1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 7 int sched_rr_timeslice = RR_TIMESLICE; 8 /* More than 4 hours if BW_SHIFT equals 20. */ 9 static const u64 max_rt_runtime = MAX_BW; 10 11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 12 13 struct rt_bandwidth def_rt_bandwidth; 14 15 /* 16 * period over which we measure -rt task CPU usage in us. 17 * default: 1s 18 */ 19 unsigned int sysctl_sched_rt_period = 1000000; 20 21 /* 22 * part of the period that we allow rt tasks to run in us. 23 * default: 0.95s 24 */ 25 int sysctl_sched_rt_runtime = 950000; 26 27 #ifdef CONFIG_SYSCTL 28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ; 29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer, 30 size_t *lenp, loff_t *ppos); 31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer, 32 size_t *lenp, loff_t *ppos); 33 static struct ctl_table sched_rt_sysctls[] = { 34 { 35 .procname = "sched_rt_period_us", 36 .data = &sysctl_sched_rt_period, 37 .maxlen = sizeof(unsigned int), 38 .mode = 0644, 39 .proc_handler = sched_rt_handler, 40 .extra1 = SYSCTL_ONE, 41 .extra2 = SYSCTL_INT_MAX, 42 }, 43 { 44 .procname = "sched_rt_runtime_us", 45 .data = &sysctl_sched_rt_runtime, 46 .maxlen = sizeof(int), 47 .mode = 0644, 48 .proc_handler = sched_rt_handler, 49 .extra1 = SYSCTL_NEG_ONE, 50 .extra2 = SYSCTL_INT_MAX, 51 }, 52 { 53 .procname = "sched_rr_timeslice_ms", 54 .data = &sysctl_sched_rr_timeslice, 55 .maxlen = sizeof(int), 56 .mode = 0644, 57 .proc_handler = sched_rr_handler, 58 }, 59 {} 60 }; 61 62 static int __init sched_rt_sysctl_init(void) 63 { 64 register_sysctl_init("kernel", sched_rt_sysctls); 65 return 0; 66 } 67 late_initcall(sched_rt_sysctl_init); 68 #endif 69 70 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 71 { 72 struct rt_bandwidth *rt_b = 73 container_of(timer, struct rt_bandwidth, rt_period_timer); 74 int idle = 0; 75 int overrun; 76 77 raw_spin_lock(&rt_b->rt_runtime_lock); 78 for (;;) { 79 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 80 if (!overrun) 81 break; 82 83 raw_spin_unlock(&rt_b->rt_runtime_lock); 84 idle = do_sched_rt_period_timer(rt_b, overrun); 85 raw_spin_lock(&rt_b->rt_runtime_lock); 86 } 87 if (idle) 88 rt_b->rt_period_active = 0; 89 raw_spin_unlock(&rt_b->rt_runtime_lock); 90 91 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 92 } 93 94 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 95 { 96 rt_b->rt_period = ns_to_ktime(period); 97 rt_b->rt_runtime = runtime; 98 99 raw_spin_lock_init(&rt_b->rt_runtime_lock); 100 101 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC, 102 HRTIMER_MODE_REL_HARD); 103 rt_b->rt_period_timer.function = sched_rt_period_timer; 104 } 105 106 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b) 107 { 108 raw_spin_lock(&rt_b->rt_runtime_lock); 109 if (!rt_b->rt_period_active) { 110 rt_b->rt_period_active = 1; 111 /* 112 * SCHED_DEADLINE updates the bandwidth, as a run away 113 * RT task with a DL task could hog a CPU. But DL does 114 * not reset the period. If a deadline task was running 115 * without an RT task running, it can cause RT tasks to 116 * throttle when they start up. Kick the timer right away 117 * to update the period. 118 */ 119 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 120 hrtimer_start_expires(&rt_b->rt_period_timer, 121 HRTIMER_MODE_ABS_PINNED_HARD); 122 } 123 raw_spin_unlock(&rt_b->rt_runtime_lock); 124 } 125 126 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 127 { 128 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 129 return; 130 131 do_start_rt_bandwidth(rt_b); 132 } 133 134 void init_rt_rq(struct rt_rq *rt_rq) 135 { 136 struct rt_prio_array *array; 137 int i; 138 139 array = &rt_rq->active; 140 for (i = 0; i < MAX_RT_PRIO; i++) { 141 INIT_LIST_HEAD(array->queue + i); 142 __clear_bit(i, array->bitmap); 143 } 144 /* delimiter for bitsearch: */ 145 __set_bit(MAX_RT_PRIO, array->bitmap); 146 147 #if defined CONFIG_SMP 148 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 149 rt_rq->highest_prio.next = MAX_RT_PRIO-1; 150 rt_rq->rt_nr_migratory = 0; 151 rt_rq->overloaded = 0; 152 plist_head_init(&rt_rq->pushable_tasks); 153 #endif /* CONFIG_SMP */ 154 /* We start is dequeued state, because no RT tasks are queued */ 155 rt_rq->rt_queued = 0; 156 157 rt_rq->rt_time = 0; 158 rt_rq->rt_throttled = 0; 159 rt_rq->rt_runtime = 0; 160 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 161 } 162 163 #ifdef CONFIG_RT_GROUP_SCHED 164 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 165 { 166 hrtimer_cancel(&rt_b->rt_period_timer); 167 } 168 169 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 170 171 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 172 { 173 #ifdef CONFIG_SCHED_DEBUG 174 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 175 #endif 176 return container_of(rt_se, struct task_struct, rt); 177 } 178 179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 180 { 181 return rt_rq->rq; 182 } 183 184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 185 { 186 return rt_se->rt_rq; 187 } 188 189 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 190 { 191 struct rt_rq *rt_rq = rt_se->rt_rq; 192 193 return rt_rq->rq; 194 } 195 196 void unregister_rt_sched_group(struct task_group *tg) 197 { 198 if (tg->rt_se) 199 destroy_rt_bandwidth(&tg->rt_bandwidth); 200 201 } 202 203 void free_rt_sched_group(struct task_group *tg) 204 { 205 int i; 206 207 for_each_possible_cpu(i) { 208 if (tg->rt_rq) 209 kfree(tg->rt_rq[i]); 210 if (tg->rt_se) 211 kfree(tg->rt_se[i]); 212 } 213 214 kfree(tg->rt_rq); 215 kfree(tg->rt_se); 216 } 217 218 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 219 struct sched_rt_entity *rt_se, int cpu, 220 struct sched_rt_entity *parent) 221 { 222 struct rq *rq = cpu_rq(cpu); 223 224 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 225 rt_rq->rt_nr_boosted = 0; 226 rt_rq->rq = rq; 227 rt_rq->tg = tg; 228 229 tg->rt_rq[cpu] = rt_rq; 230 tg->rt_se[cpu] = rt_se; 231 232 if (!rt_se) 233 return; 234 235 if (!parent) 236 rt_se->rt_rq = &rq->rt; 237 else 238 rt_se->rt_rq = parent->my_q; 239 240 rt_se->my_q = rt_rq; 241 rt_se->parent = parent; 242 INIT_LIST_HEAD(&rt_se->run_list); 243 } 244 245 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 246 { 247 struct rt_rq *rt_rq; 248 struct sched_rt_entity *rt_se; 249 int i; 250 251 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); 252 if (!tg->rt_rq) 253 goto err; 254 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); 255 if (!tg->rt_se) 256 goto err; 257 258 init_rt_bandwidth(&tg->rt_bandwidth, 259 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 260 261 for_each_possible_cpu(i) { 262 rt_rq = kzalloc_node(sizeof(struct rt_rq), 263 GFP_KERNEL, cpu_to_node(i)); 264 if (!rt_rq) 265 goto err; 266 267 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 268 GFP_KERNEL, cpu_to_node(i)); 269 if (!rt_se) 270 goto err_free_rq; 271 272 init_rt_rq(rt_rq); 273 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 274 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 275 } 276 277 return 1; 278 279 err_free_rq: 280 kfree(rt_rq); 281 err: 282 return 0; 283 } 284 285 #else /* CONFIG_RT_GROUP_SCHED */ 286 287 #define rt_entity_is_task(rt_se) (1) 288 289 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 290 { 291 return container_of(rt_se, struct task_struct, rt); 292 } 293 294 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 295 { 296 return container_of(rt_rq, struct rq, rt); 297 } 298 299 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 300 { 301 struct task_struct *p = rt_task_of(rt_se); 302 303 return task_rq(p); 304 } 305 306 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 307 { 308 struct rq *rq = rq_of_rt_se(rt_se); 309 310 return &rq->rt; 311 } 312 313 void unregister_rt_sched_group(struct task_group *tg) { } 314 315 void free_rt_sched_group(struct task_group *tg) { } 316 317 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 318 { 319 return 1; 320 } 321 #endif /* CONFIG_RT_GROUP_SCHED */ 322 323 #ifdef CONFIG_SMP 324 325 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 326 { 327 /* Try to pull RT tasks here if we lower this rq's prio */ 328 return rq->online && rq->rt.highest_prio.curr > prev->prio; 329 } 330 331 static inline int rt_overloaded(struct rq *rq) 332 { 333 return atomic_read(&rq->rd->rto_count); 334 } 335 336 static inline void rt_set_overload(struct rq *rq) 337 { 338 if (!rq->online) 339 return; 340 341 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 342 /* 343 * Make sure the mask is visible before we set 344 * the overload count. That is checked to determine 345 * if we should look at the mask. It would be a shame 346 * if we looked at the mask, but the mask was not 347 * updated yet. 348 * 349 * Matched by the barrier in pull_rt_task(). 350 */ 351 smp_wmb(); 352 atomic_inc(&rq->rd->rto_count); 353 } 354 355 static inline void rt_clear_overload(struct rq *rq) 356 { 357 if (!rq->online) 358 return; 359 360 /* the order here really doesn't matter */ 361 atomic_dec(&rq->rd->rto_count); 362 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 363 } 364 365 static void update_rt_migration(struct rt_rq *rt_rq) 366 { 367 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 368 if (!rt_rq->overloaded) { 369 rt_set_overload(rq_of_rt_rq(rt_rq)); 370 rt_rq->overloaded = 1; 371 } 372 } else if (rt_rq->overloaded) { 373 rt_clear_overload(rq_of_rt_rq(rt_rq)); 374 rt_rq->overloaded = 0; 375 } 376 } 377 378 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 379 { 380 struct task_struct *p; 381 382 if (!rt_entity_is_task(rt_se)) 383 return; 384 385 p = rt_task_of(rt_se); 386 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 387 388 rt_rq->rt_nr_total++; 389 if (p->nr_cpus_allowed > 1) 390 rt_rq->rt_nr_migratory++; 391 392 update_rt_migration(rt_rq); 393 } 394 395 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 396 { 397 struct task_struct *p; 398 399 if (!rt_entity_is_task(rt_se)) 400 return; 401 402 p = rt_task_of(rt_se); 403 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 404 405 rt_rq->rt_nr_total--; 406 if (p->nr_cpus_allowed > 1) 407 rt_rq->rt_nr_migratory--; 408 409 update_rt_migration(rt_rq); 410 } 411 412 static inline int has_pushable_tasks(struct rq *rq) 413 { 414 return !plist_head_empty(&rq->rt.pushable_tasks); 415 } 416 417 static DEFINE_PER_CPU(struct balance_callback, rt_push_head); 418 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head); 419 420 static void push_rt_tasks(struct rq *); 421 static void pull_rt_task(struct rq *); 422 423 static inline void rt_queue_push_tasks(struct rq *rq) 424 { 425 if (!has_pushable_tasks(rq)) 426 return; 427 428 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 429 } 430 431 static inline void rt_queue_pull_task(struct rq *rq) 432 { 433 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 434 } 435 436 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 437 { 438 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 439 plist_node_init(&p->pushable_tasks, p->prio); 440 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 441 442 /* Update the highest prio pushable task */ 443 if (p->prio < rq->rt.highest_prio.next) 444 rq->rt.highest_prio.next = p->prio; 445 } 446 447 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 448 { 449 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 450 451 /* Update the new highest prio pushable task */ 452 if (has_pushable_tasks(rq)) { 453 p = plist_first_entry(&rq->rt.pushable_tasks, 454 struct task_struct, pushable_tasks); 455 rq->rt.highest_prio.next = p->prio; 456 } else { 457 rq->rt.highest_prio.next = MAX_RT_PRIO-1; 458 } 459 } 460 461 #else 462 463 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 464 { 465 } 466 467 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 468 { 469 } 470 471 static inline 472 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 473 { 474 } 475 476 static inline 477 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 478 { 479 } 480 481 static inline void rt_queue_push_tasks(struct rq *rq) 482 { 483 } 484 #endif /* CONFIG_SMP */ 485 486 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 487 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count); 488 489 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 490 { 491 return rt_se->on_rq; 492 } 493 494 #ifdef CONFIG_UCLAMP_TASK 495 /* 496 * Verify the fitness of task @p to run on @cpu taking into account the uclamp 497 * settings. 498 * 499 * This check is only important for heterogeneous systems where uclamp_min value 500 * is higher than the capacity of a @cpu. For non-heterogeneous system this 501 * function will always return true. 502 * 503 * The function will return true if the capacity of the @cpu is >= the 504 * uclamp_min and false otherwise. 505 * 506 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min 507 * > uclamp_max. 508 */ 509 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 510 { 511 unsigned int min_cap; 512 unsigned int max_cap; 513 unsigned int cpu_cap; 514 515 /* Only heterogeneous systems can benefit from this check */ 516 if (!sched_asym_cpucap_active()) 517 return true; 518 519 min_cap = uclamp_eff_value(p, UCLAMP_MIN); 520 max_cap = uclamp_eff_value(p, UCLAMP_MAX); 521 522 cpu_cap = capacity_orig_of(cpu); 523 524 return cpu_cap >= min(min_cap, max_cap); 525 } 526 #else 527 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 528 { 529 return true; 530 } 531 #endif 532 533 #ifdef CONFIG_RT_GROUP_SCHED 534 535 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 536 { 537 if (!rt_rq->tg) 538 return RUNTIME_INF; 539 540 return rt_rq->rt_runtime; 541 } 542 543 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 544 { 545 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 546 } 547 548 typedef struct task_group *rt_rq_iter_t; 549 550 static inline struct task_group *next_task_group(struct task_group *tg) 551 { 552 do { 553 tg = list_entry_rcu(tg->list.next, 554 typeof(struct task_group), list); 555 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 556 557 if (&tg->list == &task_groups) 558 tg = NULL; 559 560 return tg; 561 } 562 563 #define for_each_rt_rq(rt_rq, iter, rq) \ 564 for (iter = container_of(&task_groups, typeof(*iter), list); \ 565 (iter = next_task_group(iter)) && \ 566 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 567 568 #define for_each_sched_rt_entity(rt_se) \ 569 for (; rt_se; rt_se = rt_se->parent) 570 571 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 572 { 573 return rt_se->my_q; 574 } 575 576 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 577 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 578 579 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 580 { 581 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 582 struct rq *rq = rq_of_rt_rq(rt_rq); 583 struct sched_rt_entity *rt_se; 584 585 int cpu = cpu_of(rq); 586 587 rt_se = rt_rq->tg->rt_se[cpu]; 588 589 if (rt_rq->rt_nr_running) { 590 if (!rt_se) 591 enqueue_top_rt_rq(rt_rq); 592 else if (!on_rt_rq(rt_se)) 593 enqueue_rt_entity(rt_se, 0); 594 595 if (rt_rq->highest_prio.curr < curr->prio) 596 resched_curr(rq); 597 } 598 } 599 600 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 601 { 602 struct sched_rt_entity *rt_se; 603 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 604 605 rt_se = rt_rq->tg->rt_se[cpu]; 606 607 if (!rt_se) { 608 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); 609 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 610 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); 611 } 612 else if (on_rt_rq(rt_se)) 613 dequeue_rt_entity(rt_se, 0); 614 } 615 616 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 617 { 618 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 619 } 620 621 static int rt_se_boosted(struct sched_rt_entity *rt_se) 622 { 623 struct rt_rq *rt_rq = group_rt_rq(rt_se); 624 struct task_struct *p; 625 626 if (rt_rq) 627 return !!rt_rq->rt_nr_boosted; 628 629 p = rt_task_of(rt_se); 630 return p->prio != p->normal_prio; 631 } 632 633 #ifdef CONFIG_SMP 634 static inline const struct cpumask *sched_rt_period_mask(void) 635 { 636 return this_rq()->rd->span; 637 } 638 #else 639 static inline const struct cpumask *sched_rt_period_mask(void) 640 { 641 return cpu_online_mask; 642 } 643 #endif 644 645 static inline 646 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 647 { 648 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 649 } 650 651 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 652 { 653 return &rt_rq->tg->rt_bandwidth; 654 } 655 656 #else /* !CONFIG_RT_GROUP_SCHED */ 657 658 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 659 { 660 return rt_rq->rt_runtime; 661 } 662 663 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 664 { 665 return ktime_to_ns(def_rt_bandwidth.rt_period); 666 } 667 668 typedef struct rt_rq *rt_rq_iter_t; 669 670 #define for_each_rt_rq(rt_rq, iter, rq) \ 671 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 672 673 #define for_each_sched_rt_entity(rt_se) \ 674 for (; rt_se; rt_se = NULL) 675 676 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 677 { 678 return NULL; 679 } 680 681 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 682 { 683 struct rq *rq = rq_of_rt_rq(rt_rq); 684 685 if (!rt_rq->rt_nr_running) 686 return; 687 688 enqueue_top_rt_rq(rt_rq); 689 resched_curr(rq); 690 } 691 692 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 693 { 694 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); 695 } 696 697 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 698 { 699 return rt_rq->rt_throttled; 700 } 701 702 static inline const struct cpumask *sched_rt_period_mask(void) 703 { 704 return cpu_online_mask; 705 } 706 707 static inline 708 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 709 { 710 return &cpu_rq(cpu)->rt; 711 } 712 713 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 714 { 715 return &def_rt_bandwidth; 716 } 717 718 #endif /* CONFIG_RT_GROUP_SCHED */ 719 720 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 721 { 722 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 723 724 return (hrtimer_active(&rt_b->rt_period_timer) || 725 rt_rq->rt_time < rt_b->rt_runtime); 726 } 727 728 #ifdef CONFIG_SMP 729 /* 730 * We ran out of runtime, see if we can borrow some from our neighbours. 731 */ 732 static void do_balance_runtime(struct rt_rq *rt_rq) 733 { 734 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 735 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 736 int i, weight; 737 u64 rt_period; 738 739 weight = cpumask_weight(rd->span); 740 741 raw_spin_lock(&rt_b->rt_runtime_lock); 742 rt_period = ktime_to_ns(rt_b->rt_period); 743 for_each_cpu(i, rd->span) { 744 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 745 s64 diff; 746 747 if (iter == rt_rq) 748 continue; 749 750 raw_spin_lock(&iter->rt_runtime_lock); 751 /* 752 * Either all rqs have inf runtime and there's nothing to steal 753 * or __disable_runtime() below sets a specific rq to inf to 754 * indicate its been disabled and disallow stealing. 755 */ 756 if (iter->rt_runtime == RUNTIME_INF) 757 goto next; 758 759 /* 760 * From runqueues with spare time, take 1/n part of their 761 * spare time, but no more than our period. 762 */ 763 diff = iter->rt_runtime - iter->rt_time; 764 if (diff > 0) { 765 diff = div_u64((u64)diff, weight); 766 if (rt_rq->rt_runtime + diff > rt_period) 767 diff = rt_period - rt_rq->rt_runtime; 768 iter->rt_runtime -= diff; 769 rt_rq->rt_runtime += diff; 770 if (rt_rq->rt_runtime == rt_period) { 771 raw_spin_unlock(&iter->rt_runtime_lock); 772 break; 773 } 774 } 775 next: 776 raw_spin_unlock(&iter->rt_runtime_lock); 777 } 778 raw_spin_unlock(&rt_b->rt_runtime_lock); 779 } 780 781 /* 782 * Ensure this RQ takes back all the runtime it lend to its neighbours. 783 */ 784 static void __disable_runtime(struct rq *rq) 785 { 786 struct root_domain *rd = rq->rd; 787 rt_rq_iter_t iter; 788 struct rt_rq *rt_rq; 789 790 if (unlikely(!scheduler_running)) 791 return; 792 793 for_each_rt_rq(rt_rq, iter, rq) { 794 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 795 s64 want; 796 int i; 797 798 raw_spin_lock(&rt_b->rt_runtime_lock); 799 raw_spin_lock(&rt_rq->rt_runtime_lock); 800 /* 801 * Either we're all inf and nobody needs to borrow, or we're 802 * already disabled and thus have nothing to do, or we have 803 * exactly the right amount of runtime to take out. 804 */ 805 if (rt_rq->rt_runtime == RUNTIME_INF || 806 rt_rq->rt_runtime == rt_b->rt_runtime) 807 goto balanced; 808 raw_spin_unlock(&rt_rq->rt_runtime_lock); 809 810 /* 811 * Calculate the difference between what we started out with 812 * and what we current have, that's the amount of runtime 813 * we lend and now have to reclaim. 814 */ 815 want = rt_b->rt_runtime - rt_rq->rt_runtime; 816 817 /* 818 * Greedy reclaim, take back as much as we can. 819 */ 820 for_each_cpu(i, rd->span) { 821 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 822 s64 diff; 823 824 /* 825 * Can't reclaim from ourselves or disabled runqueues. 826 */ 827 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 828 continue; 829 830 raw_spin_lock(&iter->rt_runtime_lock); 831 if (want > 0) { 832 diff = min_t(s64, iter->rt_runtime, want); 833 iter->rt_runtime -= diff; 834 want -= diff; 835 } else { 836 iter->rt_runtime -= want; 837 want -= want; 838 } 839 raw_spin_unlock(&iter->rt_runtime_lock); 840 841 if (!want) 842 break; 843 } 844 845 raw_spin_lock(&rt_rq->rt_runtime_lock); 846 /* 847 * We cannot be left wanting - that would mean some runtime 848 * leaked out of the system. 849 */ 850 WARN_ON_ONCE(want); 851 balanced: 852 /* 853 * Disable all the borrow logic by pretending we have inf 854 * runtime - in which case borrowing doesn't make sense. 855 */ 856 rt_rq->rt_runtime = RUNTIME_INF; 857 rt_rq->rt_throttled = 0; 858 raw_spin_unlock(&rt_rq->rt_runtime_lock); 859 raw_spin_unlock(&rt_b->rt_runtime_lock); 860 861 /* Make rt_rq available for pick_next_task() */ 862 sched_rt_rq_enqueue(rt_rq); 863 } 864 } 865 866 static void __enable_runtime(struct rq *rq) 867 { 868 rt_rq_iter_t iter; 869 struct rt_rq *rt_rq; 870 871 if (unlikely(!scheduler_running)) 872 return; 873 874 /* 875 * Reset each runqueue's bandwidth settings 876 */ 877 for_each_rt_rq(rt_rq, iter, rq) { 878 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 879 880 raw_spin_lock(&rt_b->rt_runtime_lock); 881 raw_spin_lock(&rt_rq->rt_runtime_lock); 882 rt_rq->rt_runtime = rt_b->rt_runtime; 883 rt_rq->rt_time = 0; 884 rt_rq->rt_throttled = 0; 885 raw_spin_unlock(&rt_rq->rt_runtime_lock); 886 raw_spin_unlock(&rt_b->rt_runtime_lock); 887 } 888 } 889 890 static void balance_runtime(struct rt_rq *rt_rq) 891 { 892 if (!sched_feat(RT_RUNTIME_SHARE)) 893 return; 894 895 if (rt_rq->rt_time > rt_rq->rt_runtime) { 896 raw_spin_unlock(&rt_rq->rt_runtime_lock); 897 do_balance_runtime(rt_rq); 898 raw_spin_lock(&rt_rq->rt_runtime_lock); 899 } 900 } 901 #else /* !CONFIG_SMP */ 902 static inline void balance_runtime(struct rt_rq *rt_rq) {} 903 #endif /* CONFIG_SMP */ 904 905 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 906 { 907 int i, idle = 1, throttled = 0; 908 const struct cpumask *span; 909 910 span = sched_rt_period_mask(); 911 #ifdef CONFIG_RT_GROUP_SCHED 912 /* 913 * FIXME: isolated CPUs should really leave the root task group, 914 * whether they are isolcpus or were isolated via cpusets, lest 915 * the timer run on a CPU which does not service all runqueues, 916 * potentially leaving other CPUs indefinitely throttled. If 917 * isolation is really required, the user will turn the throttle 918 * off to kill the perturbations it causes anyway. Meanwhile, 919 * this maintains functionality for boot and/or troubleshooting. 920 */ 921 if (rt_b == &root_task_group.rt_bandwidth) 922 span = cpu_online_mask; 923 #endif 924 for_each_cpu(i, span) { 925 int enqueue = 0; 926 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 927 struct rq *rq = rq_of_rt_rq(rt_rq); 928 struct rq_flags rf; 929 int skip; 930 931 /* 932 * When span == cpu_online_mask, taking each rq->lock 933 * can be time-consuming. Try to avoid it when possible. 934 */ 935 raw_spin_lock(&rt_rq->rt_runtime_lock); 936 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) 937 rt_rq->rt_runtime = rt_b->rt_runtime; 938 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 939 raw_spin_unlock(&rt_rq->rt_runtime_lock); 940 if (skip) 941 continue; 942 943 rq_lock(rq, &rf); 944 update_rq_clock(rq); 945 946 if (rt_rq->rt_time) { 947 u64 runtime; 948 949 raw_spin_lock(&rt_rq->rt_runtime_lock); 950 if (rt_rq->rt_throttled) 951 balance_runtime(rt_rq); 952 runtime = rt_rq->rt_runtime; 953 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 954 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 955 rt_rq->rt_throttled = 0; 956 enqueue = 1; 957 958 /* 959 * When we're idle and a woken (rt) task is 960 * throttled wakeup_preempt() will set 961 * skip_update and the time between the wakeup 962 * and this unthrottle will get accounted as 963 * 'runtime'. 964 */ 965 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 966 rq_clock_cancel_skipupdate(rq); 967 } 968 if (rt_rq->rt_time || rt_rq->rt_nr_running) 969 idle = 0; 970 raw_spin_unlock(&rt_rq->rt_runtime_lock); 971 } else if (rt_rq->rt_nr_running) { 972 idle = 0; 973 if (!rt_rq_throttled(rt_rq)) 974 enqueue = 1; 975 } 976 if (rt_rq->rt_throttled) 977 throttled = 1; 978 979 if (enqueue) 980 sched_rt_rq_enqueue(rt_rq); 981 rq_unlock(rq, &rf); 982 } 983 984 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 985 return 1; 986 987 return idle; 988 } 989 990 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 991 { 992 #ifdef CONFIG_RT_GROUP_SCHED 993 struct rt_rq *rt_rq = group_rt_rq(rt_se); 994 995 if (rt_rq) 996 return rt_rq->highest_prio.curr; 997 #endif 998 999 return rt_task_of(rt_se)->prio; 1000 } 1001 1002 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 1003 { 1004 u64 runtime = sched_rt_runtime(rt_rq); 1005 1006 if (rt_rq->rt_throttled) 1007 return rt_rq_throttled(rt_rq); 1008 1009 if (runtime >= sched_rt_period(rt_rq)) 1010 return 0; 1011 1012 balance_runtime(rt_rq); 1013 runtime = sched_rt_runtime(rt_rq); 1014 if (runtime == RUNTIME_INF) 1015 return 0; 1016 1017 if (rt_rq->rt_time > runtime) { 1018 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 1019 1020 /* 1021 * Don't actually throttle groups that have no runtime assigned 1022 * but accrue some time due to boosting. 1023 */ 1024 if (likely(rt_b->rt_runtime)) { 1025 rt_rq->rt_throttled = 1; 1026 printk_deferred_once("sched: RT throttling activated\n"); 1027 } else { 1028 /* 1029 * In case we did anyway, make it go away, 1030 * replenishment is a joke, since it will replenish us 1031 * with exactly 0 ns. 1032 */ 1033 rt_rq->rt_time = 0; 1034 } 1035 1036 if (rt_rq_throttled(rt_rq)) { 1037 sched_rt_rq_dequeue(rt_rq); 1038 return 1; 1039 } 1040 } 1041 1042 return 0; 1043 } 1044 1045 /* 1046 * Update the current task's runtime statistics. Skip current tasks that 1047 * are not in our scheduling class. 1048 */ 1049 static void update_curr_rt(struct rq *rq) 1050 { 1051 struct task_struct *curr = rq->curr; 1052 struct sched_rt_entity *rt_se = &curr->rt; 1053 s64 delta_exec; 1054 1055 if (curr->sched_class != &rt_sched_class) 1056 return; 1057 1058 delta_exec = update_curr_common(rq); 1059 if (unlikely(delta_exec <= 0)) 1060 return; 1061 1062 if (!rt_bandwidth_enabled()) 1063 return; 1064 1065 for_each_sched_rt_entity(rt_se) { 1066 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1067 int exceeded; 1068 1069 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 1070 raw_spin_lock(&rt_rq->rt_runtime_lock); 1071 rt_rq->rt_time += delta_exec; 1072 exceeded = sched_rt_runtime_exceeded(rt_rq); 1073 if (exceeded) 1074 resched_curr(rq); 1075 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1076 if (exceeded) 1077 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq)); 1078 } 1079 } 1080 } 1081 1082 static void 1083 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count) 1084 { 1085 struct rq *rq = rq_of_rt_rq(rt_rq); 1086 1087 BUG_ON(&rq->rt != rt_rq); 1088 1089 if (!rt_rq->rt_queued) 1090 return; 1091 1092 BUG_ON(!rq->nr_running); 1093 1094 sub_nr_running(rq, count); 1095 rt_rq->rt_queued = 0; 1096 1097 } 1098 1099 static void 1100 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1101 { 1102 struct rq *rq = rq_of_rt_rq(rt_rq); 1103 1104 BUG_ON(&rq->rt != rt_rq); 1105 1106 if (rt_rq->rt_queued) 1107 return; 1108 1109 if (rt_rq_throttled(rt_rq)) 1110 return; 1111 1112 if (rt_rq->rt_nr_running) { 1113 add_nr_running(rq, rt_rq->rt_nr_running); 1114 rt_rq->rt_queued = 1; 1115 } 1116 1117 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 1118 cpufreq_update_util(rq, 0); 1119 } 1120 1121 #if defined CONFIG_SMP 1122 1123 static void 1124 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1125 { 1126 struct rq *rq = rq_of_rt_rq(rt_rq); 1127 1128 #ifdef CONFIG_RT_GROUP_SCHED 1129 /* 1130 * Change rq's cpupri only if rt_rq is the top queue. 1131 */ 1132 if (&rq->rt != rt_rq) 1133 return; 1134 #endif 1135 if (rq->online && prio < prev_prio) 1136 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1137 } 1138 1139 static void 1140 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1141 { 1142 struct rq *rq = rq_of_rt_rq(rt_rq); 1143 1144 #ifdef CONFIG_RT_GROUP_SCHED 1145 /* 1146 * Change rq's cpupri only if rt_rq is the top queue. 1147 */ 1148 if (&rq->rt != rt_rq) 1149 return; 1150 #endif 1151 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1152 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1153 } 1154 1155 #else /* CONFIG_SMP */ 1156 1157 static inline 1158 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1159 static inline 1160 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1161 1162 #endif /* CONFIG_SMP */ 1163 1164 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1165 static void 1166 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1167 { 1168 int prev_prio = rt_rq->highest_prio.curr; 1169 1170 if (prio < prev_prio) 1171 rt_rq->highest_prio.curr = prio; 1172 1173 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1174 } 1175 1176 static void 1177 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1178 { 1179 int prev_prio = rt_rq->highest_prio.curr; 1180 1181 if (rt_rq->rt_nr_running) { 1182 1183 WARN_ON(prio < prev_prio); 1184 1185 /* 1186 * This may have been our highest task, and therefore 1187 * we may have some recomputation to do 1188 */ 1189 if (prio == prev_prio) { 1190 struct rt_prio_array *array = &rt_rq->active; 1191 1192 rt_rq->highest_prio.curr = 1193 sched_find_first_bit(array->bitmap); 1194 } 1195 1196 } else { 1197 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 1198 } 1199 1200 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1201 } 1202 1203 #else 1204 1205 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1206 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1207 1208 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1209 1210 #ifdef CONFIG_RT_GROUP_SCHED 1211 1212 static void 1213 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1214 { 1215 if (rt_se_boosted(rt_se)) 1216 rt_rq->rt_nr_boosted++; 1217 1218 if (rt_rq->tg) 1219 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1220 } 1221 1222 static void 1223 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1224 { 1225 if (rt_se_boosted(rt_se)) 1226 rt_rq->rt_nr_boosted--; 1227 1228 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1229 } 1230 1231 #else /* CONFIG_RT_GROUP_SCHED */ 1232 1233 static void 1234 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1235 { 1236 start_rt_bandwidth(&def_rt_bandwidth); 1237 } 1238 1239 static inline 1240 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1241 1242 #endif /* CONFIG_RT_GROUP_SCHED */ 1243 1244 static inline 1245 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1246 { 1247 struct rt_rq *group_rq = group_rt_rq(rt_se); 1248 1249 if (group_rq) 1250 return group_rq->rt_nr_running; 1251 else 1252 return 1; 1253 } 1254 1255 static inline 1256 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1257 { 1258 struct rt_rq *group_rq = group_rt_rq(rt_se); 1259 struct task_struct *tsk; 1260 1261 if (group_rq) 1262 return group_rq->rr_nr_running; 1263 1264 tsk = rt_task_of(rt_se); 1265 1266 return (tsk->policy == SCHED_RR) ? 1 : 0; 1267 } 1268 1269 static inline 1270 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1271 { 1272 int prio = rt_se_prio(rt_se); 1273 1274 WARN_ON(!rt_prio(prio)); 1275 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1276 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1277 1278 inc_rt_prio(rt_rq, prio); 1279 inc_rt_migration(rt_se, rt_rq); 1280 inc_rt_group(rt_se, rt_rq); 1281 } 1282 1283 static inline 1284 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1285 { 1286 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1287 WARN_ON(!rt_rq->rt_nr_running); 1288 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1289 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1290 1291 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1292 dec_rt_migration(rt_se, rt_rq); 1293 dec_rt_group(rt_se, rt_rq); 1294 } 1295 1296 /* 1297 * Change rt_se->run_list location unless SAVE && !MOVE 1298 * 1299 * assumes ENQUEUE/DEQUEUE flags match 1300 */ 1301 static inline bool move_entity(unsigned int flags) 1302 { 1303 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1304 return false; 1305 1306 return true; 1307 } 1308 1309 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1310 { 1311 list_del_init(&rt_se->run_list); 1312 1313 if (list_empty(array->queue + rt_se_prio(rt_se))) 1314 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1315 1316 rt_se->on_list = 0; 1317 } 1318 1319 static inline struct sched_statistics * 1320 __schedstats_from_rt_se(struct sched_rt_entity *rt_se) 1321 { 1322 #ifdef CONFIG_RT_GROUP_SCHED 1323 /* schedstats is not supported for rt group. */ 1324 if (!rt_entity_is_task(rt_se)) 1325 return NULL; 1326 #endif 1327 1328 return &rt_task_of(rt_se)->stats; 1329 } 1330 1331 static inline void 1332 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1333 { 1334 struct sched_statistics *stats; 1335 struct task_struct *p = NULL; 1336 1337 if (!schedstat_enabled()) 1338 return; 1339 1340 if (rt_entity_is_task(rt_se)) 1341 p = rt_task_of(rt_se); 1342 1343 stats = __schedstats_from_rt_se(rt_se); 1344 if (!stats) 1345 return; 1346 1347 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats); 1348 } 1349 1350 static inline void 1351 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1352 { 1353 struct sched_statistics *stats; 1354 struct task_struct *p = NULL; 1355 1356 if (!schedstat_enabled()) 1357 return; 1358 1359 if (rt_entity_is_task(rt_se)) 1360 p = rt_task_of(rt_se); 1361 1362 stats = __schedstats_from_rt_se(rt_se); 1363 if (!stats) 1364 return; 1365 1366 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats); 1367 } 1368 1369 static inline void 1370 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, 1371 int flags) 1372 { 1373 if (!schedstat_enabled()) 1374 return; 1375 1376 if (flags & ENQUEUE_WAKEUP) 1377 update_stats_enqueue_sleeper_rt(rt_rq, rt_se); 1378 } 1379 1380 static inline void 1381 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1382 { 1383 struct sched_statistics *stats; 1384 struct task_struct *p = NULL; 1385 1386 if (!schedstat_enabled()) 1387 return; 1388 1389 if (rt_entity_is_task(rt_se)) 1390 p = rt_task_of(rt_se); 1391 1392 stats = __schedstats_from_rt_se(rt_se); 1393 if (!stats) 1394 return; 1395 1396 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats); 1397 } 1398 1399 static inline void 1400 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, 1401 int flags) 1402 { 1403 struct task_struct *p = NULL; 1404 1405 if (!schedstat_enabled()) 1406 return; 1407 1408 if (rt_entity_is_task(rt_se)) 1409 p = rt_task_of(rt_se); 1410 1411 if ((flags & DEQUEUE_SLEEP) && p) { 1412 unsigned int state; 1413 1414 state = READ_ONCE(p->__state); 1415 if (state & TASK_INTERRUPTIBLE) 1416 __schedstat_set(p->stats.sleep_start, 1417 rq_clock(rq_of_rt_rq(rt_rq))); 1418 1419 if (state & TASK_UNINTERRUPTIBLE) 1420 __schedstat_set(p->stats.block_start, 1421 rq_clock(rq_of_rt_rq(rt_rq))); 1422 } 1423 } 1424 1425 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1426 { 1427 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1428 struct rt_prio_array *array = &rt_rq->active; 1429 struct rt_rq *group_rq = group_rt_rq(rt_se); 1430 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1431 1432 /* 1433 * Don't enqueue the group if its throttled, or when empty. 1434 * The latter is a consequence of the former when a child group 1435 * get throttled and the current group doesn't have any other 1436 * active members. 1437 */ 1438 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1439 if (rt_se->on_list) 1440 __delist_rt_entity(rt_se, array); 1441 return; 1442 } 1443 1444 if (move_entity(flags)) { 1445 WARN_ON_ONCE(rt_se->on_list); 1446 if (flags & ENQUEUE_HEAD) 1447 list_add(&rt_se->run_list, queue); 1448 else 1449 list_add_tail(&rt_se->run_list, queue); 1450 1451 __set_bit(rt_se_prio(rt_se), array->bitmap); 1452 rt_se->on_list = 1; 1453 } 1454 rt_se->on_rq = 1; 1455 1456 inc_rt_tasks(rt_se, rt_rq); 1457 } 1458 1459 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1460 { 1461 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1462 struct rt_prio_array *array = &rt_rq->active; 1463 1464 if (move_entity(flags)) { 1465 WARN_ON_ONCE(!rt_se->on_list); 1466 __delist_rt_entity(rt_se, array); 1467 } 1468 rt_se->on_rq = 0; 1469 1470 dec_rt_tasks(rt_se, rt_rq); 1471 } 1472 1473 /* 1474 * Because the prio of an upper entry depends on the lower 1475 * entries, we must remove entries top - down. 1476 */ 1477 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1478 { 1479 struct sched_rt_entity *back = NULL; 1480 unsigned int rt_nr_running; 1481 1482 for_each_sched_rt_entity(rt_se) { 1483 rt_se->back = back; 1484 back = rt_se; 1485 } 1486 1487 rt_nr_running = rt_rq_of_se(back)->rt_nr_running; 1488 1489 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1490 if (on_rt_rq(rt_se)) 1491 __dequeue_rt_entity(rt_se, flags); 1492 } 1493 1494 dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running); 1495 } 1496 1497 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1498 { 1499 struct rq *rq = rq_of_rt_se(rt_se); 1500 1501 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags); 1502 1503 dequeue_rt_stack(rt_se, flags); 1504 for_each_sched_rt_entity(rt_se) 1505 __enqueue_rt_entity(rt_se, flags); 1506 enqueue_top_rt_rq(&rq->rt); 1507 } 1508 1509 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1510 { 1511 struct rq *rq = rq_of_rt_se(rt_se); 1512 1513 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags); 1514 1515 dequeue_rt_stack(rt_se, flags); 1516 1517 for_each_sched_rt_entity(rt_se) { 1518 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1519 1520 if (rt_rq && rt_rq->rt_nr_running) 1521 __enqueue_rt_entity(rt_se, flags); 1522 } 1523 enqueue_top_rt_rq(&rq->rt); 1524 } 1525 1526 /* 1527 * Adding/removing a task to/from a priority array: 1528 */ 1529 static void 1530 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1531 { 1532 struct sched_rt_entity *rt_se = &p->rt; 1533 1534 if (flags & ENQUEUE_WAKEUP) 1535 rt_se->timeout = 0; 1536 1537 check_schedstat_required(); 1538 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se); 1539 1540 enqueue_rt_entity(rt_se, flags); 1541 1542 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1543 enqueue_pushable_task(rq, p); 1544 } 1545 1546 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1547 { 1548 struct sched_rt_entity *rt_se = &p->rt; 1549 1550 update_curr_rt(rq); 1551 dequeue_rt_entity(rt_se, flags); 1552 1553 dequeue_pushable_task(rq, p); 1554 } 1555 1556 /* 1557 * Put task to the head or the end of the run list without the overhead of 1558 * dequeue followed by enqueue. 1559 */ 1560 static void 1561 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1562 { 1563 if (on_rt_rq(rt_se)) { 1564 struct rt_prio_array *array = &rt_rq->active; 1565 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1566 1567 if (head) 1568 list_move(&rt_se->run_list, queue); 1569 else 1570 list_move_tail(&rt_se->run_list, queue); 1571 } 1572 } 1573 1574 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1575 { 1576 struct sched_rt_entity *rt_se = &p->rt; 1577 struct rt_rq *rt_rq; 1578 1579 for_each_sched_rt_entity(rt_se) { 1580 rt_rq = rt_rq_of_se(rt_se); 1581 requeue_rt_entity(rt_rq, rt_se, head); 1582 } 1583 } 1584 1585 static void yield_task_rt(struct rq *rq) 1586 { 1587 requeue_task_rt(rq, rq->curr, 0); 1588 } 1589 1590 #ifdef CONFIG_SMP 1591 static int find_lowest_rq(struct task_struct *task); 1592 1593 static int 1594 select_task_rq_rt(struct task_struct *p, int cpu, int flags) 1595 { 1596 struct task_struct *curr; 1597 struct rq *rq; 1598 bool test; 1599 1600 /* For anything but wake ups, just return the task_cpu */ 1601 if (!(flags & (WF_TTWU | WF_FORK))) 1602 goto out; 1603 1604 rq = cpu_rq(cpu); 1605 1606 rcu_read_lock(); 1607 curr = READ_ONCE(rq->curr); /* unlocked access */ 1608 1609 /* 1610 * If the current task on @p's runqueue is an RT task, then 1611 * try to see if we can wake this RT task up on another 1612 * runqueue. Otherwise simply start this RT task 1613 * on its current runqueue. 1614 * 1615 * We want to avoid overloading runqueues. If the woken 1616 * task is a higher priority, then it will stay on this CPU 1617 * and the lower prio task should be moved to another CPU. 1618 * Even though this will probably make the lower prio task 1619 * lose its cache, we do not want to bounce a higher task 1620 * around just because it gave up its CPU, perhaps for a 1621 * lock? 1622 * 1623 * For equal prio tasks, we just let the scheduler sort it out. 1624 * 1625 * Otherwise, just let it ride on the affined RQ and the 1626 * post-schedule router will push the preempted task away 1627 * 1628 * This test is optimistic, if we get it wrong the load-balancer 1629 * will have to sort it out. 1630 * 1631 * We take into account the capacity of the CPU to ensure it fits the 1632 * requirement of the task - which is only important on heterogeneous 1633 * systems like big.LITTLE. 1634 */ 1635 test = curr && 1636 unlikely(rt_task(curr)) && 1637 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio); 1638 1639 if (test || !rt_task_fits_capacity(p, cpu)) { 1640 int target = find_lowest_rq(p); 1641 1642 /* 1643 * Bail out if we were forcing a migration to find a better 1644 * fitting CPU but our search failed. 1645 */ 1646 if (!test && target != -1 && !rt_task_fits_capacity(p, target)) 1647 goto out_unlock; 1648 1649 /* 1650 * Don't bother moving it if the destination CPU is 1651 * not running a lower priority task. 1652 */ 1653 if (target != -1 && 1654 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1655 cpu = target; 1656 } 1657 1658 out_unlock: 1659 rcu_read_unlock(); 1660 1661 out: 1662 return cpu; 1663 } 1664 1665 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1666 { 1667 /* 1668 * Current can't be migrated, useless to reschedule, 1669 * let's hope p can move out. 1670 */ 1671 if (rq->curr->nr_cpus_allowed == 1 || 1672 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1673 return; 1674 1675 /* 1676 * p is migratable, so let's not schedule it and 1677 * see if it is pushed or pulled somewhere else. 1678 */ 1679 if (p->nr_cpus_allowed != 1 && 1680 cpupri_find(&rq->rd->cpupri, p, NULL)) 1681 return; 1682 1683 /* 1684 * There appear to be other CPUs that can accept 1685 * the current task but none can run 'p', so lets reschedule 1686 * to try and push the current task away: 1687 */ 1688 requeue_task_rt(rq, p, 1); 1689 resched_curr(rq); 1690 } 1691 1692 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1693 { 1694 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) { 1695 /* 1696 * This is OK, because current is on_cpu, which avoids it being 1697 * picked for load-balance and preemption/IRQs are still 1698 * disabled avoiding further scheduler activity on it and we've 1699 * not yet started the picking loop. 1700 */ 1701 rq_unpin_lock(rq, rf); 1702 pull_rt_task(rq); 1703 rq_repin_lock(rq, rf); 1704 } 1705 1706 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq); 1707 } 1708 #endif /* CONFIG_SMP */ 1709 1710 /* 1711 * Preempt the current task with a newly woken task if needed: 1712 */ 1713 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags) 1714 { 1715 if (p->prio < rq->curr->prio) { 1716 resched_curr(rq); 1717 return; 1718 } 1719 1720 #ifdef CONFIG_SMP 1721 /* 1722 * If: 1723 * 1724 * - the newly woken task is of equal priority to the current task 1725 * - the newly woken task is non-migratable while current is migratable 1726 * - current will be preempted on the next reschedule 1727 * 1728 * we should check to see if current can readily move to a different 1729 * cpu. If so, we will reschedule to allow the push logic to try 1730 * to move current somewhere else, making room for our non-migratable 1731 * task. 1732 */ 1733 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1734 check_preempt_equal_prio(rq, p); 1735 #endif 1736 } 1737 1738 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first) 1739 { 1740 struct sched_rt_entity *rt_se = &p->rt; 1741 struct rt_rq *rt_rq = &rq->rt; 1742 1743 p->se.exec_start = rq_clock_task(rq); 1744 if (on_rt_rq(&p->rt)) 1745 update_stats_wait_end_rt(rt_rq, rt_se); 1746 1747 /* The running task is never eligible for pushing */ 1748 dequeue_pushable_task(rq, p); 1749 1750 if (!first) 1751 return; 1752 1753 /* 1754 * If prev task was rt, put_prev_task() has already updated the 1755 * utilization. We only care of the case where we start to schedule a 1756 * rt task 1757 */ 1758 if (rq->curr->sched_class != &rt_sched_class) 1759 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1760 1761 rt_queue_push_tasks(rq); 1762 } 1763 1764 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq) 1765 { 1766 struct rt_prio_array *array = &rt_rq->active; 1767 struct sched_rt_entity *next = NULL; 1768 struct list_head *queue; 1769 int idx; 1770 1771 idx = sched_find_first_bit(array->bitmap); 1772 BUG_ON(idx >= MAX_RT_PRIO); 1773 1774 queue = array->queue + idx; 1775 if (SCHED_WARN_ON(list_empty(queue))) 1776 return NULL; 1777 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1778 1779 return next; 1780 } 1781 1782 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1783 { 1784 struct sched_rt_entity *rt_se; 1785 struct rt_rq *rt_rq = &rq->rt; 1786 1787 do { 1788 rt_se = pick_next_rt_entity(rt_rq); 1789 if (unlikely(!rt_se)) 1790 return NULL; 1791 rt_rq = group_rt_rq(rt_se); 1792 } while (rt_rq); 1793 1794 return rt_task_of(rt_se); 1795 } 1796 1797 static struct task_struct *pick_task_rt(struct rq *rq) 1798 { 1799 struct task_struct *p; 1800 1801 if (!sched_rt_runnable(rq)) 1802 return NULL; 1803 1804 p = _pick_next_task_rt(rq); 1805 1806 return p; 1807 } 1808 1809 static struct task_struct *pick_next_task_rt(struct rq *rq) 1810 { 1811 struct task_struct *p = pick_task_rt(rq); 1812 1813 if (p) 1814 set_next_task_rt(rq, p, true); 1815 1816 return p; 1817 } 1818 1819 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1820 { 1821 struct sched_rt_entity *rt_se = &p->rt; 1822 struct rt_rq *rt_rq = &rq->rt; 1823 1824 if (on_rt_rq(&p->rt)) 1825 update_stats_wait_start_rt(rt_rq, rt_se); 1826 1827 update_curr_rt(rq); 1828 1829 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1830 1831 /* 1832 * The previous task needs to be made eligible for pushing 1833 * if it is still active 1834 */ 1835 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1836 enqueue_pushable_task(rq, p); 1837 } 1838 1839 #ifdef CONFIG_SMP 1840 1841 /* Only try algorithms three times */ 1842 #define RT_MAX_TRIES 3 1843 1844 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1845 { 1846 if (!task_on_cpu(rq, p) && 1847 cpumask_test_cpu(cpu, &p->cpus_mask)) 1848 return 1; 1849 1850 return 0; 1851 } 1852 1853 /* 1854 * Return the highest pushable rq's task, which is suitable to be executed 1855 * on the CPU, NULL otherwise 1856 */ 1857 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1858 { 1859 struct plist_head *head = &rq->rt.pushable_tasks; 1860 struct task_struct *p; 1861 1862 if (!has_pushable_tasks(rq)) 1863 return NULL; 1864 1865 plist_for_each_entry(p, head, pushable_tasks) { 1866 if (pick_rt_task(rq, p, cpu)) 1867 return p; 1868 } 1869 1870 return NULL; 1871 } 1872 1873 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1874 1875 static int find_lowest_rq(struct task_struct *task) 1876 { 1877 struct sched_domain *sd; 1878 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1879 int this_cpu = smp_processor_id(); 1880 int cpu = task_cpu(task); 1881 int ret; 1882 1883 /* Make sure the mask is initialized first */ 1884 if (unlikely(!lowest_mask)) 1885 return -1; 1886 1887 if (task->nr_cpus_allowed == 1) 1888 return -1; /* No other targets possible */ 1889 1890 /* 1891 * If we're on asym system ensure we consider the different capacities 1892 * of the CPUs when searching for the lowest_mask. 1893 */ 1894 if (sched_asym_cpucap_active()) { 1895 1896 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri, 1897 task, lowest_mask, 1898 rt_task_fits_capacity); 1899 } else { 1900 1901 ret = cpupri_find(&task_rq(task)->rd->cpupri, 1902 task, lowest_mask); 1903 } 1904 1905 if (!ret) 1906 return -1; /* No targets found */ 1907 1908 /* 1909 * At this point we have built a mask of CPUs representing the 1910 * lowest priority tasks in the system. Now we want to elect 1911 * the best one based on our affinity and topology. 1912 * 1913 * We prioritize the last CPU that the task executed on since 1914 * it is most likely cache-hot in that location. 1915 */ 1916 if (cpumask_test_cpu(cpu, lowest_mask)) 1917 return cpu; 1918 1919 /* 1920 * Otherwise, we consult the sched_domains span maps to figure 1921 * out which CPU is logically closest to our hot cache data. 1922 */ 1923 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1924 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1925 1926 rcu_read_lock(); 1927 for_each_domain(cpu, sd) { 1928 if (sd->flags & SD_WAKE_AFFINE) { 1929 int best_cpu; 1930 1931 /* 1932 * "this_cpu" is cheaper to preempt than a 1933 * remote processor. 1934 */ 1935 if (this_cpu != -1 && 1936 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1937 rcu_read_unlock(); 1938 return this_cpu; 1939 } 1940 1941 best_cpu = cpumask_any_and_distribute(lowest_mask, 1942 sched_domain_span(sd)); 1943 if (best_cpu < nr_cpu_ids) { 1944 rcu_read_unlock(); 1945 return best_cpu; 1946 } 1947 } 1948 } 1949 rcu_read_unlock(); 1950 1951 /* 1952 * And finally, if there were no matches within the domains 1953 * just give the caller *something* to work with from the compatible 1954 * locations. 1955 */ 1956 if (this_cpu != -1) 1957 return this_cpu; 1958 1959 cpu = cpumask_any_distribute(lowest_mask); 1960 if (cpu < nr_cpu_ids) 1961 return cpu; 1962 1963 return -1; 1964 } 1965 1966 /* Will lock the rq it finds */ 1967 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1968 { 1969 struct rq *lowest_rq = NULL; 1970 int tries; 1971 int cpu; 1972 1973 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1974 cpu = find_lowest_rq(task); 1975 1976 if ((cpu == -1) || (cpu == rq->cpu)) 1977 break; 1978 1979 lowest_rq = cpu_rq(cpu); 1980 1981 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1982 /* 1983 * Target rq has tasks of equal or higher priority, 1984 * retrying does not release any lock and is unlikely 1985 * to yield a different result. 1986 */ 1987 lowest_rq = NULL; 1988 break; 1989 } 1990 1991 /* if the prio of this runqueue changed, try again */ 1992 if (double_lock_balance(rq, lowest_rq)) { 1993 /* 1994 * We had to unlock the run queue. In 1995 * the mean time, task could have 1996 * migrated already or had its affinity changed. 1997 * Also make sure that it wasn't scheduled on its rq. 1998 * It is possible the task was scheduled, set 1999 * "migrate_disabled" and then got preempted, so we must 2000 * check the task migration disable flag here too. 2001 */ 2002 if (unlikely(task_rq(task) != rq || 2003 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) || 2004 task_on_cpu(rq, task) || 2005 !rt_task(task) || 2006 is_migration_disabled(task) || 2007 !task_on_rq_queued(task))) { 2008 2009 double_unlock_balance(rq, lowest_rq); 2010 lowest_rq = NULL; 2011 break; 2012 } 2013 } 2014 2015 /* If this rq is still suitable use it. */ 2016 if (lowest_rq->rt.highest_prio.curr > task->prio) 2017 break; 2018 2019 /* try again */ 2020 double_unlock_balance(rq, lowest_rq); 2021 lowest_rq = NULL; 2022 } 2023 2024 return lowest_rq; 2025 } 2026 2027 static struct task_struct *pick_next_pushable_task(struct rq *rq) 2028 { 2029 struct task_struct *p; 2030 2031 if (!has_pushable_tasks(rq)) 2032 return NULL; 2033 2034 p = plist_first_entry(&rq->rt.pushable_tasks, 2035 struct task_struct, pushable_tasks); 2036 2037 BUG_ON(rq->cpu != task_cpu(p)); 2038 BUG_ON(task_current(rq, p)); 2039 BUG_ON(p->nr_cpus_allowed <= 1); 2040 2041 BUG_ON(!task_on_rq_queued(p)); 2042 BUG_ON(!rt_task(p)); 2043 2044 return p; 2045 } 2046 2047 /* 2048 * If the current CPU has more than one RT task, see if the non 2049 * running task can migrate over to a CPU that is running a task 2050 * of lesser priority. 2051 */ 2052 static int push_rt_task(struct rq *rq, bool pull) 2053 { 2054 struct task_struct *next_task; 2055 struct rq *lowest_rq; 2056 int ret = 0; 2057 2058 if (!rq->rt.overloaded) 2059 return 0; 2060 2061 next_task = pick_next_pushable_task(rq); 2062 if (!next_task) 2063 return 0; 2064 2065 retry: 2066 /* 2067 * It's possible that the next_task slipped in of 2068 * higher priority than current. If that's the case 2069 * just reschedule current. 2070 */ 2071 if (unlikely(next_task->prio < rq->curr->prio)) { 2072 resched_curr(rq); 2073 return 0; 2074 } 2075 2076 if (is_migration_disabled(next_task)) { 2077 struct task_struct *push_task = NULL; 2078 int cpu; 2079 2080 if (!pull || rq->push_busy) 2081 return 0; 2082 2083 /* 2084 * Invoking find_lowest_rq() on anything but an RT task doesn't 2085 * make sense. Per the above priority check, curr has to 2086 * be of higher priority than next_task, so no need to 2087 * reschedule when bailing out. 2088 * 2089 * Note that the stoppers are masqueraded as SCHED_FIFO 2090 * (cf. sched_set_stop_task()), so we can't rely on rt_task(). 2091 */ 2092 if (rq->curr->sched_class != &rt_sched_class) 2093 return 0; 2094 2095 cpu = find_lowest_rq(rq->curr); 2096 if (cpu == -1 || cpu == rq->cpu) 2097 return 0; 2098 2099 /* 2100 * Given we found a CPU with lower priority than @next_task, 2101 * therefore it should be running. However we cannot migrate it 2102 * to this other CPU, instead attempt to push the current 2103 * running task on this CPU away. 2104 */ 2105 push_task = get_push_task(rq); 2106 if (push_task) { 2107 preempt_disable(); 2108 raw_spin_rq_unlock(rq); 2109 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2110 push_task, &rq->push_work); 2111 preempt_enable(); 2112 raw_spin_rq_lock(rq); 2113 } 2114 2115 return 0; 2116 } 2117 2118 if (WARN_ON(next_task == rq->curr)) 2119 return 0; 2120 2121 /* We might release rq lock */ 2122 get_task_struct(next_task); 2123 2124 /* find_lock_lowest_rq locks the rq if found */ 2125 lowest_rq = find_lock_lowest_rq(next_task, rq); 2126 if (!lowest_rq) { 2127 struct task_struct *task; 2128 /* 2129 * find_lock_lowest_rq releases rq->lock 2130 * so it is possible that next_task has migrated. 2131 * 2132 * We need to make sure that the task is still on the same 2133 * run-queue and is also still the next task eligible for 2134 * pushing. 2135 */ 2136 task = pick_next_pushable_task(rq); 2137 if (task == next_task) { 2138 /* 2139 * The task hasn't migrated, and is still the next 2140 * eligible task, but we failed to find a run-queue 2141 * to push it to. Do not retry in this case, since 2142 * other CPUs will pull from us when ready. 2143 */ 2144 goto out; 2145 } 2146 2147 if (!task) 2148 /* No more tasks, just exit */ 2149 goto out; 2150 2151 /* 2152 * Something has shifted, try again. 2153 */ 2154 put_task_struct(next_task); 2155 next_task = task; 2156 goto retry; 2157 } 2158 2159 deactivate_task(rq, next_task, 0); 2160 set_task_cpu(next_task, lowest_rq->cpu); 2161 activate_task(lowest_rq, next_task, 0); 2162 resched_curr(lowest_rq); 2163 ret = 1; 2164 2165 double_unlock_balance(rq, lowest_rq); 2166 out: 2167 put_task_struct(next_task); 2168 2169 return ret; 2170 } 2171 2172 static void push_rt_tasks(struct rq *rq) 2173 { 2174 /* push_rt_task will return true if it moved an RT */ 2175 while (push_rt_task(rq, false)) 2176 ; 2177 } 2178 2179 #ifdef HAVE_RT_PUSH_IPI 2180 2181 /* 2182 * When a high priority task schedules out from a CPU and a lower priority 2183 * task is scheduled in, a check is made to see if there's any RT tasks 2184 * on other CPUs that are waiting to run because a higher priority RT task 2185 * is currently running on its CPU. In this case, the CPU with multiple RT 2186 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 2187 * up that may be able to run one of its non-running queued RT tasks. 2188 * 2189 * All CPUs with overloaded RT tasks need to be notified as there is currently 2190 * no way to know which of these CPUs have the highest priority task waiting 2191 * to run. Instead of trying to take a spinlock on each of these CPUs, 2192 * which has shown to cause large latency when done on machines with many 2193 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 2194 * RT tasks waiting to run. 2195 * 2196 * Just sending an IPI to each of the CPUs is also an issue, as on large 2197 * count CPU machines, this can cause an IPI storm on a CPU, especially 2198 * if its the only CPU with multiple RT tasks queued, and a large number 2199 * of CPUs scheduling a lower priority task at the same time. 2200 * 2201 * Each root domain has its own irq work function that can iterate over 2202 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 2203 * task must be checked if there's one or many CPUs that are lowering 2204 * their priority, there's a single irq work iterator that will try to 2205 * push off RT tasks that are waiting to run. 2206 * 2207 * When a CPU schedules a lower priority task, it will kick off the 2208 * irq work iterator that will jump to each CPU with overloaded RT tasks. 2209 * As it only takes the first CPU that schedules a lower priority task 2210 * to start the process, the rto_start variable is incremented and if 2211 * the atomic result is one, then that CPU will try to take the rto_lock. 2212 * This prevents high contention on the lock as the process handles all 2213 * CPUs scheduling lower priority tasks. 2214 * 2215 * All CPUs that are scheduling a lower priority task will increment the 2216 * rt_loop_next variable. This will make sure that the irq work iterator 2217 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 2218 * priority task, even if the iterator is in the middle of a scan. Incrementing 2219 * the rt_loop_next will cause the iterator to perform another scan. 2220 * 2221 */ 2222 static int rto_next_cpu(struct root_domain *rd) 2223 { 2224 int next; 2225 int cpu; 2226 2227 /* 2228 * When starting the IPI RT pushing, the rto_cpu is set to -1, 2229 * rt_next_cpu() will simply return the first CPU found in 2230 * the rto_mask. 2231 * 2232 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it 2233 * will return the next CPU found in the rto_mask. 2234 * 2235 * If there are no more CPUs left in the rto_mask, then a check is made 2236 * against rto_loop and rto_loop_next. rto_loop is only updated with 2237 * the rto_lock held, but any CPU may increment the rto_loop_next 2238 * without any locking. 2239 */ 2240 for (;;) { 2241 2242 /* When rto_cpu is -1 this acts like cpumask_first() */ 2243 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 2244 2245 rd->rto_cpu = cpu; 2246 2247 if (cpu < nr_cpu_ids) 2248 return cpu; 2249 2250 rd->rto_cpu = -1; 2251 2252 /* 2253 * ACQUIRE ensures we see the @rto_mask changes 2254 * made prior to the @next value observed. 2255 * 2256 * Matches WMB in rt_set_overload(). 2257 */ 2258 next = atomic_read_acquire(&rd->rto_loop_next); 2259 2260 if (rd->rto_loop == next) 2261 break; 2262 2263 rd->rto_loop = next; 2264 } 2265 2266 return -1; 2267 } 2268 2269 static inline bool rto_start_trylock(atomic_t *v) 2270 { 2271 return !atomic_cmpxchg_acquire(v, 0, 1); 2272 } 2273 2274 static inline void rto_start_unlock(atomic_t *v) 2275 { 2276 atomic_set_release(v, 0); 2277 } 2278 2279 static void tell_cpu_to_push(struct rq *rq) 2280 { 2281 int cpu = -1; 2282 2283 /* Keep the loop going if the IPI is currently active */ 2284 atomic_inc(&rq->rd->rto_loop_next); 2285 2286 /* Only one CPU can initiate a loop at a time */ 2287 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 2288 return; 2289 2290 raw_spin_lock(&rq->rd->rto_lock); 2291 2292 /* 2293 * The rto_cpu is updated under the lock, if it has a valid CPU 2294 * then the IPI is still running and will continue due to the 2295 * update to loop_next, and nothing needs to be done here. 2296 * Otherwise it is finishing up and an ipi needs to be sent. 2297 */ 2298 if (rq->rd->rto_cpu < 0) 2299 cpu = rto_next_cpu(rq->rd); 2300 2301 raw_spin_unlock(&rq->rd->rto_lock); 2302 2303 rto_start_unlock(&rq->rd->rto_loop_start); 2304 2305 if (cpu >= 0) { 2306 /* Make sure the rd does not get freed while pushing */ 2307 sched_get_rd(rq->rd); 2308 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 2309 } 2310 } 2311 2312 /* Called from hardirq context */ 2313 void rto_push_irq_work_func(struct irq_work *work) 2314 { 2315 struct root_domain *rd = 2316 container_of(work, struct root_domain, rto_push_work); 2317 struct rq *rq; 2318 int cpu; 2319 2320 rq = this_rq(); 2321 2322 /* 2323 * We do not need to grab the lock to check for has_pushable_tasks. 2324 * When it gets updated, a check is made if a push is possible. 2325 */ 2326 if (has_pushable_tasks(rq)) { 2327 raw_spin_rq_lock(rq); 2328 while (push_rt_task(rq, true)) 2329 ; 2330 raw_spin_rq_unlock(rq); 2331 } 2332 2333 raw_spin_lock(&rd->rto_lock); 2334 2335 /* Pass the IPI to the next rt overloaded queue */ 2336 cpu = rto_next_cpu(rd); 2337 2338 raw_spin_unlock(&rd->rto_lock); 2339 2340 if (cpu < 0) { 2341 sched_put_rd(rd); 2342 return; 2343 } 2344 2345 /* Try the next RT overloaded CPU */ 2346 irq_work_queue_on(&rd->rto_push_work, cpu); 2347 } 2348 #endif /* HAVE_RT_PUSH_IPI */ 2349 2350 static void pull_rt_task(struct rq *this_rq) 2351 { 2352 int this_cpu = this_rq->cpu, cpu; 2353 bool resched = false; 2354 struct task_struct *p, *push_task; 2355 struct rq *src_rq; 2356 int rt_overload_count = rt_overloaded(this_rq); 2357 2358 if (likely(!rt_overload_count)) 2359 return; 2360 2361 /* 2362 * Match the barrier from rt_set_overloaded; this guarantees that if we 2363 * see overloaded we must also see the rto_mask bit. 2364 */ 2365 smp_rmb(); 2366 2367 /* If we are the only overloaded CPU do nothing */ 2368 if (rt_overload_count == 1 && 2369 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2370 return; 2371 2372 #ifdef HAVE_RT_PUSH_IPI 2373 if (sched_feat(RT_PUSH_IPI)) { 2374 tell_cpu_to_push(this_rq); 2375 return; 2376 } 2377 #endif 2378 2379 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2380 if (this_cpu == cpu) 2381 continue; 2382 2383 src_rq = cpu_rq(cpu); 2384 2385 /* 2386 * Don't bother taking the src_rq->lock if the next highest 2387 * task is known to be lower-priority than our current task. 2388 * This may look racy, but if this value is about to go 2389 * logically higher, the src_rq will push this task away. 2390 * And if its going logically lower, we do not care 2391 */ 2392 if (src_rq->rt.highest_prio.next >= 2393 this_rq->rt.highest_prio.curr) 2394 continue; 2395 2396 /* 2397 * We can potentially drop this_rq's lock in 2398 * double_lock_balance, and another CPU could 2399 * alter this_rq 2400 */ 2401 push_task = NULL; 2402 double_lock_balance(this_rq, src_rq); 2403 2404 /* 2405 * We can pull only a task, which is pushable 2406 * on its rq, and no others. 2407 */ 2408 p = pick_highest_pushable_task(src_rq, this_cpu); 2409 2410 /* 2411 * Do we have an RT task that preempts 2412 * the to-be-scheduled task? 2413 */ 2414 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2415 WARN_ON(p == src_rq->curr); 2416 WARN_ON(!task_on_rq_queued(p)); 2417 2418 /* 2419 * There's a chance that p is higher in priority 2420 * than what's currently running on its CPU. 2421 * This is just that p is waking up and hasn't 2422 * had a chance to schedule. We only pull 2423 * p if it is lower in priority than the 2424 * current task on the run queue 2425 */ 2426 if (p->prio < src_rq->curr->prio) 2427 goto skip; 2428 2429 if (is_migration_disabled(p)) { 2430 push_task = get_push_task(src_rq); 2431 } else { 2432 deactivate_task(src_rq, p, 0); 2433 set_task_cpu(p, this_cpu); 2434 activate_task(this_rq, p, 0); 2435 resched = true; 2436 } 2437 /* 2438 * We continue with the search, just in 2439 * case there's an even higher prio task 2440 * in another runqueue. (low likelihood 2441 * but possible) 2442 */ 2443 } 2444 skip: 2445 double_unlock_balance(this_rq, src_rq); 2446 2447 if (push_task) { 2448 preempt_disable(); 2449 raw_spin_rq_unlock(this_rq); 2450 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2451 push_task, &src_rq->push_work); 2452 preempt_enable(); 2453 raw_spin_rq_lock(this_rq); 2454 } 2455 } 2456 2457 if (resched) 2458 resched_curr(this_rq); 2459 } 2460 2461 /* 2462 * If we are not running and we are not going to reschedule soon, we should 2463 * try to push tasks away now 2464 */ 2465 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2466 { 2467 bool need_to_push = !task_on_cpu(rq, p) && 2468 !test_tsk_need_resched(rq->curr) && 2469 p->nr_cpus_allowed > 1 && 2470 (dl_task(rq->curr) || rt_task(rq->curr)) && 2471 (rq->curr->nr_cpus_allowed < 2 || 2472 rq->curr->prio <= p->prio); 2473 2474 if (need_to_push) 2475 push_rt_tasks(rq); 2476 } 2477 2478 /* Assumes rq->lock is held */ 2479 static void rq_online_rt(struct rq *rq) 2480 { 2481 if (rq->rt.overloaded) 2482 rt_set_overload(rq); 2483 2484 __enable_runtime(rq); 2485 2486 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2487 } 2488 2489 /* Assumes rq->lock is held */ 2490 static void rq_offline_rt(struct rq *rq) 2491 { 2492 if (rq->rt.overloaded) 2493 rt_clear_overload(rq); 2494 2495 __disable_runtime(rq); 2496 2497 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2498 } 2499 2500 /* 2501 * When switch from the rt queue, we bring ourselves to a position 2502 * that we might want to pull RT tasks from other runqueues. 2503 */ 2504 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2505 { 2506 /* 2507 * If there are other RT tasks then we will reschedule 2508 * and the scheduling of the other RT tasks will handle 2509 * the balancing. But if we are the last RT task 2510 * we may need to handle the pulling of RT tasks 2511 * now. 2512 */ 2513 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2514 return; 2515 2516 rt_queue_pull_task(rq); 2517 } 2518 2519 void __init init_sched_rt_class(void) 2520 { 2521 unsigned int i; 2522 2523 for_each_possible_cpu(i) { 2524 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2525 GFP_KERNEL, cpu_to_node(i)); 2526 } 2527 } 2528 #endif /* CONFIG_SMP */ 2529 2530 /* 2531 * When switching a task to RT, we may overload the runqueue 2532 * with RT tasks. In this case we try to push them off to 2533 * other runqueues. 2534 */ 2535 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2536 { 2537 /* 2538 * If we are running, update the avg_rt tracking, as the running time 2539 * will now on be accounted into the latter. 2540 */ 2541 if (task_current(rq, p)) { 2542 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2543 return; 2544 } 2545 2546 /* 2547 * If we are not running we may need to preempt the current 2548 * running task. If that current running task is also an RT task 2549 * then see if we can move to another run queue. 2550 */ 2551 if (task_on_rq_queued(p)) { 2552 #ifdef CONFIG_SMP 2553 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2554 rt_queue_push_tasks(rq); 2555 #endif /* CONFIG_SMP */ 2556 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) 2557 resched_curr(rq); 2558 } 2559 } 2560 2561 /* 2562 * Priority of the task has changed. This may cause 2563 * us to initiate a push or pull. 2564 */ 2565 static void 2566 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2567 { 2568 if (!task_on_rq_queued(p)) 2569 return; 2570 2571 if (task_current(rq, p)) { 2572 #ifdef CONFIG_SMP 2573 /* 2574 * If our priority decreases while running, we 2575 * may need to pull tasks to this runqueue. 2576 */ 2577 if (oldprio < p->prio) 2578 rt_queue_pull_task(rq); 2579 2580 /* 2581 * If there's a higher priority task waiting to run 2582 * then reschedule. 2583 */ 2584 if (p->prio > rq->rt.highest_prio.curr) 2585 resched_curr(rq); 2586 #else 2587 /* For UP simply resched on drop of prio */ 2588 if (oldprio < p->prio) 2589 resched_curr(rq); 2590 #endif /* CONFIG_SMP */ 2591 } else { 2592 /* 2593 * This task is not running, but if it is 2594 * greater than the current running task 2595 * then reschedule. 2596 */ 2597 if (p->prio < rq->curr->prio) 2598 resched_curr(rq); 2599 } 2600 } 2601 2602 #ifdef CONFIG_POSIX_TIMERS 2603 static void watchdog(struct rq *rq, struct task_struct *p) 2604 { 2605 unsigned long soft, hard; 2606 2607 /* max may change after cur was read, this will be fixed next tick */ 2608 soft = task_rlimit(p, RLIMIT_RTTIME); 2609 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2610 2611 if (soft != RLIM_INFINITY) { 2612 unsigned long next; 2613 2614 if (p->rt.watchdog_stamp != jiffies) { 2615 p->rt.timeout++; 2616 p->rt.watchdog_stamp = jiffies; 2617 } 2618 2619 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2620 if (p->rt.timeout > next) { 2621 posix_cputimers_rt_watchdog(&p->posix_cputimers, 2622 p->se.sum_exec_runtime); 2623 } 2624 } 2625 } 2626 #else 2627 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2628 #endif 2629 2630 /* 2631 * scheduler tick hitting a task of our scheduling class. 2632 * 2633 * NOTE: This function can be called remotely by the tick offload that 2634 * goes along full dynticks. Therefore no local assumption can be made 2635 * and everything must be accessed through the @rq and @curr passed in 2636 * parameters. 2637 */ 2638 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2639 { 2640 struct sched_rt_entity *rt_se = &p->rt; 2641 2642 update_curr_rt(rq); 2643 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2644 2645 watchdog(rq, p); 2646 2647 /* 2648 * RR tasks need a special form of timeslice management. 2649 * FIFO tasks have no timeslices. 2650 */ 2651 if (p->policy != SCHED_RR) 2652 return; 2653 2654 if (--p->rt.time_slice) 2655 return; 2656 2657 p->rt.time_slice = sched_rr_timeslice; 2658 2659 /* 2660 * Requeue to the end of queue if we (and all of our ancestors) are not 2661 * the only element on the queue 2662 */ 2663 for_each_sched_rt_entity(rt_se) { 2664 if (rt_se->run_list.prev != rt_se->run_list.next) { 2665 requeue_task_rt(rq, p, 0); 2666 resched_curr(rq); 2667 return; 2668 } 2669 } 2670 } 2671 2672 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2673 { 2674 /* 2675 * Time slice is 0 for SCHED_FIFO tasks 2676 */ 2677 if (task->policy == SCHED_RR) 2678 return sched_rr_timeslice; 2679 else 2680 return 0; 2681 } 2682 2683 #ifdef CONFIG_SCHED_CORE 2684 static int task_is_throttled_rt(struct task_struct *p, int cpu) 2685 { 2686 struct rt_rq *rt_rq; 2687 2688 #ifdef CONFIG_RT_GROUP_SCHED 2689 rt_rq = task_group(p)->rt_rq[cpu]; 2690 #else 2691 rt_rq = &cpu_rq(cpu)->rt; 2692 #endif 2693 2694 return rt_rq_throttled(rt_rq); 2695 } 2696 #endif 2697 2698 DEFINE_SCHED_CLASS(rt) = { 2699 2700 .enqueue_task = enqueue_task_rt, 2701 .dequeue_task = dequeue_task_rt, 2702 .yield_task = yield_task_rt, 2703 2704 .wakeup_preempt = wakeup_preempt_rt, 2705 2706 .pick_next_task = pick_next_task_rt, 2707 .put_prev_task = put_prev_task_rt, 2708 .set_next_task = set_next_task_rt, 2709 2710 #ifdef CONFIG_SMP 2711 .balance = balance_rt, 2712 .pick_task = pick_task_rt, 2713 .select_task_rq = select_task_rq_rt, 2714 .set_cpus_allowed = set_cpus_allowed_common, 2715 .rq_online = rq_online_rt, 2716 .rq_offline = rq_offline_rt, 2717 .task_woken = task_woken_rt, 2718 .switched_from = switched_from_rt, 2719 .find_lock_rq = find_lock_lowest_rq, 2720 #endif 2721 2722 .task_tick = task_tick_rt, 2723 2724 .get_rr_interval = get_rr_interval_rt, 2725 2726 .prio_changed = prio_changed_rt, 2727 .switched_to = switched_to_rt, 2728 2729 .update_curr = update_curr_rt, 2730 2731 #ifdef CONFIG_SCHED_CORE 2732 .task_is_throttled = task_is_throttled_rt, 2733 #endif 2734 2735 #ifdef CONFIG_UCLAMP_TASK 2736 .uclamp_enabled = 1, 2737 #endif 2738 }; 2739 2740 #ifdef CONFIG_RT_GROUP_SCHED 2741 /* 2742 * Ensure that the real time constraints are schedulable. 2743 */ 2744 static DEFINE_MUTEX(rt_constraints_mutex); 2745 2746 static inline int tg_has_rt_tasks(struct task_group *tg) 2747 { 2748 struct task_struct *task; 2749 struct css_task_iter it; 2750 int ret = 0; 2751 2752 /* 2753 * Autogroups do not have RT tasks; see autogroup_create(). 2754 */ 2755 if (task_group_is_autogroup(tg)) 2756 return 0; 2757 2758 css_task_iter_start(&tg->css, 0, &it); 2759 while (!ret && (task = css_task_iter_next(&it))) 2760 ret |= rt_task(task); 2761 css_task_iter_end(&it); 2762 2763 return ret; 2764 } 2765 2766 struct rt_schedulable_data { 2767 struct task_group *tg; 2768 u64 rt_period; 2769 u64 rt_runtime; 2770 }; 2771 2772 static int tg_rt_schedulable(struct task_group *tg, void *data) 2773 { 2774 struct rt_schedulable_data *d = data; 2775 struct task_group *child; 2776 unsigned long total, sum = 0; 2777 u64 period, runtime; 2778 2779 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2780 runtime = tg->rt_bandwidth.rt_runtime; 2781 2782 if (tg == d->tg) { 2783 period = d->rt_period; 2784 runtime = d->rt_runtime; 2785 } 2786 2787 /* 2788 * Cannot have more runtime than the period. 2789 */ 2790 if (runtime > period && runtime != RUNTIME_INF) 2791 return -EINVAL; 2792 2793 /* 2794 * Ensure we don't starve existing RT tasks if runtime turns zero. 2795 */ 2796 if (rt_bandwidth_enabled() && !runtime && 2797 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg)) 2798 return -EBUSY; 2799 2800 total = to_ratio(period, runtime); 2801 2802 /* 2803 * Nobody can have more than the global setting allows. 2804 */ 2805 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2806 return -EINVAL; 2807 2808 /* 2809 * The sum of our children's runtime should not exceed our own. 2810 */ 2811 list_for_each_entry_rcu(child, &tg->children, siblings) { 2812 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2813 runtime = child->rt_bandwidth.rt_runtime; 2814 2815 if (child == d->tg) { 2816 period = d->rt_period; 2817 runtime = d->rt_runtime; 2818 } 2819 2820 sum += to_ratio(period, runtime); 2821 } 2822 2823 if (sum > total) 2824 return -EINVAL; 2825 2826 return 0; 2827 } 2828 2829 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2830 { 2831 int ret; 2832 2833 struct rt_schedulable_data data = { 2834 .tg = tg, 2835 .rt_period = period, 2836 .rt_runtime = runtime, 2837 }; 2838 2839 rcu_read_lock(); 2840 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2841 rcu_read_unlock(); 2842 2843 return ret; 2844 } 2845 2846 static int tg_set_rt_bandwidth(struct task_group *tg, 2847 u64 rt_period, u64 rt_runtime) 2848 { 2849 int i, err = 0; 2850 2851 /* 2852 * Disallowing the root group RT runtime is BAD, it would disallow the 2853 * kernel creating (and or operating) RT threads. 2854 */ 2855 if (tg == &root_task_group && rt_runtime == 0) 2856 return -EINVAL; 2857 2858 /* No period doesn't make any sense. */ 2859 if (rt_period == 0) 2860 return -EINVAL; 2861 2862 /* 2863 * Bound quota to defend quota against overflow during bandwidth shift. 2864 */ 2865 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime) 2866 return -EINVAL; 2867 2868 mutex_lock(&rt_constraints_mutex); 2869 err = __rt_schedulable(tg, rt_period, rt_runtime); 2870 if (err) 2871 goto unlock; 2872 2873 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2874 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2875 tg->rt_bandwidth.rt_runtime = rt_runtime; 2876 2877 for_each_possible_cpu(i) { 2878 struct rt_rq *rt_rq = tg->rt_rq[i]; 2879 2880 raw_spin_lock(&rt_rq->rt_runtime_lock); 2881 rt_rq->rt_runtime = rt_runtime; 2882 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2883 } 2884 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2885 unlock: 2886 mutex_unlock(&rt_constraints_mutex); 2887 2888 return err; 2889 } 2890 2891 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2892 { 2893 u64 rt_runtime, rt_period; 2894 2895 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2896 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2897 if (rt_runtime_us < 0) 2898 rt_runtime = RUNTIME_INF; 2899 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) 2900 return -EINVAL; 2901 2902 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2903 } 2904 2905 long sched_group_rt_runtime(struct task_group *tg) 2906 { 2907 u64 rt_runtime_us; 2908 2909 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2910 return -1; 2911 2912 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2913 do_div(rt_runtime_us, NSEC_PER_USEC); 2914 return rt_runtime_us; 2915 } 2916 2917 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2918 { 2919 u64 rt_runtime, rt_period; 2920 2921 if (rt_period_us > U64_MAX / NSEC_PER_USEC) 2922 return -EINVAL; 2923 2924 rt_period = rt_period_us * NSEC_PER_USEC; 2925 rt_runtime = tg->rt_bandwidth.rt_runtime; 2926 2927 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2928 } 2929 2930 long sched_group_rt_period(struct task_group *tg) 2931 { 2932 u64 rt_period_us; 2933 2934 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2935 do_div(rt_period_us, NSEC_PER_USEC); 2936 return rt_period_us; 2937 } 2938 2939 #ifdef CONFIG_SYSCTL 2940 static int sched_rt_global_constraints(void) 2941 { 2942 int ret = 0; 2943 2944 mutex_lock(&rt_constraints_mutex); 2945 ret = __rt_schedulable(NULL, 0, 0); 2946 mutex_unlock(&rt_constraints_mutex); 2947 2948 return ret; 2949 } 2950 #endif /* CONFIG_SYSCTL */ 2951 2952 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2953 { 2954 /* Don't accept realtime tasks when there is no way for them to run */ 2955 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2956 return 0; 2957 2958 return 1; 2959 } 2960 2961 #else /* !CONFIG_RT_GROUP_SCHED */ 2962 2963 #ifdef CONFIG_SYSCTL 2964 static int sched_rt_global_constraints(void) 2965 { 2966 unsigned long flags; 2967 int i; 2968 2969 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2970 for_each_possible_cpu(i) { 2971 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2972 2973 raw_spin_lock(&rt_rq->rt_runtime_lock); 2974 rt_rq->rt_runtime = global_rt_runtime(); 2975 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2976 } 2977 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2978 2979 return 0; 2980 } 2981 #endif /* CONFIG_SYSCTL */ 2982 #endif /* CONFIG_RT_GROUP_SCHED */ 2983 2984 #ifdef CONFIG_SYSCTL 2985 static int sched_rt_global_validate(void) 2986 { 2987 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2988 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) || 2989 ((u64)sysctl_sched_rt_runtime * 2990 NSEC_PER_USEC > max_rt_runtime))) 2991 return -EINVAL; 2992 2993 return 0; 2994 } 2995 2996 static void sched_rt_do_global(void) 2997 { 2998 unsigned long flags; 2999 3000 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 3001 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 3002 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 3003 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 3004 } 3005 3006 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer, 3007 size_t *lenp, loff_t *ppos) 3008 { 3009 int old_period, old_runtime; 3010 static DEFINE_MUTEX(mutex); 3011 int ret; 3012 3013 mutex_lock(&mutex); 3014 old_period = sysctl_sched_rt_period; 3015 old_runtime = sysctl_sched_rt_runtime; 3016 3017 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3018 3019 if (!ret && write) { 3020 ret = sched_rt_global_validate(); 3021 if (ret) 3022 goto undo; 3023 3024 ret = sched_dl_global_validate(); 3025 if (ret) 3026 goto undo; 3027 3028 ret = sched_rt_global_constraints(); 3029 if (ret) 3030 goto undo; 3031 3032 sched_rt_do_global(); 3033 sched_dl_do_global(); 3034 } 3035 if (0) { 3036 undo: 3037 sysctl_sched_rt_period = old_period; 3038 sysctl_sched_rt_runtime = old_runtime; 3039 } 3040 mutex_unlock(&mutex); 3041 3042 return ret; 3043 } 3044 3045 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer, 3046 size_t *lenp, loff_t *ppos) 3047 { 3048 int ret; 3049 static DEFINE_MUTEX(mutex); 3050 3051 mutex_lock(&mutex); 3052 ret = proc_dointvec(table, write, buffer, lenp, ppos); 3053 /* 3054 * Make sure that internally we keep jiffies. 3055 * Also, writing zero resets the timeslice to default: 3056 */ 3057 if (!ret && write) { 3058 sched_rr_timeslice = 3059 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 3060 msecs_to_jiffies(sysctl_sched_rr_timeslice); 3061 3062 if (sysctl_sched_rr_timeslice <= 0) 3063 sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE); 3064 } 3065 mutex_unlock(&mutex); 3066 3067 return ret; 3068 } 3069 #endif /* CONFIG_SYSCTL */ 3070 3071 #ifdef CONFIG_SCHED_DEBUG 3072 void print_rt_stats(struct seq_file *m, int cpu) 3073 { 3074 rt_rq_iter_t iter; 3075 struct rt_rq *rt_rq; 3076 3077 rcu_read_lock(); 3078 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 3079 print_rt_rq(m, cpu, rt_rq); 3080 rcu_read_unlock(); 3081 } 3082 #endif /* CONFIG_SCHED_DEBUG */ 3083