1 /* 2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 3 * policies) 4 */ 5 6 #include "sched.h" 7 8 #include <linux/slab.h> 9 10 int sched_rr_timeslice = RR_TIMESLICE; 11 12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 13 14 struct rt_bandwidth def_rt_bandwidth; 15 16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 17 { 18 struct rt_bandwidth *rt_b = 19 container_of(timer, struct rt_bandwidth, rt_period_timer); 20 ktime_t now; 21 int overrun; 22 int idle = 0; 23 24 for (;;) { 25 now = hrtimer_cb_get_time(timer); 26 overrun = hrtimer_forward(timer, now, rt_b->rt_period); 27 28 if (!overrun) 29 break; 30 31 idle = do_sched_rt_period_timer(rt_b, overrun); 32 } 33 34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 35 } 36 37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 38 { 39 rt_b->rt_period = ns_to_ktime(period); 40 rt_b->rt_runtime = runtime; 41 42 raw_spin_lock_init(&rt_b->rt_runtime_lock); 43 44 hrtimer_init(&rt_b->rt_period_timer, 45 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 46 rt_b->rt_period_timer.function = sched_rt_period_timer; 47 } 48 49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 50 { 51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 52 return; 53 54 if (hrtimer_active(&rt_b->rt_period_timer)) 55 return; 56 57 raw_spin_lock(&rt_b->rt_runtime_lock); 58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period); 59 raw_spin_unlock(&rt_b->rt_runtime_lock); 60 } 61 62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) 63 { 64 struct rt_prio_array *array; 65 int i; 66 67 array = &rt_rq->active; 68 for (i = 0; i < MAX_RT_PRIO; i++) { 69 INIT_LIST_HEAD(array->queue + i); 70 __clear_bit(i, array->bitmap); 71 } 72 /* delimiter for bitsearch: */ 73 __set_bit(MAX_RT_PRIO, array->bitmap); 74 75 #if defined CONFIG_SMP 76 rt_rq->highest_prio.curr = MAX_RT_PRIO; 77 rt_rq->highest_prio.next = MAX_RT_PRIO; 78 rt_rq->rt_nr_migratory = 0; 79 rt_rq->overloaded = 0; 80 plist_head_init(&rt_rq->pushable_tasks); 81 #endif 82 83 rt_rq->rt_time = 0; 84 rt_rq->rt_throttled = 0; 85 rt_rq->rt_runtime = 0; 86 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 87 } 88 89 #ifdef CONFIG_RT_GROUP_SCHED 90 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 91 { 92 hrtimer_cancel(&rt_b->rt_period_timer); 93 } 94 95 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 96 97 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 98 { 99 #ifdef CONFIG_SCHED_DEBUG 100 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 101 #endif 102 return container_of(rt_se, struct task_struct, rt); 103 } 104 105 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 106 { 107 return rt_rq->rq; 108 } 109 110 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 111 { 112 return rt_se->rt_rq; 113 } 114 115 void free_rt_sched_group(struct task_group *tg) 116 { 117 int i; 118 119 if (tg->rt_se) 120 destroy_rt_bandwidth(&tg->rt_bandwidth); 121 122 for_each_possible_cpu(i) { 123 if (tg->rt_rq) 124 kfree(tg->rt_rq[i]); 125 if (tg->rt_se) 126 kfree(tg->rt_se[i]); 127 } 128 129 kfree(tg->rt_rq); 130 kfree(tg->rt_se); 131 } 132 133 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 134 struct sched_rt_entity *rt_se, int cpu, 135 struct sched_rt_entity *parent) 136 { 137 struct rq *rq = cpu_rq(cpu); 138 139 rt_rq->highest_prio.curr = MAX_RT_PRIO; 140 rt_rq->rt_nr_boosted = 0; 141 rt_rq->rq = rq; 142 rt_rq->tg = tg; 143 144 tg->rt_rq[cpu] = rt_rq; 145 tg->rt_se[cpu] = rt_se; 146 147 if (!rt_se) 148 return; 149 150 if (!parent) 151 rt_se->rt_rq = &rq->rt; 152 else 153 rt_se->rt_rq = parent->my_q; 154 155 rt_se->my_q = rt_rq; 156 rt_se->parent = parent; 157 INIT_LIST_HEAD(&rt_se->run_list); 158 } 159 160 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 161 { 162 struct rt_rq *rt_rq; 163 struct sched_rt_entity *rt_se; 164 int i; 165 166 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); 167 if (!tg->rt_rq) 168 goto err; 169 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); 170 if (!tg->rt_se) 171 goto err; 172 173 init_rt_bandwidth(&tg->rt_bandwidth, 174 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 175 176 for_each_possible_cpu(i) { 177 rt_rq = kzalloc_node(sizeof(struct rt_rq), 178 GFP_KERNEL, cpu_to_node(i)); 179 if (!rt_rq) 180 goto err; 181 182 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 183 GFP_KERNEL, cpu_to_node(i)); 184 if (!rt_se) 185 goto err_free_rq; 186 187 init_rt_rq(rt_rq, cpu_rq(i)); 188 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 189 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 190 } 191 192 return 1; 193 194 err_free_rq: 195 kfree(rt_rq); 196 err: 197 return 0; 198 } 199 200 #else /* CONFIG_RT_GROUP_SCHED */ 201 202 #define rt_entity_is_task(rt_se) (1) 203 204 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 205 { 206 return container_of(rt_se, struct task_struct, rt); 207 } 208 209 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 210 { 211 return container_of(rt_rq, struct rq, rt); 212 } 213 214 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 215 { 216 struct task_struct *p = rt_task_of(rt_se); 217 struct rq *rq = task_rq(p); 218 219 return &rq->rt; 220 } 221 222 void free_rt_sched_group(struct task_group *tg) { } 223 224 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 225 { 226 return 1; 227 } 228 #endif /* CONFIG_RT_GROUP_SCHED */ 229 230 #ifdef CONFIG_SMP 231 232 static inline int rt_overloaded(struct rq *rq) 233 { 234 return atomic_read(&rq->rd->rto_count); 235 } 236 237 static inline void rt_set_overload(struct rq *rq) 238 { 239 if (!rq->online) 240 return; 241 242 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 243 /* 244 * Make sure the mask is visible before we set 245 * the overload count. That is checked to determine 246 * if we should look at the mask. It would be a shame 247 * if we looked at the mask, but the mask was not 248 * updated yet. 249 * 250 * Matched by the barrier in pull_rt_task(). 251 */ 252 smp_wmb(); 253 atomic_inc(&rq->rd->rto_count); 254 } 255 256 static inline void rt_clear_overload(struct rq *rq) 257 { 258 if (!rq->online) 259 return; 260 261 /* the order here really doesn't matter */ 262 atomic_dec(&rq->rd->rto_count); 263 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 264 } 265 266 static void update_rt_migration(struct rt_rq *rt_rq) 267 { 268 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 269 if (!rt_rq->overloaded) { 270 rt_set_overload(rq_of_rt_rq(rt_rq)); 271 rt_rq->overloaded = 1; 272 } 273 } else if (rt_rq->overloaded) { 274 rt_clear_overload(rq_of_rt_rq(rt_rq)); 275 rt_rq->overloaded = 0; 276 } 277 } 278 279 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 280 { 281 struct task_struct *p; 282 283 if (!rt_entity_is_task(rt_se)) 284 return; 285 286 p = rt_task_of(rt_se); 287 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 288 289 rt_rq->rt_nr_total++; 290 if (p->nr_cpus_allowed > 1) 291 rt_rq->rt_nr_migratory++; 292 293 update_rt_migration(rt_rq); 294 } 295 296 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 297 { 298 struct task_struct *p; 299 300 if (!rt_entity_is_task(rt_se)) 301 return; 302 303 p = rt_task_of(rt_se); 304 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 305 306 rt_rq->rt_nr_total--; 307 if (p->nr_cpus_allowed > 1) 308 rt_rq->rt_nr_migratory--; 309 310 update_rt_migration(rt_rq); 311 } 312 313 static inline int has_pushable_tasks(struct rq *rq) 314 { 315 return !plist_head_empty(&rq->rt.pushable_tasks); 316 } 317 318 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 319 { 320 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 321 plist_node_init(&p->pushable_tasks, p->prio); 322 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 323 324 /* Update the highest prio pushable task */ 325 if (p->prio < rq->rt.highest_prio.next) 326 rq->rt.highest_prio.next = p->prio; 327 } 328 329 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 330 { 331 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 332 333 /* Update the new highest prio pushable task */ 334 if (has_pushable_tasks(rq)) { 335 p = plist_first_entry(&rq->rt.pushable_tasks, 336 struct task_struct, pushable_tasks); 337 rq->rt.highest_prio.next = p->prio; 338 } else 339 rq->rt.highest_prio.next = MAX_RT_PRIO; 340 } 341 342 #else 343 344 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 345 { 346 } 347 348 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 349 { 350 } 351 352 static inline 353 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 354 { 355 } 356 357 static inline 358 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 359 { 360 } 361 362 #endif /* CONFIG_SMP */ 363 364 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 365 { 366 return !list_empty(&rt_se->run_list); 367 } 368 369 #ifdef CONFIG_RT_GROUP_SCHED 370 371 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 372 { 373 if (!rt_rq->tg) 374 return RUNTIME_INF; 375 376 return rt_rq->rt_runtime; 377 } 378 379 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 380 { 381 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 382 } 383 384 typedef struct task_group *rt_rq_iter_t; 385 386 static inline struct task_group *next_task_group(struct task_group *tg) 387 { 388 do { 389 tg = list_entry_rcu(tg->list.next, 390 typeof(struct task_group), list); 391 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 392 393 if (&tg->list == &task_groups) 394 tg = NULL; 395 396 return tg; 397 } 398 399 #define for_each_rt_rq(rt_rq, iter, rq) \ 400 for (iter = container_of(&task_groups, typeof(*iter), list); \ 401 (iter = next_task_group(iter)) && \ 402 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 403 404 #define for_each_sched_rt_entity(rt_se) \ 405 for (; rt_se; rt_se = rt_se->parent) 406 407 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 408 { 409 return rt_se->my_q; 410 } 411 412 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); 413 static void dequeue_rt_entity(struct sched_rt_entity *rt_se); 414 415 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 416 { 417 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 418 struct sched_rt_entity *rt_se; 419 420 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 421 422 rt_se = rt_rq->tg->rt_se[cpu]; 423 424 if (rt_rq->rt_nr_running) { 425 if (rt_se && !on_rt_rq(rt_se)) 426 enqueue_rt_entity(rt_se, false); 427 if (rt_rq->highest_prio.curr < curr->prio) 428 resched_task(curr); 429 } 430 } 431 432 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 433 { 434 struct sched_rt_entity *rt_se; 435 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 436 437 rt_se = rt_rq->tg->rt_se[cpu]; 438 439 if (rt_se && on_rt_rq(rt_se)) 440 dequeue_rt_entity(rt_se); 441 } 442 443 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 444 { 445 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 446 } 447 448 static int rt_se_boosted(struct sched_rt_entity *rt_se) 449 { 450 struct rt_rq *rt_rq = group_rt_rq(rt_se); 451 struct task_struct *p; 452 453 if (rt_rq) 454 return !!rt_rq->rt_nr_boosted; 455 456 p = rt_task_of(rt_se); 457 return p->prio != p->normal_prio; 458 } 459 460 #ifdef CONFIG_SMP 461 static inline const struct cpumask *sched_rt_period_mask(void) 462 { 463 return this_rq()->rd->span; 464 } 465 #else 466 static inline const struct cpumask *sched_rt_period_mask(void) 467 { 468 return cpu_online_mask; 469 } 470 #endif 471 472 static inline 473 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 474 { 475 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 476 } 477 478 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 479 { 480 return &rt_rq->tg->rt_bandwidth; 481 } 482 483 #else /* !CONFIG_RT_GROUP_SCHED */ 484 485 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 486 { 487 return rt_rq->rt_runtime; 488 } 489 490 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 491 { 492 return ktime_to_ns(def_rt_bandwidth.rt_period); 493 } 494 495 typedef struct rt_rq *rt_rq_iter_t; 496 497 #define for_each_rt_rq(rt_rq, iter, rq) \ 498 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 499 500 #define for_each_sched_rt_entity(rt_se) \ 501 for (; rt_se; rt_se = NULL) 502 503 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 504 { 505 return NULL; 506 } 507 508 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 509 { 510 if (rt_rq->rt_nr_running) 511 resched_task(rq_of_rt_rq(rt_rq)->curr); 512 } 513 514 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 515 { 516 } 517 518 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 519 { 520 return rt_rq->rt_throttled; 521 } 522 523 static inline const struct cpumask *sched_rt_period_mask(void) 524 { 525 return cpu_online_mask; 526 } 527 528 static inline 529 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 530 { 531 return &cpu_rq(cpu)->rt; 532 } 533 534 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 535 { 536 return &def_rt_bandwidth; 537 } 538 539 #endif /* CONFIG_RT_GROUP_SCHED */ 540 541 #ifdef CONFIG_SMP 542 /* 543 * We ran out of runtime, see if we can borrow some from our neighbours. 544 */ 545 static int do_balance_runtime(struct rt_rq *rt_rq) 546 { 547 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 548 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 549 int i, weight, more = 0; 550 u64 rt_period; 551 552 weight = cpumask_weight(rd->span); 553 554 raw_spin_lock(&rt_b->rt_runtime_lock); 555 rt_period = ktime_to_ns(rt_b->rt_period); 556 for_each_cpu(i, rd->span) { 557 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 558 s64 diff; 559 560 if (iter == rt_rq) 561 continue; 562 563 raw_spin_lock(&iter->rt_runtime_lock); 564 /* 565 * Either all rqs have inf runtime and there's nothing to steal 566 * or __disable_runtime() below sets a specific rq to inf to 567 * indicate its been disabled and disalow stealing. 568 */ 569 if (iter->rt_runtime == RUNTIME_INF) 570 goto next; 571 572 /* 573 * From runqueues with spare time, take 1/n part of their 574 * spare time, but no more than our period. 575 */ 576 diff = iter->rt_runtime - iter->rt_time; 577 if (diff > 0) { 578 diff = div_u64((u64)diff, weight); 579 if (rt_rq->rt_runtime + diff > rt_period) 580 diff = rt_period - rt_rq->rt_runtime; 581 iter->rt_runtime -= diff; 582 rt_rq->rt_runtime += diff; 583 more = 1; 584 if (rt_rq->rt_runtime == rt_period) { 585 raw_spin_unlock(&iter->rt_runtime_lock); 586 break; 587 } 588 } 589 next: 590 raw_spin_unlock(&iter->rt_runtime_lock); 591 } 592 raw_spin_unlock(&rt_b->rt_runtime_lock); 593 594 return more; 595 } 596 597 /* 598 * Ensure this RQ takes back all the runtime it lend to its neighbours. 599 */ 600 static void __disable_runtime(struct rq *rq) 601 { 602 struct root_domain *rd = rq->rd; 603 rt_rq_iter_t iter; 604 struct rt_rq *rt_rq; 605 606 if (unlikely(!scheduler_running)) 607 return; 608 609 for_each_rt_rq(rt_rq, iter, rq) { 610 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 611 s64 want; 612 int i; 613 614 raw_spin_lock(&rt_b->rt_runtime_lock); 615 raw_spin_lock(&rt_rq->rt_runtime_lock); 616 /* 617 * Either we're all inf and nobody needs to borrow, or we're 618 * already disabled and thus have nothing to do, or we have 619 * exactly the right amount of runtime to take out. 620 */ 621 if (rt_rq->rt_runtime == RUNTIME_INF || 622 rt_rq->rt_runtime == rt_b->rt_runtime) 623 goto balanced; 624 raw_spin_unlock(&rt_rq->rt_runtime_lock); 625 626 /* 627 * Calculate the difference between what we started out with 628 * and what we current have, that's the amount of runtime 629 * we lend and now have to reclaim. 630 */ 631 want = rt_b->rt_runtime - rt_rq->rt_runtime; 632 633 /* 634 * Greedy reclaim, take back as much as we can. 635 */ 636 for_each_cpu(i, rd->span) { 637 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 638 s64 diff; 639 640 /* 641 * Can't reclaim from ourselves or disabled runqueues. 642 */ 643 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 644 continue; 645 646 raw_spin_lock(&iter->rt_runtime_lock); 647 if (want > 0) { 648 diff = min_t(s64, iter->rt_runtime, want); 649 iter->rt_runtime -= diff; 650 want -= diff; 651 } else { 652 iter->rt_runtime -= want; 653 want -= want; 654 } 655 raw_spin_unlock(&iter->rt_runtime_lock); 656 657 if (!want) 658 break; 659 } 660 661 raw_spin_lock(&rt_rq->rt_runtime_lock); 662 /* 663 * We cannot be left wanting - that would mean some runtime 664 * leaked out of the system. 665 */ 666 BUG_ON(want); 667 balanced: 668 /* 669 * Disable all the borrow logic by pretending we have inf 670 * runtime - in which case borrowing doesn't make sense. 671 */ 672 rt_rq->rt_runtime = RUNTIME_INF; 673 rt_rq->rt_throttled = 0; 674 raw_spin_unlock(&rt_rq->rt_runtime_lock); 675 raw_spin_unlock(&rt_b->rt_runtime_lock); 676 } 677 } 678 679 static void __enable_runtime(struct rq *rq) 680 { 681 rt_rq_iter_t iter; 682 struct rt_rq *rt_rq; 683 684 if (unlikely(!scheduler_running)) 685 return; 686 687 /* 688 * Reset each runqueue's bandwidth settings 689 */ 690 for_each_rt_rq(rt_rq, iter, rq) { 691 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 692 693 raw_spin_lock(&rt_b->rt_runtime_lock); 694 raw_spin_lock(&rt_rq->rt_runtime_lock); 695 rt_rq->rt_runtime = rt_b->rt_runtime; 696 rt_rq->rt_time = 0; 697 rt_rq->rt_throttled = 0; 698 raw_spin_unlock(&rt_rq->rt_runtime_lock); 699 raw_spin_unlock(&rt_b->rt_runtime_lock); 700 } 701 } 702 703 static int balance_runtime(struct rt_rq *rt_rq) 704 { 705 int more = 0; 706 707 if (!sched_feat(RT_RUNTIME_SHARE)) 708 return more; 709 710 if (rt_rq->rt_time > rt_rq->rt_runtime) { 711 raw_spin_unlock(&rt_rq->rt_runtime_lock); 712 more = do_balance_runtime(rt_rq); 713 raw_spin_lock(&rt_rq->rt_runtime_lock); 714 } 715 716 return more; 717 } 718 #else /* !CONFIG_SMP */ 719 static inline int balance_runtime(struct rt_rq *rt_rq) 720 { 721 return 0; 722 } 723 #endif /* CONFIG_SMP */ 724 725 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 726 { 727 int i, idle = 1, throttled = 0; 728 const struct cpumask *span; 729 730 span = sched_rt_period_mask(); 731 #ifdef CONFIG_RT_GROUP_SCHED 732 /* 733 * FIXME: isolated CPUs should really leave the root task group, 734 * whether they are isolcpus or were isolated via cpusets, lest 735 * the timer run on a CPU which does not service all runqueues, 736 * potentially leaving other CPUs indefinitely throttled. If 737 * isolation is really required, the user will turn the throttle 738 * off to kill the perturbations it causes anyway. Meanwhile, 739 * this maintains functionality for boot and/or troubleshooting. 740 */ 741 if (rt_b == &root_task_group.rt_bandwidth) 742 span = cpu_online_mask; 743 #endif 744 for_each_cpu(i, span) { 745 int enqueue = 0; 746 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 747 struct rq *rq = rq_of_rt_rq(rt_rq); 748 749 raw_spin_lock(&rq->lock); 750 if (rt_rq->rt_time) { 751 u64 runtime; 752 753 raw_spin_lock(&rt_rq->rt_runtime_lock); 754 if (rt_rq->rt_throttled) 755 balance_runtime(rt_rq); 756 runtime = rt_rq->rt_runtime; 757 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 758 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 759 rt_rq->rt_throttled = 0; 760 enqueue = 1; 761 762 /* 763 * Force a clock update if the CPU was idle, 764 * lest wakeup -> unthrottle time accumulate. 765 */ 766 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 767 rq->skip_clock_update = -1; 768 } 769 if (rt_rq->rt_time || rt_rq->rt_nr_running) 770 idle = 0; 771 raw_spin_unlock(&rt_rq->rt_runtime_lock); 772 } else if (rt_rq->rt_nr_running) { 773 idle = 0; 774 if (!rt_rq_throttled(rt_rq)) 775 enqueue = 1; 776 } 777 if (rt_rq->rt_throttled) 778 throttled = 1; 779 780 if (enqueue) 781 sched_rt_rq_enqueue(rt_rq); 782 raw_spin_unlock(&rq->lock); 783 } 784 785 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 786 return 1; 787 788 return idle; 789 } 790 791 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 792 { 793 #ifdef CONFIG_RT_GROUP_SCHED 794 struct rt_rq *rt_rq = group_rt_rq(rt_se); 795 796 if (rt_rq) 797 return rt_rq->highest_prio.curr; 798 #endif 799 800 return rt_task_of(rt_se)->prio; 801 } 802 803 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 804 { 805 u64 runtime = sched_rt_runtime(rt_rq); 806 807 if (rt_rq->rt_throttled) 808 return rt_rq_throttled(rt_rq); 809 810 if (runtime >= sched_rt_period(rt_rq)) 811 return 0; 812 813 balance_runtime(rt_rq); 814 runtime = sched_rt_runtime(rt_rq); 815 if (runtime == RUNTIME_INF) 816 return 0; 817 818 if (rt_rq->rt_time > runtime) { 819 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 820 821 /* 822 * Don't actually throttle groups that have no runtime assigned 823 * but accrue some time due to boosting. 824 */ 825 if (likely(rt_b->rt_runtime)) { 826 static bool once = false; 827 828 rt_rq->rt_throttled = 1; 829 830 if (!once) { 831 once = true; 832 printk_sched("sched: RT throttling activated\n"); 833 } 834 } else { 835 /* 836 * In case we did anyway, make it go away, 837 * replenishment is a joke, since it will replenish us 838 * with exactly 0 ns. 839 */ 840 rt_rq->rt_time = 0; 841 } 842 843 if (rt_rq_throttled(rt_rq)) { 844 sched_rt_rq_dequeue(rt_rq); 845 return 1; 846 } 847 } 848 849 return 0; 850 } 851 852 /* 853 * Update the current task's runtime statistics. Skip current tasks that 854 * are not in our scheduling class. 855 */ 856 static void update_curr_rt(struct rq *rq) 857 { 858 struct task_struct *curr = rq->curr; 859 struct sched_rt_entity *rt_se = &curr->rt; 860 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 861 u64 delta_exec; 862 863 if (curr->sched_class != &rt_sched_class) 864 return; 865 866 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 867 if (unlikely((s64)delta_exec <= 0)) 868 return; 869 870 schedstat_set(curr->se.statistics.exec_max, 871 max(curr->se.statistics.exec_max, delta_exec)); 872 873 curr->se.sum_exec_runtime += delta_exec; 874 account_group_exec_runtime(curr, delta_exec); 875 876 curr->se.exec_start = rq_clock_task(rq); 877 cpuacct_charge(curr, delta_exec); 878 879 sched_rt_avg_update(rq, delta_exec); 880 881 if (!rt_bandwidth_enabled()) 882 return; 883 884 for_each_sched_rt_entity(rt_se) { 885 rt_rq = rt_rq_of_se(rt_se); 886 887 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 888 raw_spin_lock(&rt_rq->rt_runtime_lock); 889 rt_rq->rt_time += delta_exec; 890 if (sched_rt_runtime_exceeded(rt_rq)) 891 resched_task(curr); 892 raw_spin_unlock(&rt_rq->rt_runtime_lock); 893 } 894 } 895 } 896 897 #if defined CONFIG_SMP 898 899 static void 900 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 901 { 902 struct rq *rq = rq_of_rt_rq(rt_rq); 903 904 if (rq->online && prio < prev_prio) 905 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 906 } 907 908 static void 909 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 910 { 911 struct rq *rq = rq_of_rt_rq(rt_rq); 912 913 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 914 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 915 } 916 917 #else /* CONFIG_SMP */ 918 919 static inline 920 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 921 static inline 922 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 923 924 #endif /* CONFIG_SMP */ 925 926 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 927 static void 928 inc_rt_prio(struct rt_rq *rt_rq, int prio) 929 { 930 int prev_prio = rt_rq->highest_prio.curr; 931 932 if (prio < prev_prio) 933 rt_rq->highest_prio.curr = prio; 934 935 inc_rt_prio_smp(rt_rq, prio, prev_prio); 936 } 937 938 static void 939 dec_rt_prio(struct rt_rq *rt_rq, int prio) 940 { 941 int prev_prio = rt_rq->highest_prio.curr; 942 943 if (rt_rq->rt_nr_running) { 944 945 WARN_ON(prio < prev_prio); 946 947 /* 948 * This may have been our highest task, and therefore 949 * we may have some recomputation to do 950 */ 951 if (prio == prev_prio) { 952 struct rt_prio_array *array = &rt_rq->active; 953 954 rt_rq->highest_prio.curr = 955 sched_find_first_bit(array->bitmap); 956 } 957 958 } else 959 rt_rq->highest_prio.curr = MAX_RT_PRIO; 960 961 dec_rt_prio_smp(rt_rq, prio, prev_prio); 962 } 963 964 #else 965 966 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 967 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 968 969 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 970 971 #ifdef CONFIG_RT_GROUP_SCHED 972 973 static void 974 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 975 { 976 if (rt_se_boosted(rt_se)) 977 rt_rq->rt_nr_boosted++; 978 979 if (rt_rq->tg) 980 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 981 } 982 983 static void 984 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 985 { 986 if (rt_se_boosted(rt_se)) 987 rt_rq->rt_nr_boosted--; 988 989 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 990 } 991 992 #else /* CONFIG_RT_GROUP_SCHED */ 993 994 static void 995 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 996 { 997 start_rt_bandwidth(&def_rt_bandwidth); 998 } 999 1000 static inline 1001 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1002 1003 #endif /* CONFIG_RT_GROUP_SCHED */ 1004 1005 static inline 1006 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1007 { 1008 int prio = rt_se_prio(rt_se); 1009 1010 WARN_ON(!rt_prio(prio)); 1011 rt_rq->rt_nr_running++; 1012 1013 inc_rt_prio(rt_rq, prio); 1014 inc_rt_migration(rt_se, rt_rq); 1015 inc_rt_group(rt_se, rt_rq); 1016 } 1017 1018 static inline 1019 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1020 { 1021 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1022 WARN_ON(!rt_rq->rt_nr_running); 1023 rt_rq->rt_nr_running--; 1024 1025 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1026 dec_rt_migration(rt_se, rt_rq); 1027 dec_rt_group(rt_se, rt_rq); 1028 } 1029 1030 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) 1031 { 1032 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1033 struct rt_prio_array *array = &rt_rq->active; 1034 struct rt_rq *group_rq = group_rt_rq(rt_se); 1035 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1036 1037 /* 1038 * Don't enqueue the group if its throttled, or when empty. 1039 * The latter is a consequence of the former when a child group 1040 * get throttled and the current group doesn't have any other 1041 * active members. 1042 */ 1043 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) 1044 return; 1045 1046 if (head) 1047 list_add(&rt_se->run_list, queue); 1048 else 1049 list_add_tail(&rt_se->run_list, queue); 1050 __set_bit(rt_se_prio(rt_se), array->bitmap); 1051 1052 inc_rt_tasks(rt_se, rt_rq); 1053 } 1054 1055 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) 1056 { 1057 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1058 struct rt_prio_array *array = &rt_rq->active; 1059 1060 list_del_init(&rt_se->run_list); 1061 if (list_empty(array->queue + rt_se_prio(rt_se))) 1062 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1063 1064 dec_rt_tasks(rt_se, rt_rq); 1065 } 1066 1067 /* 1068 * Because the prio of an upper entry depends on the lower 1069 * entries, we must remove entries top - down. 1070 */ 1071 static void dequeue_rt_stack(struct sched_rt_entity *rt_se) 1072 { 1073 struct sched_rt_entity *back = NULL; 1074 1075 for_each_sched_rt_entity(rt_se) { 1076 rt_se->back = back; 1077 back = rt_se; 1078 } 1079 1080 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1081 if (on_rt_rq(rt_se)) 1082 __dequeue_rt_entity(rt_se); 1083 } 1084 } 1085 1086 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) 1087 { 1088 dequeue_rt_stack(rt_se); 1089 for_each_sched_rt_entity(rt_se) 1090 __enqueue_rt_entity(rt_se, head); 1091 } 1092 1093 static void dequeue_rt_entity(struct sched_rt_entity *rt_se) 1094 { 1095 dequeue_rt_stack(rt_se); 1096 1097 for_each_sched_rt_entity(rt_se) { 1098 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1099 1100 if (rt_rq && rt_rq->rt_nr_running) 1101 __enqueue_rt_entity(rt_se, false); 1102 } 1103 } 1104 1105 /* 1106 * Adding/removing a task to/from a priority array: 1107 */ 1108 static void 1109 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1110 { 1111 struct sched_rt_entity *rt_se = &p->rt; 1112 1113 if (flags & ENQUEUE_WAKEUP) 1114 rt_se->timeout = 0; 1115 1116 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); 1117 1118 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1119 enqueue_pushable_task(rq, p); 1120 1121 inc_nr_running(rq); 1122 } 1123 1124 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1125 { 1126 struct sched_rt_entity *rt_se = &p->rt; 1127 1128 update_curr_rt(rq); 1129 dequeue_rt_entity(rt_se); 1130 1131 dequeue_pushable_task(rq, p); 1132 1133 dec_nr_running(rq); 1134 } 1135 1136 /* 1137 * Put task to the head or the end of the run list without the overhead of 1138 * dequeue followed by enqueue. 1139 */ 1140 static void 1141 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1142 { 1143 if (on_rt_rq(rt_se)) { 1144 struct rt_prio_array *array = &rt_rq->active; 1145 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1146 1147 if (head) 1148 list_move(&rt_se->run_list, queue); 1149 else 1150 list_move_tail(&rt_se->run_list, queue); 1151 } 1152 } 1153 1154 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1155 { 1156 struct sched_rt_entity *rt_se = &p->rt; 1157 struct rt_rq *rt_rq; 1158 1159 for_each_sched_rt_entity(rt_se) { 1160 rt_rq = rt_rq_of_se(rt_se); 1161 requeue_rt_entity(rt_rq, rt_se, head); 1162 } 1163 } 1164 1165 static void yield_task_rt(struct rq *rq) 1166 { 1167 requeue_task_rt(rq, rq->curr, 0); 1168 } 1169 1170 #ifdef CONFIG_SMP 1171 static int find_lowest_rq(struct task_struct *task); 1172 1173 static int 1174 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1175 { 1176 struct task_struct *curr; 1177 struct rq *rq; 1178 1179 if (p->nr_cpus_allowed == 1) 1180 goto out; 1181 1182 /* For anything but wake ups, just return the task_cpu */ 1183 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1184 goto out; 1185 1186 rq = cpu_rq(cpu); 1187 1188 rcu_read_lock(); 1189 curr = ACCESS_ONCE(rq->curr); /* unlocked access */ 1190 1191 /* 1192 * If the current task on @p's runqueue is an RT task, then 1193 * try to see if we can wake this RT task up on another 1194 * runqueue. Otherwise simply start this RT task 1195 * on its current runqueue. 1196 * 1197 * We want to avoid overloading runqueues. If the woken 1198 * task is a higher priority, then it will stay on this CPU 1199 * and the lower prio task should be moved to another CPU. 1200 * Even though this will probably make the lower prio task 1201 * lose its cache, we do not want to bounce a higher task 1202 * around just because it gave up its CPU, perhaps for a 1203 * lock? 1204 * 1205 * For equal prio tasks, we just let the scheduler sort it out. 1206 * 1207 * Otherwise, just let it ride on the affined RQ and the 1208 * post-schedule router will push the preempted task away 1209 * 1210 * This test is optimistic, if we get it wrong the load-balancer 1211 * will have to sort it out. 1212 */ 1213 if (curr && unlikely(rt_task(curr)) && 1214 (curr->nr_cpus_allowed < 2 || 1215 curr->prio <= p->prio)) { 1216 int target = find_lowest_rq(p); 1217 1218 if (target != -1) 1219 cpu = target; 1220 } 1221 rcu_read_unlock(); 1222 1223 out: 1224 return cpu; 1225 } 1226 1227 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1228 { 1229 if (rq->curr->nr_cpus_allowed == 1) 1230 return; 1231 1232 if (p->nr_cpus_allowed != 1 1233 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1234 return; 1235 1236 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1237 return; 1238 1239 /* 1240 * There appears to be other cpus that can accept 1241 * current and none to run 'p', so lets reschedule 1242 * to try and push current away: 1243 */ 1244 requeue_task_rt(rq, p, 1); 1245 resched_task(rq->curr); 1246 } 1247 1248 #endif /* CONFIG_SMP */ 1249 1250 /* 1251 * Preempt the current task with a newly woken task if needed: 1252 */ 1253 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1254 { 1255 if (p->prio < rq->curr->prio) { 1256 resched_task(rq->curr); 1257 return; 1258 } 1259 1260 #ifdef CONFIG_SMP 1261 /* 1262 * If: 1263 * 1264 * - the newly woken task is of equal priority to the current task 1265 * - the newly woken task is non-migratable while current is migratable 1266 * - current will be preempted on the next reschedule 1267 * 1268 * we should check to see if current can readily move to a different 1269 * cpu. If so, we will reschedule to allow the push logic to try 1270 * to move current somewhere else, making room for our non-migratable 1271 * task. 1272 */ 1273 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1274 check_preempt_equal_prio(rq, p); 1275 #endif 1276 } 1277 1278 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1279 struct rt_rq *rt_rq) 1280 { 1281 struct rt_prio_array *array = &rt_rq->active; 1282 struct sched_rt_entity *next = NULL; 1283 struct list_head *queue; 1284 int idx; 1285 1286 idx = sched_find_first_bit(array->bitmap); 1287 BUG_ON(idx >= MAX_RT_PRIO); 1288 1289 queue = array->queue + idx; 1290 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1291 1292 return next; 1293 } 1294 1295 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1296 { 1297 struct sched_rt_entity *rt_se; 1298 struct task_struct *p; 1299 struct rt_rq *rt_rq; 1300 1301 rt_rq = &rq->rt; 1302 1303 if (!rt_rq->rt_nr_running) 1304 return NULL; 1305 1306 if (rt_rq_throttled(rt_rq)) 1307 return NULL; 1308 1309 do { 1310 rt_se = pick_next_rt_entity(rq, rt_rq); 1311 BUG_ON(!rt_se); 1312 rt_rq = group_rt_rq(rt_se); 1313 } while (rt_rq); 1314 1315 p = rt_task_of(rt_se); 1316 p->se.exec_start = rq_clock_task(rq); 1317 1318 return p; 1319 } 1320 1321 static struct task_struct *pick_next_task_rt(struct rq *rq) 1322 { 1323 struct task_struct *p = _pick_next_task_rt(rq); 1324 1325 /* The running task is never eligible for pushing */ 1326 if (p) 1327 dequeue_pushable_task(rq, p); 1328 1329 #ifdef CONFIG_SMP 1330 /* 1331 * We detect this state here so that we can avoid taking the RQ 1332 * lock again later if there is no need to push 1333 */ 1334 rq->post_schedule = has_pushable_tasks(rq); 1335 #endif 1336 1337 return p; 1338 } 1339 1340 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1341 { 1342 update_curr_rt(rq); 1343 1344 /* 1345 * The previous task needs to be made eligible for pushing 1346 * if it is still active 1347 */ 1348 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1349 enqueue_pushable_task(rq, p); 1350 } 1351 1352 #ifdef CONFIG_SMP 1353 1354 /* Only try algorithms three times */ 1355 #define RT_MAX_TRIES 3 1356 1357 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1358 { 1359 if (!task_running(rq, p) && 1360 cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 1361 return 1; 1362 return 0; 1363 } 1364 1365 /* 1366 * Return the highest pushable rq's task, which is suitable to be executed 1367 * on the cpu, NULL otherwise 1368 */ 1369 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1370 { 1371 struct plist_head *head = &rq->rt.pushable_tasks; 1372 struct task_struct *p; 1373 1374 if (!has_pushable_tasks(rq)) 1375 return NULL; 1376 1377 plist_for_each_entry(p, head, pushable_tasks) { 1378 if (pick_rt_task(rq, p, cpu)) 1379 return p; 1380 } 1381 1382 return NULL; 1383 } 1384 1385 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1386 1387 static int find_lowest_rq(struct task_struct *task) 1388 { 1389 struct sched_domain *sd; 1390 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); 1391 int this_cpu = smp_processor_id(); 1392 int cpu = task_cpu(task); 1393 1394 /* Make sure the mask is initialized first */ 1395 if (unlikely(!lowest_mask)) 1396 return -1; 1397 1398 if (task->nr_cpus_allowed == 1) 1399 return -1; /* No other targets possible */ 1400 1401 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1402 return -1; /* No targets found */ 1403 1404 /* 1405 * At this point we have built a mask of cpus representing the 1406 * lowest priority tasks in the system. Now we want to elect 1407 * the best one based on our affinity and topology. 1408 * 1409 * We prioritize the last cpu that the task executed on since 1410 * it is most likely cache-hot in that location. 1411 */ 1412 if (cpumask_test_cpu(cpu, lowest_mask)) 1413 return cpu; 1414 1415 /* 1416 * Otherwise, we consult the sched_domains span maps to figure 1417 * out which cpu is logically closest to our hot cache data. 1418 */ 1419 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1420 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1421 1422 rcu_read_lock(); 1423 for_each_domain(cpu, sd) { 1424 if (sd->flags & SD_WAKE_AFFINE) { 1425 int best_cpu; 1426 1427 /* 1428 * "this_cpu" is cheaper to preempt than a 1429 * remote processor. 1430 */ 1431 if (this_cpu != -1 && 1432 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1433 rcu_read_unlock(); 1434 return this_cpu; 1435 } 1436 1437 best_cpu = cpumask_first_and(lowest_mask, 1438 sched_domain_span(sd)); 1439 if (best_cpu < nr_cpu_ids) { 1440 rcu_read_unlock(); 1441 return best_cpu; 1442 } 1443 } 1444 } 1445 rcu_read_unlock(); 1446 1447 /* 1448 * And finally, if there were no matches within the domains 1449 * just give the caller *something* to work with from the compatible 1450 * locations. 1451 */ 1452 if (this_cpu != -1) 1453 return this_cpu; 1454 1455 cpu = cpumask_any(lowest_mask); 1456 if (cpu < nr_cpu_ids) 1457 return cpu; 1458 return -1; 1459 } 1460 1461 /* Will lock the rq it finds */ 1462 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1463 { 1464 struct rq *lowest_rq = NULL; 1465 int tries; 1466 int cpu; 1467 1468 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1469 cpu = find_lowest_rq(task); 1470 1471 if ((cpu == -1) || (cpu == rq->cpu)) 1472 break; 1473 1474 lowest_rq = cpu_rq(cpu); 1475 1476 /* if the prio of this runqueue changed, try again */ 1477 if (double_lock_balance(rq, lowest_rq)) { 1478 /* 1479 * We had to unlock the run queue. In 1480 * the mean time, task could have 1481 * migrated already or had its affinity changed. 1482 * Also make sure that it wasn't scheduled on its rq. 1483 */ 1484 if (unlikely(task_rq(task) != rq || 1485 !cpumask_test_cpu(lowest_rq->cpu, 1486 tsk_cpus_allowed(task)) || 1487 task_running(rq, task) || 1488 !task->on_rq)) { 1489 1490 double_unlock_balance(rq, lowest_rq); 1491 lowest_rq = NULL; 1492 break; 1493 } 1494 } 1495 1496 /* If this rq is still suitable use it. */ 1497 if (lowest_rq->rt.highest_prio.curr > task->prio) 1498 break; 1499 1500 /* try again */ 1501 double_unlock_balance(rq, lowest_rq); 1502 lowest_rq = NULL; 1503 } 1504 1505 return lowest_rq; 1506 } 1507 1508 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1509 { 1510 struct task_struct *p; 1511 1512 if (!has_pushable_tasks(rq)) 1513 return NULL; 1514 1515 p = plist_first_entry(&rq->rt.pushable_tasks, 1516 struct task_struct, pushable_tasks); 1517 1518 BUG_ON(rq->cpu != task_cpu(p)); 1519 BUG_ON(task_current(rq, p)); 1520 BUG_ON(p->nr_cpus_allowed <= 1); 1521 1522 BUG_ON(!p->on_rq); 1523 BUG_ON(!rt_task(p)); 1524 1525 return p; 1526 } 1527 1528 /* 1529 * If the current CPU has more than one RT task, see if the non 1530 * running task can migrate over to a CPU that is running a task 1531 * of lesser priority. 1532 */ 1533 static int push_rt_task(struct rq *rq) 1534 { 1535 struct task_struct *next_task; 1536 struct rq *lowest_rq; 1537 int ret = 0; 1538 1539 if (!rq->rt.overloaded) 1540 return 0; 1541 1542 next_task = pick_next_pushable_task(rq); 1543 if (!next_task) 1544 return 0; 1545 1546 retry: 1547 if (unlikely(next_task == rq->curr)) { 1548 WARN_ON(1); 1549 return 0; 1550 } 1551 1552 /* 1553 * It's possible that the next_task slipped in of 1554 * higher priority than current. If that's the case 1555 * just reschedule current. 1556 */ 1557 if (unlikely(next_task->prio < rq->curr->prio)) { 1558 resched_task(rq->curr); 1559 return 0; 1560 } 1561 1562 /* We might release rq lock */ 1563 get_task_struct(next_task); 1564 1565 /* find_lock_lowest_rq locks the rq if found */ 1566 lowest_rq = find_lock_lowest_rq(next_task, rq); 1567 if (!lowest_rq) { 1568 struct task_struct *task; 1569 /* 1570 * find_lock_lowest_rq releases rq->lock 1571 * so it is possible that next_task has migrated. 1572 * 1573 * We need to make sure that the task is still on the same 1574 * run-queue and is also still the next task eligible for 1575 * pushing. 1576 */ 1577 task = pick_next_pushable_task(rq); 1578 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1579 /* 1580 * The task hasn't migrated, and is still the next 1581 * eligible task, but we failed to find a run-queue 1582 * to push it to. Do not retry in this case, since 1583 * other cpus will pull from us when ready. 1584 */ 1585 goto out; 1586 } 1587 1588 if (!task) 1589 /* No more tasks, just exit */ 1590 goto out; 1591 1592 /* 1593 * Something has shifted, try again. 1594 */ 1595 put_task_struct(next_task); 1596 next_task = task; 1597 goto retry; 1598 } 1599 1600 deactivate_task(rq, next_task, 0); 1601 set_task_cpu(next_task, lowest_rq->cpu); 1602 activate_task(lowest_rq, next_task, 0); 1603 ret = 1; 1604 1605 resched_task(lowest_rq->curr); 1606 1607 double_unlock_balance(rq, lowest_rq); 1608 1609 out: 1610 put_task_struct(next_task); 1611 1612 return ret; 1613 } 1614 1615 static void push_rt_tasks(struct rq *rq) 1616 { 1617 /* push_rt_task will return true if it moved an RT */ 1618 while (push_rt_task(rq)) 1619 ; 1620 } 1621 1622 static int pull_rt_task(struct rq *this_rq) 1623 { 1624 int this_cpu = this_rq->cpu, ret = 0, cpu; 1625 struct task_struct *p; 1626 struct rq *src_rq; 1627 1628 if (likely(!rt_overloaded(this_rq))) 1629 return 0; 1630 1631 /* 1632 * Match the barrier from rt_set_overloaded; this guarantees that if we 1633 * see overloaded we must also see the rto_mask bit. 1634 */ 1635 smp_rmb(); 1636 1637 for_each_cpu(cpu, this_rq->rd->rto_mask) { 1638 if (this_cpu == cpu) 1639 continue; 1640 1641 src_rq = cpu_rq(cpu); 1642 1643 /* 1644 * Don't bother taking the src_rq->lock if the next highest 1645 * task is known to be lower-priority than our current task. 1646 * This may look racy, but if this value is about to go 1647 * logically higher, the src_rq will push this task away. 1648 * And if its going logically lower, we do not care 1649 */ 1650 if (src_rq->rt.highest_prio.next >= 1651 this_rq->rt.highest_prio.curr) 1652 continue; 1653 1654 /* 1655 * We can potentially drop this_rq's lock in 1656 * double_lock_balance, and another CPU could 1657 * alter this_rq 1658 */ 1659 double_lock_balance(this_rq, src_rq); 1660 1661 /* 1662 * We can pull only a task, which is pushable 1663 * on its rq, and no others. 1664 */ 1665 p = pick_highest_pushable_task(src_rq, this_cpu); 1666 1667 /* 1668 * Do we have an RT task that preempts 1669 * the to-be-scheduled task? 1670 */ 1671 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 1672 WARN_ON(p == src_rq->curr); 1673 WARN_ON(!p->on_rq); 1674 1675 /* 1676 * There's a chance that p is higher in priority 1677 * than what's currently running on its cpu. 1678 * This is just that p is wakeing up and hasn't 1679 * had a chance to schedule. We only pull 1680 * p if it is lower in priority than the 1681 * current task on the run queue 1682 */ 1683 if (p->prio < src_rq->curr->prio) 1684 goto skip; 1685 1686 ret = 1; 1687 1688 deactivate_task(src_rq, p, 0); 1689 set_task_cpu(p, this_cpu); 1690 activate_task(this_rq, p, 0); 1691 /* 1692 * We continue with the search, just in 1693 * case there's an even higher prio task 1694 * in another runqueue. (low likelihood 1695 * but possible) 1696 */ 1697 } 1698 skip: 1699 double_unlock_balance(this_rq, src_rq); 1700 } 1701 1702 return ret; 1703 } 1704 1705 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) 1706 { 1707 /* Try to pull RT tasks here if we lower this rq's prio */ 1708 if (rq->rt.highest_prio.curr > prev->prio) 1709 pull_rt_task(rq); 1710 } 1711 1712 static void post_schedule_rt(struct rq *rq) 1713 { 1714 push_rt_tasks(rq); 1715 } 1716 1717 /* 1718 * If we are not running and we are not going to reschedule soon, we should 1719 * try to push tasks away now 1720 */ 1721 static void task_woken_rt(struct rq *rq, struct task_struct *p) 1722 { 1723 if (!task_running(rq, p) && 1724 !test_tsk_need_resched(rq->curr) && 1725 has_pushable_tasks(rq) && 1726 p->nr_cpus_allowed > 1 && 1727 rt_task(rq->curr) && 1728 (rq->curr->nr_cpus_allowed < 2 || 1729 rq->curr->prio <= p->prio)) 1730 push_rt_tasks(rq); 1731 } 1732 1733 static void set_cpus_allowed_rt(struct task_struct *p, 1734 const struct cpumask *new_mask) 1735 { 1736 struct rq *rq; 1737 int weight; 1738 1739 BUG_ON(!rt_task(p)); 1740 1741 if (!p->on_rq) 1742 return; 1743 1744 weight = cpumask_weight(new_mask); 1745 1746 /* 1747 * Only update if the process changes its state from whether it 1748 * can migrate or not. 1749 */ 1750 if ((p->nr_cpus_allowed > 1) == (weight > 1)) 1751 return; 1752 1753 rq = task_rq(p); 1754 1755 /* 1756 * The process used to be able to migrate OR it can now migrate 1757 */ 1758 if (weight <= 1) { 1759 if (!task_current(rq, p)) 1760 dequeue_pushable_task(rq, p); 1761 BUG_ON(!rq->rt.rt_nr_migratory); 1762 rq->rt.rt_nr_migratory--; 1763 } else { 1764 if (!task_current(rq, p)) 1765 enqueue_pushable_task(rq, p); 1766 rq->rt.rt_nr_migratory++; 1767 } 1768 1769 update_rt_migration(&rq->rt); 1770 } 1771 1772 /* Assumes rq->lock is held */ 1773 static void rq_online_rt(struct rq *rq) 1774 { 1775 if (rq->rt.overloaded) 1776 rt_set_overload(rq); 1777 1778 __enable_runtime(rq); 1779 1780 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1781 } 1782 1783 /* Assumes rq->lock is held */ 1784 static void rq_offline_rt(struct rq *rq) 1785 { 1786 if (rq->rt.overloaded) 1787 rt_clear_overload(rq); 1788 1789 __disable_runtime(rq); 1790 1791 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 1792 } 1793 1794 /* 1795 * When switch from the rt queue, we bring ourselves to a position 1796 * that we might want to pull RT tasks from other runqueues. 1797 */ 1798 static void switched_from_rt(struct rq *rq, struct task_struct *p) 1799 { 1800 /* 1801 * If there are other RT tasks then we will reschedule 1802 * and the scheduling of the other RT tasks will handle 1803 * the balancing. But if we are the last RT task 1804 * we may need to handle the pulling of RT tasks 1805 * now. 1806 */ 1807 if (!p->on_rq || rq->rt.rt_nr_running) 1808 return; 1809 1810 if (pull_rt_task(rq)) 1811 resched_task(rq->curr); 1812 } 1813 1814 void init_sched_rt_class(void) 1815 { 1816 unsigned int i; 1817 1818 for_each_possible_cpu(i) { 1819 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 1820 GFP_KERNEL, cpu_to_node(i)); 1821 } 1822 } 1823 #endif /* CONFIG_SMP */ 1824 1825 /* 1826 * When switching a task to RT, we may overload the runqueue 1827 * with RT tasks. In this case we try to push them off to 1828 * other runqueues. 1829 */ 1830 static void switched_to_rt(struct rq *rq, struct task_struct *p) 1831 { 1832 int check_resched = 1; 1833 1834 /* 1835 * If we are already running, then there's nothing 1836 * that needs to be done. But if we are not running 1837 * we may need to preempt the current running task. 1838 * If that current running task is also an RT task 1839 * then see if we can move to another run queue. 1840 */ 1841 if (p->on_rq && rq->curr != p) { 1842 #ifdef CONFIG_SMP 1843 if (rq->rt.overloaded && push_rt_task(rq) && 1844 /* Don't resched if we changed runqueues */ 1845 rq != task_rq(p)) 1846 check_resched = 0; 1847 #endif /* CONFIG_SMP */ 1848 if (check_resched && p->prio < rq->curr->prio) 1849 resched_task(rq->curr); 1850 } 1851 } 1852 1853 /* 1854 * Priority of the task has changed. This may cause 1855 * us to initiate a push or pull. 1856 */ 1857 static void 1858 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 1859 { 1860 if (!p->on_rq) 1861 return; 1862 1863 if (rq->curr == p) { 1864 #ifdef CONFIG_SMP 1865 /* 1866 * If our priority decreases while running, we 1867 * may need to pull tasks to this runqueue. 1868 */ 1869 if (oldprio < p->prio) 1870 pull_rt_task(rq); 1871 /* 1872 * If there's a higher priority task waiting to run 1873 * then reschedule. Note, the above pull_rt_task 1874 * can release the rq lock and p could migrate. 1875 * Only reschedule if p is still on the same runqueue. 1876 */ 1877 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) 1878 resched_task(p); 1879 #else 1880 /* For UP simply resched on drop of prio */ 1881 if (oldprio < p->prio) 1882 resched_task(p); 1883 #endif /* CONFIG_SMP */ 1884 } else { 1885 /* 1886 * This task is not running, but if it is 1887 * greater than the current running task 1888 * then reschedule. 1889 */ 1890 if (p->prio < rq->curr->prio) 1891 resched_task(rq->curr); 1892 } 1893 } 1894 1895 static void watchdog(struct rq *rq, struct task_struct *p) 1896 { 1897 unsigned long soft, hard; 1898 1899 /* max may change after cur was read, this will be fixed next tick */ 1900 soft = task_rlimit(p, RLIMIT_RTTIME); 1901 hard = task_rlimit_max(p, RLIMIT_RTTIME); 1902 1903 if (soft != RLIM_INFINITY) { 1904 unsigned long next; 1905 1906 if (p->rt.watchdog_stamp != jiffies) { 1907 p->rt.timeout++; 1908 p->rt.watchdog_stamp = jiffies; 1909 } 1910 1911 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 1912 if (p->rt.timeout > next) 1913 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 1914 } 1915 } 1916 1917 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 1918 { 1919 struct sched_rt_entity *rt_se = &p->rt; 1920 1921 update_curr_rt(rq); 1922 1923 watchdog(rq, p); 1924 1925 /* 1926 * RR tasks need a special form of timeslice management. 1927 * FIFO tasks have no timeslices. 1928 */ 1929 if (p->policy != SCHED_RR) 1930 return; 1931 1932 if (--p->rt.time_slice) 1933 return; 1934 1935 p->rt.time_slice = sched_rr_timeslice; 1936 1937 /* 1938 * Requeue to the end of queue if we (and all of our ancestors) are not 1939 * the only element on the queue 1940 */ 1941 for_each_sched_rt_entity(rt_se) { 1942 if (rt_se->run_list.prev != rt_se->run_list.next) { 1943 requeue_task_rt(rq, p, 0); 1944 set_tsk_need_resched(p); 1945 return; 1946 } 1947 } 1948 } 1949 1950 static void set_curr_task_rt(struct rq *rq) 1951 { 1952 struct task_struct *p = rq->curr; 1953 1954 p->se.exec_start = rq_clock_task(rq); 1955 1956 /* The running task is never eligible for pushing */ 1957 dequeue_pushable_task(rq, p); 1958 } 1959 1960 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 1961 { 1962 /* 1963 * Time slice is 0 for SCHED_FIFO tasks 1964 */ 1965 if (task->policy == SCHED_RR) 1966 return sched_rr_timeslice; 1967 else 1968 return 0; 1969 } 1970 1971 const struct sched_class rt_sched_class = { 1972 .next = &fair_sched_class, 1973 .enqueue_task = enqueue_task_rt, 1974 .dequeue_task = dequeue_task_rt, 1975 .yield_task = yield_task_rt, 1976 1977 .check_preempt_curr = check_preempt_curr_rt, 1978 1979 .pick_next_task = pick_next_task_rt, 1980 .put_prev_task = put_prev_task_rt, 1981 1982 #ifdef CONFIG_SMP 1983 .select_task_rq = select_task_rq_rt, 1984 1985 .set_cpus_allowed = set_cpus_allowed_rt, 1986 .rq_online = rq_online_rt, 1987 .rq_offline = rq_offline_rt, 1988 .pre_schedule = pre_schedule_rt, 1989 .post_schedule = post_schedule_rt, 1990 .task_woken = task_woken_rt, 1991 .switched_from = switched_from_rt, 1992 #endif 1993 1994 .set_curr_task = set_curr_task_rt, 1995 .task_tick = task_tick_rt, 1996 1997 .get_rr_interval = get_rr_interval_rt, 1998 1999 .prio_changed = prio_changed_rt, 2000 .switched_to = switched_to_rt, 2001 }; 2002 2003 #ifdef CONFIG_SCHED_DEBUG 2004 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2005 2006 void print_rt_stats(struct seq_file *m, int cpu) 2007 { 2008 rt_rq_iter_t iter; 2009 struct rt_rq *rt_rq; 2010 2011 rcu_read_lock(); 2012 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2013 print_rt_rq(m, cpu, rt_rq); 2014 rcu_read_unlock(); 2015 } 2016 #endif /* CONFIG_SCHED_DEBUG */ 2017