xref: /openbmc/linux/kernel/sched/rt.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7 
8 #include "pelt.h"
9 
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12 
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14 
15 struct rt_bandwidth def_rt_bandwidth;
16 
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19 	struct rt_bandwidth *rt_b =
20 		container_of(timer, struct rt_bandwidth, rt_period_timer);
21 	int idle = 0;
22 	int overrun;
23 
24 	raw_spin_lock(&rt_b->rt_runtime_lock);
25 	for (;;) {
26 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27 		if (!overrun)
28 			break;
29 
30 		raw_spin_unlock(&rt_b->rt_runtime_lock);
31 		idle = do_sched_rt_period_timer(rt_b, overrun);
32 		raw_spin_lock(&rt_b->rt_runtime_lock);
33 	}
34 	if (idle)
35 		rt_b->rt_period_active = 0;
36 	raw_spin_unlock(&rt_b->rt_runtime_lock);
37 
38 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40 
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43 	rt_b->rt_period = ns_to_ktime(period);
44 	rt_b->rt_runtime = runtime;
45 
46 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
47 
48 	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
49 		     HRTIMER_MODE_REL_HARD);
50 	rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52 
53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 		return;
57 
58 	raw_spin_lock(&rt_b->rt_runtime_lock);
59 	if (!rt_b->rt_period_active) {
60 		rt_b->rt_period_active = 1;
61 		/*
62 		 * SCHED_DEADLINE updates the bandwidth, as a run away
63 		 * RT task with a DL task could hog a CPU. But DL does
64 		 * not reset the period. If a deadline task was running
65 		 * without an RT task running, it can cause RT tasks to
66 		 * throttle when they start up. Kick the timer right away
67 		 * to update the period.
68 		 */
69 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
70 		hrtimer_start_expires(&rt_b->rt_period_timer,
71 				      HRTIMER_MODE_ABS_PINNED_HARD);
72 	}
73 	raw_spin_unlock(&rt_b->rt_runtime_lock);
74 }
75 
76 void init_rt_rq(struct rt_rq *rt_rq)
77 {
78 	struct rt_prio_array *array;
79 	int i;
80 
81 	array = &rt_rq->active;
82 	for (i = 0; i < MAX_RT_PRIO; i++) {
83 		INIT_LIST_HEAD(array->queue + i);
84 		__clear_bit(i, array->bitmap);
85 	}
86 	/* delimiter for bitsearch: */
87 	__set_bit(MAX_RT_PRIO, array->bitmap);
88 
89 #if defined CONFIG_SMP
90 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
91 	rt_rq->highest_prio.next = MAX_RT_PRIO;
92 	rt_rq->rt_nr_migratory = 0;
93 	rt_rq->overloaded = 0;
94 	plist_head_init(&rt_rq->pushable_tasks);
95 #endif /* CONFIG_SMP */
96 	/* We start is dequeued state, because no RT tasks are queued */
97 	rt_rq->rt_queued = 0;
98 
99 	rt_rq->rt_time = 0;
100 	rt_rq->rt_throttled = 0;
101 	rt_rq->rt_runtime = 0;
102 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
103 }
104 
105 #ifdef CONFIG_RT_GROUP_SCHED
106 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
107 {
108 	hrtimer_cancel(&rt_b->rt_period_timer);
109 }
110 
111 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
112 
113 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
114 {
115 #ifdef CONFIG_SCHED_DEBUG
116 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
117 #endif
118 	return container_of(rt_se, struct task_struct, rt);
119 }
120 
121 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
122 {
123 	return rt_rq->rq;
124 }
125 
126 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
127 {
128 	return rt_se->rt_rq;
129 }
130 
131 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
132 {
133 	struct rt_rq *rt_rq = rt_se->rt_rq;
134 
135 	return rt_rq->rq;
136 }
137 
138 void free_rt_sched_group(struct task_group *tg)
139 {
140 	int i;
141 
142 	if (tg->rt_se)
143 		destroy_rt_bandwidth(&tg->rt_bandwidth);
144 
145 	for_each_possible_cpu(i) {
146 		if (tg->rt_rq)
147 			kfree(tg->rt_rq[i]);
148 		if (tg->rt_se)
149 			kfree(tg->rt_se[i]);
150 	}
151 
152 	kfree(tg->rt_rq);
153 	kfree(tg->rt_se);
154 }
155 
156 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
157 		struct sched_rt_entity *rt_se, int cpu,
158 		struct sched_rt_entity *parent)
159 {
160 	struct rq *rq = cpu_rq(cpu);
161 
162 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
163 	rt_rq->rt_nr_boosted = 0;
164 	rt_rq->rq = rq;
165 	rt_rq->tg = tg;
166 
167 	tg->rt_rq[cpu] = rt_rq;
168 	tg->rt_se[cpu] = rt_se;
169 
170 	if (!rt_se)
171 		return;
172 
173 	if (!parent)
174 		rt_se->rt_rq = &rq->rt;
175 	else
176 		rt_se->rt_rq = parent->my_q;
177 
178 	rt_se->my_q = rt_rq;
179 	rt_se->parent = parent;
180 	INIT_LIST_HEAD(&rt_se->run_list);
181 }
182 
183 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
184 {
185 	struct rt_rq *rt_rq;
186 	struct sched_rt_entity *rt_se;
187 	int i;
188 
189 	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
190 	if (!tg->rt_rq)
191 		goto err;
192 	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
193 	if (!tg->rt_se)
194 		goto err;
195 
196 	init_rt_bandwidth(&tg->rt_bandwidth,
197 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
198 
199 	for_each_possible_cpu(i) {
200 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
201 				     GFP_KERNEL, cpu_to_node(i));
202 		if (!rt_rq)
203 			goto err;
204 
205 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
206 				     GFP_KERNEL, cpu_to_node(i));
207 		if (!rt_se)
208 			goto err_free_rq;
209 
210 		init_rt_rq(rt_rq);
211 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
212 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
213 	}
214 
215 	return 1;
216 
217 err_free_rq:
218 	kfree(rt_rq);
219 err:
220 	return 0;
221 }
222 
223 #else /* CONFIG_RT_GROUP_SCHED */
224 
225 #define rt_entity_is_task(rt_se) (1)
226 
227 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
228 {
229 	return container_of(rt_se, struct task_struct, rt);
230 }
231 
232 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
233 {
234 	return container_of(rt_rq, struct rq, rt);
235 }
236 
237 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
238 {
239 	struct task_struct *p = rt_task_of(rt_se);
240 
241 	return task_rq(p);
242 }
243 
244 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
245 {
246 	struct rq *rq = rq_of_rt_se(rt_se);
247 
248 	return &rq->rt;
249 }
250 
251 void free_rt_sched_group(struct task_group *tg) { }
252 
253 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
254 {
255 	return 1;
256 }
257 #endif /* CONFIG_RT_GROUP_SCHED */
258 
259 #ifdef CONFIG_SMP
260 
261 static void pull_rt_task(struct rq *this_rq);
262 
263 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
264 {
265 	/* Try to pull RT tasks here if we lower this rq's prio */
266 	return rq->rt.highest_prio.curr > prev->prio;
267 }
268 
269 static inline int rt_overloaded(struct rq *rq)
270 {
271 	return atomic_read(&rq->rd->rto_count);
272 }
273 
274 static inline void rt_set_overload(struct rq *rq)
275 {
276 	if (!rq->online)
277 		return;
278 
279 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
280 	/*
281 	 * Make sure the mask is visible before we set
282 	 * the overload count. That is checked to determine
283 	 * if we should look at the mask. It would be a shame
284 	 * if we looked at the mask, but the mask was not
285 	 * updated yet.
286 	 *
287 	 * Matched by the barrier in pull_rt_task().
288 	 */
289 	smp_wmb();
290 	atomic_inc(&rq->rd->rto_count);
291 }
292 
293 static inline void rt_clear_overload(struct rq *rq)
294 {
295 	if (!rq->online)
296 		return;
297 
298 	/* the order here really doesn't matter */
299 	atomic_dec(&rq->rd->rto_count);
300 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
301 }
302 
303 static void update_rt_migration(struct rt_rq *rt_rq)
304 {
305 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
306 		if (!rt_rq->overloaded) {
307 			rt_set_overload(rq_of_rt_rq(rt_rq));
308 			rt_rq->overloaded = 1;
309 		}
310 	} else if (rt_rq->overloaded) {
311 		rt_clear_overload(rq_of_rt_rq(rt_rq));
312 		rt_rq->overloaded = 0;
313 	}
314 }
315 
316 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
317 {
318 	struct task_struct *p;
319 
320 	if (!rt_entity_is_task(rt_se))
321 		return;
322 
323 	p = rt_task_of(rt_se);
324 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
325 
326 	rt_rq->rt_nr_total++;
327 	if (p->nr_cpus_allowed > 1)
328 		rt_rq->rt_nr_migratory++;
329 
330 	update_rt_migration(rt_rq);
331 }
332 
333 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
334 {
335 	struct task_struct *p;
336 
337 	if (!rt_entity_is_task(rt_se))
338 		return;
339 
340 	p = rt_task_of(rt_se);
341 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
342 
343 	rt_rq->rt_nr_total--;
344 	if (p->nr_cpus_allowed > 1)
345 		rt_rq->rt_nr_migratory--;
346 
347 	update_rt_migration(rt_rq);
348 }
349 
350 static inline int has_pushable_tasks(struct rq *rq)
351 {
352 	return !plist_head_empty(&rq->rt.pushable_tasks);
353 }
354 
355 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
356 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
357 
358 static void push_rt_tasks(struct rq *);
359 static void pull_rt_task(struct rq *);
360 
361 static inline void rt_queue_push_tasks(struct rq *rq)
362 {
363 	if (!has_pushable_tasks(rq))
364 		return;
365 
366 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
367 }
368 
369 static inline void rt_queue_pull_task(struct rq *rq)
370 {
371 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
372 }
373 
374 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
375 {
376 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
377 	plist_node_init(&p->pushable_tasks, p->prio);
378 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
379 
380 	/* Update the highest prio pushable task */
381 	if (p->prio < rq->rt.highest_prio.next)
382 		rq->rt.highest_prio.next = p->prio;
383 }
384 
385 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
386 {
387 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
388 
389 	/* Update the new highest prio pushable task */
390 	if (has_pushable_tasks(rq)) {
391 		p = plist_first_entry(&rq->rt.pushable_tasks,
392 				      struct task_struct, pushable_tasks);
393 		rq->rt.highest_prio.next = p->prio;
394 	} else
395 		rq->rt.highest_prio.next = MAX_RT_PRIO;
396 }
397 
398 #else
399 
400 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
401 {
402 }
403 
404 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
405 {
406 }
407 
408 static inline
409 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
410 {
411 }
412 
413 static inline
414 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
415 {
416 }
417 
418 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
419 {
420 	return false;
421 }
422 
423 static inline void pull_rt_task(struct rq *this_rq)
424 {
425 }
426 
427 static inline void rt_queue_push_tasks(struct rq *rq)
428 {
429 }
430 #endif /* CONFIG_SMP */
431 
432 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
433 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
434 
435 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
436 {
437 	return rt_se->on_rq;
438 }
439 
440 #ifdef CONFIG_UCLAMP_TASK
441 /*
442  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
443  * settings.
444  *
445  * This check is only important for heterogeneous systems where uclamp_min value
446  * is higher than the capacity of a @cpu. For non-heterogeneous system this
447  * function will always return true.
448  *
449  * The function will return true if the capacity of the @cpu is >= the
450  * uclamp_min and false otherwise.
451  *
452  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
453  * > uclamp_max.
454  */
455 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
456 {
457 	unsigned int min_cap;
458 	unsigned int max_cap;
459 	unsigned int cpu_cap;
460 
461 	/* Only heterogeneous systems can benefit from this check */
462 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
463 		return true;
464 
465 	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
466 	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
467 
468 	cpu_cap = capacity_orig_of(cpu);
469 
470 	return cpu_cap >= min(min_cap, max_cap);
471 }
472 #else
473 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
474 {
475 	return true;
476 }
477 #endif
478 
479 #ifdef CONFIG_RT_GROUP_SCHED
480 
481 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
482 {
483 	if (!rt_rq->tg)
484 		return RUNTIME_INF;
485 
486 	return rt_rq->rt_runtime;
487 }
488 
489 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
490 {
491 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
492 }
493 
494 typedef struct task_group *rt_rq_iter_t;
495 
496 static inline struct task_group *next_task_group(struct task_group *tg)
497 {
498 	do {
499 		tg = list_entry_rcu(tg->list.next,
500 			typeof(struct task_group), list);
501 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
502 
503 	if (&tg->list == &task_groups)
504 		tg = NULL;
505 
506 	return tg;
507 }
508 
509 #define for_each_rt_rq(rt_rq, iter, rq)					\
510 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
511 		(iter = next_task_group(iter)) &&			\
512 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
513 
514 #define for_each_sched_rt_entity(rt_se) \
515 	for (; rt_se; rt_se = rt_se->parent)
516 
517 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
518 {
519 	return rt_se->my_q;
520 }
521 
522 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
523 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
524 
525 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
526 {
527 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
528 	struct rq *rq = rq_of_rt_rq(rt_rq);
529 	struct sched_rt_entity *rt_se;
530 
531 	int cpu = cpu_of(rq);
532 
533 	rt_se = rt_rq->tg->rt_se[cpu];
534 
535 	if (rt_rq->rt_nr_running) {
536 		if (!rt_se)
537 			enqueue_top_rt_rq(rt_rq);
538 		else if (!on_rt_rq(rt_se))
539 			enqueue_rt_entity(rt_se, 0);
540 
541 		if (rt_rq->highest_prio.curr < curr->prio)
542 			resched_curr(rq);
543 	}
544 }
545 
546 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
547 {
548 	struct sched_rt_entity *rt_se;
549 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
550 
551 	rt_se = rt_rq->tg->rt_se[cpu];
552 
553 	if (!rt_se) {
554 		dequeue_top_rt_rq(rt_rq);
555 		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
556 		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
557 	}
558 	else if (on_rt_rq(rt_se))
559 		dequeue_rt_entity(rt_se, 0);
560 }
561 
562 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
563 {
564 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
565 }
566 
567 static int rt_se_boosted(struct sched_rt_entity *rt_se)
568 {
569 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
570 	struct task_struct *p;
571 
572 	if (rt_rq)
573 		return !!rt_rq->rt_nr_boosted;
574 
575 	p = rt_task_of(rt_se);
576 	return p->prio != p->normal_prio;
577 }
578 
579 #ifdef CONFIG_SMP
580 static inline const struct cpumask *sched_rt_period_mask(void)
581 {
582 	return this_rq()->rd->span;
583 }
584 #else
585 static inline const struct cpumask *sched_rt_period_mask(void)
586 {
587 	return cpu_online_mask;
588 }
589 #endif
590 
591 static inline
592 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
593 {
594 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
595 }
596 
597 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
598 {
599 	return &rt_rq->tg->rt_bandwidth;
600 }
601 
602 #else /* !CONFIG_RT_GROUP_SCHED */
603 
604 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
605 {
606 	return rt_rq->rt_runtime;
607 }
608 
609 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
610 {
611 	return ktime_to_ns(def_rt_bandwidth.rt_period);
612 }
613 
614 typedef struct rt_rq *rt_rq_iter_t;
615 
616 #define for_each_rt_rq(rt_rq, iter, rq) \
617 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
618 
619 #define for_each_sched_rt_entity(rt_se) \
620 	for (; rt_se; rt_se = NULL)
621 
622 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
623 {
624 	return NULL;
625 }
626 
627 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
628 {
629 	struct rq *rq = rq_of_rt_rq(rt_rq);
630 
631 	if (!rt_rq->rt_nr_running)
632 		return;
633 
634 	enqueue_top_rt_rq(rt_rq);
635 	resched_curr(rq);
636 }
637 
638 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
639 {
640 	dequeue_top_rt_rq(rt_rq);
641 }
642 
643 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
644 {
645 	return rt_rq->rt_throttled;
646 }
647 
648 static inline const struct cpumask *sched_rt_period_mask(void)
649 {
650 	return cpu_online_mask;
651 }
652 
653 static inline
654 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
655 {
656 	return &cpu_rq(cpu)->rt;
657 }
658 
659 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
660 {
661 	return &def_rt_bandwidth;
662 }
663 
664 #endif /* CONFIG_RT_GROUP_SCHED */
665 
666 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
667 {
668 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
669 
670 	return (hrtimer_active(&rt_b->rt_period_timer) ||
671 		rt_rq->rt_time < rt_b->rt_runtime);
672 }
673 
674 #ifdef CONFIG_SMP
675 /*
676  * We ran out of runtime, see if we can borrow some from our neighbours.
677  */
678 static void do_balance_runtime(struct rt_rq *rt_rq)
679 {
680 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
681 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
682 	int i, weight;
683 	u64 rt_period;
684 
685 	weight = cpumask_weight(rd->span);
686 
687 	raw_spin_lock(&rt_b->rt_runtime_lock);
688 	rt_period = ktime_to_ns(rt_b->rt_period);
689 	for_each_cpu(i, rd->span) {
690 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
691 		s64 diff;
692 
693 		if (iter == rt_rq)
694 			continue;
695 
696 		raw_spin_lock(&iter->rt_runtime_lock);
697 		/*
698 		 * Either all rqs have inf runtime and there's nothing to steal
699 		 * or __disable_runtime() below sets a specific rq to inf to
700 		 * indicate its been disabled and disalow stealing.
701 		 */
702 		if (iter->rt_runtime == RUNTIME_INF)
703 			goto next;
704 
705 		/*
706 		 * From runqueues with spare time, take 1/n part of their
707 		 * spare time, but no more than our period.
708 		 */
709 		diff = iter->rt_runtime - iter->rt_time;
710 		if (diff > 0) {
711 			diff = div_u64((u64)diff, weight);
712 			if (rt_rq->rt_runtime + diff > rt_period)
713 				diff = rt_period - rt_rq->rt_runtime;
714 			iter->rt_runtime -= diff;
715 			rt_rq->rt_runtime += diff;
716 			if (rt_rq->rt_runtime == rt_period) {
717 				raw_spin_unlock(&iter->rt_runtime_lock);
718 				break;
719 			}
720 		}
721 next:
722 		raw_spin_unlock(&iter->rt_runtime_lock);
723 	}
724 	raw_spin_unlock(&rt_b->rt_runtime_lock);
725 }
726 
727 /*
728  * Ensure this RQ takes back all the runtime it lend to its neighbours.
729  */
730 static void __disable_runtime(struct rq *rq)
731 {
732 	struct root_domain *rd = rq->rd;
733 	rt_rq_iter_t iter;
734 	struct rt_rq *rt_rq;
735 
736 	if (unlikely(!scheduler_running))
737 		return;
738 
739 	for_each_rt_rq(rt_rq, iter, rq) {
740 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
741 		s64 want;
742 		int i;
743 
744 		raw_spin_lock(&rt_b->rt_runtime_lock);
745 		raw_spin_lock(&rt_rq->rt_runtime_lock);
746 		/*
747 		 * Either we're all inf and nobody needs to borrow, or we're
748 		 * already disabled and thus have nothing to do, or we have
749 		 * exactly the right amount of runtime to take out.
750 		 */
751 		if (rt_rq->rt_runtime == RUNTIME_INF ||
752 				rt_rq->rt_runtime == rt_b->rt_runtime)
753 			goto balanced;
754 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
755 
756 		/*
757 		 * Calculate the difference between what we started out with
758 		 * and what we current have, that's the amount of runtime
759 		 * we lend and now have to reclaim.
760 		 */
761 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
762 
763 		/*
764 		 * Greedy reclaim, take back as much as we can.
765 		 */
766 		for_each_cpu(i, rd->span) {
767 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
768 			s64 diff;
769 
770 			/*
771 			 * Can't reclaim from ourselves or disabled runqueues.
772 			 */
773 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
774 				continue;
775 
776 			raw_spin_lock(&iter->rt_runtime_lock);
777 			if (want > 0) {
778 				diff = min_t(s64, iter->rt_runtime, want);
779 				iter->rt_runtime -= diff;
780 				want -= diff;
781 			} else {
782 				iter->rt_runtime -= want;
783 				want -= want;
784 			}
785 			raw_spin_unlock(&iter->rt_runtime_lock);
786 
787 			if (!want)
788 				break;
789 		}
790 
791 		raw_spin_lock(&rt_rq->rt_runtime_lock);
792 		/*
793 		 * We cannot be left wanting - that would mean some runtime
794 		 * leaked out of the system.
795 		 */
796 		BUG_ON(want);
797 balanced:
798 		/*
799 		 * Disable all the borrow logic by pretending we have inf
800 		 * runtime - in which case borrowing doesn't make sense.
801 		 */
802 		rt_rq->rt_runtime = RUNTIME_INF;
803 		rt_rq->rt_throttled = 0;
804 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
805 		raw_spin_unlock(&rt_b->rt_runtime_lock);
806 
807 		/* Make rt_rq available for pick_next_task() */
808 		sched_rt_rq_enqueue(rt_rq);
809 	}
810 }
811 
812 static void __enable_runtime(struct rq *rq)
813 {
814 	rt_rq_iter_t iter;
815 	struct rt_rq *rt_rq;
816 
817 	if (unlikely(!scheduler_running))
818 		return;
819 
820 	/*
821 	 * Reset each runqueue's bandwidth settings
822 	 */
823 	for_each_rt_rq(rt_rq, iter, rq) {
824 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
825 
826 		raw_spin_lock(&rt_b->rt_runtime_lock);
827 		raw_spin_lock(&rt_rq->rt_runtime_lock);
828 		rt_rq->rt_runtime = rt_b->rt_runtime;
829 		rt_rq->rt_time = 0;
830 		rt_rq->rt_throttled = 0;
831 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
832 		raw_spin_unlock(&rt_b->rt_runtime_lock);
833 	}
834 }
835 
836 static void balance_runtime(struct rt_rq *rt_rq)
837 {
838 	if (!sched_feat(RT_RUNTIME_SHARE))
839 		return;
840 
841 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
842 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
843 		do_balance_runtime(rt_rq);
844 		raw_spin_lock(&rt_rq->rt_runtime_lock);
845 	}
846 }
847 #else /* !CONFIG_SMP */
848 static inline void balance_runtime(struct rt_rq *rt_rq) {}
849 #endif /* CONFIG_SMP */
850 
851 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
852 {
853 	int i, idle = 1, throttled = 0;
854 	const struct cpumask *span;
855 
856 	span = sched_rt_period_mask();
857 #ifdef CONFIG_RT_GROUP_SCHED
858 	/*
859 	 * FIXME: isolated CPUs should really leave the root task group,
860 	 * whether they are isolcpus or were isolated via cpusets, lest
861 	 * the timer run on a CPU which does not service all runqueues,
862 	 * potentially leaving other CPUs indefinitely throttled.  If
863 	 * isolation is really required, the user will turn the throttle
864 	 * off to kill the perturbations it causes anyway.  Meanwhile,
865 	 * this maintains functionality for boot and/or troubleshooting.
866 	 */
867 	if (rt_b == &root_task_group.rt_bandwidth)
868 		span = cpu_online_mask;
869 #endif
870 	for_each_cpu(i, span) {
871 		int enqueue = 0;
872 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
873 		struct rq *rq = rq_of_rt_rq(rt_rq);
874 		int skip;
875 
876 		/*
877 		 * When span == cpu_online_mask, taking each rq->lock
878 		 * can be time-consuming. Try to avoid it when possible.
879 		 */
880 		raw_spin_lock(&rt_rq->rt_runtime_lock);
881 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
882 			rt_rq->rt_runtime = rt_b->rt_runtime;
883 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
884 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
885 		if (skip)
886 			continue;
887 
888 		raw_spin_lock(&rq->lock);
889 		update_rq_clock(rq);
890 
891 		if (rt_rq->rt_time) {
892 			u64 runtime;
893 
894 			raw_spin_lock(&rt_rq->rt_runtime_lock);
895 			if (rt_rq->rt_throttled)
896 				balance_runtime(rt_rq);
897 			runtime = rt_rq->rt_runtime;
898 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
899 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
900 				rt_rq->rt_throttled = 0;
901 				enqueue = 1;
902 
903 				/*
904 				 * When we're idle and a woken (rt) task is
905 				 * throttled check_preempt_curr() will set
906 				 * skip_update and the time between the wakeup
907 				 * and this unthrottle will get accounted as
908 				 * 'runtime'.
909 				 */
910 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
911 					rq_clock_cancel_skipupdate(rq);
912 			}
913 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
914 				idle = 0;
915 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
916 		} else if (rt_rq->rt_nr_running) {
917 			idle = 0;
918 			if (!rt_rq_throttled(rt_rq))
919 				enqueue = 1;
920 		}
921 		if (rt_rq->rt_throttled)
922 			throttled = 1;
923 
924 		if (enqueue)
925 			sched_rt_rq_enqueue(rt_rq);
926 		raw_spin_unlock(&rq->lock);
927 	}
928 
929 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
930 		return 1;
931 
932 	return idle;
933 }
934 
935 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
936 {
937 #ifdef CONFIG_RT_GROUP_SCHED
938 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
939 
940 	if (rt_rq)
941 		return rt_rq->highest_prio.curr;
942 #endif
943 
944 	return rt_task_of(rt_se)->prio;
945 }
946 
947 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
948 {
949 	u64 runtime = sched_rt_runtime(rt_rq);
950 
951 	if (rt_rq->rt_throttled)
952 		return rt_rq_throttled(rt_rq);
953 
954 	if (runtime >= sched_rt_period(rt_rq))
955 		return 0;
956 
957 	balance_runtime(rt_rq);
958 	runtime = sched_rt_runtime(rt_rq);
959 	if (runtime == RUNTIME_INF)
960 		return 0;
961 
962 	if (rt_rq->rt_time > runtime) {
963 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
964 
965 		/*
966 		 * Don't actually throttle groups that have no runtime assigned
967 		 * but accrue some time due to boosting.
968 		 */
969 		if (likely(rt_b->rt_runtime)) {
970 			rt_rq->rt_throttled = 1;
971 			printk_deferred_once("sched: RT throttling activated\n");
972 		} else {
973 			/*
974 			 * In case we did anyway, make it go away,
975 			 * replenishment is a joke, since it will replenish us
976 			 * with exactly 0 ns.
977 			 */
978 			rt_rq->rt_time = 0;
979 		}
980 
981 		if (rt_rq_throttled(rt_rq)) {
982 			sched_rt_rq_dequeue(rt_rq);
983 			return 1;
984 		}
985 	}
986 
987 	return 0;
988 }
989 
990 /*
991  * Update the current task's runtime statistics. Skip current tasks that
992  * are not in our scheduling class.
993  */
994 static void update_curr_rt(struct rq *rq)
995 {
996 	struct task_struct *curr = rq->curr;
997 	struct sched_rt_entity *rt_se = &curr->rt;
998 	u64 delta_exec;
999 	u64 now;
1000 
1001 	if (curr->sched_class != &rt_sched_class)
1002 		return;
1003 
1004 	now = rq_clock_task(rq);
1005 	delta_exec = now - curr->se.exec_start;
1006 	if (unlikely((s64)delta_exec <= 0))
1007 		return;
1008 
1009 	schedstat_set(curr->se.statistics.exec_max,
1010 		      max(curr->se.statistics.exec_max, delta_exec));
1011 
1012 	curr->se.sum_exec_runtime += delta_exec;
1013 	account_group_exec_runtime(curr, delta_exec);
1014 
1015 	curr->se.exec_start = now;
1016 	cgroup_account_cputime(curr, delta_exec);
1017 
1018 	if (!rt_bandwidth_enabled())
1019 		return;
1020 
1021 	for_each_sched_rt_entity(rt_se) {
1022 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1023 
1024 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1025 			raw_spin_lock(&rt_rq->rt_runtime_lock);
1026 			rt_rq->rt_time += delta_exec;
1027 			if (sched_rt_runtime_exceeded(rt_rq))
1028 				resched_curr(rq);
1029 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1030 		}
1031 	}
1032 }
1033 
1034 static void
1035 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1036 {
1037 	struct rq *rq = rq_of_rt_rq(rt_rq);
1038 
1039 	BUG_ON(&rq->rt != rt_rq);
1040 
1041 	if (!rt_rq->rt_queued)
1042 		return;
1043 
1044 	BUG_ON(!rq->nr_running);
1045 
1046 	sub_nr_running(rq, rt_rq->rt_nr_running);
1047 	rt_rq->rt_queued = 0;
1048 
1049 }
1050 
1051 static void
1052 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1053 {
1054 	struct rq *rq = rq_of_rt_rq(rt_rq);
1055 
1056 	BUG_ON(&rq->rt != rt_rq);
1057 
1058 	if (rt_rq->rt_queued)
1059 		return;
1060 
1061 	if (rt_rq_throttled(rt_rq))
1062 		return;
1063 
1064 	if (rt_rq->rt_nr_running) {
1065 		add_nr_running(rq, rt_rq->rt_nr_running);
1066 		rt_rq->rt_queued = 1;
1067 	}
1068 
1069 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1070 	cpufreq_update_util(rq, 0);
1071 }
1072 
1073 #if defined CONFIG_SMP
1074 
1075 static void
1076 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1077 {
1078 	struct rq *rq = rq_of_rt_rq(rt_rq);
1079 
1080 #ifdef CONFIG_RT_GROUP_SCHED
1081 	/*
1082 	 * Change rq's cpupri only if rt_rq is the top queue.
1083 	 */
1084 	if (&rq->rt != rt_rq)
1085 		return;
1086 #endif
1087 	if (rq->online && prio < prev_prio)
1088 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1089 }
1090 
1091 static void
1092 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1093 {
1094 	struct rq *rq = rq_of_rt_rq(rt_rq);
1095 
1096 #ifdef CONFIG_RT_GROUP_SCHED
1097 	/*
1098 	 * Change rq's cpupri only if rt_rq is the top queue.
1099 	 */
1100 	if (&rq->rt != rt_rq)
1101 		return;
1102 #endif
1103 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1104 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1105 }
1106 
1107 #else /* CONFIG_SMP */
1108 
1109 static inline
1110 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1111 static inline
1112 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1113 
1114 #endif /* CONFIG_SMP */
1115 
1116 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1117 static void
1118 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1119 {
1120 	int prev_prio = rt_rq->highest_prio.curr;
1121 
1122 	if (prio < prev_prio)
1123 		rt_rq->highest_prio.curr = prio;
1124 
1125 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1126 }
1127 
1128 static void
1129 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1130 {
1131 	int prev_prio = rt_rq->highest_prio.curr;
1132 
1133 	if (rt_rq->rt_nr_running) {
1134 
1135 		WARN_ON(prio < prev_prio);
1136 
1137 		/*
1138 		 * This may have been our highest task, and therefore
1139 		 * we may have some recomputation to do
1140 		 */
1141 		if (prio == prev_prio) {
1142 			struct rt_prio_array *array = &rt_rq->active;
1143 
1144 			rt_rq->highest_prio.curr =
1145 				sched_find_first_bit(array->bitmap);
1146 		}
1147 
1148 	} else
1149 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1150 
1151 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1152 }
1153 
1154 #else
1155 
1156 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1157 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1158 
1159 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1160 
1161 #ifdef CONFIG_RT_GROUP_SCHED
1162 
1163 static void
1164 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1165 {
1166 	if (rt_se_boosted(rt_se))
1167 		rt_rq->rt_nr_boosted++;
1168 
1169 	if (rt_rq->tg)
1170 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1171 }
1172 
1173 static void
1174 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1175 {
1176 	if (rt_se_boosted(rt_se))
1177 		rt_rq->rt_nr_boosted--;
1178 
1179 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1180 }
1181 
1182 #else /* CONFIG_RT_GROUP_SCHED */
1183 
1184 static void
1185 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1186 {
1187 	start_rt_bandwidth(&def_rt_bandwidth);
1188 }
1189 
1190 static inline
1191 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1192 
1193 #endif /* CONFIG_RT_GROUP_SCHED */
1194 
1195 static inline
1196 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1197 {
1198 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1199 
1200 	if (group_rq)
1201 		return group_rq->rt_nr_running;
1202 	else
1203 		return 1;
1204 }
1205 
1206 static inline
1207 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1208 {
1209 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1210 	struct task_struct *tsk;
1211 
1212 	if (group_rq)
1213 		return group_rq->rr_nr_running;
1214 
1215 	tsk = rt_task_of(rt_se);
1216 
1217 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1218 }
1219 
1220 static inline
1221 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1222 {
1223 	int prio = rt_se_prio(rt_se);
1224 
1225 	WARN_ON(!rt_prio(prio));
1226 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1227 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1228 
1229 	inc_rt_prio(rt_rq, prio);
1230 	inc_rt_migration(rt_se, rt_rq);
1231 	inc_rt_group(rt_se, rt_rq);
1232 }
1233 
1234 static inline
1235 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1236 {
1237 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1238 	WARN_ON(!rt_rq->rt_nr_running);
1239 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1240 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1241 
1242 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1243 	dec_rt_migration(rt_se, rt_rq);
1244 	dec_rt_group(rt_se, rt_rq);
1245 }
1246 
1247 /*
1248  * Change rt_se->run_list location unless SAVE && !MOVE
1249  *
1250  * assumes ENQUEUE/DEQUEUE flags match
1251  */
1252 static inline bool move_entity(unsigned int flags)
1253 {
1254 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1255 		return false;
1256 
1257 	return true;
1258 }
1259 
1260 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1261 {
1262 	list_del_init(&rt_se->run_list);
1263 
1264 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1265 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1266 
1267 	rt_se->on_list = 0;
1268 }
1269 
1270 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1271 {
1272 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1273 	struct rt_prio_array *array = &rt_rq->active;
1274 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1275 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1276 
1277 	/*
1278 	 * Don't enqueue the group if its throttled, or when empty.
1279 	 * The latter is a consequence of the former when a child group
1280 	 * get throttled and the current group doesn't have any other
1281 	 * active members.
1282 	 */
1283 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1284 		if (rt_se->on_list)
1285 			__delist_rt_entity(rt_se, array);
1286 		return;
1287 	}
1288 
1289 	if (move_entity(flags)) {
1290 		WARN_ON_ONCE(rt_se->on_list);
1291 		if (flags & ENQUEUE_HEAD)
1292 			list_add(&rt_se->run_list, queue);
1293 		else
1294 			list_add_tail(&rt_se->run_list, queue);
1295 
1296 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1297 		rt_se->on_list = 1;
1298 	}
1299 	rt_se->on_rq = 1;
1300 
1301 	inc_rt_tasks(rt_se, rt_rq);
1302 }
1303 
1304 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1305 {
1306 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1307 	struct rt_prio_array *array = &rt_rq->active;
1308 
1309 	if (move_entity(flags)) {
1310 		WARN_ON_ONCE(!rt_se->on_list);
1311 		__delist_rt_entity(rt_se, array);
1312 	}
1313 	rt_se->on_rq = 0;
1314 
1315 	dec_rt_tasks(rt_se, rt_rq);
1316 }
1317 
1318 /*
1319  * Because the prio of an upper entry depends on the lower
1320  * entries, we must remove entries top - down.
1321  */
1322 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1323 {
1324 	struct sched_rt_entity *back = NULL;
1325 
1326 	for_each_sched_rt_entity(rt_se) {
1327 		rt_se->back = back;
1328 		back = rt_se;
1329 	}
1330 
1331 	dequeue_top_rt_rq(rt_rq_of_se(back));
1332 
1333 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1334 		if (on_rt_rq(rt_se))
1335 			__dequeue_rt_entity(rt_se, flags);
1336 	}
1337 }
1338 
1339 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1340 {
1341 	struct rq *rq = rq_of_rt_se(rt_se);
1342 
1343 	dequeue_rt_stack(rt_se, flags);
1344 	for_each_sched_rt_entity(rt_se)
1345 		__enqueue_rt_entity(rt_se, flags);
1346 	enqueue_top_rt_rq(&rq->rt);
1347 }
1348 
1349 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1350 {
1351 	struct rq *rq = rq_of_rt_se(rt_se);
1352 
1353 	dequeue_rt_stack(rt_se, flags);
1354 
1355 	for_each_sched_rt_entity(rt_se) {
1356 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1357 
1358 		if (rt_rq && rt_rq->rt_nr_running)
1359 			__enqueue_rt_entity(rt_se, flags);
1360 	}
1361 	enqueue_top_rt_rq(&rq->rt);
1362 }
1363 
1364 /*
1365  * Adding/removing a task to/from a priority array:
1366  */
1367 static void
1368 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1369 {
1370 	struct sched_rt_entity *rt_se = &p->rt;
1371 
1372 	if (flags & ENQUEUE_WAKEUP)
1373 		rt_se->timeout = 0;
1374 
1375 	enqueue_rt_entity(rt_se, flags);
1376 
1377 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1378 		enqueue_pushable_task(rq, p);
1379 }
1380 
1381 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1382 {
1383 	struct sched_rt_entity *rt_se = &p->rt;
1384 
1385 	update_curr_rt(rq);
1386 	dequeue_rt_entity(rt_se, flags);
1387 
1388 	dequeue_pushable_task(rq, p);
1389 }
1390 
1391 /*
1392  * Put task to the head or the end of the run list without the overhead of
1393  * dequeue followed by enqueue.
1394  */
1395 static void
1396 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1397 {
1398 	if (on_rt_rq(rt_se)) {
1399 		struct rt_prio_array *array = &rt_rq->active;
1400 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1401 
1402 		if (head)
1403 			list_move(&rt_se->run_list, queue);
1404 		else
1405 			list_move_tail(&rt_se->run_list, queue);
1406 	}
1407 }
1408 
1409 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1410 {
1411 	struct sched_rt_entity *rt_se = &p->rt;
1412 	struct rt_rq *rt_rq;
1413 
1414 	for_each_sched_rt_entity(rt_se) {
1415 		rt_rq = rt_rq_of_se(rt_se);
1416 		requeue_rt_entity(rt_rq, rt_se, head);
1417 	}
1418 }
1419 
1420 static void yield_task_rt(struct rq *rq)
1421 {
1422 	requeue_task_rt(rq, rq->curr, 0);
1423 }
1424 
1425 #ifdef CONFIG_SMP
1426 static int find_lowest_rq(struct task_struct *task);
1427 
1428 static int
1429 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1430 {
1431 	struct task_struct *curr;
1432 	struct rq *rq;
1433 	bool test;
1434 
1435 	/* For anything but wake ups, just return the task_cpu */
1436 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1437 		goto out;
1438 
1439 	rq = cpu_rq(cpu);
1440 
1441 	rcu_read_lock();
1442 	curr = READ_ONCE(rq->curr); /* unlocked access */
1443 
1444 	/*
1445 	 * If the current task on @p's runqueue is an RT task, then
1446 	 * try to see if we can wake this RT task up on another
1447 	 * runqueue. Otherwise simply start this RT task
1448 	 * on its current runqueue.
1449 	 *
1450 	 * We want to avoid overloading runqueues. If the woken
1451 	 * task is a higher priority, then it will stay on this CPU
1452 	 * and the lower prio task should be moved to another CPU.
1453 	 * Even though this will probably make the lower prio task
1454 	 * lose its cache, we do not want to bounce a higher task
1455 	 * around just because it gave up its CPU, perhaps for a
1456 	 * lock?
1457 	 *
1458 	 * For equal prio tasks, we just let the scheduler sort it out.
1459 	 *
1460 	 * Otherwise, just let it ride on the affined RQ and the
1461 	 * post-schedule router will push the preempted task away
1462 	 *
1463 	 * This test is optimistic, if we get it wrong the load-balancer
1464 	 * will have to sort it out.
1465 	 *
1466 	 * We take into account the capacity of the CPU to ensure it fits the
1467 	 * requirement of the task - which is only important on heterogeneous
1468 	 * systems like big.LITTLE.
1469 	 */
1470 	test = curr &&
1471 	       unlikely(rt_task(curr)) &&
1472 	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1473 
1474 	if (test || !rt_task_fits_capacity(p, cpu)) {
1475 		int target = find_lowest_rq(p);
1476 
1477 		/*
1478 		 * Bail out if we were forcing a migration to find a better
1479 		 * fitting CPU but our search failed.
1480 		 */
1481 		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1482 			goto out_unlock;
1483 
1484 		/*
1485 		 * Don't bother moving it if the destination CPU is
1486 		 * not running a lower priority task.
1487 		 */
1488 		if (target != -1 &&
1489 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1490 			cpu = target;
1491 	}
1492 
1493 out_unlock:
1494 	rcu_read_unlock();
1495 
1496 out:
1497 	return cpu;
1498 }
1499 
1500 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1501 {
1502 	/*
1503 	 * Current can't be migrated, useless to reschedule,
1504 	 * let's hope p can move out.
1505 	 */
1506 	if (rq->curr->nr_cpus_allowed == 1 ||
1507 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1508 		return;
1509 
1510 	/*
1511 	 * p is migratable, so let's not schedule it and
1512 	 * see if it is pushed or pulled somewhere else.
1513 	 */
1514 	if (p->nr_cpus_allowed != 1 &&
1515 	    cpupri_find(&rq->rd->cpupri, p, NULL))
1516 		return;
1517 
1518 	/*
1519 	 * There appear to be other CPUs that can accept
1520 	 * the current task but none can run 'p', so lets reschedule
1521 	 * to try and push the current task away:
1522 	 */
1523 	requeue_task_rt(rq, p, 1);
1524 	resched_curr(rq);
1525 }
1526 
1527 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1528 {
1529 	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1530 		/*
1531 		 * This is OK, because current is on_cpu, which avoids it being
1532 		 * picked for load-balance and preemption/IRQs are still
1533 		 * disabled avoiding further scheduler activity on it and we've
1534 		 * not yet started the picking loop.
1535 		 */
1536 		rq_unpin_lock(rq, rf);
1537 		pull_rt_task(rq);
1538 		rq_repin_lock(rq, rf);
1539 	}
1540 
1541 	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1542 }
1543 #endif /* CONFIG_SMP */
1544 
1545 /*
1546  * Preempt the current task with a newly woken task if needed:
1547  */
1548 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1549 {
1550 	if (p->prio < rq->curr->prio) {
1551 		resched_curr(rq);
1552 		return;
1553 	}
1554 
1555 #ifdef CONFIG_SMP
1556 	/*
1557 	 * If:
1558 	 *
1559 	 * - the newly woken task is of equal priority to the current task
1560 	 * - the newly woken task is non-migratable while current is migratable
1561 	 * - current will be preempted on the next reschedule
1562 	 *
1563 	 * we should check to see if current can readily move to a different
1564 	 * cpu.  If so, we will reschedule to allow the push logic to try
1565 	 * to move current somewhere else, making room for our non-migratable
1566 	 * task.
1567 	 */
1568 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1569 		check_preempt_equal_prio(rq, p);
1570 #endif
1571 }
1572 
1573 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1574 {
1575 	p->se.exec_start = rq_clock_task(rq);
1576 
1577 	/* The running task is never eligible for pushing */
1578 	dequeue_pushable_task(rq, p);
1579 
1580 	if (!first)
1581 		return;
1582 
1583 	/*
1584 	 * If prev task was rt, put_prev_task() has already updated the
1585 	 * utilization. We only care of the case where we start to schedule a
1586 	 * rt task
1587 	 */
1588 	if (rq->curr->sched_class != &rt_sched_class)
1589 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1590 
1591 	rt_queue_push_tasks(rq);
1592 }
1593 
1594 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1595 						   struct rt_rq *rt_rq)
1596 {
1597 	struct rt_prio_array *array = &rt_rq->active;
1598 	struct sched_rt_entity *next = NULL;
1599 	struct list_head *queue;
1600 	int idx;
1601 
1602 	idx = sched_find_first_bit(array->bitmap);
1603 	BUG_ON(idx >= MAX_RT_PRIO);
1604 
1605 	queue = array->queue + idx;
1606 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1607 
1608 	return next;
1609 }
1610 
1611 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1612 {
1613 	struct sched_rt_entity *rt_se;
1614 	struct rt_rq *rt_rq  = &rq->rt;
1615 
1616 	do {
1617 		rt_se = pick_next_rt_entity(rq, rt_rq);
1618 		BUG_ON(!rt_se);
1619 		rt_rq = group_rt_rq(rt_se);
1620 	} while (rt_rq);
1621 
1622 	return rt_task_of(rt_se);
1623 }
1624 
1625 static struct task_struct *pick_next_task_rt(struct rq *rq)
1626 {
1627 	struct task_struct *p;
1628 
1629 	if (!sched_rt_runnable(rq))
1630 		return NULL;
1631 
1632 	p = _pick_next_task_rt(rq);
1633 	set_next_task_rt(rq, p, true);
1634 	return p;
1635 }
1636 
1637 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1638 {
1639 	update_curr_rt(rq);
1640 
1641 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1642 
1643 	/*
1644 	 * The previous task needs to be made eligible for pushing
1645 	 * if it is still active
1646 	 */
1647 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1648 		enqueue_pushable_task(rq, p);
1649 }
1650 
1651 #ifdef CONFIG_SMP
1652 
1653 /* Only try algorithms three times */
1654 #define RT_MAX_TRIES 3
1655 
1656 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1657 {
1658 	if (!task_running(rq, p) &&
1659 	    cpumask_test_cpu(cpu, p->cpus_ptr))
1660 		return 1;
1661 
1662 	return 0;
1663 }
1664 
1665 /*
1666  * Return the highest pushable rq's task, which is suitable to be executed
1667  * on the CPU, NULL otherwise
1668  */
1669 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1670 {
1671 	struct plist_head *head = &rq->rt.pushable_tasks;
1672 	struct task_struct *p;
1673 
1674 	if (!has_pushable_tasks(rq))
1675 		return NULL;
1676 
1677 	plist_for_each_entry(p, head, pushable_tasks) {
1678 		if (pick_rt_task(rq, p, cpu))
1679 			return p;
1680 	}
1681 
1682 	return NULL;
1683 }
1684 
1685 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1686 
1687 static int find_lowest_rq(struct task_struct *task)
1688 {
1689 	struct sched_domain *sd;
1690 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1691 	int this_cpu = smp_processor_id();
1692 	int cpu      = task_cpu(task);
1693 	int ret;
1694 
1695 	/* Make sure the mask is initialized first */
1696 	if (unlikely(!lowest_mask))
1697 		return -1;
1698 
1699 	if (task->nr_cpus_allowed == 1)
1700 		return -1; /* No other targets possible */
1701 
1702 	/*
1703 	 * If we're on asym system ensure we consider the different capacities
1704 	 * of the CPUs when searching for the lowest_mask.
1705 	 */
1706 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1707 
1708 		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1709 					  task, lowest_mask,
1710 					  rt_task_fits_capacity);
1711 	} else {
1712 
1713 		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1714 				  task, lowest_mask);
1715 	}
1716 
1717 	if (!ret)
1718 		return -1; /* No targets found */
1719 
1720 	/*
1721 	 * At this point we have built a mask of CPUs representing the
1722 	 * lowest priority tasks in the system.  Now we want to elect
1723 	 * the best one based on our affinity and topology.
1724 	 *
1725 	 * We prioritize the last CPU that the task executed on since
1726 	 * it is most likely cache-hot in that location.
1727 	 */
1728 	if (cpumask_test_cpu(cpu, lowest_mask))
1729 		return cpu;
1730 
1731 	/*
1732 	 * Otherwise, we consult the sched_domains span maps to figure
1733 	 * out which CPU is logically closest to our hot cache data.
1734 	 */
1735 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1736 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1737 
1738 	rcu_read_lock();
1739 	for_each_domain(cpu, sd) {
1740 		if (sd->flags & SD_WAKE_AFFINE) {
1741 			int best_cpu;
1742 
1743 			/*
1744 			 * "this_cpu" is cheaper to preempt than a
1745 			 * remote processor.
1746 			 */
1747 			if (this_cpu != -1 &&
1748 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1749 				rcu_read_unlock();
1750 				return this_cpu;
1751 			}
1752 
1753 			best_cpu = cpumask_first_and(lowest_mask,
1754 						     sched_domain_span(sd));
1755 			if (best_cpu < nr_cpu_ids) {
1756 				rcu_read_unlock();
1757 				return best_cpu;
1758 			}
1759 		}
1760 	}
1761 	rcu_read_unlock();
1762 
1763 	/*
1764 	 * And finally, if there were no matches within the domains
1765 	 * just give the caller *something* to work with from the compatible
1766 	 * locations.
1767 	 */
1768 	if (this_cpu != -1)
1769 		return this_cpu;
1770 
1771 	cpu = cpumask_any(lowest_mask);
1772 	if (cpu < nr_cpu_ids)
1773 		return cpu;
1774 
1775 	return -1;
1776 }
1777 
1778 /* Will lock the rq it finds */
1779 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1780 {
1781 	struct rq *lowest_rq = NULL;
1782 	int tries;
1783 	int cpu;
1784 
1785 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1786 		cpu = find_lowest_rq(task);
1787 
1788 		if ((cpu == -1) || (cpu == rq->cpu))
1789 			break;
1790 
1791 		lowest_rq = cpu_rq(cpu);
1792 
1793 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1794 			/*
1795 			 * Target rq has tasks of equal or higher priority,
1796 			 * retrying does not release any lock and is unlikely
1797 			 * to yield a different result.
1798 			 */
1799 			lowest_rq = NULL;
1800 			break;
1801 		}
1802 
1803 		/* if the prio of this runqueue changed, try again */
1804 		if (double_lock_balance(rq, lowest_rq)) {
1805 			/*
1806 			 * We had to unlock the run queue. In
1807 			 * the mean time, task could have
1808 			 * migrated already or had its affinity changed.
1809 			 * Also make sure that it wasn't scheduled on its rq.
1810 			 */
1811 			if (unlikely(task_rq(task) != rq ||
1812 				     !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
1813 				     task_running(rq, task) ||
1814 				     !rt_task(task) ||
1815 				     !task_on_rq_queued(task))) {
1816 
1817 				double_unlock_balance(rq, lowest_rq);
1818 				lowest_rq = NULL;
1819 				break;
1820 			}
1821 		}
1822 
1823 		/* If this rq is still suitable use it. */
1824 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1825 			break;
1826 
1827 		/* try again */
1828 		double_unlock_balance(rq, lowest_rq);
1829 		lowest_rq = NULL;
1830 	}
1831 
1832 	return lowest_rq;
1833 }
1834 
1835 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1836 {
1837 	struct task_struct *p;
1838 
1839 	if (!has_pushable_tasks(rq))
1840 		return NULL;
1841 
1842 	p = plist_first_entry(&rq->rt.pushable_tasks,
1843 			      struct task_struct, pushable_tasks);
1844 
1845 	BUG_ON(rq->cpu != task_cpu(p));
1846 	BUG_ON(task_current(rq, p));
1847 	BUG_ON(p->nr_cpus_allowed <= 1);
1848 
1849 	BUG_ON(!task_on_rq_queued(p));
1850 	BUG_ON(!rt_task(p));
1851 
1852 	return p;
1853 }
1854 
1855 /*
1856  * If the current CPU has more than one RT task, see if the non
1857  * running task can migrate over to a CPU that is running a task
1858  * of lesser priority.
1859  */
1860 static int push_rt_task(struct rq *rq)
1861 {
1862 	struct task_struct *next_task;
1863 	struct rq *lowest_rq;
1864 	int ret = 0;
1865 
1866 	if (!rq->rt.overloaded)
1867 		return 0;
1868 
1869 	next_task = pick_next_pushable_task(rq);
1870 	if (!next_task)
1871 		return 0;
1872 
1873 retry:
1874 	if (WARN_ON(next_task == rq->curr))
1875 		return 0;
1876 
1877 	/*
1878 	 * It's possible that the next_task slipped in of
1879 	 * higher priority than current. If that's the case
1880 	 * just reschedule current.
1881 	 */
1882 	if (unlikely(next_task->prio < rq->curr->prio)) {
1883 		resched_curr(rq);
1884 		return 0;
1885 	}
1886 
1887 	/* We might release rq lock */
1888 	get_task_struct(next_task);
1889 
1890 	/* find_lock_lowest_rq locks the rq if found */
1891 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1892 	if (!lowest_rq) {
1893 		struct task_struct *task;
1894 		/*
1895 		 * find_lock_lowest_rq releases rq->lock
1896 		 * so it is possible that next_task has migrated.
1897 		 *
1898 		 * We need to make sure that the task is still on the same
1899 		 * run-queue and is also still the next task eligible for
1900 		 * pushing.
1901 		 */
1902 		task = pick_next_pushable_task(rq);
1903 		if (task == next_task) {
1904 			/*
1905 			 * The task hasn't migrated, and is still the next
1906 			 * eligible task, but we failed to find a run-queue
1907 			 * to push it to.  Do not retry in this case, since
1908 			 * other CPUs will pull from us when ready.
1909 			 */
1910 			goto out;
1911 		}
1912 
1913 		if (!task)
1914 			/* No more tasks, just exit */
1915 			goto out;
1916 
1917 		/*
1918 		 * Something has shifted, try again.
1919 		 */
1920 		put_task_struct(next_task);
1921 		next_task = task;
1922 		goto retry;
1923 	}
1924 
1925 	deactivate_task(rq, next_task, 0);
1926 	set_task_cpu(next_task, lowest_rq->cpu);
1927 	activate_task(lowest_rq, next_task, 0);
1928 	ret = 1;
1929 
1930 	resched_curr(lowest_rq);
1931 
1932 	double_unlock_balance(rq, lowest_rq);
1933 
1934 out:
1935 	put_task_struct(next_task);
1936 
1937 	return ret;
1938 }
1939 
1940 static void push_rt_tasks(struct rq *rq)
1941 {
1942 	/* push_rt_task will return true if it moved an RT */
1943 	while (push_rt_task(rq))
1944 		;
1945 }
1946 
1947 #ifdef HAVE_RT_PUSH_IPI
1948 
1949 /*
1950  * When a high priority task schedules out from a CPU and a lower priority
1951  * task is scheduled in, a check is made to see if there's any RT tasks
1952  * on other CPUs that are waiting to run because a higher priority RT task
1953  * is currently running on its CPU. In this case, the CPU with multiple RT
1954  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1955  * up that may be able to run one of its non-running queued RT tasks.
1956  *
1957  * All CPUs with overloaded RT tasks need to be notified as there is currently
1958  * no way to know which of these CPUs have the highest priority task waiting
1959  * to run. Instead of trying to take a spinlock on each of these CPUs,
1960  * which has shown to cause large latency when done on machines with many
1961  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1962  * RT tasks waiting to run.
1963  *
1964  * Just sending an IPI to each of the CPUs is also an issue, as on large
1965  * count CPU machines, this can cause an IPI storm on a CPU, especially
1966  * if its the only CPU with multiple RT tasks queued, and a large number
1967  * of CPUs scheduling a lower priority task at the same time.
1968  *
1969  * Each root domain has its own irq work function that can iterate over
1970  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1971  * tassk must be checked if there's one or many CPUs that are lowering
1972  * their priority, there's a single irq work iterator that will try to
1973  * push off RT tasks that are waiting to run.
1974  *
1975  * When a CPU schedules a lower priority task, it will kick off the
1976  * irq work iterator that will jump to each CPU with overloaded RT tasks.
1977  * As it only takes the first CPU that schedules a lower priority task
1978  * to start the process, the rto_start variable is incremented and if
1979  * the atomic result is one, then that CPU will try to take the rto_lock.
1980  * This prevents high contention on the lock as the process handles all
1981  * CPUs scheduling lower priority tasks.
1982  *
1983  * All CPUs that are scheduling a lower priority task will increment the
1984  * rt_loop_next variable. This will make sure that the irq work iterator
1985  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1986  * priority task, even if the iterator is in the middle of a scan. Incrementing
1987  * the rt_loop_next will cause the iterator to perform another scan.
1988  *
1989  */
1990 static int rto_next_cpu(struct root_domain *rd)
1991 {
1992 	int next;
1993 	int cpu;
1994 
1995 	/*
1996 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1997 	 * rt_next_cpu() will simply return the first CPU found in
1998 	 * the rto_mask.
1999 	 *
2000 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2001 	 * will return the next CPU found in the rto_mask.
2002 	 *
2003 	 * If there are no more CPUs left in the rto_mask, then a check is made
2004 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2005 	 * the rto_lock held, but any CPU may increment the rto_loop_next
2006 	 * without any locking.
2007 	 */
2008 	for (;;) {
2009 
2010 		/* When rto_cpu is -1 this acts like cpumask_first() */
2011 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2012 
2013 		rd->rto_cpu = cpu;
2014 
2015 		if (cpu < nr_cpu_ids)
2016 			return cpu;
2017 
2018 		rd->rto_cpu = -1;
2019 
2020 		/*
2021 		 * ACQUIRE ensures we see the @rto_mask changes
2022 		 * made prior to the @next value observed.
2023 		 *
2024 		 * Matches WMB in rt_set_overload().
2025 		 */
2026 		next = atomic_read_acquire(&rd->rto_loop_next);
2027 
2028 		if (rd->rto_loop == next)
2029 			break;
2030 
2031 		rd->rto_loop = next;
2032 	}
2033 
2034 	return -1;
2035 }
2036 
2037 static inline bool rto_start_trylock(atomic_t *v)
2038 {
2039 	return !atomic_cmpxchg_acquire(v, 0, 1);
2040 }
2041 
2042 static inline void rto_start_unlock(atomic_t *v)
2043 {
2044 	atomic_set_release(v, 0);
2045 }
2046 
2047 static void tell_cpu_to_push(struct rq *rq)
2048 {
2049 	int cpu = -1;
2050 
2051 	/* Keep the loop going if the IPI is currently active */
2052 	atomic_inc(&rq->rd->rto_loop_next);
2053 
2054 	/* Only one CPU can initiate a loop at a time */
2055 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2056 		return;
2057 
2058 	raw_spin_lock(&rq->rd->rto_lock);
2059 
2060 	/*
2061 	 * The rto_cpu is updated under the lock, if it has a valid CPU
2062 	 * then the IPI is still running and will continue due to the
2063 	 * update to loop_next, and nothing needs to be done here.
2064 	 * Otherwise it is finishing up and an ipi needs to be sent.
2065 	 */
2066 	if (rq->rd->rto_cpu < 0)
2067 		cpu = rto_next_cpu(rq->rd);
2068 
2069 	raw_spin_unlock(&rq->rd->rto_lock);
2070 
2071 	rto_start_unlock(&rq->rd->rto_loop_start);
2072 
2073 	if (cpu >= 0) {
2074 		/* Make sure the rd does not get freed while pushing */
2075 		sched_get_rd(rq->rd);
2076 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2077 	}
2078 }
2079 
2080 /* Called from hardirq context */
2081 void rto_push_irq_work_func(struct irq_work *work)
2082 {
2083 	struct root_domain *rd =
2084 		container_of(work, struct root_domain, rto_push_work);
2085 	struct rq *rq;
2086 	int cpu;
2087 
2088 	rq = this_rq();
2089 
2090 	/*
2091 	 * We do not need to grab the lock to check for has_pushable_tasks.
2092 	 * When it gets updated, a check is made if a push is possible.
2093 	 */
2094 	if (has_pushable_tasks(rq)) {
2095 		raw_spin_lock(&rq->lock);
2096 		push_rt_tasks(rq);
2097 		raw_spin_unlock(&rq->lock);
2098 	}
2099 
2100 	raw_spin_lock(&rd->rto_lock);
2101 
2102 	/* Pass the IPI to the next rt overloaded queue */
2103 	cpu = rto_next_cpu(rd);
2104 
2105 	raw_spin_unlock(&rd->rto_lock);
2106 
2107 	if (cpu < 0) {
2108 		sched_put_rd(rd);
2109 		return;
2110 	}
2111 
2112 	/* Try the next RT overloaded CPU */
2113 	irq_work_queue_on(&rd->rto_push_work, cpu);
2114 }
2115 #endif /* HAVE_RT_PUSH_IPI */
2116 
2117 static void pull_rt_task(struct rq *this_rq)
2118 {
2119 	int this_cpu = this_rq->cpu, cpu;
2120 	bool resched = false;
2121 	struct task_struct *p;
2122 	struct rq *src_rq;
2123 	int rt_overload_count = rt_overloaded(this_rq);
2124 
2125 	if (likely(!rt_overload_count))
2126 		return;
2127 
2128 	/*
2129 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2130 	 * see overloaded we must also see the rto_mask bit.
2131 	 */
2132 	smp_rmb();
2133 
2134 	/* If we are the only overloaded CPU do nothing */
2135 	if (rt_overload_count == 1 &&
2136 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2137 		return;
2138 
2139 #ifdef HAVE_RT_PUSH_IPI
2140 	if (sched_feat(RT_PUSH_IPI)) {
2141 		tell_cpu_to_push(this_rq);
2142 		return;
2143 	}
2144 #endif
2145 
2146 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2147 		if (this_cpu == cpu)
2148 			continue;
2149 
2150 		src_rq = cpu_rq(cpu);
2151 
2152 		/*
2153 		 * Don't bother taking the src_rq->lock if the next highest
2154 		 * task is known to be lower-priority than our current task.
2155 		 * This may look racy, but if this value is about to go
2156 		 * logically higher, the src_rq will push this task away.
2157 		 * And if its going logically lower, we do not care
2158 		 */
2159 		if (src_rq->rt.highest_prio.next >=
2160 		    this_rq->rt.highest_prio.curr)
2161 			continue;
2162 
2163 		/*
2164 		 * We can potentially drop this_rq's lock in
2165 		 * double_lock_balance, and another CPU could
2166 		 * alter this_rq
2167 		 */
2168 		double_lock_balance(this_rq, src_rq);
2169 
2170 		/*
2171 		 * We can pull only a task, which is pushable
2172 		 * on its rq, and no others.
2173 		 */
2174 		p = pick_highest_pushable_task(src_rq, this_cpu);
2175 
2176 		/*
2177 		 * Do we have an RT task that preempts
2178 		 * the to-be-scheduled task?
2179 		 */
2180 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2181 			WARN_ON(p == src_rq->curr);
2182 			WARN_ON(!task_on_rq_queued(p));
2183 
2184 			/*
2185 			 * There's a chance that p is higher in priority
2186 			 * than what's currently running on its CPU.
2187 			 * This is just that p is wakeing up and hasn't
2188 			 * had a chance to schedule. We only pull
2189 			 * p if it is lower in priority than the
2190 			 * current task on the run queue
2191 			 */
2192 			if (p->prio < src_rq->curr->prio)
2193 				goto skip;
2194 
2195 			resched = true;
2196 
2197 			deactivate_task(src_rq, p, 0);
2198 			set_task_cpu(p, this_cpu);
2199 			activate_task(this_rq, p, 0);
2200 			/*
2201 			 * We continue with the search, just in
2202 			 * case there's an even higher prio task
2203 			 * in another runqueue. (low likelihood
2204 			 * but possible)
2205 			 */
2206 		}
2207 skip:
2208 		double_unlock_balance(this_rq, src_rq);
2209 	}
2210 
2211 	if (resched)
2212 		resched_curr(this_rq);
2213 }
2214 
2215 /*
2216  * If we are not running and we are not going to reschedule soon, we should
2217  * try to push tasks away now
2218  */
2219 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2220 {
2221 	bool need_to_push = !task_running(rq, p) &&
2222 			    !test_tsk_need_resched(rq->curr) &&
2223 			    p->nr_cpus_allowed > 1 &&
2224 			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2225 			    (rq->curr->nr_cpus_allowed < 2 ||
2226 			     rq->curr->prio <= p->prio);
2227 
2228 	if (need_to_push)
2229 		push_rt_tasks(rq);
2230 }
2231 
2232 /* Assumes rq->lock is held */
2233 static void rq_online_rt(struct rq *rq)
2234 {
2235 	if (rq->rt.overloaded)
2236 		rt_set_overload(rq);
2237 
2238 	__enable_runtime(rq);
2239 
2240 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2241 }
2242 
2243 /* Assumes rq->lock is held */
2244 static void rq_offline_rt(struct rq *rq)
2245 {
2246 	if (rq->rt.overloaded)
2247 		rt_clear_overload(rq);
2248 
2249 	__disable_runtime(rq);
2250 
2251 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2252 }
2253 
2254 /*
2255  * When switch from the rt queue, we bring ourselves to a position
2256  * that we might want to pull RT tasks from other runqueues.
2257  */
2258 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2259 {
2260 	/*
2261 	 * If there are other RT tasks then we will reschedule
2262 	 * and the scheduling of the other RT tasks will handle
2263 	 * the balancing. But if we are the last RT task
2264 	 * we may need to handle the pulling of RT tasks
2265 	 * now.
2266 	 */
2267 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2268 		return;
2269 
2270 	rt_queue_pull_task(rq);
2271 }
2272 
2273 void __init init_sched_rt_class(void)
2274 {
2275 	unsigned int i;
2276 
2277 	for_each_possible_cpu(i) {
2278 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2279 					GFP_KERNEL, cpu_to_node(i));
2280 	}
2281 }
2282 #endif /* CONFIG_SMP */
2283 
2284 /*
2285  * When switching a task to RT, we may overload the runqueue
2286  * with RT tasks. In this case we try to push them off to
2287  * other runqueues.
2288  */
2289 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2290 {
2291 	/*
2292 	 * If we are already running, then there's nothing
2293 	 * that needs to be done. But if we are not running
2294 	 * we may need to preempt the current running task.
2295 	 * If that current running task is also an RT task
2296 	 * then see if we can move to another run queue.
2297 	 */
2298 	if (task_on_rq_queued(p) && rq->curr != p) {
2299 #ifdef CONFIG_SMP
2300 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2301 			rt_queue_push_tasks(rq);
2302 #endif /* CONFIG_SMP */
2303 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2304 			resched_curr(rq);
2305 	}
2306 }
2307 
2308 /*
2309  * Priority of the task has changed. This may cause
2310  * us to initiate a push or pull.
2311  */
2312 static void
2313 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2314 {
2315 	if (!task_on_rq_queued(p))
2316 		return;
2317 
2318 	if (rq->curr == p) {
2319 #ifdef CONFIG_SMP
2320 		/*
2321 		 * If our priority decreases while running, we
2322 		 * may need to pull tasks to this runqueue.
2323 		 */
2324 		if (oldprio < p->prio)
2325 			rt_queue_pull_task(rq);
2326 
2327 		/*
2328 		 * If there's a higher priority task waiting to run
2329 		 * then reschedule.
2330 		 */
2331 		if (p->prio > rq->rt.highest_prio.curr)
2332 			resched_curr(rq);
2333 #else
2334 		/* For UP simply resched on drop of prio */
2335 		if (oldprio < p->prio)
2336 			resched_curr(rq);
2337 #endif /* CONFIG_SMP */
2338 	} else {
2339 		/*
2340 		 * This task is not running, but if it is
2341 		 * greater than the current running task
2342 		 * then reschedule.
2343 		 */
2344 		if (p->prio < rq->curr->prio)
2345 			resched_curr(rq);
2346 	}
2347 }
2348 
2349 #ifdef CONFIG_POSIX_TIMERS
2350 static void watchdog(struct rq *rq, struct task_struct *p)
2351 {
2352 	unsigned long soft, hard;
2353 
2354 	/* max may change after cur was read, this will be fixed next tick */
2355 	soft = task_rlimit(p, RLIMIT_RTTIME);
2356 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2357 
2358 	if (soft != RLIM_INFINITY) {
2359 		unsigned long next;
2360 
2361 		if (p->rt.watchdog_stamp != jiffies) {
2362 			p->rt.timeout++;
2363 			p->rt.watchdog_stamp = jiffies;
2364 		}
2365 
2366 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2367 		if (p->rt.timeout > next) {
2368 			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2369 						    p->se.sum_exec_runtime);
2370 		}
2371 	}
2372 }
2373 #else
2374 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2375 #endif
2376 
2377 /*
2378  * scheduler tick hitting a task of our scheduling class.
2379  *
2380  * NOTE: This function can be called remotely by the tick offload that
2381  * goes along full dynticks. Therefore no local assumption can be made
2382  * and everything must be accessed through the @rq and @curr passed in
2383  * parameters.
2384  */
2385 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2386 {
2387 	struct sched_rt_entity *rt_se = &p->rt;
2388 
2389 	update_curr_rt(rq);
2390 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2391 
2392 	watchdog(rq, p);
2393 
2394 	/*
2395 	 * RR tasks need a special form of timeslice management.
2396 	 * FIFO tasks have no timeslices.
2397 	 */
2398 	if (p->policy != SCHED_RR)
2399 		return;
2400 
2401 	if (--p->rt.time_slice)
2402 		return;
2403 
2404 	p->rt.time_slice = sched_rr_timeslice;
2405 
2406 	/*
2407 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2408 	 * the only element on the queue
2409 	 */
2410 	for_each_sched_rt_entity(rt_se) {
2411 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2412 			requeue_task_rt(rq, p, 0);
2413 			resched_curr(rq);
2414 			return;
2415 		}
2416 	}
2417 }
2418 
2419 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2420 {
2421 	/*
2422 	 * Time slice is 0 for SCHED_FIFO tasks
2423 	 */
2424 	if (task->policy == SCHED_RR)
2425 		return sched_rr_timeslice;
2426 	else
2427 		return 0;
2428 }
2429 
2430 const struct sched_class rt_sched_class = {
2431 	.next			= &fair_sched_class,
2432 	.enqueue_task		= enqueue_task_rt,
2433 	.dequeue_task		= dequeue_task_rt,
2434 	.yield_task		= yield_task_rt,
2435 
2436 	.check_preempt_curr	= check_preempt_curr_rt,
2437 
2438 	.pick_next_task		= pick_next_task_rt,
2439 	.put_prev_task		= put_prev_task_rt,
2440 	.set_next_task          = set_next_task_rt,
2441 
2442 #ifdef CONFIG_SMP
2443 	.balance		= balance_rt,
2444 	.select_task_rq		= select_task_rq_rt,
2445 	.set_cpus_allowed       = set_cpus_allowed_common,
2446 	.rq_online              = rq_online_rt,
2447 	.rq_offline             = rq_offline_rt,
2448 	.task_woken		= task_woken_rt,
2449 	.switched_from		= switched_from_rt,
2450 #endif
2451 
2452 	.task_tick		= task_tick_rt,
2453 
2454 	.get_rr_interval	= get_rr_interval_rt,
2455 
2456 	.prio_changed		= prio_changed_rt,
2457 	.switched_to		= switched_to_rt,
2458 
2459 	.update_curr		= update_curr_rt,
2460 
2461 #ifdef CONFIG_UCLAMP_TASK
2462 	.uclamp_enabled		= 1,
2463 #endif
2464 };
2465 
2466 #ifdef CONFIG_RT_GROUP_SCHED
2467 /*
2468  * Ensure that the real time constraints are schedulable.
2469  */
2470 static DEFINE_MUTEX(rt_constraints_mutex);
2471 
2472 static inline int tg_has_rt_tasks(struct task_group *tg)
2473 {
2474 	struct task_struct *task;
2475 	struct css_task_iter it;
2476 	int ret = 0;
2477 
2478 	/*
2479 	 * Autogroups do not have RT tasks; see autogroup_create().
2480 	 */
2481 	if (task_group_is_autogroup(tg))
2482 		return 0;
2483 
2484 	css_task_iter_start(&tg->css, 0, &it);
2485 	while (!ret && (task = css_task_iter_next(&it)))
2486 		ret |= rt_task(task);
2487 	css_task_iter_end(&it);
2488 
2489 	return ret;
2490 }
2491 
2492 struct rt_schedulable_data {
2493 	struct task_group *tg;
2494 	u64 rt_period;
2495 	u64 rt_runtime;
2496 };
2497 
2498 static int tg_rt_schedulable(struct task_group *tg, void *data)
2499 {
2500 	struct rt_schedulable_data *d = data;
2501 	struct task_group *child;
2502 	unsigned long total, sum = 0;
2503 	u64 period, runtime;
2504 
2505 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2506 	runtime = tg->rt_bandwidth.rt_runtime;
2507 
2508 	if (tg == d->tg) {
2509 		period = d->rt_period;
2510 		runtime = d->rt_runtime;
2511 	}
2512 
2513 	/*
2514 	 * Cannot have more runtime than the period.
2515 	 */
2516 	if (runtime > period && runtime != RUNTIME_INF)
2517 		return -EINVAL;
2518 
2519 	/*
2520 	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2521 	 */
2522 	if (rt_bandwidth_enabled() && !runtime &&
2523 	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2524 		return -EBUSY;
2525 
2526 	total = to_ratio(period, runtime);
2527 
2528 	/*
2529 	 * Nobody can have more than the global setting allows.
2530 	 */
2531 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2532 		return -EINVAL;
2533 
2534 	/*
2535 	 * The sum of our children's runtime should not exceed our own.
2536 	 */
2537 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2538 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2539 		runtime = child->rt_bandwidth.rt_runtime;
2540 
2541 		if (child == d->tg) {
2542 			period = d->rt_period;
2543 			runtime = d->rt_runtime;
2544 		}
2545 
2546 		sum += to_ratio(period, runtime);
2547 	}
2548 
2549 	if (sum > total)
2550 		return -EINVAL;
2551 
2552 	return 0;
2553 }
2554 
2555 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2556 {
2557 	int ret;
2558 
2559 	struct rt_schedulable_data data = {
2560 		.tg = tg,
2561 		.rt_period = period,
2562 		.rt_runtime = runtime,
2563 	};
2564 
2565 	rcu_read_lock();
2566 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2567 	rcu_read_unlock();
2568 
2569 	return ret;
2570 }
2571 
2572 static int tg_set_rt_bandwidth(struct task_group *tg,
2573 		u64 rt_period, u64 rt_runtime)
2574 {
2575 	int i, err = 0;
2576 
2577 	/*
2578 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2579 	 * kernel creating (and or operating) RT threads.
2580 	 */
2581 	if (tg == &root_task_group && rt_runtime == 0)
2582 		return -EINVAL;
2583 
2584 	/* No period doesn't make any sense. */
2585 	if (rt_period == 0)
2586 		return -EINVAL;
2587 
2588 	mutex_lock(&rt_constraints_mutex);
2589 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2590 	if (err)
2591 		goto unlock;
2592 
2593 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2594 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2595 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2596 
2597 	for_each_possible_cpu(i) {
2598 		struct rt_rq *rt_rq = tg->rt_rq[i];
2599 
2600 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2601 		rt_rq->rt_runtime = rt_runtime;
2602 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2603 	}
2604 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2605 unlock:
2606 	mutex_unlock(&rt_constraints_mutex);
2607 
2608 	return err;
2609 }
2610 
2611 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2612 {
2613 	u64 rt_runtime, rt_period;
2614 
2615 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2616 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2617 	if (rt_runtime_us < 0)
2618 		rt_runtime = RUNTIME_INF;
2619 	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2620 		return -EINVAL;
2621 
2622 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2623 }
2624 
2625 long sched_group_rt_runtime(struct task_group *tg)
2626 {
2627 	u64 rt_runtime_us;
2628 
2629 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2630 		return -1;
2631 
2632 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2633 	do_div(rt_runtime_us, NSEC_PER_USEC);
2634 	return rt_runtime_us;
2635 }
2636 
2637 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2638 {
2639 	u64 rt_runtime, rt_period;
2640 
2641 	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2642 		return -EINVAL;
2643 
2644 	rt_period = rt_period_us * NSEC_PER_USEC;
2645 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2646 
2647 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2648 }
2649 
2650 long sched_group_rt_period(struct task_group *tg)
2651 {
2652 	u64 rt_period_us;
2653 
2654 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2655 	do_div(rt_period_us, NSEC_PER_USEC);
2656 	return rt_period_us;
2657 }
2658 
2659 static int sched_rt_global_constraints(void)
2660 {
2661 	int ret = 0;
2662 
2663 	mutex_lock(&rt_constraints_mutex);
2664 	ret = __rt_schedulable(NULL, 0, 0);
2665 	mutex_unlock(&rt_constraints_mutex);
2666 
2667 	return ret;
2668 }
2669 
2670 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2671 {
2672 	/* Don't accept realtime tasks when there is no way for them to run */
2673 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2674 		return 0;
2675 
2676 	return 1;
2677 }
2678 
2679 #else /* !CONFIG_RT_GROUP_SCHED */
2680 static int sched_rt_global_constraints(void)
2681 {
2682 	unsigned long flags;
2683 	int i;
2684 
2685 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2686 	for_each_possible_cpu(i) {
2687 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2688 
2689 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2690 		rt_rq->rt_runtime = global_rt_runtime();
2691 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2692 	}
2693 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2694 
2695 	return 0;
2696 }
2697 #endif /* CONFIG_RT_GROUP_SCHED */
2698 
2699 static int sched_rt_global_validate(void)
2700 {
2701 	if (sysctl_sched_rt_period <= 0)
2702 		return -EINVAL;
2703 
2704 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2705 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2706 		return -EINVAL;
2707 
2708 	return 0;
2709 }
2710 
2711 static void sched_rt_do_global(void)
2712 {
2713 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2714 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2715 }
2716 
2717 int sched_rt_handler(struct ctl_table *table, int write,
2718 		void __user *buffer, size_t *lenp,
2719 		loff_t *ppos)
2720 {
2721 	int old_period, old_runtime;
2722 	static DEFINE_MUTEX(mutex);
2723 	int ret;
2724 
2725 	mutex_lock(&mutex);
2726 	old_period = sysctl_sched_rt_period;
2727 	old_runtime = sysctl_sched_rt_runtime;
2728 
2729 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2730 
2731 	if (!ret && write) {
2732 		ret = sched_rt_global_validate();
2733 		if (ret)
2734 			goto undo;
2735 
2736 		ret = sched_dl_global_validate();
2737 		if (ret)
2738 			goto undo;
2739 
2740 		ret = sched_rt_global_constraints();
2741 		if (ret)
2742 			goto undo;
2743 
2744 		sched_rt_do_global();
2745 		sched_dl_do_global();
2746 	}
2747 	if (0) {
2748 undo:
2749 		sysctl_sched_rt_period = old_period;
2750 		sysctl_sched_rt_runtime = old_runtime;
2751 	}
2752 	mutex_unlock(&mutex);
2753 
2754 	return ret;
2755 }
2756 
2757 int sched_rr_handler(struct ctl_table *table, int write,
2758 		void __user *buffer, size_t *lenp,
2759 		loff_t *ppos)
2760 {
2761 	int ret;
2762 	static DEFINE_MUTEX(mutex);
2763 
2764 	mutex_lock(&mutex);
2765 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2766 	/*
2767 	 * Make sure that internally we keep jiffies.
2768 	 * Also, writing zero resets the timeslice to default:
2769 	 */
2770 	if (!ret && write) {
2771 		sched_rr_timeslice =
2772 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2773 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2774 	}
2775 	mutex_unlock(&mutex);
2776 
2777 	return ret;
2778 }
2779 
2780 #ifdef CONFIG_SCHED_DEBUG
2781 void print_rt_stats(struct seq_file *m, int cpu)
2782 {
2783 	rt_rq_iter_t iter;
2784 	struct rt_rq *rt_rq;
2785 
2786 	rcu_read_lock();
2787 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2788 		print_rt_rq(m, cpu, rt_rq);
2789 	rcu_read_unlock();
2790 }
2791 #endif /* CONFIG_SCHED_DEBUG */
2792