xref: /openbmc/linux/kernel/sched/rt.c (revision 161f4089)
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5 
6 #include "sched.h"
7 
8 #include <linux/slab.h>
9 
10 int sched_rr_timeslice = RR_TIMESLICE;
11 
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13 
14 struct rt_bandwidth def_rt_bandwidth;
15 
16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17 {
18 	struct rt_bandwidth *rt_b =
19 		container_of(timer, struct rt_bandwidth, rt_period_timer);
20 	ktime_t now;
21 	int overrun;
22 	int idle = 0;
23 
24 	for (;;) {
25 		now = hrtimer_cb_get_time(timer);
26 		overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27 
28 		if (!overrun)
29 			break;
30 
31 		idle = do_sched_rt_period_timer(rt_b, overrun);
32 	}
33 
34 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35 }
36 
37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38 {
39 	rt_b->rt_period = ns_to_ktime(period);
40 	rt_b->rt_runtime = runtime;
41 
42 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
43 
44 	hrtimer_init(&rt_b->rt_period_timer,
45 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 	rt_b->rt_period_timer.function = sched_rt_period_timer;
47 }
48 
49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50 {
51 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 		return;
53 
54 	if (hrtimer_active(&rt_b->rt_period_timer))
55 		return;
56 
57 	raw_spin_lock(&rt_b->rt_runtime_lock);
58 	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 	raw_spin_unlock(&rt_b->rt_runtime_lock);
60 }
61 
62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63 {
64 	struct rt_prio_array *array;
65 	int i;
66 
67 	array = &rt_rq->active;
68 	for (i = 0; i < MAX_RT_PRIO; i++) {
69 		INIT_LIST_HEAD(array->queue + i);
70 		__clear_bit(i, array->bitmap);
71 	}
72 	/* delimiter for bitsearch: */
73 	__set_bit(MAX_RT_PRIO, array->bitmap);
74 
75 #if defined CONFIG_SMP
76 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 	rt_rq->highest_prio.next = MAX_RT_PRIO;
78 	rt_rq->rt_nr_migratory = 0;
79 	rt_rq->overloaded = 0;
80 	plist_head_init(&rt_rq->pushable_tasks);
81 #endif
82 
83 	rt_rq->rt_time = 0;
84 	rt_rq->rt_throttled = 0;
85 	rt_rq->rt_runtime = 0;
86 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
87 }
88 
89 #ifdef CONFIG_RT_GROUP_SCHED
90 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
91 {
92 	hrtimer_cancel(&rt_b->rt_period_timer);
93 }
94 
95 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
96 
97 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
98 {
99 #ifdef CONFIG_SCHED_DEBUG
100 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
101 #endif
102 	return container_of(rt_se, struct task_struct, rt);
103 }
104 
105 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
106 {
107 	return rt_rq->rq;
108 }
109 
110 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
111 {
112 	return rt_se->rt_rq;
113 }
114 
115 void free_rt_sched_group(struct task_group *tg)
116 {
117 	int i;
118 
119 	if (tg->rt_se)
120 		destroy_rt_bandwidth(&tg->rt_bandwidth);
121 
122 	for_each_possible_cpu(i) {
123 		if (tg->rt_rq)
124 			kfree(tg->rt_rq[i]);
125 		if (tg->rt_se)
126 			kfree(tg->rt_se[i]);
127 	}
128 
129 	kfree(tg->rt_rq);
130 	kfree(tg->rt_se);
131 }
132 
133 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
134 		struct sched_rt_entity *rt_se, int cpu,
135 		struct sched_rt_entity *parent)
136 {
137 	struct rq *rq = cpu_rq(cpu);
138 
139 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
140 	rt_rq->rt_nr_boosted = 0;
141 	rt_rq->rq = rq;
142 	rt_rq->tg = tg;
143 
144 	tg->rt_rq[cpu] = rt_rq;
145 	tg->rt_se[cpu] = rt_se;
146 
147 	if (!rt_se)
148 		return;
149 
150 	if (!parent)
151 		rt_se->rt_rq = &rq->rt;
152 	else
153 		rt_se->rt_rq = parent->my_q;
154 
155 	rt_se->my_q = rt_rq;
156 	rt_se->parent = parent;
157 	INIT_LIST_HEAD(&rt_se->run_list);
158 }
159 
160 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
161 {
162 	struct rt_rq *rt_rq;
163 	struct sched_rt_entity *rt_se;
164 	int i;
165 
166 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
167 	if (!tg->rt_rq)
168 		goto err;
169 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
170 	if (!tg->rt_se)
171 		goto err;
172 
173 	init_rt_bandwidth(&tg->rt_bandwidth,
174 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
175 
176 	for_each_possible_cpu(i) {
177 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
178 				     GFP_KERNEL, cpu_to_node(i));
179 		if (!rt_rq)
180 			goto err;
181 
182 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
183 				     GFP_KERNEL, cpu_to_node(i));
184 		if (!rt_se)
185 			goto err_free_rq;
186 
187 		init_rt_rq(rt_rq, cpu_rq(i));
188 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
189 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
190 	}
191 
192 	return 1;
193 
194 err_free_rq:
195 	kfree(rt_rq);
196 err:
197 	return 0;
198 }
199 
200 #else /* CONFIG_RT_GROUP_SCHED */
201 
202 #define rt_entity_is_task(rt_se) (1)
203 
204 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
205 {
206 	return container_of(rt_se, struct task_struct, rt);
207 }
208 
209 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
210 {
211 	return container_of(rt_rq, struct rq, rt);
212 }
213 
214 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
215 {
216 	struct task_struct *p = rt_task_of(rt_se);
217 	struct rq *rq = task_rq(p);
218 
219 	return &rq->rt;
220 }
221 
222 void free_rt_sched_group(struct task_group *tg) { }
223 
224 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
225 {
226 	return 1;
227 }
228 #endif /* CONFIG_RT_GROUP_SCHED */
229 
230 #ifdef CONFIG_SMP
231 
232 static inline int rt_overloaded(struct rq *rq)
233 {
234 	return atomic_read(&rq->rd->rto_count);
235 }
236 
237 static inline void rt_set_overload(struct rq *rq)
238 {
239 	if (!rq->online)
240 		return;
241 
242 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
243 	/*
244 	 * Make sure the mask is visible before we set
245 	 * the overload count. That is checked to determine
246 	 * if we should look at the mask. It would be a shame
247 	 * if we looked at the mask, but the mask was not
248 	 * updated yet.
249 	 *
250 	 * Matched by the barrier in pull_rt_task().
251 	 */
252 	smp_wmb();
253 	atomic_inc(&rq->rd->rto_count);
254 }
255 
256 static inline void rt_clear_overload(struct rq *rq)
257 {
258 	if (!rq->online)
259 		return;
260 
261 	/* the order here really doesn't matter */
262 	atomic_dec(&rq->rd->rto_count);
263 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
264 }
265 
266 static void update_rt_migration(struct rt_rq *rt_rq)
267 {
268 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
269 		if (!rt_rq->overloaded) {
270 			rt_set_overload(rq_of_rt_rq(rt_rq));
271 			rt_rq->overloaded = 1;
272 		}
273 	} else if (rt_rq->overloaded) {
274 		rt_clear_overload(rq_of_rt_rq(rt_rq));
275 		rt_rq->overloaded = 0;
276 	}
277 }
278 
279 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
280 {
281 	struct task_struct *p;
282 
283 	if (!rt_entity_is_task(rt_se))
284 		return;
285 
286 	p = rt_task_of(rt_se);
287 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
288 
289 	rt_rq->rt_nr_total++;
290 	if (p->nr_cpus_allowed > 1)
291 		rt_rq->rt_nr_migratory++;
292 
293 	update_rt_migration(rt_rq);
294 }
295 
296 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
297 {
298 	struct task_struct *p;
299 
300 	if (!rt_entity_is_task(rt_se))
301 		return;
302 
303 	p = rt_task_of(rt_se);
304 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
305 
306 	rt_rq->rt_nr_total--;
307 	if (p->nr_cpus_allowed > 1)
308 		rt_rq->rt_nr_migratory--;
309 
310 	update_rt_migration(rt_rq);
311 }
312 
313 static inline int has_pushable_tasks(struct rq *rq)
314 {
315 	return !plist_head_empty(&rq->rt.pushable_tasks);
316 }
317 
318 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
319 {
320 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
321 	plist_node_init(&p->pushable_tasks, p->prio);
322 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
323 
324 	/* Update the highest prio pushable task */
325 	if (p->prio < rq->rt.highest_prio.next)
326 		rq->rt.highest_prio.next = p->prio;
327 }
328 
329 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
330 {
331 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
332 
333 	/* Update the new highest prio pushable task */
334 	if (has_pushable_tasks(rq)) {
335 		p = plist_first_entry(&rq->rt.pushable_tasks,
336 				      struct task_struct, pushable_tasks);
337 		rq->rt.highest_prio.next = p->prio;
338 	} else
339 		rq->rt.highest_prio.next = MAX_RT_PRIO;
340 }
341 
342 #else
343 
344 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
345 {
346 }
347 
348 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
349 {
350 }
351 
352 static inline
353 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
354 {
355 }
356 
357 static inline
358 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
359 {
360 }
361 
362 #endif /* CONFIG_SMP */
363 
364 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
365 {
366 	return !list_empty(&rt_se->run_list);
367 }
368 
369 #ifdef CONFIG_RT_GROUP_SCHED
370 
371 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
372 {
373 	if (!rt_rq->tg)
374 		return RUNTIME_INF;
375 
376 	return rt_rq->rt_runtime;
377 }
378 
379 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
380 {
381 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
382 }
383 
384 typedef struct task_group *rt_rq_iter_t;
385 
386 static inline struct task_group *next_task_group(struct task_group *tg)
387 {
388 	do {
389 		tg = list_entry_rcu(tg->list.next,
390 			typeof(struct task_group), list);
391 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
392 
393 	if (&tg->list == &task_groups)
394 		tg = NULL;
395 
396 	return tg;
397 }
398 
399 #define for_each_rt_rq(rt_rq, iter, rq)					\
400 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
401 		(iter = next_task_group(iter)) &&			\
402 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
403 
404 #define for_each_sched_rt_entity(rt_se) \
405 	for (; rt_se; rt_se = rt_se->parent)
406 
407 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
408 {
409 	return rt_se->my_q;
410 }
411 
412 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
413 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
414 
415 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
416 {
417 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
418 	struct sched_rt_entity *rt_se;
419 
420 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
421 
422 	rt_se = rt_rq->tg->rt_se[cpu];
423 
424 	if (rt_rq->rt_nr_running) {
425 		if (rt_se && !on_rt_rq(rt_se))
426 			enqueue_rt_entity(rt_se, false);
427 		if (rt_rq->highest_prio.curr < curr->prio)
428 			resched_task(curr);
429 	}
430 }
431 
432 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
433 {
434 	struct sched_rt_entity *rt_se;
435 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
436 
437 	rt_se = rt_rq->tg->rt_se[cpu];
438 
439 	if (rt_se && on_rt_rq(rt_se))
440 		dequeue_rt_entity(rt_se);
441 }
442 
443 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
444 {
445 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
446 }
447 
448 static int rt_se_boosted(struct sched_rt_entity *rt_se)
449 {
450 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
451 	struct task_struct *p;
452 
453 	if (rt_rq)
454 		return !!rt_rq->rt_nr_boosted;
455 
456 	p = rt_task_of(rt_se);
457 	return p->prio != p->normal_prio;
458 }
459 
460 #ifdef CONFIG_SMP
461 static inline const struct cpumask *sched_rt_period_mask(void)
462 {
463 	return this_rq()->rd->span;
464 }
465 #else
466 static inline const struct cpumask *sched_rt_period_mask(void)
467 {
468 	return cpu_online_mask;
469 }
470 #endif
471 
472 static inline
473 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
474 {
475 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
476 }
477 
478 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
479 {
480 	return &rt_rq->tg->rt_bandwidth;
481 }
482 
483 #else /* !CONFIG_RT_GROUP_SCHED */
484 
485 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
486 {
487 	return rt_rq->rt_runtime;
488 }
489 
490 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
491 {
492 	return ktime_to_ns(def_rt_bandwidth.rt_period);
493 }
494 
495 typedef struct rt_rq *rt_rq_iter_t;
496 
497 #define for_each_rt_rq(rt_rq, iter, rq) \
498 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
499 
500 #define for_each_sched_rt_entity(rt_se) \
501 	for (; rt_se; rt_se = NULL)
502 
503 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
504 {
505 	return NULL;
506 }
507 
508 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
509 {
510 	if (rt_rq->rt_nr_running)
511 		resched_task(rq_of_rt_rq(rt_rq)->curr);
512 }
513 
514 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
515 {
516 }
517 
518 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
519 {
520 	return rt_rq->rt_throttled;
521 }
522 
523 static inline const struct cpumask *sched_rt_period_mask(void)
524 {
525 	return cpu_online_mask;
526 }
527 
528 static inline
529 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
530 {
531 	return &cpu_rq(cpu)->rt;
532 }
533 
534 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
535 {
536 	return &def_rt_bandwidth;
537 }
538 
539 #endif /* CONFIG_RT_GROUP_SCHED */
540 
541 #ifdef CONFIG_SMP
542 /*
543  * We ran out of runtime, see if we can borrow some from our neighbours.
544  */
545 static int do_balance_runtime(struct rt_rq *rt_rq)
546 {
547 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
548 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
549 	int i, weight, more = 0;
550 	u64 rt_period;
551 
552 	weight = cpumask_weight(rd->span);
553 
554 	raw_spin_lock(&rt_b->rt_runtime_lock);
555 	rt_period = ktime_to_ns(rt_b->rt_period);
556 	for_each_cpu(i, rd->span) {
557 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
558 		s64 diff;
559 
560 		if (iter == rt_rq)
561 			continue;
562 
563 		raw_spin_lock(&iter->rt_runtime_lock);
564 		/*
565 		 * Either all rqs have inf runtime and there's nothing to steal
566 		 * or __disable_runtime() below sets a specific rq to inf to
567 		 * indicate its been disabled and disalow stealing.
568 		 */
569 		if (iter->rt_runtime == RUNTIME_INF)
570 			goto next;
571 
572 		/*
573 		 * From runqueues with spare time, take 1/n part of their
574 		 * spare time, but no more than our period.
575 		 */
576 		diff = iter->rt_runtime - iter->rt_time;
577 		if (diff > 0) {
578 			diff = div_u64((u64)diff, weight);
579 			if (rt_rq->rt_runtime + diff > rt_period)
580 				diff = rt_period - rt_rq->rt_runtime;
581 			iter->rt_runtime -= diff;
582 			rt_rq->rt_runtime += diff;
583 			more = 1;
584 			if (rt_rq->rt_runtime == rt_period) {
585 				raw_spin_unlock(&iter->rt_runtime_lock);
586 				break;
587 			}
588 		}
589 next:
590 		raw_spin_unlock(&iter->rt_runtime_lock);
591 	}
592 	raw_spin_unlock(&rt_b->rt_runtime_lock);
593 
594 	return more;
595 }
596 
597 /*
598  * Ensure this RQ takes back all the runtime it lend to its neighbours.
599  */
600 static void __disable_runtime(struct rq *rq)
601 {
602 	struct root_domain *rd = rq->rd;
603 	rt_rq_iter_t iter;
604 	struct rt_rq *rt_rq;
605 
606 	if (unlikely(!scheduler_running))
607 		return;
608 
609 	for_each_rt_rq(rt_rq, iter, rq) {
610 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
611 		s64 want;
612 		int i;
613 
614 		raw_spin_lock(&rt_b->rt_runtime_lock);
615 		raw_spin_lock(&rt_rq->rt_runtime_lock);
616 		/*
617 		 * Either we're all inf and nobody needs to borrow, or we're
618 		 * already disabled and thus have nothing to do, or we have
619 		 * exactly the right amount of runtime to take out.
620 		 */
621 		if (rt_rq->rt_runtime == RUNTIME_INF ||
622 				rt_rq->rt_runtime == rt_b->rt_runtime)
623 			goto balanced;
624 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
625 
626 		/*
627 		 * Calculate the difference between what we started out with
628 		 * and what we current have, that's the amount of runtime
629 		 * we lend and now have to reclaim.
630 		 */
631 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
632 
633 		/*
634 		 * Greedy reclaim, take back as much as we can.
635 		 */
636 		for_each_cpu(i, rd->span) {
637 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
638 			s64 diff;
639 
640 			/*
641 			 * Can't reclaim from ourselves or disabled runqueues.
642 			 */
643 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
644 				continue;
645 
646 			raw_spin_lock(&iter->rt_runtime_lock);
647 			if (want > 0) {
648 				diff = min_t(s64, iter->rt_runtime, want);
649 				iter->rt_runtime -= diff;
650 				want -= diff;
651 			} else {
652 				iter->rt_runtime -= want;
653 				want -= want;
654 			}
655 			raw_spin_unlock(&iter->rt_runtime_lock);
656 
657 			if (!want)
658 				break;
659 		}
660 
661 		raw_spin_lock(&rt_rq->rt_runtime_lock);
662 		/*
663 		 * We cannot be left wanting - that would mean some runtime
664 		 * leaked out of the system.
665 		 */
666 		BUG_ON(want);
667 balanced:
668 		/*
669 		 * Disable all the borrow logic by pretending we have inf
670 		 * runtime - in which case borrowing doesn't make sense.
671 		 */
672 		rt_rq->rt_runtime = RUNTIME_INF;
673 		rt_rq->rt_throttled = 0;
674 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
675 		raw_spin_unlock(&rt_b->rt_runtime_lock);
676 	}
677 }
678 
679 static void __enable_runtime(struct rq *rq)
680 {
681 	rt_rq_iter_t iter;
682 	struct rt_rq *rt_rq;
683 
684 	if (unlikely(!scheduler_running))
685 		return;
686 
687 	/*
688 	 * Reset each runqueue's bandwidth settings
689 	 */
690 	for_each_rt_rq(rt_rq, iter, rq) {
691 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
692 
693 		raw_spin_lock(&rt_b->rt_runtime_lock);
694 		raw_spin_lock(&rt_rq->rt_runtime_lock);
695 		rt_rq->rt_runtime = rt_b->rt_runtime;
696 		rt_rq->rt_time = 0;
697 		rt_rq->rt_throttled = 0;
698 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
699 		raw_spin_unlock(&rt_b->rt_runtime_lock);
700 	}
701 }
702 
703 static int balance_runtime(struct rt_rq *rt_rq)
704 {
705 	int more = 0;
706 
707 	if (!sched_feat(RT_RUNTIME_SHARE))
708 		return more;
709 
710 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
711 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
712 		more = do_balance_runtime(rt_rq);
713 		raw_spin_lock(&rt_rq->rt_runtime_lock);
714 	}
715 
716 	return more;
717 }
718 #else /* !CONFIG_SMP */
719 static inline int balance_runtime(struct rt_rq *rt_rq)
720 {
721 	return 0;
722 }
723 #endif /* CONFIG_SMP */
724 
725 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
726 {
727 	int i, idle = 1, throttled = 0;
728 	const struct cpumask *span;
729 
730 	span = sched_rt_period_mask();
731 #ifdef CONFIG_RT_GROUP_SCHED
732 	/*
733 	 * FIXME: isolated CPUs should really leave the root task group,
734 	 * whether they are isolcpus or were isolated via cpusets, lest
735 	 * the timer run on a CPU which does not service all runqueues,
736 	 * potentially leaving other CPUs indefinitely throttled.  If
737 	 * isolation is really required, the user will turn the throttle
738 	 * off to kill the perturbations it causes anyway.  Meanwhile,
739 	 * this maintains functionality for boot and/or troubleshooting.
740 	 */
741 	if (rt_b == &root_task_group.rt_bandwidth)
742 		span = cpu_online_mask;
743 #endif
744 	for_each_cpu(i, span) {
745 		int enqueue = 0;
746 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
747 		struct rq *rq = rq_of_rt_rq(rt_rq);
748 
749 		raw_spin_lock(&rq->lock);
750 		if (rt_rq->rt_time) {
751 			u64 runtime;
752 
753 			raw_spin_lock(&rt_rq->rt_runtime_lock);
754 			if (rt_rq->rt_throttled)
755 				balance_runtime(rt_rq);
756 			runtime = rt_rq->rt_runtime;
757 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
758 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
759 				rt_rq->rt_throttled = 0;
760 				enqueue = 1;
761 
762 				/*
763 				 * Force a clock update if the CPU was idle,
764 				 * lest wakeup -> unthrottle time accumulate.
765 				 */
766 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
767 					rq->skip_clock_update = -1;
768 			}
769 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
770 				idle = 0;
771 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
772 		} else if (rt_rq->rt_nr_running) {
773 			idle = 0;
774 			if (!rt_rq_throttled(rt_rq))
775 				enqueue = 1;
776 		}
777 		if (rt_rq->rt_throttled)
778 			throttled = 1;
779 
780 		if (enqueue)
781 			sched_rt_rq_enqueue(rt_rq);
782 		raw_spin_unlock(&rq->lock);
783 	}
784 
785 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
786 		return 1;
787 
788 	return idle;
789 }
790 
791 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
792 {
793 #ifdef CONFIG_RT_GROUP_SCHED
794 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
795 
796 	if (rt_rq)
797 		return rt_rq->highest_prio.curr;
798 #endif
799 
800 	return rt_task_of(rt_se)->prio;
801 }
802 
803 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
804 {
805 	u64 runtime = sched_rt_runtime(rt_rq);
806 
807 	if (rt_rq->rt_throttled)
808 		return rt_rq_throttled(rt_rq);
809 
810 	if (runtime >= sched_rt_period(rt_rq))
811 		return 0;
812 
813 	balance_runtime(rt_rq);
814 	runtime = sched_rt_runtime(rt_rq);
815 	if (runtime == RUNTIME_INF)
816 		return 0;
817 
818 	if (rt_rq->rt_time > runtime) {
819 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
820 
821 		/*
822 		 * Don't actually throttle groups that have no runtime assigned
823 		 * but accrue some time due to boosting.
824 		 */
825 		if (likely(rt_b->rt_runtime)) {
826 			static bool once = false;
827 
828 			rt_rq->rt_throttled = 1;
829 
830 			if (!once) {
831 				once = true;
832 				printk_sched("sched: RT throttling activated\n");
833 			}
834 		} else {
835 			/*
836 			 * In case we did anyway, make it go away,
837 			 * replenishment is a joke, since it will replenish us
838 			 * with exactly 0 ns.
839 			 */
840 			rt_rq->rt_time = 0;
841 		}
842 
843 		if (rt_rq_throttled(rt_rq)) {
844 			sched_rt_rq_dequeue(rt_rq);
845 			return 1;
846 		}
847 	}
848 
849 	return 0;
850 }
851 
852 /*
853  * Update the current task's runtime statistics. Skip current tasks that
854  * are not in our scheduling class.
855  */
856 static void update_curr_rt(struct rq *rq)
857 {
858 	struct task_struct *curr = rq->curr;
859 	struct sched_rt_entity *rt_se = &curr->rt;
860 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
861 	u64 delta_exec;
862 
863 	if (curr->sched_class != &rt_sched_class)
864 		return;
865 
866 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
867 	if (unlikely((s64)delta_exec <= 0))
868 		return;
869 
870 	schedstat_set(curr->se.statistics.exec_max,
871 		      max(curr->se.statistics.exec_max, delta_exec));
872 
873 	curr->se.sum_exec_runtime += delta_exec;
874 	account_group_exec_runtime(curr, delta_exec);
875 
876 	curr->se.exec_start = rq_clock_task(rq);
877 	cpuacct_charge(curr, delta_exec);
878 
879 	sched_rt_avg_update(rq, delta_exec);
880 
881 	if (!rt_bandwidth_enabled())
882 		return;
883 
884 	for_each_sched_rt_entity(rt_se) {
885 		rt_rq = rt_rq_of_se(rt_se);
886 
887 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
888 			raw_spin_lock(&rt_rq->rt_runtime_lock);
889 			rt_rq->rt_time += delta_exec;
890 			if (sched_rt_runtime_exceeded(rt_rq))
891 				resched_task(curr);
892 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
893 		}
894 	}
895 }
896 
897 #if defined CONFIG_SMP
898 
899 static void
900 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
901 {
902 	struct rq *rq = rq_of_rt_rq(rt_rq);
903 
904 	if (rq->online && prio < prev_prio)
905 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
906 }
907 
908 static void
909 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
910 {
911 	struct rq *rq = rq_of_rt_rq(rt_rq);
912 
913 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
914 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
915 }
916 
917 #else /* CONFIG_SMP */
918 
919 static inline
920 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
921 static inline
922 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
923 
924 #endif /* CONFIG_SMP */
925 
926 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
927 static void
928 inc_rt_prio(struct rt_rq *rt_rq, int prio)
929 {
930 	int prev_prio = rt_rq->highest_prio.curr;
931 
932 	if (prio < prev_prio)
933 		rt_rq->highest_prio.curr = prio;
934 
935 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
936 }
937 
938 static void
939 dec_rt_prio(struct rt_rq *rt_rq, int prio)
940 {
941 	int prev_prio = rt_rq->highest_prio.curr;
942 
943 	if (rt_rq->rt_nr_running) {
944 
945 		WARN_ON(prio < prev_prio);
946 
947 		/*
948 		 * This may have been our highest task, and therefore
949 		 * we may have some recomputation to do
950 		 */
951 		if (prio == prev_prio) {
952 			struct rt_prio_array *array = &rt_rq->active;
953 
954 			rt_rq->highest_prio.curr =
955 				sched_find_first_bit(array->bitmap);
956 		}
957 
958 	} else
959 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
960 
961 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
962 }
963 
964 #else
965 
966 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
967 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
968 
969 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
970 
971 #ifdef CONFIG_RT_GROUP_SCHED
972 
973 static void
974 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
975 {
976 	if (rt_se_boosted(rt_se))
977 		rt_rq->rt_nr_boosted++;
978 
979 	if (rt_rq->tg)
980 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
981 }
982 
983 static void
984 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
985 {
986 	if (rt_se_boosted(rt_se))
987 		rt_rq->rt_nr_boosted--;
988 
989 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
990 }
991 
992 #else /* CONFIG_RT_GROUP_SCHED */
993 
994 static void
995 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
996 {
997 	start_rt_bandwidth(&def_rt_bandwidth);
998 }
999 
1000 static inline
1001 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1002 
1003 #endif /* CONFIG_RT_GROUP_SCHED */
1004 
1005 static inline
1006 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1007 {
1008 	int prio = rt_se_prio(rt_se);
1009 
1010 	WARN_ON(!rt_prio(prio));
1011 	rt_rq->rt_nr_running++;
1012 
1013 	inc_rt_prio(rt_rq, prio);
1014 	inc_rt_migration(rt_se, rt_rq);
1015 	inc_rt_group(rt_se, rt_rq);
1016 }
1017 
1018 static inline
1019 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1020 {
1021 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1022 	WARN_ON(!rt_rq->rt_nr_running);
1023 	rt_rq->rt_nr_running--;
1024 
1025 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1026 	dec_rt_migration(rt_se, rt_rq);
1027 	dec_rt_group(rt_se, rt_rq);
1028 }
1029 
1030 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1031 {
1032 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1033 	struct rt_prio_array *array = &rt_rq->active;
1034 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1035 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1036 
1037 	/*
1038 	 * Don't enqueue the group if its throttled, or when empty.
1039 	 * The latter is a consequence of the former when a child group
1040 	 * get throttled and the current group doesn't have any other
1041 	 * active members.
1042 	 */
1043 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1044 		return;
1045 
1046 	if (head)
1047 		list_add(&rt_se->run_list, queue);
1048 	else
1049 		list_add_tail(&rt_se->run_list, queue);
1050 	__set_bit(rt_se_prio(rt_se), array->bitmap);
1051 
1052 	inc_rt_tasks(rt_se, rt_rq);
1053 }
1054 
1055 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1056 {
1057 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1058 	struct rt_prio_array *array = &rt_rq->active;
1059 
1060 	list_del_init(&rt_se->run_list);
1061 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1062 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1063 
1064 	dec_rt_tasks(rt_se, rt_rq);
1065 }
1066 
1067 /*
1068  * Because the prio of an upper entry depends on the lower
1069  * entries, we must remove entries top - down.
1070  */
1071 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1072 {
1073 	struct sched_rt_entity *back = NULL;
1074 
1075 	for_each_sched_rt_entity(rt_se) {
1076 		rt_se->back = back;
1077 		back = rt_se;
1078 	}
1079 
1080 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1081 		if (on_rt_rq(rt_se))
1082 			__dequeue_rt_entity(rt_se);
1083 	}
1084 }
1085 
1086 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1087 {
1088 	dequeue_rt_stack(rt_se);
1089 	for_each_sched_rt_entity(rt_se)
1090 		__enqueue_rt_entity(rt_se, head);
1091 }
1092 
1093 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1094 {
1095 	dequeue_rt_stack(rt_se);
1096 
1097 	for_each_sched_rt_entity(rt_se) {
1098 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1099 
1100 		if (rt_rq && rt_rq->rt_nr_running)
1101 			__enqueue_rt_entity(rt_se, false);
1102 	}
1103 }
1104 
1105 /*
1106  * Adding/removing a task to/from a priority array:
1107  */
1108 static void
1109 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1110 {
1111 	struct sched_rt_entity *rt_se = &p->rt;
1112 
1113 	if (flags & ENQUEUE_WAKEUP)
1114 		rt_se->timeout = 0;
1115 
1116 	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1117 
1118 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1119 		enqueue_pushable_task(rq, p);
1120 
1121 	inc_nr_running(rq);
1122 }
1123 
1124 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1125 {
1126 	struct sched_rt_entity *rt_se = &p->rt;
1127 
1128 	update_curr_rt(rq);
1129 	dequeue_rt_entity(rt_se);
1130 
1131 	dequeue_pushable_task(rq, p);
1132 
1133 	dec_nr_running(rq);
1134 }
1135 
1136 /*
1137  * Put task to the head or the end of the run list without the overhead of
1138  * dequeue followed by enqueue.
1139  */
1140 static void
1141 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1142 {
1143 	if (on_rt_rq(rt_se)) {
1144 		struct rt_prio_array *array = &rt_rq->active;
1145 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1146 
1147 		if (head)
1148 			list_move(&rt_se->run_list, queue);
1149 		else
1150 			list_move_tail(&rt_se->run_list, queue);
1151 	}
1152 }
1153 
1154 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1155 {
1156 	struct sched_rt_entity *rt_se = &p->rt;
1157 	struct rt_rq *rt_rq;
1158 
1159 	for_each_sched_rt_entity(rt_se) {
1160 		rt_rq = rt_rq_of_se(rt_se);
1161 		requeue_rt_entity(rt_rq, rt_se, head);
1162 	}
1163 }
1164 
1165 static void yield_task_rt(struct rq *rq)
1166 {
1167 	requeue_task_rt(rq, rq->curr, 0);
1168 }
1169 
1170 #ifdef CONFIG_SMP
1171 static int find_lowest_rq(struct task_struct *task);
1172 
1173 static int
1174 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1175 {
1176 	struct task_struct *curr;
1177 	struct rq *rq;
1178 
1179 	if (p->nr_cpus_allowed == 1)
1180 		goto out;
1181 
1182 	/* For anything but wake ups, just return the task_cpu */
1183 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1184 		goto out;
1185 
1186 	rq = cpu_rq(cpu);
1187 
1188 	rcu_read_lock();
1189 	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1190 
1191 	/*
1192 	 * If the current task on @p's runqueue is an RT task, then
1193 	 * try to see if we can wake this RT task up on another
1194 	 * runqueue. Otherwise simply start this RT task
1195 	 * on its current runqueue.
1196 	 *
1197 	 * We want to avoid overloading runqueues. If the woken
1198 	 * task is a higher priority, then it will stay on this CPU
1199 	 * and the lower prio task should be moved to another CPU.
1200 	 * Even though this will probably make the lower prio task
1201 	 * lose its cache, we do not want to bounce a higher task
1202 	 * around just because it gave up its CPU, perhaps for a
1203 	 * lock?
1204 	 *
1205 	 * For equal prio tasks, we just let the scheduler sort it out.
1206 	 *
1207 	 * Otherwise, just let it ride on the affined RQ and the
1208 	 * post-schedule router will push the preempted task away
1209 	 *
1210 	 * This test is optimistic, if we get it wrong the load-balancer
1211 	 * will have to sort it out.
1212 	 */
1213 	if (curr && unlikely(rt_task(curr)) &&
1214 	    (curr->nr_cpus_allowed < 2 ||
1215 	     curr->prio <= p->prio)) {
1216 		int target = find_lowest_rq(p);
1217 
1218 		if (target != -1)
1219 			cpu = target;
1220 	}
1221 	rcu_read_unlock();
1222 
1223 out:
1224 	return cpu;
1225 }
1226 
1227 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1228 {
1229 	if (rq->curr->nr_cpus_allowed == 1)
1230 		return;
1231 
1232 	if (p->nr_cpus_allowed != 1
1233 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1234 		return;
1235 
1236 	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1237 		return;
1238 
1239 	/*
1240 	 * There appears to be other cpus that can accept
1241 	 * current and none to run 'p', so lets reschedule
1242 	 * to try and push current away:
1243 	 */
1244 	requeue_task_rt(rq, p, 1);
1245 	resched_task(rq->curr);
1246 }
1247 
1248 #endif /* CONFIG_SMP */
1249 
1250 /*
1251  * Preempt the current task with a newly woken task if needed:
1252  */
1253 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1254 {
1255 	if (p->prio < rq->curr->prio) {
1256 		resched_task(rq->curr);
1257 		return;
1258 	}
1259 
1260 #ifdef CONFIG_SMP
1261 	/*
1262 	 * If:
1263 	 *
1264 	 * - the newly woken task is of equal priority to the current task
1265 	 * - the newly woken task is non-migratable while current is migratable
1266 	 * - current will be preempted on the next reschedule
1267 	 *
1268 	 * we should check to see if current can readily move to a different
1269 	 * cpu.  If so, we will reschedule to allow the push logic to try
1270 	 * to move current somewhere else, making room for our non-migratable
1271 	 * task.
1272 	 */
1273 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1274 		check_preempt_equal_prio(rq, p);
1275 #endif
1276 }
1277 
1278 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1279 						   struct rt_rq *rt_rq)
1280 {
1281 	struct rt_prio_array *array = &rt_rq->active;
1282 	struct sched_rt_entity *next = NULL;
1283 	struct list_head *queue;
1284 	int idx;
1285 
1286 	idx = sched_find_first_bit(array->bitmap);
1287 	BUG_ON(idx >= MAX_RT_PRIO);
1288 
1289 	queue = array->queue + idx;
1290 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1291 
1292 	return next;
1293 }
1294 
1295 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1296 {
1297 	struct sched_rt_entity *rt_se;
1298 	struct task_struct *p;
1299 	struct rt_rq *rt_rq;
1300 
1301 	rt_rq = &rq->rt;
1302 
1303 	if (!rt_rq->rt_nr_running)
1304 		return NULL;
1305 
1306 	if (rt_rq_throttled(rt_rq))
1307 		return NULL;
1308 
1309 	do {
1310 		rt_se = pick_next_rt_entity(rq, rt_rq);
1311 		BUG_ON(!rt_se);
1312 		rt_rq = group_rt_rq(rt_se);
1313 	} while (rt_rq);
1314 
1315 	p = rt_task_of(rt_se);
1316 	p->se.exec_start = rq_clock_task(rq);
1317 
1318 	return p;
1319 }
1320 
1321 static struct task_struct *pick_next_task_rt(struct rq *rq)
1322 {
1323 	struct task_struct *p = _pick_next_task_rt(rq);
1324 
1325 	/* The running task is never eligible for pushing */
1326 	if (p)
1327 		dequeue_pushable_task(rq, p);
1328 
1329 #ifdef CONFIG_SMP
1330 	/*
1331 	 * We detect this state here so that we can avoid taking the RQ
1332 	 * lock again later if there is no need to push
1333 	 */
1334 	rq->post_schedule = has_pushable_tasks(rq);
1335 #endif
1336 
1337 	return p;
1338 }
1339 
1340 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1341 {
1342 	update_curr_rt(rq);
1343 
1344 	/*
1345 	 * The previous task needs to be made eligible for pushing
1346 	 * if it is still active
1347 	 */
1348 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1349 		enqueue_pushable_task(rq, p);
1350 }
1351 
1352 #ifdef CONFIG_SMP
1353 
1354 /* Only try algorithms three times */
1355 #define RT_MAX_TRIES 3
1356 
1357 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1358 {
1359 	if (!task_running(rq, p) &&
1360 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1361 		return 1;
1362 	return 0;
1363 }
1364 
1365 /*
1366  * Return the highest pushable rq's task, which is suitable to be executed
1367  * on the cpu, NULL otherwise
1368  */
1369 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1370 {
1371 	struct plist_head *head = &rq->rt.pushable_tasks;
1372 	struct task_struct *p;
1373 
1374 	if (!has_pushable_tasks(rq))
1375 		return NULL;
1376 
1377 	plist_for_each_entry(p, head, pushable_tasks) {
1378 		if (pick_rt_task(rq, p, cpu))
1379 			return p;
1380 	}
1381 
1382 	return NULL;
1383 }
1384 
1385 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1386 
1387 static int find_lowest_rq(struct task_struct *task)
1388 {
1389 	struct sched_domain *sd;
1390 	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1391 	int this_cpu = smp_processor_id();
1392 	int cpu      = task_cpu(task);
1393 
1394 	/* Make sure the mask is initialized first */
1395 	if (unlikely(!lowest_mask))
1396 		return -1;
1397 
1398 	if (task->nr_cpus_allowed == 1)
1399 		return -1; /* No other targets possible */
1400 
1401 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1402 		return -1; /* No targets found */
1403 
1404 	/*
1405 	 * At this point we have built a mask of cpus representing the
1406 	 * lowest priority tasks in the system.  Now we want to elect
1407 	 * the best one based on our affinity and topology.
1408 	 *
1409 	 * We prioritize the last cpu that the task executed on since
1410 	 * it is most likely cache-hot in that location.
1411 	 */
1412 	if (cpumask_test_cpu(cpu, lowest_mask))
1413 		return cpu;
1414 
1415 	/*
1416 	 * Otherwise, we consult the sched_domains span maps to figure
1417 	 * out which cpu is logically closest to our hot cache data.
1418 	 */
1419 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1420 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1421 
1422 	rcu_read_lock();
1423 	for_each_domain(cpu, sd) {
1424 		if (sd->flags & SD_WAKE_AFFINE) {
1425 			int best_cpu;
1426 
1427 			/*
1428 			 * "this_cpu" is cheaper to preempt than a
1429 			 * remote processor.
1430 			 */
1431 			if (this_cpu != -1 &&
1432 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1433 				rcu_read_unlock();
1434 				return this_cpu;
1435 			}
1436 
1437 			best_cpu = cpumask_first_and(lowest_mask,
1438 						     sched_domain_span(sd));
1439 			if (best_cpu < nr_cpu_ids) {
1440 				rcu_read_unlock();
1441 				return best_cpu;
1442 			}
1443 		}
1444 	}
1445 	rcu_read_unlock();
1446 
1447 	/*
1448 	 * And finally, if there were no matches within the domains
1449 	 * just give the caller *something* to work with from the compatible
1450 	 * locations.
1451 	 */
1452 	if (this_cpu != -1)
1453 		return this_cpu;
1454 
1455 	cpu = cpumask_any(lowest_mask);
1456 	if (cpu < nr_cpu_ids)
1457 		return cpu;
1458 	return -1;
1459 }
1460 
1461 /* Will lock the rq it finds */
1462 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1463 {
1464 	struct rq *lowest_rq = NULL;
1465 	int tries;
1466 	int cpu;
1467 
1468 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1469 		cpu = find_lowest_rq(task);
1470 
1471 		if ((cpu == -1) || (cpu == rq->cpu))
1472 			break;
1473 
1474 		lowest_rq = cpu_rq(cpu);
1475 
1476 		/* if the prio of this runqueue changed, try again */
1477 		if (double_lock_balance(rq, lowest_rq)) {
1478 			/*
1479 			 * We had to unlock the run queue. In
1480 			 * the mean time, task could have
1481 			 * migrated already or had its affinity changed.
1482 			 * Also make sure that it wasn't scheduled on its rq.
1483 			 */
1484 			if (unlikely(task_rq(task) != rq ||
1485 				     !cpumask_test_cpu(lowest_rq->cpu,
1486 						       tsk_cpus_allowed(task)) ||
1487 				     task_running(rq, task) ||
1488 				     !task->on_rq)) {
1489 
1490 				double_unlock_balance(rq, lowest_rq);
1491 				lowest_rq = NULL;
1492 				break;
1493 			}
1494 		}
1495 
1496 		/* If this rq is still suitable use it. */
1497 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1498 			break;
1499 
1500 		/* try again */
1501 		double_unlock_balance(rq, lowest_rq);
1502 		lowest_rq = NULL;
1503 	}
1504 
1505 	return lowest_rq;
1506 }
1507 
1508 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1509 {
1510 	struct task_struct *p;
1511 
1512 	if (!has_pushable_tasks(rq))
1513 		return NULL;
1514 
1515 	p = plist_first_entry(&rq->rt.pushable_tasks,
1516 			      struct task_struct, pushable_tasks);
1517 
1518 	BUG_ON(rq->cpu != task_cpu(p));
1519 	BUG_ON(task_current(rq, p));
1520 	BUG_ON(p->nr_cpus_allowed <= 1);
1521 
1522 	BUG_ON(!p->on_rq);
1523 	BUG_ON(!rt_task(p));
1524 
1525 	return p;
1526 }
1527 
1528 /*
1529  * If the current CPU has more than one RT task, see if the non
1530  * running task can migrate over to a CPU that is running a task
1531  * of lesser priority.
1532  */
1533 static int push_rt_task(struct rq *rq)
1534 {
1535 	struct task_struct *next_task;
1536 	struct rq *lowest_rq;
1537 	int ret = 0;
1538 
1539 	if (!rq->rt.overloaded)
1540 		return 0;
1541 
1542 	next_task = pick_next_pushable_task(rq);
1543 	if (!next_task)
1544 		return 0;
1545 
1546 retry:
1547 	if (unlikely(next_task == rq->curr)) {
1548 		WARN_ON(1);
1549 		return 0;
1550 	}
1551 
1552 	/*
1553 	 * It's possible that the next_task slipped in of
1554 	 * higher priority than current. If that's the case
1555 	 * just reschedule current.
1556 	 */
1557 	if (unlikely(next_task->prio < rq->curr->prio)) {
1558 		resched_task(rq->curr);
1559 		return 0;
1560 	}
1561 
1562 	/* We might release rq lock */
1563 	get_task_struct(next_task);
1564 
1565 	/* find_lock_lowest_rq locks the rq if found */
1566 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1567 	if (!lowest_rq) {
1568 		struct task_struct *task;
1569 		/*
1570 		 * find_lock_lowest_rq releases rq->lock
1571 		 * so it is possible that next_task has migrated.
1572 		 *
1573 		 * We need to make sure that the task is still on the same
1574 		 * run-queue and is also still the next task eligible for
1575 		 * pushing.
1576 		 */
1577 		task = pick_next_pushable_task(rq);
1578 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1579 			/*
1580 			 * The task hasn't migrated, and is still the next
1581 			 * eligible task, but we failed to find a run-queue
1582 			 * to push it to.  Do not retry in this case, since
1583 			 * other cpus will pull from us when ready.
1584 			 */
1585 			goto out;
1586 		}
1587 
1588 		if (!task)
1589 			/* No more tasks, just exit */
1590 			goto out;
1591 
1592 		/*
1593 		 * Something has shifted, try again.
1594 		 */
1595 		put_task_struct(next_task);
1596 		next_task = task;
1597 		goto retry;
1598 	}
1599 
1600 	deactivate_task(rq, next_task, 0);
1601 	set_task_cpu(next_task, lowest_rq->cpu);
1602 	activate_task(lowest_rq, next_task, 0);
1603 	ret = 1;
1604 
1605 	resched_task(lowest_rq->curr);
1606 
1607 	double_unlock_balance(rq, lowest_rq);
1608 
1609 out:
1610 	put_task_struct(next_task);
1611 
1612 	return ret;
1613 }
1614 
1615 static void push_rt_tasks(struct rq *rq)
1616 {
1617 	/* push_rt_task will return true if it moved an RT */
1618 	while (push_rt_task(rq))
1619 		;
1620 }
1621 
1622 static int pull_rt_task(struct rq *this_rq)
1623 {
1624 	int this_cpu = this_rq->cpu, ret = 0, cpu;
1625 	struct task_struct *p;
1626 	struct rq *src_rq;
1627 
1628 	if (likely(!rt_overloaded(this_rq)))
1629 		return 0;
1630 
1631 	/*
1632 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
1633 	 * see overloaded we must also see the rto_mask bit.
1634 	 */
1635 	smp_rmb();
1636 
1637 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1638 		if (this_cpu == cpu)
1639 			continue;
1640 
1641 		src_rq = cpu_rq(cpu);
1642 
1643 		/*
1644 		 * Don't bother taking the src_rq->lock if the next highest
1645 		 * task is known to be lower-priority than our current task.
1646 		 * This may look racy, but if this value is about to go
1647 		 * logically higher, the src_rq will push this task away.
1648 		 * And if its going logically lower, we do not care
1649 		 */
1650 		if (src_rq->rt.highest_prio.next >=
1651 		    this_rq->rt.highest_prio.curr)
1652 			continue;
1653 
1654 		/*
1655 		 * We can potentially drop this_rq's lock in
1656 		 * double_lock_balance, and another CPU could
1657 		 * alter this_rq
1658 		 */
1659 		double_lock_balance(this_rq, src_rq);
1660 
1661 		/*
1662 		 * We can pull only a task, which is pushable
1663 		 * on its rq, and no others.
1664 		 */
1665 		p = pick_highest_pushable_task(src_rq, this_cpu);
1666 
1667 		/*
1668 		 * Do we have an RT task that preempts
1669 		 * the to-be-scheduled task?
1670 		 */
1671 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1672 			WARN_ON(p == src_rq->curr);
1673 			WARN_ON(!p->on_rq);
1674 
1675 			/*
1676 			 * There's a chance that p is higher in priority
1677 			 * than what's currently running on its cpu.
1678 			 * This is just that p is wakeing up and hasn't
1679 			 * had a chance to schedule. We only pull
1680 			 * p if it is lower in priority than the
1681 			 * current task on the run queue
1682 			 */
1683 			if (p->prio < src_rq->curr->prio)
1684 				goto skip;
1685 
1686 			ret = 1;
1687 
1688 			deactivate_task(src_rq, p, 0);
1689 			set_task_cpu(p, this_cpu);
1690 			activate_task(this_rq, p, 0);
1691 			/*
1692 			 * We continue with the search, just in
1693 			 * case there's an even higher prio task
1694 			 * in another runqueue. (low likelihood
1695 			 * but possible)
1696 			 */
1697 		}
1698 skip:
1699 		double_unlock_balance(this_rq, src_rq);
1700 	}
1701 
1702 	return ret;
1703 }
1704 
1705 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1706 {
1707 	/* Try to pull RT tasks here if we lower this rq's prio */
1708 	if (rq->rt.highest_prio.curr > prev->prio)
1709 		pull_rt_task(rq);
1710 }
1711 
1712 static void post_schedule_rt(struct rq *rq)
1713 {
1714 	push_rt_tasks(rq);
1715 }
1716 
1717 /*
1718  * If we are not running and we are not going to reschedule soon, we should
1719  * try to push tasks away now
1720  */
1721 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1722 {
1723 	if (!task_running(rq, p) &&
1724 	    !test_tsk_need_resched(rq->curr) &&
1725 	    has_pushable_tasks(rq) &&
1726 	    p->nr_cpus_allowed > 1 &&
1727 	    rt_task(rq->curr) &&
1728 	    (rq->curr->nr_cpus_allowed < 2 ||
1729 	     rq->curr->prio <= p->prio))
1730 		push_rt_tasks(rq);
1731 }
1732 
1733 static void set_cpus_allowed_rt(struct task_struct *p,
1734 				const struct cpumask *new_mask)
1735 {
1736 	struct rq *rq;
1737 	int weight;
1738 
1739 	BUG_ON(!rt_task(p));
1740 
1741 	if (!p->on_rq)
1742 		return;
1743 
1744 	weight = cpumask_weight(new_mask);
1745 
1746 	/*
1747 	 * Only update if the process changes its state from whether it
1748 	 * can migrate or not.
1749 	 */
1750 	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1751 		return;
1752 
1753 	rq = task_rq(p);
1754 
1755 	/*
1756 	 * The process used to be able to migrate OR it can now migrate
1757 	 */
1758 	if (weight <= 1) {
1759 		if (!task_current(rq, p))
1760 			dequeue_pushable_task(rq, p);
1761 		BUG_ON(!rq->rt.rt_nr_migratory);
1762 		rq->rt.rt_nr_migratory--;
1763 	} else {
1764 		if (!task_current(rq, p))
1765 			enqueue_pushable_task(rq, p);
1766 		rq->rt.rt_nr_migratory++;
1767 	}
1768 
1769 	update_rt_migration(&rq->rt);
1770 }
1771 
1772 /* Assumes rq->lock is held */
1773 static void rq_online_rt(struct rq *rq)
1774 {
1775 	if (rq->rt.overloaded)
1776 		rt_set_overload(rq);
1777 
1778 	__enable_runtime(rq);
1779 
1780 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1781 }
1782 
1783 /* Assumes rq->lock is held */
1784 static void rq_offline_rt(struct rq *rq)
1785 {
1786 	if (rq->rt.overloaded)
1787 		rt_clear_overload(rq);
1788 
1789 	__disable_runtime(rq);
1790 
1791 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1792 }
1793 
1794 /*
1795  * When switch from the rt queue, we bring ourselves to a position
1796  * that we might want to pull RT tasks from other runqueues.
1797  */
1798 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1799 {
1800 	/*
1801 	 * If there are other RT tasks then we will reschedule
1802 	 * and the scheduling of the other RT tasks will handle
1803 	 * the balancing. But if we are the last RT task
1804 	 * we may need to handle the pulling of RT tasks
1805 	 * now.
1806 	 */
1807 	if (!p->on_rq || rq->rt.rt_nr_running)
1808 		return;
1809 
1810 	if (pull_rt_task(rq))
1811 		resched_task(rq->curr);
1812 }
1813 
1814 void init_sched_rt_class(void)
1815 {
1816 	unsigned int i;
1817 
1818 	for_each_possible_cpu(i) {
1819 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1820 					GFP_KERNEL, cpu_to_node(i));
1821 	}
1822 }
1823 #endif /* CONFIG_SMP */
1824 
1825 /*
1826  * When switching a task to RT, we may overload the runqueue
1827  * with RT tasks. In this case we try to push them off to
1828  * other runqueues.
1829  */
1830 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1831 {
1832 	int check_resched = 1;
1833 
1834 	/*
1835 	 * If we are already running, then there's nothing
1836 	 * that needs to be done. But if we are not running
1837 	 * we may need to preempt the current running task.
1838 	 * If that current running task is also an RT task
1839 	 * then see if we can move to another run queue.
1840 	 */
1841 	if (p->on_rq && rq->curr != p) {
1842 #ifdef CONFIG_SMP
1843 		if (rq->rt.overloaded && push_rt_task(rq) &&
1844 		    /* Don't resched if we changed runqueues */
1845 		    rq != task_rq(p))
1846 			check_resched = 0;
1847 #endif /* CONFIG_SMP */
1848 		if (check_resched && p->prio < rq->curr->prio)
1849 			resched_task(rq->curr);
1850 	}
1851 }
1852 
1853 /*
1854  * Priority of the task has changed. This may cause
1855  * us to initiate a push or pull.
1856  */
1857 static void
1858 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1859 {
1860 	if (!p->on_rq)
1861 		return;
1862 
1863 	if (rq->curr == p) {
1864 #ifdef CONFIG_SMP
1865 		/*
1866 		 * If our priority decreases while running, we
1867 		 * may need to pull tasks to this runqueue.
1868 		 */
1869 		if (oldprio < p->prio)
1870 			pull_rt_task(rq);
1871 		/*
1872 		 * If there's a higher priority task waiting to run
1873 		 * then reschedule. Note, the above pull_rt_task
1874 		 * can release the rq lock and p could migrate.
1875 		 * Only reschedule if p is still on the same runqueue.
1876 		 */
1877 		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1878 			resched_task(p);
1879 #else
1880 		/* For UP simply resched on drop of prio */
1881 		if (oldprio < p->prio)
1882 			resched_task(p);
1883 #endif /* CONFIG_SMP */
1884 	} else {
1885 		/*
1886 		 * This task is not running, but if it is
1887 		 * greater than the current running task
1888 		 * then reschedule.
1889 		 */
1890 		if (p->prio < rq->curr->prio)
1891 			resched_task(rq->curr);
1892 	}
1893 }
1894 
1895 static void watchdog(struct rq *rq, struct task_struct *p)
1896 {
1897 	unsigned long soft, hard;
1898 
1899 	/* max may change after cur was read, this will be fixed next tick */
1900 	soft = task_rlimit(p, RLIMIT_RTTIME);
1901 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1902 
1903 	if (soft != RLIM_INFINITY) {
1904 		unsigned long next;
1905 
1906 		if (p->rt.watchdog_stamp != jiffies) {
1907 			p->rt.timeout++;
1908 			p->rt.watchdog_stamp = jiffies;
1909 		}
1910 
1911 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1912 		if (p->rt.timeout > next)
1913 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1914 	}
1915 }
1916 
1917 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1918 {
1919 	struct sched_rt_entity *rt_se = &p->rt;
1920 
1921 	update_curr_rt(rq);
1922 
1923 	watchdog(rq, p);
1924 
1925 	/*
1926 	 * RR tasks need a special form of timeslice management.
1927 	 * FIFO tasks have no timeslices.
1928 	 */
1929 	if (p->policy != SCHED_RR)
1930 		return;
1931 
1932 	if (--p->rt.time_slice)
1933 		return;
1934 
1935 	p->rt.time_slice = sched_rr_timeslice;
1936 
1937 	/*
1938 	 * Requeue to the end of queue if we (and all of our ancestors) are not
1939 	 * the only element on the queue
1940 	 */
1941 	for_each_sched_rt_entity(rt_se) {
1942 		if (rt_se->run_list.prev != rt_se->run_list.next) {
1943 			requeue_task_rt(rq, p, 0);
1944 			set_tsk_need_resched(p);
1945 			return;
1946 		}
1947 	}
1948 }
1949 
1950 static void set_curr_task_rt(struct rq *rq)
1951 {
1952 	struct task_struct *p = rq->curr;
1953 
1954 	p->se.exec_start = rq_clock_task(rq);
1955 
1956 	/* The running task is never eligible for pushing */
1957 	dequeue_pushable_task(rq, p);
1958 }
1959 
1960 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1961 {
1962 	/*
1963 	 * Time slice is 0 for SCHED_FIFO tasks
1964 	 */
1965 	if (task->policy == SCHED_RR)
1966 		return sched_rr_timeslice;
1967 	else
1968 		return 0;
1969 }
1970 
1971 const struct sched_class rt_sched_class = {
1972 	.next			= &fair_sched_class,
1973 	.enqueue_task		= enqueue_task_rt,
1974 	.dequeue_task		= dequeue_task_rt,
1975 	.yield_task		= yield_task_rt,
1976 
1977 	.check_preempt_curr	= check_preempt_curr_rt,
1978 
1979 	.pick_next_task		= pick_next_task_rt,
1980 	.put_prev_task		= put_prev_task_rt,
1981 
1982 #ifdef CONFIG_SMP
1983 	.select_task_rq		= select_task_rq_rt,
1984 
1985 	.set_cpus_allowed       = set_cpus_allowed_rt,
1986 	.rq_online              = rq_online_rt,
1987 	.rq_offline             = rq_offline_rt,
1988 	.pre_schedule		= pre_schedule_rt,
1989 	.post_schedule		= post_schedule_rt,
1990 	.task_woken		= task_woken_rt,
1991 	.switched_from		= switched_from_rt,
1992 #endif
1993 
1994 	.set_curr_task          = set_curr_task_rt,
1995 	.task_tick		= task_tick_rt,
1996 
1997 	.get_rr_interval	= get_rr_interval_rt,
1998 
1999 	.prio_changed		= prio_changed_rt,
2000 	.switched_to		= switched_to_rt,
2001 };
2002 
2003 #ifdef CONFIG_SCHED_DEBUG
2004 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2005 
2006 void print_rt_stats(struct seq_file *m, int cpu)
2007 {
2008 	rt_rq_iter_t iter;
2009 	struct rt_rq *rt_rq;
2010 
2011 	rcu_read_lock();
2012 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2013 		print_rt_rq(m, cpu, rt_rq);
2014 	rcu_read_unlock();
2015 }
2016 #endif /* CONFIG_SCHED_DEBUG */
2017