); 2771 2772 mutex_lock(&mutex); 2773 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2774 /* 2775 * Make sure that internally we keep jiffies. 2776 * Also, writing zero resets the timeslice to default: 2777 */ 2778 if (!ret && write) { 2779 sched_rr_timeslice = 2780 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 2781 msecs_to_jiffies(sysctl_sched_rr_timeslice); 2782 } 2783 mutex_unlock(&mutex); 2784 2785 return ret; 2786 } 2787 2788 #ifdef CONFIG_SCHED_DEBUG 2789 void print_rt_stats(struct seq_file *m, int cpu) 2790 { 2791 rt_rq_iter_t iter; 2792 struct rt_rq *rt_rq; 2793 2794 rcu_read_lock(); 2795 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2796 print_rt_rq(m, cpu, rt_rq); 2797 rcu_read_unlock(); 2798 } 2799 #endif /* CONFIG_SCHED_DEBUG */ 2800