xref: /openbmc/linux/kernel/sched/rt.c (revision 11dc486ed5d4626e6b92a23b67ed76cb6c48bfc9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
10 
11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12 
13 struct rt_bandwidth def_rt_bandwidth;
14 
15 /*
16  * period over which we measure -rt task CPU usage in us.
17  * default: 1s
18  */
19 unsigned int sysctl_sched_rt_period = 1000000;
20 
21 /*
22  * part of the period that we allow rt tasks to run in us.
23  * default: 0.95s
24  */
25 int sysctl_sched_rt_runtime = 950000;
26 
27 #ifdef CONFIG_SYSCTL
28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
30 		size_t *lenp, loff_t *ppos);
31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
32 		size_t *lenp, loff_t *ppos);
33 static struct ctl_table sched_rt_sysctls[] = {
34 	{
35 		.procname       = "sched_rt_period_us",
36 		.data           = &sysctl_sched_rt_period,
37 		.maxlen         = sizeof(unsigned int),
38 		.mode           = 0644,
39 		.proc_handler   = sched_rt_handler,
40 		.extra1         = SYSCTL_ONE,
41 		.extra2         = SYSCTL_INT_MAX,
42 	},
43 	{
44 		.procname       = "sched_rt_runtime_us",
45 		.data           = &sysctl_sched_rt_runtime,
46 		.maxlen         = sizeof(int),
47 		.mode           = 0644,
48 		.proc_handler   = sched_rt_handler,
49 		.extra1         = SYSCTL_NEG_ONE,
50 		.extra2         = SYSCTL_INT_MAX,
51 	},
52 	{
53 		.procname       = "sched_rr_timeslice_ms",
54 		.data           = &sysctl_sched_rr_timeslice,
55 		.maxlen         = sizeof(int),
56 		.mode           = 0644,
57 		.proc_handler   = sched_rr_handler,
58 	},
59 	{}
60 };
61 
62 static int __init sched_rt_sysctl_init(void)
63 {
64 	register_sysctl_init("kernel", sched_rt_sysctls);
65 	return 0;
66 }
67 late_initcall(sched_rt_sysctl_init);
68 #endif
69 
70 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
71 {
72 	struct rt_bandwidth *rt_b =
73 		container_of(timer, struct rt_bandwidth, rt_period_timer);
74 	int idle = 0;
75 	int overrun;
76 
77 	raw_spin_lock(&rt_b->rt_runtime_lock);
78 	for (;;) {
79 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
80 		if (!overrun)
81 			break;
82 
83 		raw_spin_unlock(&rt_b->rt_runtime_lock);
84 		idle = do_sched_rt_period_timer(rt_b, overrun);
85 		raw_spin_lock(&rt_b->rt_runtime_lock);
86 	}
87 	if (idle)
88 		rt_b->rt_period_active = 0;
89 	raw_spin_unlock(&rt_b->rt_runtime_lock);
90 
91 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
92 }
93 
94 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
95 {
96 	rt_b->rt_period = ns_to_ktime(period);
97 	rt_b->rt_runtime = runtime;
98 
99 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
100 
101 	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
102 		     HRTIMER_MODE_REL_HARD);
103 	rt_b->rt_period_timer.function = sched_rt_period_timer;
104 }
105 
106 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
107 {
108 	raw_spin_lock(&rt_b->rt_runtime_lock);
109 	if (!rt_b->rt_period_active) {
110 		rt_b->rt_period_active = 1;
111 		/*
112 		 * SCHED_DEADLINE updates the bandwidth, as a run away
113 		 * RT task with a DL task could hog a CPU. But DL does
114 		 * not reset the period. If a deadline task was running
115 		 * without an RT task running, it can cause RT tasks to
116 		 * throttle when they start up. Kick the timer right away
117 		 * to update the period.
118 		 */
119 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
120 		hrtimer_start_expires(&rt_b->rt_period_timer,
121 				      HRTIMER_MODE_ABS_PINNED_HARD);
122 	}
123 	raw_spin_unlock(&rt_b->rt_runtime_lock);
124 }
125 
126 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
127 {
128 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
129 		return;
130 
131 	do_start_rt_bandwidth(rt_b);
132 }
133 
134 void init_rt_rq(struct rt_rq *rt_rq)
135 {
136 	struct rt_prio_array *array;
137 	int i;
138 
139 	array = &rt_rq->active;
140 	for (i = 0; i < MAX_RT_PRIO; i++) {
141 		INIT_LIST_HEAD(array->queue + i);
142 		__clear_bit(i, array->bitmap);
143 	}
144 	/* delimiter for bitsearch: */
145 	__set_bit(MAX_RT_PRIO, array->bitmap);
146 
147 #if defined CONFIG_SMP
148 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
149 	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
150 	rt_rq->rt_nr_migratory = 0;
151 	rt_rq->overloaded = 0;
152 	plist_head_init(&rt_rq->pushable_tasks);
153 #endif /* CONFIG_SMP */
154 	/* We start is dequeued state, because no RT tasks are queued */
155 	rt_rq->rt_queued = 0;
156 
157 	rt_rq->rt_time = 0;
158 	rt_rq->rt_throttled = 0;
159 	rt_rq->rt_runtime = 0;
160 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
161 }
162 
163 #ifdef CONFIG_RT_GROUP_SCHED
164 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
165 {
166 	hrtimer_cancel(&rt_b->rt_period_timer);
167 }
168 
169 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
170 
171 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
172 {
173 #ifdef CONFIG_SCHED_DEBUG
174 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
175 #endif
176 	return container_of(rt_se, struct task_struct, rt);
177 }
178 
179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180 {
181 	return rt_rq->rq;
182 }
183 
184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185 {
186 	return rt_se->rt_rq;
187 }
188 
189 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
190 {
191 	struct rt_rq *rt_rq = rt_se->rt_rq;
192 
193 	return rt_rq->rq;
194 }
195 
196 void unregister_rt_sched_group(struct task_group *tg)
197 {
198 	if (tg->rt_se)
199 		destroy_rt_bandwidth(&tg->rt_bandwidth);
200 
201 }
202 
203 void free_rt_sched_group(struct task_group *tg)
204 {
205 	int i;
206 
207 	for_each_possible_cpu(i) {
208 		if (tg->rt_rq)
209 			kfree(tg->rt_rq[i]);
210 		if (tg->rt_se)
211 			kfree(tg->rt_se[i]);
212 	}
213 
214 	kfree(tg->rt_rq);
215 	kfree(tg->rt_se);
216 }
217 
218 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
219 		struct sched_rt_entity *rt_se, int cpu,
220 		struct sched_rt_entity *parent)
221 {
222 	struct rq *rq = cpu_rq(cpu);
223 
224 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
225 	rt_rq->rt_nr_boosted = 0;
226 	rt_rq->rq = rq;
227 	rt_rq->tg = tg;
228 
229 	tg->rt_rq[cpu] = rt_rq;
230 	tg->rt_se[cpu] = rt_se;
231 
232 	if (!rt_se)
233 		return;
234 
235 	if (!parent)
236 		rt_se->rt_rq = &rq->rt;
237 	else
238 		rt_se->rt_rq = parent->my_q;
239 
240 	rt_se->my_q = rt_rq;
241 	rt_se->parent = parent;
242 	INIT_LIST_HEAD(&rt_se->run_list);
243 }
244 
245 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
246 {
247 	struct rt_rq *rt_rq;
248 	struct sched_rt_entity *rt_se;
249 	int i;
250 
251 	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
252 	if (!tg->rt_rq)
253 		goto err;
254 	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
255 	if (!tg->rt_se)
256 		goto err;
257 
258 	init_rt_bandwidth(&tg->rt_bandwidth,
259 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
260 
261 	for_each_possible_cpu(i) {
262 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
263 				     GFP_KERNEL, cpu_to_node(i));
264 		if (!rt_rq)
265 			goto err;
266 
267 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
268 				     GFP_KERNEL, cpu_to_node(i));
269 		if (!rt_se)
270 			goto err_free_rq;
271 
272 		init_rt_rq(rt_rq);
273 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
274 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
275 	}
276 
277 	return 1;
278 
279 err_free_rq:
280 	kfree(rt_rq);
281 err:
282 	return 0;
283 }
284 
285 #else /* CONFIG_RT_GROUP_SCHED */
286 
287 #define rt_entity_is_task(rt_se) (1)
288 
289 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
290 {
291 	return container_of(rt_se, struct task_struct, rt);
292 }
293 
294 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
295 {
296 	return container_of(rt_rq, struct rq, rt);
297 }
298 
299 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
300 {
301 	struct task_struct *p = rt_task_of(rt_se);
302 
303 	return task_rq(p);
304 }
305 
306 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
307 {
308 	struct rq *rq = rq_of_rt_se(rt_se);
309 
310 	return &rq->rt;
311 }
312 
313 void unregister_rt_sched_group(struct task_group *tg) { }
314 
315 void free_rt_sched_group(struct task_group *tg) { }
316 
317 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
318 {
319 	return 1;
320 }
321 #endif /* CONFIG_RT_GROUP_SCHED */
322 
323 #ifdef CONFIG_SMP
324 
325 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
326 {
327 	/* Try to pull RT tasks here if we lower this rq's prio */
328 	return rq->online && rq->rt.highest_prio.curr > prev->prio;
329 }
330 
331 static inline int rt_overloaded(struct rq *rq)
332 {
333 	return atomic_read(&rq->rd->rto_count);
334 }
335 
336 static inline void rt_set_overload(struct rq *rq)
337 {
338 	if (!rq->online)
339 		return;
340 
341 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
342 	/*
343 	 * Make sure the mask is visible before we set
344 	 * the overload count. That is checked to determine
345 	 * if we should look at the mask. It would be a shame
346 	 * if we looked at the mask, but the mask was not
347 	 * updated yet.
348 	 *
349 	 * Matched by the barrier in pull_rt_task().
350 	 */
351 	smp_wmb();
352 	atomic_inc(&rq->rd->rto_count);
353 }
354 
355 static inline void rt_clear_overload(struct rq *rq)
356 {
357 	if (!rq->online)
358 		return;
359 
360 	/* the order here really doesn't matter */
361 	atomic_dec(&rq->rd->rto_count);
362 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
363 }
364 
365 static void update_rt_migration(struct rt_rq *rt_rq)
366 {
367 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
368 		if (!rt_rq->overloaded) {
369 			rt_set_overload(rq_of_rt_rq(rt_rq));
370 			rt_rq->overloaded = 1;
371 		}
372 	} else if (rt_rq->overloaded) {
373 		rt_clear_overload(rq_of_rt_rq(rt_rq));
374 		rt_rq->overloaded = 0;
375 	}
376 }
377 
378 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
379 {
380 	struct task_struct *p;
381 
382 	if (!rt_entity_is_task(rt_se))
383 		return;
384 
385 	p = rt_task_of(rt_se);
386 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
387 
388 	rt_rq->rt_nr_total++;
389 	if (p->nr_cpus_allowed > 1)
390 		rt_rq->rt_nr_migratory++;
391 
392 	update_rt_migration(rt_rq);
393 }
394 
395 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
396 {
397 	struct task_struct *p;
398 
399 	if (!rt_entity_is_task(rt_se))
400 		return;
401 
402 	p = rt_task_of(rt_se);
403 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
404 
405 	rt_rq->rt_nr_total--;
406 	if (p->nr_cpus_allowed > 1)
407 		rt_rq->rt_nr_migratory--;
408 
409 	update_rt_migration(rt_rq);
410 }
411 
412 static inline int has_pushable_tasks(struct rq *rq)
413 {
414 	return !plist_head_empty(&rq->rt.pushable_tasks);
415 }
416 
417 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
418 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
419 
420 static void push_rt_tasks(struct rq *);
421 static void pull_rt_task(struct rq *);
422 
423 static inline void rt_queue_push_tasks(struct rq *rq)
424 {
425 	if (!has_pushable_tasks(rq))
426 		return;
427 
428 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
429 }
430 
431 static inline void rt_queue_pull_task(struct rq *rq)
432 {
433 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
434 }
435 
436 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
437 {
438 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
439 	plist_node_init(&p->pushable_tasks, p->prio);
440 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
441 
442 	/* Update the highest prio pushable task */
443 	if (p->prio < rq->rt.highest_prio.next)
444 		rq->rt.highest_prio.next = p->prio;
445 }
446 
447 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
448 {
449 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
450 
451 	/* Update the new highest prio pushable task */
452 	if (has_pushable_tasks(rq)) {
453 		p = plist_first_entry(&rq->rt.pushable_tasks,
454 				      struct task_struct, pushable_tasks);
455 		rq->rt.highest_prio.next = p->prio;
456 	} else {
457 		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
458 	}
459 }
460 
461 #else
462 
463 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
464 {
465 }
466 
467 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
468 {
469 }
470 
471 static inline
472 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
473 {
474 }
475 
476 static inline
477 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
478 {
479 }
480 
481 static inline void rt_queue_push_tasks(struct rq *rq)
482 {
483 }
484 #endif /* CONFIG_SMP */
485 
486 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
487 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
488 
489 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
490 {
491 	return rt_se->on_rq;
492 }
493 
494 #ifdef CONFIG_UCLAMP_TASK
495 /*
496  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
497  * settings.
498  *
499  * This check is only important for heterogeneous systems where uclamp_min value
500  * is higher than the capacity of a @cpu. For non-heterogeneous system this
501  * function will always return true.
502  *
503  * The function will return true if the capacity of the @cpu is >= the
504  * uclamp_min and false otherwise.
505  *
506  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
507  * > uclamp_max.
508  */
509 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
510 {
511 	unsigned int min_cap;
512 	unsigned int max_cap;
513 	unsigned int cpu_cap;
514 
515 	/* Only heterogeneous systems can benefit from this check */
516 	if (!sched_asym_cpucap_active())
517 		return true;
518 
519 	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
520 	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
521 
522 	cpu_cap = capacity_orig_of(cpu);
523 
524 	return cpu_cap >= min(min_cap, max_cap);
525 }
526 #else
527 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
528 {
529 	return true;
530 }
531 #endif
532 
533 #ifdef CONFIG_RT_GROUP_SCHED
534 
535 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
536 {
537 	if (!rt_rq->tg)
538 		return RUNTIME_INF;
539 
540 	return rt_rq->rt_runtime;
541 }
542 
543 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
544 {
545 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
546 }
547 
548 typedef struct task_group *rt_rq_iter_t;
549 
550 static inline struct task_group *next_task_group(struct task_group *tg)
551 {
552 	do {
553 		tg = list_entry_rcu(tg->list.next,
554 			typeof(struct task_group), list);
555 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
556 
557 	if (&tg->list == &task_groups)
558 		tg = NULL;
559 
560 	return tg;
561 }
562 
563 #define for_each_rt_rq(rt_rq, iter, rq)					\
564 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
565 		(iter = next_task_group(iter)) &&			\
566 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
567 
568 #define for_each_sched_rt_entity(rt_se) \
569 	for (; rt_se; rt_se = rt_se->parent)
570 
571 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
572 {
573 	return rt_se->my_q;
574 }
575 
576 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
577 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
578 
579 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
580 {
581 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
582 	struct rq *rq = rq_of_rt_rq(rt_rq);
583 	struct sched_rt_entity *rt_se;
584 
585 	int cpu = cpu_of(rq);
586 
587 	rt_se = rt_rq->tg->rt_se[cpu];
588 
589 	if (rt_rq->rt_nr_running) {
590 		if (!rt_se)
591 			enqueue_top_rt_rq(rt_rq);
592 		else if (!on_rt_rq(rt_se))
593 			enqueue_rt_entity(rt_se, 0);
594 
595 		if (rt_rq->highest_prio.curr < curr->prio)
596 			resched_curr(rq);
597 	}
598 }
599 
600 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
601 {
602 	struct sched_rt_entity *rt_se;
603 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
604 
605 	rt_se = rt_rq->tg->rt_se[cpu];
606 
607 	if (!rt_se) {
608 		dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
609 		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
610 		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
611 	}
612 	else if (on_rt_rq(rt_se))
613 		dequeue_rt_entity(rt_se, 0);
614 }
615 
616 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
617 {
618 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
619 }
620 
621 static int rt_se_boosted(struct sched_rt_entity *rt_se)
622 {
623 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
624 	struct task_struct *p;
625 
626 	if (rt_rq)
627 		return !!rt_rq->rt_nr_boosted;
628 
629 	p = rt_task_of(rt_se);
630 	return p->prio != p->normal_prio;
631 }
632 
633 #ifdef CONFIG_SMP
634 static inline const struct cpumask *sched_rt_period_mask(void)
635 {
636 	return this_rq()->rd->span;
637 }
638 #else
639 static inline const struct cpumask *sched_rt_period_mask(void)
640 {
641 	return cpu_online_mask;
642 }
643 #endif
644 
645 static inline
646 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
647 {
648 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
649 }
650 
651 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
652 {
653 	return &rt_rq->tg->rt_bandwidth;
654 }
655 
656 #else /* !CONFIG_RT_GROUP_SCHED */
657 
658 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
659 {
660 	return rt_rq->rt_runtime;
661 }
662 
663 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
664 {
665 	return ktime_to_ns(def_rt_bandwidth.rt_period);
666 }
667 
668 typedef struct rt_rq *rt_rq_iter_t;
669 
670 #define for_each_rt_rq(rt_rq, iter, rq) \
671 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
672 
673 #define for_each_sched_rt_entity(rt_se) \
674 	for (; rt_se; rt_se = NULL)
675 
676 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
677 {
678 	return NULL;
679 }
680 
681 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
682 {
683 	struct rq *rq = rq_of_rt_rq(rt_rq);
684 
685 	if (!rt_rq->rt_nr_running)
686 		return;
687 
688 	enqueue_top_rt_rq(rt_rq);
689 	resched_curr(rq);
690 }
691 
692 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
693 {
694 	dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
695 }
696 
697 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
698 {
699 	return rt_rq->rt_throttled;
700 }
701 
702 static inline const struct cpumask *sched_rt_period_mask(void)
703 {
704 	return cpu_online_mask;
705 }
706 
707 static inline
708 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
709 {
710 	return &cpu_rq(cpu)->rt;
711 }
712 
713 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
714 {
715 	return &def_rt_bandwidth;
716 }
717 
718 #endif /* CONFIG_RT_GROUP_SCHED */
719 
720 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
721 {
722 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
723 
724 	return (hrtimer_active(&rt_b->rt_period_timer) ||
725 		rt_rq->rt_time < rt_b->rt_runtime);
726 }
727 
728 #ifdef CONFIG_SMP
729 /*
730  * We ran out of runtime, see if we can borrow some from our neighbours.
731  */
732 static void do_balance_runtime(struct rt_rq *rt_rq)
733 {
734 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
735 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
736 	int i, weight;
737 	u64 rt_period;
738 
739 	weight = cpumask_weight(rd->span);
740 
741 	raw_spin_lock(&rt_b->rt_runtime_lock);
742 	rt_period = ktime_to_ns(rt_b->rt_period);
743 	for_each_cpu(i, rd->span) {
744 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
745 		s64 diff;
746 
747 		if (iter == rt_rq)
748 			continue;
749 
750 		raw_spin_lock(&iter->rt_runtime_lock);
751 		/*
752 		 * Either all rqs have inf runtime and there's nothing to steal
753 		 * or __disable_runtime() below sets a specific rq to inf to
754 		 * indicate its been disabled and disallow stealing.
755 		 */
756 		if (iter->rt_runtime == RUNTIME_INF)
757 			goto next;
758 
759 		/*
760 		 * From runqueues with spare time, take 1/n part of their
761 		 * spare time, but no more than our period.
762 		 */
763 		diff = iter->rt_runtime - iter->rt_time;
764 		if (diff > 0) {
765 			diff = div_u64((u64)diff, weight);
766 			if (rt_rq->rt_runtime + diff > rt_period)
767 				diff = rt_period - rt_rq->rt_runtime;
768 			iter->rt_runtime -= diff;
769 			rt_rq->rt_runtime += diff;
770 			if (rt_rq->rt_runtime == rt_period) {
771 				raw_spin_unlock(&iter->rt_runtime_lock);
772 				break;
773 			}
774 		}
775 next:
776 		raw_spin_unlock(&iter->rt_runtime_lock);
777 	}
778 	raw_spin_unlock(&rt_b->rt_runtime_lock);
779 }
780 
781 /*
782  * Ensure this RQ takes back all the runtime it lend to its neighbours.
783  */
784 static void __disable_runtime(struct rq *rq)
785 {
786 	struct root_domain *rd = rq->rd;
787 	rt_rq_iter_t iter;
788 	struct rt_rq *rt_rq;
789 
790 	if (unlikely(!scheduler_running))
791 		return;
792 
793 	for_each_rt_rq(rt_rq, iter, rq) {
794 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
795 		s64 want;
796 		int i;
797 
798 		raw_spin_lock(&rt_b->rt_runtime_lock);
799 		raw_spin_lock(&rt_rq->rt_runtime_lock);
800 		/*
801 		 * Either we're all inf and nobody needs to borrow, or we're
802 		 * already disabled and thus have nothing to do, or we have
803 		 * exactly the right amount of runtime to take out.
804 		 */
805 		if (rt_rq->rt_runtime == RUNTIME_INF ||
806 				rt_rq->rt_runtime == rt_b->rt_runtime)
807 			goto balanced;
808 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
809 
810 		/*
811 		 * Calculate the difference between what we started out with
812 		 * and what we current have, that's the amount of runtime
813 		 * we lend and now have to reclaim.
814 		 */
815 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
816 
817 		/*
818 		 * Greedy reclaim, take back as much as we can.
819 		 */
820 		for_each_cpu(i, rd->span) {
821 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
822 			s64 diff;
823 
824 			/*
825 			 * Can't reclaim from ourselves or disabled runqueues.
826 			 */
827 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
828 				continue;
829 
830 			raw_spin_lock(&iter->rt_runtime_lock);
831 			if (want > 0) {
832 				diff = min_t(s64, iter->rt_runtime, want);
833 				iter->rt_runtime -= diff;
834 				want -= diff;
835 			} else {
836 				iter->rt_runtime -= want;
837 				want -= want;
838 			}
839 			raw_spin_unlock(&iter->rt_runtime_lock);
840 
841 			if (!want)
842 				break;
843 		}
844 
845 		raw_spin_lock(&rt_rq->rt_runtime_lock);
846 		/*
847 		 * We cannot be left wanting - that would mean some runtime
848 		 * leaked out of the system.
849 		 */
850 		WARN_ON_ONCE(want);
851 balanced:
852 		/*
853 		 * Disable all the borrow logic by pretending we have inf
854 		 * runtime - in which case borrowing doesn't make sense.
855 		 */
856 		rt_rq->rt_runtime = RUNTIME_INF;
857 		rt_rq->rt_throttled = 0;
858 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
859 		raw_spin_unlock(&rt_b->rt_runtime_lock);
860 
861 		/* Make rt_rq available for pick_next_task() */
862 		sched_rt_rq_enqueue(rt_rq);
863 	}
864 }
865 
866 static void __enable_runtime(struct rq *rq)
867 {
868 	rt_rq_iter_t iter;
869 	struct rt_rq *rt_rq;
870 
871 	if (unlikely(!scheduler_running))
872 		return;
873 
874 	/*
875 	 * Reset each runqueue's bandwidth settings
876 	 */
877 	for_each_rt_rq(rt_rq, iter, rq) {
878 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
879 
880 		raw_spin_lock(&rt_b->rt_runtime_lock);
881 		raw_spin_lock(&rt_rq->rt_runtime_lock);
882 		rt_rq->rt_runtime = rt_b->rt_runtime;
883 		rt_rq->rt_time = 0;
884 		rt_rq->rt_throttled = 0;
885 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
886 		raw_spin_unlock(&rt_b->rt_runtime_lock);
887 	}
888 }
889 
890 static void balance_runtime(struct rt_rq *rt_rq)
891 {
892 	if (!sched_feat(RT_RUNTIME_SHARE))
893 		return;
894 
895 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
896 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
897 		do_balance_runtime(rt_rq);
898 		raw_spin_lock(&rt_rq->rt_runtime_lock);
899 	}
900 }
901 #else /* !CONFIG_SMP */
902 static inline void balance_runtime(struct rt_rq *rt_rq) {}
903 #endif /* CONFIG_SMP */
904 
905 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
906 {
907 	int i, idle = 1, throttled = 0;
908 	const struct cpumask *span;
909 
910 	span = sched_rt_period_mask();
911 #ifdef CONFIG_RT_GROUP_SCHED
912 	/*
913 	 * FIXME: isolated CPUs should really leave the root task group,
914 	 * whether they are isolcpus or were isolated via cpusets, lest
915 	 * the timer run on a CPU which does not service all runqueues,
916 	 * potentially leaving other CPUs indefinitely throttled.  If
917 	 * isolation is really required, the user will turn the throttle
918 	 * off to kill the perturbations it causes anyway.  Meanwhile,
919 	 * this maintains functionality for boot and/or troubleshooting.
920 	 */
921 	if (rt_b == &root_task_group.rt_bandwidth)
922 		span = cpu_online_mask;
923 #endif
924 	for_each_cpu(i, span) {
925 		int enqueue = 0;
926 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
927 		struct rq *rq = rq_of_rt_rq(rt_rq);
928 		struct rq_flags rf;
929 		int skip;
930 
931 		/*
932 		 * When span == cpu_online_mask, taking each rq->lock
933 		 * can be time-consuming. Try to avoid it when possible.
934 		 */
935 		raw_spin_lock(&rt_rq->rt_runtime_lock);
936 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
937 			rt_rq->rt_runtime = rt_b->rt_runtime;
938 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
939 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
940 		if (skip)
941 			continue;
942 
943 		rq_lock(rq, &rf);
944 		update_rq_clock(rq);
945 
946 		if (rt_rq->rt_time) {
947 			u64 runtime;
948 
949 			raw_spin_lock(&rt_rq->rt_runtime_lock);
950 			if (rt_rq->rt_throttled)
951 				balance_runtime(rt_rq);
952 			runtime = rt_rq->rt_runtime;
953 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
954 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
955 				rt_rq->rt_throttled = 0;
956 				enqueue = 1;
957 
958 				/*
959 				 * When we're idle and a woken (rt) task is
960 				 * throttled wakeup_preempt() will set
961 				 * skip_update and the time between the wakeup
962 				 * and this unthrottle will get accounted as
963 				 * 'runtime'.
964 				 */
965 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
966 					rq_clock_cancel_skipupdate(rq);
967 			}
968 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
969 				idle = 0;
970 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
971 		} else if (rt_rq->rt_nr_running) {
972 			idle = 0;
973 			if (!rt_rq_throttled(rt_rq))
974 				enqueue = 1;
975 		}
976 		if (rt_rq->rt_throttled)
977 			throttled = 1;
978 
979 		if (enqueue)
980 			sched_rt_rq_enqueue(rt_rq);
981 		rq_unlock(rq, &rf);
982 	}
983 
984 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
985 		return 1;
986 
987 	return idle;
988 }
989 
990 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
991 {
992 #ifdef CONFIG_RT_GROUP_SCHED
993 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
994 
995 	if (rt_rq)
996 		return rt_rq->highest_prio.curr;
997 #endif
998 
999 	return rt_task_of(rt_se)->prio;
1000 }
1001 
1002 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
1003 {
1004 	u64 runtime = sched_rt_runtime(rt_rq);
1005 
1006 	if (rt_rq->rt_throttled)
1007 		return rt_rq_throttled(rt_rq);
1008 
1009 	if (runtime >= sched_rt_period(rt_rq))
1010 		return 0;
1011 
1012 	balance_runtime(rt_rq);
1013 	runtime = sched_rt_runtime(rt_rq);
1014 	if (runtime == RUNTIME_INF)
1015 		return 0;
1016 
1017 	if (rt_rq->rt_time > runtime) {
1018 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
1019 
1020 		/*
1021 		 * Don't actually throttle groups that have no runtime assigned
1022 		 * but accrue some time due to boosting.
1023 		 */
1024 		if (likely(rt_b->rt_runtime)) {
1025 			rt_rq->rt_throttled = 1;
1026 			printk_deferred_once("sched: RT throttling activated\n");
1027 		} else {
1028 			/*
1029 			 * In case we did anyway, make it go away,
1030 			 * replenishment is a joke, since it will replenish us
1031 			 * with exactly 0 ns.
1032 			 */
1033 			rt_rq->rt_time = 0;
1034 		}
1035 
1036 		if (rt_rq_throttled(rt_rq)) {
1037 			sched_rt_rq_dequeue(rt_rq);
1038 			return 1;
1039 		}
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 /*
1046  * Update the current task's runtime statistics. Skip current tasks that
1047  * are not in our scheduling class.
1048  */
1049 static void update_curr_rt(struct rq *rq)
1050 {
1051 	struct task_struct *curr = rq->curr;
1052 	struct sched_rt_entity *rt_se = &curr->rt;
1053 	s64 delta_exec;
1054 
1055 	if (curr->sched_class != &rt_sched_class)
1056 		return;
1057 
1058 	delta_exec = update_curr_common(rq);
1059 	if (unlikely(delta_exec <= 0))
1060 		return;
1061 
1062 	if (!rt_bandwidth_enabled())
1063 		return;
1064 
1065 	for_each_sched_rt_entity(rt_se) {
1066 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1067 		int exceeded;
1068 
1069 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1070 			raw_spin_lock(&rt_rq->rt_runtime_lock);
1071 			rt_rq->rt_time += delta_exec;
1072 			exceeded = sched_rt_runtime_exceeded(rt_rq);
1073 			if (exceeded)
1074 				resched_curr(rq);
1075 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1076 			if (exceeded)
1077 				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1078 		}
1079 	}
1080 }
1081 
1082 static void
1083 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1084 {
1085 	struct rq *rq = rq_of_rt_rq(rt_rq);
1086 
1087 	BUG_ON(&rq->rt != rt_rq);
1088 
1089 	if (!rt_rq->rt_queued)
1090 		return;
1091 
1092 	BUG_ON(!rq->nr_running);
1093 
1094 	sub_nr_running(rq, count);
1095 	rt_rq->rt_queued = 0;
1096 
1097 }
1098 
1099 static void
1100 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1101 {
1102 	struct rq *rq = rq_of_rt_rq(rt_rq);
1103 
1104 	BUG_ON(&rq->rt != rt_rq);
1105 
1106 	if (rt_rq->rt_queued)
1107 		return;
1108 
1109 	if (rt_rq_throttled(rt_rq))
1110 		return;
1111 
1112 	if (rt_rq->rt_nr_running) {
1113 		add_nr_running(rq, rt_rq->rt_nr_running);
1114 		rt_rq->rt_queued = 1;
1115 	}
1116 
1117 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1118 	cpufreq_update_util(rq, 0);
1119 }
1120 
1121 #if defined CONFIG_SMP
1122 
1123 static void
1124 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1125 {
1126 	struct rq *rq = rq_of_rt_rq(rt_rq);
1127 
1128 #ifdef CONFIG_RT_GROUP_SCHED
1129 	/*
1130 	 * Change rq's cpupri only if rt_rq is the top queue.
1131 	 */
1132 	if (&rq->rt != rt_rq)
1133 		return;
1134 #endif
1135 	if (rq->online && prio < prev_prio)
1136 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1137 }
1138 
1139 static void
1140 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1141 {
1142 	struct rq *rq = rq_of_rt_rq(rt_rq);
1143 
1144 #ifdef CONFIG_RT_GROUP_SCHED
1145 	/*
1146 	 * Change rq's cpupri only if rt_rq is the top queue.
1147 	 */
1148 	if (&rq->rt != rt_rq)
1149 		return;
1150 #endif
1151 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1152 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1153 }
1154 
1155 #else /* CONFIG_SMP */
1156 
1157 static inline
1158 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1159 static inline
1160 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1161 
1162 #endif /* CONFIG_SMP */
1163 
1164 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1165 static void
1166 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1167 {
1168 	int prev_prio = rt_rq->highest_prio.curr;
1169 
1170 	if (prio < prev_prio)
1171 		rt_rq->highest_prio.curr = prio;
1172 
1173 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1174 }
1175 
1176 static void
1177 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1178 {
1179 	int prev_prio = rt_rq->highest_prio.curr;
1180 
1181 	if (rt_rq->rt_nr_running) {
1182 
1183 		WARN_ON(prio < prev_prio);
1184 
1185 		/*
1186 		 * This may have been our highest task, and therefore
1187 		 * we may have some recomputation to do
1188 		 */
1189 		if (prio == prev_prio) {
1190 			struct rt_prio_array *array = &rt_rq->active;
1191 
1192 			rt_rq->highest_prio.curr =
1193 				sched_find_first_bit(array->bitmap);
1194 		}
1195 
1196 	} else {
1197 		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1198 	}
1199 
1200 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1201 }
1202 
1203 #else
1204 
1205 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1206 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1207 
1208 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1209 
1210 #ifdef CONFIG_RT_GROUP_SCHED
1211 
1212 static void
1213 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1214 {
1215 	if (rt_se_boosted(rt_se))
1216 		rt_rq->rt_nr_boosted++;
1217 
1218 	if (rt_rq->tg)
1219 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1220 }
1221 
1222 static void
1223 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1224 {
1225 	if (rt_se_boosted(rt_se))
1226 		rt_rq->rt_nr_boosted--;
1227 
1228 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1229 }
1230 
1231 #else /* CONFIG_RT_GROUP_SCHED */
1232 
1233 static void
1234 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1235 {
1236 	start_rt_bandwidth(&def_rt_bandwidth);
1237 }
1238 
1239 static inline
1240 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1241 
1242 #endif /* CONFIG_RT_GROUP_SCHED */
1243 
1244 static inline
1245 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1246 {
1247 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1248 
1249 	if (group_rq)
1250 		return group_rq->rt_nr_running;
1251 	else
1252 		return 1;
1253 }
1254 
1255 static inline
1256 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1257 {
1258 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1259 	struct task_struct *tsk;
1260 
1261 	if (group_rq)
1262 		return group_rq->rr_nr_running;
1263 
1264 	tsk = rt_task_of(rt_se);
1265 
1266 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1267 }
1268 
1269 static inline
1270 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1271 {
1272 	int prio = rt_se_prio(rt_se);
1273 
1274 	WARN_ON(!rt_prio(prio));
1275 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1276 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1277 
1278 	inc_rt_prio(rt_rq, prio);
1279 	inc_rt_migration(rt_se, rt_rq);
1280 	inc_rt_group(rt_se, rt_rq);
1281 }
1282 
1283 static inline
1284 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1285 {
1286 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1287 	WARN_ON(!rt_rq->rt_nr_running);
1288 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1289 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1290 
1291 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1292 	dec_rt_migration(rt_se, rt_rq);
1293 	dec_rt_group(rt_se, rt_rq);
1294 }
1295 
1296 /*
1297  * Change rt_se->run_list location unless SAVE && !MOVE
1298  *
1299  * assumes ENQUEUE/DEQUEUE flags match
1300  */
1301 static inline bool move_entity(unsigned int flags)
1302 {
1303 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1304 		return false;
1305 
1306 	return true;
1307 }
1308 
1309 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1310 {
1311 	list_del_init(&rt_se->run_list);
1312 
1313 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1314 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1315 
1316 	rt_se->on_list = 0;
1317 }
1318 
1319 static inline struct sched_statistics *
1320 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1321 {
1322 #ifdef CONFIG_RT_GROUP_SCHED
1323 	/* schedstats is not supported for rt group. */
1324 	if (!rt_entity_is_task(rt_se))
1325 		return NULL;
1326 #endif
1327 
1328 	return &rt_task_of(rt_se)->stats;
1329 }
1330 
1331 static inline void
1332 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1333 {
1334 	struct sched_statistics *stats;
1335 	struct task_struct *p = NULL;
1336 
1337 	if (!schedstat_enabled())
1338 		return;
1339 
1340 	if (rt_entity_is_task(rt_se))
1341 		p = rt_task_of(rt_se);
1342 
1343 	stats = __schedstats_from_rt_se(rt_se);
1344 	if (!stats)
1345 		return;
1346 
1347 	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1348 }
1349 
1350 static inline void
1351 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1352 {
1353 	struct sched_statistics *stats;
1354 	struct task_struct *p = NULL;
1355 
1356 	if (!schedstat_enabled())
1357 		return;
1358 
1359 	if (rt_entity_is_task(rt_se))
1360 		p = rt_task_of(rt_se);
1361 
1362 	stats = __schedstats_from_rt_se(rt_se);
1363 	if (!stats)
1364 		return;
1365 
1366 	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1367 }
1368 
1369 static inline void
1370 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1371 			int flags)
1372 {
1373 	if (!schedstat_enabled())
1374 		return;
1375 
1376 	if (flags & ENQUEUE_WAKEUP)
1377 		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1378 }
1379 
1380 static inline void
1381 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1382 {
1383 	struct sched_statistics *stats;
1384 	struct task_struct *p = NULL;
1385 
1386 	if (!schedstat_enabled())
1387 		return;
1388 
1389 	if (rt_entity_is_task(rt_se))
1390 		p = rt_task_of(rt_se);
1391 
1392 	stats = __schedstats_from_rt_se(rt_se);
1393 	if (!stats)
1394 		return;
1395 
1396 	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1397 }
1398 
1399 static inline void
1400 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1401 			int flags)
1402 {
1403 	struct task_struct *p = NULL;
1404 
1405 	if (!schedstat_enabled())
1406 		return;
1407 
1408 	if (rt_entity_is_task(rt_se))
1409 		p = rt_task_of(rt_se);
1410 
1411 	if ((flags & DEQUEUE_SLEEP) && p) {
1412 		unsigned int state;
1413 
1414 		state = READ_ONCE(p->__state);
1415 		if (state & TASK_INTERRUPTIBLE)
1416 			__schedstat_set(p->stats.sleep_start,
1417 					rq_clock(rq_of_rt_rq(rt_rq)));
1418 
1419 		if (state & TASK_UNINTERRUPTIBLE)
1420 			__schedstat_set(p->stats.block_start,
1421 					rq_clock(rq_of_rt_rq(rt_rq)));
1422 	}
1423 }
1424 
1425 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1426 {
1427 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1428 	struct rt_prio_array *array = &rt_rq->active;
1429 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1430 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1431 
1432 	/*
1433 	 * Don't enqueue the group if its throttled, or when empty.
1434 	 * The latter is a consequence of the former when a child group
1435 	 * get throttled and the current group doesn't have any other
1436 	 * active members.
1437 	 */
1438 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1439 		if (rt_se->on_list)
1440 			__delist_rt_entity(rt_se, array);
1441 		return;
1442 	}
1443 
1444 	if (move_entity(flags)) {
1445 		WARN_ON_ONCE(rt_se->on_list);
1446 		if (flags & ENQUEUE_HEAD)
1447 			list_add(&rt_se->run_list, queue);
1448 		else
1449 			list_add_tail(&rt_se->run_list, queue);
1450 
1451 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1452 		rt_se->on_list = 1;
1453 	}
1454 	rt_se->on_rq = 1;
1455 
1456 	inc_rt_tasks(rt_se, rt_rq);
1457 }
1458 
1459 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1460 {
1461 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1462 	struct rt_prio_array *array = &rt_rq->active;
1463 
1464 	if (move_entity(flags)) {
1465 		WARN_ON_ONCE(!rt_se->on_list);
1466 		__delist_rt_entity(rt_se, array);
1467 	}
1468 	rt_se->on_rq = 0;
1469 
1470 	dec_rt_tasks(rt_se, rt_rq);
1471 }
1472 
1473 /*
1474  * Because the prio of an upper entry depends on the lower
1475  * entries, we must remove entries top - down.
1476  */
1477 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1478 {
1479 	struct sched_rt_entity *back = NULL;
1480 	unsigned int rt_nr_running;
1481 
1482 	for_each_sched_rt_entity(rt_se) {
1483 		rt_se->back = back;
1484 		back = rt_se;
1485 	}
1486 
1487 	rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1488 
1489 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1490 		if (on_rt_rq(rt_se))
1491 			__dequeue_rt_entity(rt_se, flags);
1492 	}
1493 
1494 	dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1495 }
1496 
1497 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1498 {
1499 	struct rq *rq = rq_of_rt_se(rt_se);
1500 
1501 	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1502 
1503 	dequeue_rt_stack(rt_se, flags);
1504 	for_each_sched_rt_entity(rt_se)
1505 		__enqueue_rt_entity(rt_se, flags);
1506 	enqueue_top_rt_rq(&rq->rt);
1507 }
1508 
1509 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1510 {
1511 	struct rq *rq = rq_of_rt_se(rt_se);
1512 
1513 	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1514 
1515 	dequeue_rt_stack(rt_se, flags);
1516 
1517 	for_each_sched_rt_entity(rt_se) {
1518 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1519 
1520 		if (rt_rq && rt_rq->rt_nr_running)
1521 			__enqueue_rt_entity(rt_se, flags);
1522 	}
1523 	enqueue_top_rt_rq(&rq->rt);
1524 }
1525 
1526 /*
1527  * Adding/removing a task to/from a priority array:
1528  */
1529 static void
1530 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1531 {
1532 	struct sched_rt_entity *rt_se = &p->rt;
1533 
1534 	if (flags & ENQUEUE_WAKEUP)
1535 		rt_se->timeout = 0;
1536 
1537 	check_schedstat_required();
1538 	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1539 
1540 	enqueue_rt_entity(rt_se, flags);
1541 
1542 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1543 		enqueue_pushable_task(rq, p);
1544 }
1545 
1546 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1547 {
1548 	struct sched_rt_entity *rt_se = &p->rt;
1549 
1550 	update_curr_rt(rq);
1551 	dequeue_rt_entity(rt_se, flags);
1552 
1553 	dequeue_pushable_task(rq, p);
1554 }
1555 
1556 /*
1557  * Put task to the head or the end of the run list without the overhead of
1558  * dequeue followed by enqueue.
1559  */
1560 static void
1561 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1562 {
1563 	if (on_rt_rq(rt_se)) {
1564 		struct rt_prio_array *array = &rt_rq->active;
1565 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1566 
1567 		if (head)
1568 			list_move(&rt_se->run_list, queue);
1569 		else
1570 			list_move_tail(&rt_se->run_list, queue);
1571 	}
1572 }
1573 
1574 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1575 {
1576 	struct sched_rt_entity *rt_se = &p->rt;
1577 	struct rt_rq *rt_rq;
1578 
1579 	for_each_sched_rt_entity(rt_se) {
1580 		rt_rq = rt_rq_of_se(rt_se);
1581 		requeue_rt_entity(rt_rq, rt_se, head);
1582 	}
1583 }
1584 
1585 static void yield_task_rt(struct rq *rq)
1586 {
1587 	requeue_task_rt(rq, rq->curr, 0);
1588 }
1589 
1590 #ifdef CONFIG_SMP
1591 static int find_lowest_rq(struct task_struct *task);
1592 
1593 static int
1594 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1595 {
1596 	struct task_struct *curr;
1597 	struct rq *rq;
1598 	bool test;
1599 
1600 	/* For anything but wake ups, just return the task_cpu */
1601 	if (!(flags & (WF_TTWU | WF_FORK)))
1602 		goto out;
1603 
1604 	rq = cpu_rq(cpu);
1605 
1606 	rcu_read_lock();
1607 	curr = READ_ONCE(rq->curr); /* unlocked access */
1608 
1609 	/*
1610 	 * If the current task on @p's runqueue is an RT task, then
1611 	 * try to see if we can wake this RT task up on another
1612 	 * runqueue. Otherwise simply start this RT task
1613 	 * on its current runqueue.
1614 	 *
1615 	 * We want to avoid overloading runqueues. If the woken
1616 	 * task is a higher priority, then it will stay on this CPU
1617 	 * and the lower prio task should be moved to another CPU.
1618 	 * Even though this will probably make the lower prio task
1619 	 * lose its cache, we do not want to bounce a higher task
1620 	 * around just because it gave up its CPU, perhaps for a
1621 	 * lock?
1622 	 *
1623 	 * For equal prio tasks, we just let the scheduler sort it out.
1624 	 *
1625 	 * Otherwise, just let it ride on the affined RQ and the
1626 	 * post-schedule router will push the preempted task away
1627 	 *
1628 	 * This test is optimistic, if we get it wrong the load-balancer
1629 	 * will have to sort it out.
1630 	 *
1631 	 * We take into account the capacity of the CPU to ensure it fits the
1632 	 * requirement of the task - which is only important on heterogeneous
1633 	 * systems like big.LITTLE.
1634 	 */
1635 	test = curr &&
1636 	       unlikely(rt_task(curr)) &&
1637 	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1638 
1639 	if (test || !rt_task_fits_capacity(p, cpu)) {
1640 		int target = find_lowest_rq(p);
1641 
1642 		/*
1643 		 * Bail out if we were forcing a migration to find a better
1644 		 * fitting CPU but our search failed.
1645 		 */
1646 		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1647 			goto out_unlock;
1648 
1649 		/*
1650 		 * Don't bother moving it if the destination CPU is
1651 		 * not running a lower priority task.
1652 		 */
1653 		if (target != -1 &&
1654 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1655 			cpu = target;
1656 	}
1657 
1658 out_unlock:
1659 	rcu_read_unlock();
1660 
1661 out:
1662 	return cpu;
1663 }
1664 
1665 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1666 {
1667 	/*
1668 	 * Current can't be migrated, useless to reschedule,
1669 	 * let's hope p can move out.
1670 	 */
1671 	if (rq->curr->nr_cpus_allowed == 1 ||
1672 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1673 		return;
1674 
1675 	/*
1676 	 * p is migratable, so let's not schedule it and
1677 	 * see if it is pushed or pulled somewhere else.
1678 	 */
1679 	if (p->nr_cpus_allowed != 1 &&
1680 	    cpupri_find(&rq->rd->cpupri, p, NULL))
1681 		return;
1682 
1683 	/*
1684 	 * There appear to be other CPUs that can accept
1685 	 * the current task but none can run 'p', so lets reschedule
1686 	 * to try and push the current task away:
1687 	 */
1688 	requeue_task_rt(rq, p, 1);
1689 	resched_curr(rq);
1690 }
1691 
1692 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1693 {
1694 	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1695 		/*
1696 		 * This is OK, because current is on_cpu, which avoids it being
1697 		 * picked for load-balance and preemption/IRQs are still
1698 		 * disabled avoiding further scheduler activity on it and we've
1699 		 * not yet started the picking loop.
1700 		 */
1701 		rq_unpin_lock(rq, rf);
1702 		pull_rt_task(rq);
1703 		rq_repin_lock(rq, rf);
1704 	}
1705 
1706 	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1707 }
1708 #endif /* CONFIG_SMP */
1709 
1710 /*
1711  * Preempt the current task with a newly woken task if needed:
1712  */
1713 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1714 {
1715 	if (p->prio < rq->curr->prio) {
1716 		resched_curr(rq);
1717 		return;
1718 	}
1719 
1720 #ifdef CONFIG_SMP
1721 	/*
1722 	 * If:
1723 	 *
1724 	 * - the newly woken task is of equal priority to the current task
1725 	 * - the newly woken task is non-migratable while current is migratable
1726 	 * - current will be preempted on the next reschedule
1727 	 *
1728 	 * we should check to see if current can readily move to a different
1729 	 * cpu.  If so, we will reschedule to allow the push logic to try
1730 	 * to move current somewhere else, making room for our non-migratable
1731 	 * task.
1732 	 */
1733 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1734 		check_preempt_equal_prio(rq, p);
1735 #endif
1736 }
1737 
1738 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1739 {
1740 	struct sched_rt_entity *rt_se = &p->rt;
1741 	struct rt_rq *rt_rq = &rq->rt;
1742 
1743 	p->se.exec_start = rq_clock_task(rq);
1744 	if (on_rt_rq(&p->rt))
1745 		update_stats_wait_end_rt(rt_rq, rt_se);
1746 
1747 	/* The running task is never eligible for pushing */
1748 	dequeue_pushable_task(rq, p);
1749 
1750 	if (!first)
1751 		return;
1752 
1753 	/*
1754 	 * If prev task was rt, put_prev_task() has already updated the
1755 	 * utilization. We only care of the case where we start to schedule a
1756 	 * rt task
1757 	 */
1758 	if (rq->curr->sched_class != &rt_sched_class)
1759 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1760 
1761 	rt_queue_push_tasks(rq);
1762 }
1763 
1764 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1765 {
1766 	struct rt_prio_array *array = &rt_rq->active;
1767 	struct sched_rt_entity *next = NULL;
1768 	struct list_head *queue;
1769 	int idx;
1770 
1771 	idx = sched_find_first_bit(array->bitmap);
1772 	BUG_ON(idx >= MAX_RT_PRIO);
1773 
1774 	queue = array->queue + idx;
1775 	if (SCHED_WARN_ON(list_empty(queue)))
1776 		return NULL;
1777 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1778 
1779 	return next;
1780 }
1781 
1782 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1783 {
1784 	struct sched_rt_entity *rt_se;
1785 	struct rt_rq *rt_rq  = &rq->rt;
1786 
1787 	do {
1788 		rt_se = pick_next_rt_entity(rt_rq);
1789 		if (unlikely(!rt_se))
1790 			return NULL;
1791 		rt_rq = group_rt_rq(rt_se);
1792 	} while (rt_rq);
1793 
1794 	return rt_task_of(rt_se);
1795 }
1796 
1797 static struct task_struct *pick_task_rt(struct rq *rq)
1798 {
1799 	struct task_struct *p;
1800 
1801 	if (!sched_rt_runnable(rq))
1802 		return NULL;
1803 
1804 	p = _pick_next_task_rt(rq);
1805 
1806 	return p;
1807 }
1808 
1809 static struct task_struct *pick_next_task_rt(struct rq *rq)
1810 {
1811 	struct task_struct *p = pick_task_rt(rq);
1812 
1813 	if (p)
1814 		set_next_task_rt(rq, p, true);
1815 
1816 	return p;
1817 }
1818 
1819 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1820 {
1821 	struct sched_rt_entity *rt_se = &p->rt;
1822 	struct rt_rq *rt_rq = &rq->rt;
1823 
1824 	if (on_rt_rq(&p->rt))
1825 		update_stats_wait_start_rt(rt_rq, rt_se);
1826 
1827 	update_curr_rt(rq);
1828 
1829 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1830 
1831 	/*
1832 	 * The previous task needs to be made eligible for pushing
1833 	 * if it is still active
1834 	 */
1835 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1836 		enqueue_pushable_task(rq, p);
1837 }
1838 
1839 #ifdef CONFIG_SMP
1840 
1841 /* Only try algorithms three times */
1842 #define RT_MAX_TRIES 3
1843 
1844 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1845 {
1846 	if (!task_on_cpu(rq, p) &&
1847 	    cpumask_test_cpu(cpu, &p->cpus_mask))
1848 		return 1;
1849 
1850 	return 0;
1851 }
1852 
1853 /*
1854  * Return the highest pushable rq's task, which is suitable to be executed
1855  * on the CPU, NULL otherwise
1856  */
1857 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1858 {
1859 	struct plist_head *head = &rq->rt.pushable_tasks;
1860 	struct task_struct *p;
1861 
1862 	if (!has_pushable_tasks(rq))
1863 		return NULL;
1864 
1865 	plist_for_each_entry(p, head, pushable_tasks) {
1866 		if (pick_rt_task(rq, p, cpu))
1867 			return p;
1868 	}
1869 
1870 	return NULL;
1871 }
1872 
1873 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1874 
1875 static int find_lowest_rq(struct task_struct *task)
1876 {
1877 	struct sched_domain *sd;
1878 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1879 	int this_cpu = smp_processor_id();
1880 	int cpu      = task_cpu(task);
1881 	int ret;
1882 
1883 	/* Make sure the mask is initialized first */
1884 	if (unlikely(!lowest_mask))
1885 		return -1;
1886 
1887 	if (task->nr_cpus_allowed == 1)
1888 		return -1; /* No other targets possible */
1889 
1890 	/*
1891 	 * If we're on asym system ensure we consider the different capacities
1892 	 * of the CPUs when searching for the lowest_mask.
1893 	 */
1894 	if (sched_asym_cpucap_active()) {
1895 
1896 		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1897 					  task, lowest_mask,
1898 					  rt_task_fits_capacity);
1899 	} else {
1900 
1901 		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1902 				  task, lowest_mask);
1903 	}
1904 
1905 	if (!ret)
1906 		return -1; /* No targets found */
1907 
1908 	/*
1909 	 * At this point we have built a mask of CPUs representing the
1910 	 * lowest priority tasks in the system.  Now we want to elect
1911 	 * the best one based on our affinity and topology.
1912 	 *
1913 	 * We prioritize the last CPU that the task executed on since
1914 	 * it is most likely cache-hot in that location.
1915 	 */
1916 	if (cpumask_test_cpu(cpu, lowest_mask))
1917 		return cpu;
1918 
1919 	/*
1920 	 * Otherwise, we consult the sched_domains span maps to figure
1921 	 * out which CPU is logically closest to our hot cache data.
1922 	 */
1923 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1924 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1925 
1926 	rcu_read_lock();
1927 	for_each_domain(cpu, sd) {
1928 		if (sd->flags & SD_WAKE_AFFINE) {
1929 			int best_cpu;
1930 
1931 			/*
1932 			 * "this_cpu" is cheaper to preempt than a
1933 			 * remote processor.
1934 			 */
1935 			if (this_cpu != -1 &&
1936 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1937 				rcu_read_unlock();
1938 				return this_cpu;
1939 			}
1940 
1941 			best_cpu = cpumask_any_and_distribute(lowest_mask,
1942 							      sched_domain_span(sd));
1943 			if (best_cpu < nr_cpu_ids) {
1944 				rcu_read_unlock();
1945 				return best_cpu;
1946 			}
1947 		}
1948 	}
1949 	rcu_read_unlock();
1950 
1951 	/*
1952 	 * And finally, if there were no matches within the domains
1953 	 * just give the caller *something* to work with from the compatible
1954 	 * locations.
1955 	 */
1956 	if (this_cpu != -1)
1957 		return this_cpu;
1958 
1959 	cpu = cpumask_any_distribute(lowest_mask);
1960 	if (cpu < nr_cpu_ids)
1961 		return cpu;
1962 
1963 	return -1;
1964 }
1965 
1966 /* Will lock the rq it finds */
1967 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1968 {
1969 	struct rq *lowest_rq = NULL;
1970 	int tries;
1971 	int cpu;
1972 
1973 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1974 		cpu = find_lowest_rq(task);
1975 
1976 		if ((cpu == -1) || (cpu == rq->cpu))
1977 			break;
1978 
1979 		lowest_rq = cpu_rq(cpu);
1980 
1981 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1982 			/*
1983 			 * Target rq has tasks of equal or higher priority,
1984 			 * retrying does not release any lock and is unlikely
1985 			 * to yield a different result.
1986 			 */
1987 			lowest_rq = NULL;
1988 			break;
1989 		}
1990 
1991 		/* if the prio of this runqueue changed, try again */
1992 		if (double_lock_balance(rq, lowest_rq)) {
1993 			/*
1994 			 * We had to unlock the run queue. In
1995 			 * the mean time, task could have
1996 			 * migrated already or had its affinity changed.
1997 			 * Also make sure that it wasn't scheduled on its rq.
1998 			 * It is possible the task was scheduled, set
1999 			 * "migrate_disabled" and then got preempted, so we must
2000 			 * check the task migration disable flag here too.
2001 			 */
2002 			if (unlikely(task_rq(task) != rq ||
2003 				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
2004 				     task_on_cpu(rq, task) ||
2005 				     !rt_task(task) ||
2006 				     is_migration_disabled(task) ||
2007 				     !task_on_rq_queued(task))) {
2008 
2009 				double_unlock_balance(rq, lowest_rq);
2010 				lowest_rq = NULL;
2011 				break;
2012 			}
2013 		}
2014 
2015 		/* If this rq is still suitable use it. */
2016 		if (lowest_rq->rt.highest_prio.curr > task->prio)
2017 			break;
2018 
2019 		/* try again */
2020 		double_unlock_balance(rq, lowest_rq);
2021 		lowest_rq = NULL;
2022 	}
2023 
2024 	return lowest_rq;
2025 }
2026 
2027 static struct task_struct *pick_next_pushable_task(struct rq *rq)
2028 {
2029 	struct task_struct *p;
2030 
2031 	if (!has_pushable_tasks(rq))
2032 		return NULL;
2033 
2034 	p = plist_first_entry(&rq->rt.pushable_tasks,
2035 			      struct task_struct, pushable_tasks);
2036 
2037 	BUG_ON(rq->cpu != task_cpu(p));
2038 	BUG_ON(task_current(rq, p));
2039 	BUG_ON(p->nr_cpus_allowed <= 1);
2040 
2041 	BUG_ON(!task_on_rq_queued(p));
2042 	BUG_ON(!rt_task(p));
2043 
2044 	return p;
2045 }
2046 
2047 /*
2048  * If the current CPU has more than one RT task, see if the non
2049  * running task can migrate over to a CPU that is running a task
2050  * of lesser priority.
2051  */
2052 static int push_rt_task(struct rq *rq, bool pull)
2053 {
2054 	struct task_struct *next_task;
2055 	struct rq *lowest_rq;
2056 	int ret = 0;
2057 
2058 	if (!rq->rt.overloaded)
2059 		return 0;
2060 
2061 	next_task = pick_next_pushable_task(rq);
2062 	if (!next_task)
2063 		return 0;
2064 
2065 retry:
2066 	/*
2067 	 * It's possible that the next_task slipped in of
2068 	 * higher priority than current. If that's the case
2069 	 * just reschedule current.
2070 	 */
2071 	if (unlikely(next_task->prio < rq->curr->prio)) {
2072 		resched_curr(rq);
2073 		return 0;
2074 	}
2075 
2076 	if (is_migration_disabled(next_task)) {
2077 		struct task_struct *push_task = NULL;
2078 		int cpu;
2079 
2080 		if (!pull || rq->push_busy)
2081 			return 0;
2082 
2083 		/*
2084 		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2085 		 * make sense. Per the above priority check, curr has to
2086 		 * be of higher priority than next_task, so no need to
2087 		 * reschedule when bailing out.
2088 		 *
2089 		 * Note that the stoppers are masqueraded as SCHED_FIFO
2090 		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2091 		 */
2092 		if (rq->curr->sched_class != &rt_sched_class)
2093 			return 0;
2094 
2095 		cpu = find_lowest_rq(rq->curr);
2096 		if (cpu == -1 || cpu == rq->cpu)
2097 			return 0;
2098 
2099 		/*
2100 		 * Given we found a CPU with lower priority than @next_task,
2101 		 * therefore it should be running. However we cannot migrate it
2102 		 * to this other CPU, instead attempt to push the current
2103 		 * running task on this CPU away.
2104 		 */
2105 		push_task = get_push_task(rq);
2106 		if (push_task) {
2107 			preempt_disable();
2108 			raw_spin_rq_unlock(rq);
2109 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2110 					    push_task, &rq->push_work);
2111 			preempt_enable();
2112 			raw_spin_rq_lock(rq);
2113 		}
2114 
2115 		return 0;
2116 	}
2117 
2118 	if (WARN_ON(next_task == rq->curr))
2119 		return 0;
2120 
2121 	/* We might release rq lock */
2122 	get_task_struct(next_task);
2123 
2124 	/* find_lock_lowest_rq locks the rq if found */
2125 	lowest_rq = find_lock_lowest_rq(next_task, rq);
2126 	if (!lowest_rq) {
2127 		struct task_struct *task;
2128 		/*
2129 		 * find_lock_lowest_rq releases rq->lock
2130 		 * so it is possible that next_task has migrated.
2131 		 *
2132 		 * We need to make sure that the task is still on the same
2133 		 * run-queue and is also still the next task eligible for
2134 		 * pushing.
2135 		 */
2136 		task = pick_next_pushable_task(rq);
2137 		if (task == next_task) {
2138 			/*
2139 			 * The task hasn't migrated, and is still the next
2140 			 * eligible task, but we failed to find a run-queue
2141 			 * to push it to.  Do not retry in this case, since
2142 			 * other CPUs will pull from us when ready.
2143 			 */
2144 			goto out;
2145 		}
2146 
2147 		if (!task)
2148 			/* No more tasks, just exit */
2149 			goto out;
2150 
2151 		/*
2152 		 * Something has shifted, try again.
2153 		 */
2154 		put_task_struct(next_task);
2155 		next_task = task;
2156 		goto retry;
2157 	}
2158 
2159 	deactivate_task(rq, next_task, 0);
2160 	set_task_cpu(next_task, lowest_rq->cpu);
2161 	activate_task(lowest_rq, next_task, 0);
2162 	resched_curr(lowest_rq);
2163 	ret = 1;
2164 
2165 	double_unlock_balance(rq, lowest_rq);
2166 out:
2167 	put_task_struct(next_task);
2168 
2169 	return ret;
2170 }
2171 
2172 static void push_rt_tasks(struct rq *rq)
2173 {
2174 	/* push_rt_task will return true if it moved an RT */
2175 	while (push_rt_task(rq, false))
2176 		;
2177 }
2178 
2179 #ifdef HAVE_RT_PUSH_IPI
2180 
2181 /*
2182  * When a high priority task schedules out from a CPU and a lower priority
2183  * task is scheduled in, a check is made to see if there's any RT tasks
2184  * on other CPUs that are waiting to run because a higher priority RT task
2185  * is currently running on its CPU. In this case, the CPU with multiple RT
2186  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2187  * up that may be able to run one of its non-running queued RT tasks.
2188  *
2189  * All CPUs with overloaded RT tasks need to be notified as there is currently
2190  * no way to know which of these CPUs have the highest priority task waiting
2191  * to run. Instead of trying to take a spinlock on each of these CPUs,
2192  * which has shown to cause large latency when done on machines with many
2193  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2194  * RT tasks waiting to run.
2195  *
2196  * Just sending an IPI to each of the CPUs is also an issue, as on large
2197  * count CPU machines, this can cause an IPI storm on a CPU, especially
2198  * if its the only CPU with multiple RT tasks queued, and a large number
2199  * of CPUs scheduling a lower priority task at the same time.
2200  *
2201  * Each root domain has its own irq work function that can iterate over
2202  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2203  * task must be checked if there's one or many CPUs that are lowering
2204  * their priority, there's a single irq work iterator that will try to
2205  * push off RT tasks that are waiting to run.
2206  *
2207  * When a CPU schedules a lower priority task, it will kick off the
2208  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2209  * As it only takes the first CPU that schedules a lower priority task
2210  * to start the process, the rto_start variable is incremented and if
2211  * the atomic result is one, then that CPU will try to take the rto_lock.
2212  * This prevents high contention on the lock as the process handles all
2213  * CPUs scheduling lower priority tasks.
2214  *
2215  * All CPUs that are scheduling a lower priority task will increment the
2216  * rt_loop_next variable. This will make sure that the irq work iterator
2217  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2218  * priority task, even if the iterator is in the middle of a scan. Incrementing
2219  * the rt_loop_next will cause the iterator to perform another scan.
2220  *
2221  */
2222 static int rto_next_cpu(struct root_domain *rd)
2223 {
2224 	int next;
2225 	int cpu;
2226 
2227 	/*
2228 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2229 	 * rt_next_cpu() will simply return the first CPU found in
2230 	 * the rto_mask.
2231 	 *
2232 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2233 	 * will return the next CPU found in the rto_mask.
2234 	 *
2235 	 * If there are no more CPUs left in the rto_mask, then a check is made
2236 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2237 	 * the rto_lock held, but any CPU may increment the rto_loop_next
2238 	 * without any locking.
2239 	 */
2240 	for (;;) {
2241 
2242 		/* When rto_cpu is -1 this acts like cpumask_first() */
2243 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2244 
2245 		rd->rto_cpu = cpu;
2246 
2247 		if (cpu < nr_cpu_ids)
2248 			return cpu;
2249 
2250 		rd->rto_cpu = -1;
2251 
2252 		/*
2253 		 * ACQUIRE ensures we see the @rto_mask changes
2254 		 * made prior to the @next value observed.
2255 		 *
2256 		 * Matches WMB in rt_set_overload().
2257 		 */
2258 		next = atomic_read_acquire(&rd->rto_loop_next);
2259 
2260 		if (rd->rto_loop == next)
2261 			break;
2262 
2263 		rd->rto_loop = next;
2264 	}
2265 
2266 	return -1;
2267 }
2268 
2269 static inline bool rto_start_trylock(atomic_t *v)
2270 {
2271 	return !atomic_cmpxchg_acquire(v, 0, 1);
2272 }
2273 
2274 static inline void rto_start_unlock(atomic_t *v)
2275 {
2276 	atomic_set_release(v, 0);
2277 }
2278 
2279 static void tell_cpu_to_push(struct rq *rq)
2280 {
2281 	int cpu = -1;
2282 
2283 	/* Keep the loop going if the IPI is currently active */
2284 	atomic_inc(&rq->rd->rto_loop_next);
2285 
2286 	/* Only one CPU can initiate a loop at a time */
2287 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2288 		return;
2289 
2290 	raw_spin_lock(&rq->rd->rto_lock);
2291 
2292 	/*
2293 	 * The rto_cpu is updated under the lock, if it has a valid CPU
2294 	 * then the IPI is still running and will continue due to the
2295 	 * update to loop_next, and nothing needs to be done here.
2296 	 * Otherwise it is finishing up and an ipi needs to be sent.
2297 	 */
2298 	if (rq->rd->rto_cpu < 0)
2299 		cpu = rto_next_cpu(rq->rd);
2300 
2301 	raw_spin_unlock(&rq->rd->rto_lock);
2302 
2303 	rto_start_unlock(&rq->rd->rto_loop_start);
2304 
2305 	if (cpu >= 0) {
2306 		/* Make sure the rd does not get freed while pushing */
2307 		sched_get_rd(rq->rd);
2308 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2309 	}
2310 }
2311 
2312 /* Called from hardirq context */
2313 void rto_push_irq_work_func(struct irq_work *work)
2314 {
2315 	struct root_domain *rd =
2316 		container_of(work, struct root_domain, rto_push_work);
2317 	struct rq *rq;
2318 	int cpu;
2319 
2320 	rq = this_rq();
2321 
2322 	/*
2323 	 * We do not need to grab the lock to check for has_pushable_tasks.
2324 	 * When it gets updated, a check is made if a push is possible.
2325 	 */
2326 	if (has_pushable_tasks(rq)) {
2327 		raw_spin_rq_lock(rq);
2328 		while (push_rt_task(rq, true))
2329 			;
2330 		raw_spin_rq_unlock(rq);
2331 	}
2332 
2333 	raw_spin_lock(&rd->rto_lock);
2334 
2335 	/* Pass the IPI to the next rt overloaded queue */
2336 	cpu = rto_next_cpu(rd);
2337 
2338 	raw_spin_unlock(&rd->rto_lock);
2339 
2340 	if (cpu < 0) {
2341 		sched_put_rd(rd);
2342 		return;
2343 	}
2344 
2345 	/* Try the next RT overloaded CPU */
2346 	irq_work_queue_on(&rd->rto_push_work, cpu);
2347 }
2348 #endif /* HAVE_RT_PUSH_IPI */
2349 
2350 static void pull_rt_task(struct rq *this_rq)
2351 {
2352 	int this_cpu = this_rq->cpu, cpu;
2353 	bool resched = false;
2354 	struct task_struct *p, *push_task;
2355 	struct rq *src_rq;
2356 	int rt_overload_count = rt_overloaded(this_rq);
2357 
2358 	if (likely(!rt_overload_count))
2359 		return;
2360 
2361 	/*
2362 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2363 	 * see overloaded we must also see the rto_mask bit.
2364 	 */
2365 	smp_rmb();
2366 
2367 	/* If we are the only overloaded CPU do nothing */
2368 	if (rt_overload_count == 1 &&
2369 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2370 		return;
2371 
2372 #ifdef HAVE_RT_PUSH_IPI
2373 	if (sched_feat(RT_PUSH_IPI)) {
2374 		tell_cpu_to_push(this_rq);
2375 		return;
2376 	}
2377 #endif
2378 
2379 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2380 		if (this_cpu == cpu)
2381 			continue;
2382 
2383 		src_rq = cpu_rq(cpu);
2384 
2385 		/*
2386 		 * Don't bother taking the src_rq->lock if the next highest
2387 		 * task is known to be lower-priority than our current task.
2388 		 * This may look racy, but if this value is about to go
2389 		 * logically higher, the src_rq will push this task away.
2390 		 * And if its going logically lower, we do not care
2391 		 */
2392 		if (src_rq->rt.highest_prio.next >=
2393 		    this_rq->rt.highest_prio.curr)
2394 			continue;
2395 
2396 		/*
2397 		 * We can potentially drop this_rq's lock in
2398 		 * double_lock_balance, and another CPU could
2399 		 * alter this_rq
2400 		 */
2401 		push_task = NULL;
2402 		double_lock_balance(this_rq, src_rq);
2403 
2404 		/*
2405 		 * We can pull only a task, which is pushable
2406 		 * on its rq, and no others.
2407 		 */
2408 		p = pick_highest_pushable_task(src_rq, this_cpu);
2409 
2410 		/*
2411 		 * Do we have an RT task that preempts
2412 		 * the to-be-scheduled task?
2413 		 */
2414 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2415 			WARN_ON(p == src_rq->curr);
2416 			WARN_ON(!task_on_rq_queued(p));
2417 
2418 			/*
2419 			 * There's a chance that p is higher in priority
2420 			 * than what's currently running on its CPU.
2421 			 * This is just that p is waking up and hasn't
2422 			 * had a chance to schedule. We only pull
2423 			 * p if it is lower in priority than the
2424 			 * current task on the run queue
2425 			 */
2426 			if (p->prio < src_rq->curr->prio)
2427 				goto skip;
2428 
2429 			if (is_migration_disabled(p)) {
2430 				push_task = get_push_task(src_rq);
2431 			} else {
2432 				deactivate_task(src_rq, p, 0);
2433 				set_task_cpu(p, this_cpu);
2434 				activate_task(this_rq, p, 0);
2435 				resched = true;
2436 			}
2437 			/*
2438 			 * We continue with the search, just in
2439 			 * case there's an even higher prio task
2440 			 * in another runqueue. (low likelihood
2441 			 * but possible)
2442 			 */
2443 		}
2444 skip:
2445 		double_unlock_balance(this_rq, src_rq);
2446 
2447 		if (push_task) {
2448 			preempt_disable();
2449 			raw_spin_rq_unlock(this_rq);
2450 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2451 					    push_task, &src_rq->push_work);
2452 			preempt_enable();
2453 			raw_spin_rq_lock(this_rq);
2454 		}
2455 	}
2456 
2457 	if (resched)
2458 		resched_curr(this_rq);
2459 }
2460 
2461 /*
2462  * If we are not running and we are not going to reschedule soon, we should
2463  * try to push tasks away now
2464  */
2465 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2466 {
2467 	bool need_to_push = !task_on_cpu(rq, p) &&
2468 			    !test_tsk_need_resched(rq->curr) &&
2469 			    p->nr_cpus_allowed > 1 &&
2470 			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2471 			    (rq->curr->nr_cpus_allowed < 2 ||
2472 			     rq->curr->prio <= p->prio);
2473 
2474 	if (need_to_push)
2475 		push_rt_tasks(rq);
2476 }
2477 
2478 /* Assumes rq->lock is held */
2479 static void rq_online_rt(struct rq *rq)
2480 {
2481 	if (rq->rt.overloaded)
2482 		rt_set_overload(rq);
2483 
2484 	__enable_runtime(rq);
2485 
2486 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2487 }
2488 
2489 /* Assumes rq->lock is held */
2490 static void rq_offline_rt(struct rq *rq)
2491 {
2492 	if (rq->rt.overloaded)
2493 		rt_clear_overload(rq);
2494 
2495 	__disable_runtime(rq);
2496 
2497 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2498 }
2499 
2500 /*
2501  * When switch from the rt queue, we bring ourselves to a position
2502  * that we might want to pull RT tasks from other runqueues.
2503  */
2504 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2505 {
2506 	/*
2507 	 * If there are other RT tasks then we will reschedule
2508 	 * and the scheduling of the other RT tasks will handle
2509 	 * the balancing. But if we are the last RT task
2510 	 * we may need to handle the pulling of RT tasks
2511 	 * now.
2512 	 */
2513 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2514 		return;
2515 
2516 	rt_queue_pull_task(rq);
2517 }
2518 
2519 void __init init_sched_rt_class(void)
2520 {
2521 	unsigned int i;
2522 
2523 	for_each_possible_cpu(i) {
2524 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2525 					GFP_KERNEL, cpu_to_node(i));
2526 	}
2527 }
2528 #endif /* CONFIG_SMP */
2529 
2530 /*
2531  * When switching a task to RT, we may overload the runqueue
2532  * with RT tasks. In this case we try to push them off to
2533  * other runqueues.
2534  */
2535 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2536 {
2537 	/*
2538 	 * If we are running, update the avg_rt tracking, as the running time
2539 	 * will now on be accounted into the latter.
2540 	 */
2541 	if (task_current(rq, p)) {
2542 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2543 		return;
2544 	}
2545 
2546 	/*
2547 	 * If we are not running we may need to preempt the current
2548 	 * running task. If that current running task is also an RT task
2549 	 * then see if we can move to another run queue.
2550 	 */
2551 	if (task_on_rq_queued(p)) {
2552 #ifdef CONFIG_SMP
2553 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2554 			rt_queue_push_tasks(rq);
2555 #endif /* CONFIG_SMP */
2556 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2557 			resched_curr(rq);
2558 	}
2559 }
2560 
2561 /*
2562  * Priority of the task has changed. This may cause
2563  * us to initiate a push or pull.
2564  */
2565 static void
2566 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2567 {
2568 	if (!task_on_rq_queued(p))
2569 		return;
2570 
2571 	if (task_current(rq, p)) {
2572 #ifdef CONFIG_SMP
2573 		/*
2574 		 * If our priority decreases while running, we
2575 		 * may need to pull tasks to this runqueue.
2576 		 */
2577 		if (oldprio < p->prio)
2578 			rt_queue_pull_task(rq);
2579 
2580 		/*
2581 		 * If there's a higher priority task waiting to run
2582 		 * then reschedule.
2583 		 */
2584 		if (p->prio > rq->rt.highest_prio.curr)
2585 			resched_curr(rq);
2586 #else
2587 		/* For UP simply resched on drop of prio */
2588 		if (oldprio < p->prio)
2589 			resched_curr(rq);
2590 #endif /* CONFIG_SMP */
2591 	} else {
2592 		/*
2593 		 * This task is not running, but if it is
2594 		 * greater than the current running task
2595 		 * then reschedule.
2596 		 */
2597 		if (p->prio < rq->curr->prio)
2598 			resched_curr(rq);
2599 	}
2600 }
2601 
2602 #ifdef CONFIG_POSIX_TIMERS
2603 static void watchdog(struct rq *rq, struct task_struct *p)
2604 {
2605 	unsigned long soft, hard;
2606 
2607 	/* max may change after cur was read, this will be fixed next tick */
2608 	soft = task_rlimit(p, RLIMIT_RTTIME);
2609 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2610 
2611 	if (soft != RLIM_INFINITY) {
2612 		unsigned long next;
2613 
2614 		if (p->rt.watchdog_stamp != jiffies) {
2615 			p->rt.timeout++;
2616 			p->rt.watchdog_stamp = jiffies;
2617 		}
2618 
2619 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2620 		if (p->rt.timeout > next) {
2621 			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2622 						    p->se.sum_exec_runtime);
2623 		}
2624 	}
2625 }
2626 #else
2627 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2628 #endif
2629 
2630 /*
2631  * scheduler tick hitting a task of our scheduling class.
2632  *
2633  * NOTE: This function can be called remotely by the tick offload that
2634  * goes along full dynticks. Therefore no local assumption can be made
2635  * and everything must be accessed through the @rq and @curr passed in
2636  * parameters.
2637  */
2638 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2639 {
2640 	struct sched_rt_entity *rt_se = &p->rt;
2641 
2642 	update_curr_rt(rq);
2643 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2644 
2645 	watchdog(rq, p);
2646 
2647 	/*
2648 	 * RR tasks need a special form of timeslice management.
2649 	 * FIFO tasks have no timeslices.
2650 	 */
2651 	if (p->policy != SCHED_RR)
2652 		return;
2653 
2654 	if (--p->rt.time_slice)
2655 		return;
2656 
2657 	p->rt.time_slice = sched_rr_timeslice;
2658 
2659 	/*
2660 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2661 	 * the only element on the queue
2662 	 */
2663 	for_each_sched_rt_entity(rt_se) {
2664 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2665 			requeue_task_rt(rq, p, 0);
2666 			resched_curr(rq);
2667 			return;
2668 		}
2669 	}
2670 }
2671 
2672 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2673 {
2674 	/*
2675 	 * Time slice is 0 for SCHED_FIFO tasks
2676 	 */
2677 	if (task->policy == SCHED_RR)
2678 		return sched_rr_timeslice;
2679 	else
2680 		return 0;
2681 }
2682 
2683 #ifdef CONFIG_SCHED_CORE
2684 static int task_is_throttled_rt(struct task_struct *p, int cpu)
2685 {
2686 	struct rt_rq *rt_rq;
2687 
2688 #ifdef CONFIG_RT_GROUP_SCHED
2689 	rt_rq = task_group(p)->rt_rq[cpu];
2690 #else
2691 	rt_rq = &cpu_rq(cpu)->rt;
2692 #endif
2693 
2694 	return rt_rq_throttled(rt_rq);
2695 }
2696 #endif
2697 
2698 DEFINE_SCHED_CLASS(rt) = {
2699 
2700 	.enqueue_task		= enqueue_task_rt,
2701 	.dequeue_task		= dequeue_task_rt,
2702 	.yield_task		= yield_task_rt,
2703 
2704 	.wakeup_preempt		= wakeup_preempt_rt,
2705 
2706 	.pick_next_task		= pick_next_task_rt,
2707 	.put_prev_task		= put_prev_task_rt,
2708 	.set_next_task          = set_next_task_rt,
2709 
2710 #ifdef CONFIG_SMP
2711 	.balance		= balance_rt,
2712 	.pick_task		= pick_task_rt,
2713 	.select_task_rq		= select_task_rq_rt,
2714 	.set_cpus_allowed       = set_cpus_allowed_common,
2715 	.rq_online              = rq_online_rt,
2716 	.rq_offline             = rq_offline_rt,
2717 	.task_woken		= task_woken_rt,
2718 	.switched_from		= switched_from_rt,
2719 	.find_lock_rq		= find_lock_lowest_rq,
2720 #endif
2721 
2722 	.task_tick		= task_tick_rt,
2723 
2724 	.get_rr_interval	= get_rr_interval_rt,
2725 
2726 	.prio_changed		= prio_changed_rt,
2727 	.switched_to		= switched_to_rt,
2728 
2729 	.update_curr		= update_curr_rt,
2730 
2731 #ifdef CONFIG_SCHED_CORE
2732 	.task_is_throttled	= task_is_throttled_rt,
2733 #endif
2734 
2735 #ifdef CONFIG_UCLAMP_TASK
2736 	.uclamp_enabled		= 1,
2737 #endif
2738 };
2739 
2740 #ifdef CONFIG_RT_GROUP_SCHED
2741 /*
2742  * Ensure that the real time constraints are schedulable.
2743  */
2744 static DEFINE_MUTEX(rt_constraints_mutex);
2745 
2746 static inline int tg_has_rt_tasks(struct task_group *tg)
2747 {
2748 	struct task_struct *task;
2749 	struct css_task_iter it;
2750 	int ret = 0;
2751 
2752 	/*
2753 	 * Autogroups do not have RT tasks; see autogroup_create().
2754 	 */
2755 	if (task_group_is_autogroup(tg))
2756 		return 0;
2757 
2758 	css_task_iter_start(&tg->css, 0, &it);
2759 	while (!ret && (task = css_task_iter_next(&it)))
2760 		ret |= rt_task(task);
2761 	css_task_iter_end(&it);
2762 
2763 	return ret;
2764 }
2765 
2766 struct rt_schedulable_data {
2767 	struct task_group *tg;
2768 	u64 rt_period;
2769 	u64 rt_runtime;
2770 };
2771 
2772 static int tg_rt_schedulable(struct task_group *tg, void *data)
2773 {
2774 	struct rt_schedulable_data *d = data;
2775 	struct task_group *child;
2776 	unsigned long total, sum = 0;
2777 	u64 period, runtime;
2778 
2779 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2780 	runtime = tg->rt_bandwidth.rt_runtime;
2781 
2782 	if (tg == d->tg) {
2783 		period = d->rt_period;
2784 		runtime = d->rt_runtime;
2785 	}
2786 
2787 	/*
2788 	 * Cannot have more runtime than the period.
2789 	 */
2790 	if (runtime > period && runtime != RUNTIME_INF)
2791 		return -EINVAL;
2792 
2793 	/*
2794 	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2795 	 */
2796 	if (rt_bandwidth_enabled() && !runtime &&
2797 	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2798 		return -EBUSY;
2799 
2800 	total = to_ratio(period, runtime);
2801 
2802 	/*
2803 	 * Nobody can have more than the global setting allows.
2804 	 */
2805 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2806 		return -EINVAL;
2807 
2808 	/*
2809 	 * The sum of our children's runtime should not exceed our own.
2810 	 */
2811 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2812 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2813 		runtime = child->rt_bandwidth.rt_runtime;
2814 
2815 		if (child == d->tg) {
2816 			period = d->rt_period;
2817 			runtime = d->rt_runtime;
2818 		}
2819 
2820 		sum += to_ratio(period, runtime);
2821 	}
2822 
2823 	if (sum > total)
2824 		return -EINVAL;
2825 
2826 	return 0;
2827 }
2828 
2829 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2830 {
2831 	int ret;
2832 
2833 	struct rt_schedulable_data data = {
2834 		.tg = tg,
2835 		.rt_period = period,
2836 		.rt_runtime = runtime,
2837 	};
2838 
2839 	rcu_read_lock();
2840 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2841 	rcu_read_unlock();
2842 
2843 	return ret;
2844 }
2845 
2846 static int tg_set_rt_bandwidth(struct task_group *tg,
2847 		u64 rt_period, u64 rt_runtime)
2848 {
2849 	int i, err = 0;
2850 
2851 	/*
2852 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2853 	 * kernel creating (and or operating) RT threads.
2854 	 */
2855 	if (tg == &root_task_group && rt_runtime == 0)
2856 		return -EINVAL;
2857 
2858 	/* No period doesn't make any sense. */
2859 	if (rt_period == 0)
2860 		return -EINVAL;
2861 
2862 	/*
2863 	 * Bound quota to defend quota against overflow during bandwidth shift.
2864 	 */
2865 	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2866 		return -EINVAL;
2867 
2868 	mutex_lock(&rt_constraints_mutex);
2869 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2870 	if (err)
2871 		goto unlock;
2872 
2873 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2874 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2875 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2876 
2877 	for_each_possible_cpu(i) {
2878 		struct rt_rq *rt_rq = tg->rt_rq[i];
2879 
2880 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2881 		rt_rq->rt_runtime = rt_runtime;
2882 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2883 	}
2884 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2885 unlock:
2886 	mutex_unlock(&rt_constraints_mutex);
2887 
2888 	return err;
2889 }
2890 
2891 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2892 {
2893 	u64 rt_runtime, rt_period;
2894 
2895 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2896 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2897 	if (rt_runtime_us < 0)
2898 		rt_runtime = RUNTIME_INF;
2899 	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2900 		return -EINVAL;
2901 
2902 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2903 }
2904 
2905 long sched_group_rt_runtime(struct task_group *tg)
2906 {
2907 	u64 rt_runtime_us;
2908 
2909 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2910 		return -1;
2911 
2912 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2913 	do_div(rt_runtime_us, NSEC_PER_USEC);
2914 	return rt_runtime_us;
2915 }
2916 
2917 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2918 {
2919 	u64 rt_runtime, rt_period;
2920 
2921 	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2922 		return -EINVAL;
2923 
2924 	rt_period = rt_period_us * NSEC_PER_USEC;
2925 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2926 
2927 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2928 }
2929 
2930 long sched_group_rt_period(struct task_group *tg)
2931 {
2932 	u64 rt_period_us;
2933 
2934 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2935 	do_div(rt_period_us, NSEC_PER_USEC);
2936 	return rt_period_us;
2937 }
2938 
2939 #ifdef CONFIG_SYSCTL
2940 static int sched_rt_global_constraints(void)
2941 {
2942 	int ret = 0;
2943 
2944 	mutex_lock(&rt_constraints_mutex);
2945 	ret = __rt_schedulable(NULL, 0, 0);
2946 	mutex_unlock(&rt_constraints_mutex);
2947 
2948 	return ret;
2949 }
2950 #endif /* CONFIG_SYSCTL */
2951 
2952 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2953 {
2954 	/* Don't accept realtime tasks when there is no way for them to run */
2955 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2956 		return 0;
2957 
2958 	return 1;
2959 }
2960 
2961 #else /* !CONFIG_RT_GROUP_SCHED */
2962 
2963 #ifdef CONFIG_SYSCTL
2964 static int sched_rt_global_constraints(void)
2965 {
2966 	unsigned long flags;
2967 	int i;
2968 
2969 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2970 	for_each_possible_cpu(i) {
2971 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2972 
2973 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2974 		rt_rq->rt_runtime = global_rt_runtime();
2975 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2976 	}
2977 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2978 
2979 	return 0;
2980 }
2981 #endif /* CONFIG_SYSCTL */
2982 #endif /* CONFIG_RT_GROUP_SCHED */
2983 
2984 #ifdef CONFIG_SYSCTL
2985 static int sched_rt_global_validate(void)
2986 {
2987 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2988 		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2989 		 ((u64)sysctl_sched_rt_runtime *
2990 			NSEC_PER_USEC > max_rt_runtime)))
2991 		return -EINVAL;
2992 
2993 	return 0;
2994 }
2995 
2996 static void sched_rt_do_global(void)
2997 {
2998 	unsigned long flags;
2999 
3000 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
3001 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
3002 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
3003 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
3004 }
3005 
3006 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
3007 		size_t *lenp, loff_t *ppos)
3008 {
3009 	int old_period, old_runtime;
3010 	static DEFINE_MUTEX(mutex);
3011 	int ret;
3012 
3013 	mutex_lock(&mutex);
3014 	old_period = sysctl_sched_rt_period;
3015 	old_runtime = sysctl_sched_rt_runtime;
3016 
3017 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3018 
3019 	if (!ret && write) {
3020 		ret = sched_rt_global_validate();
3021 		if (ret)
3022 			goto undo;
3023 
3024 		ret = sched_dl_global_validate();
3025 		if (ret)
3026 			goto undo;
3027 
3028 		ret = sched_rt_global_constraints();
3029 		if (ret)
3030 			goto undo;
3031 
3032 		sched_rt_do_global();
3033 		sched_dl_do_global();
3034 	}
3035 	if (0) {
3036 undo:
3037 		sysctl_sched_rt_period = old_period;
3038 		sysctl_sched_rt_runtime = old_runtime;
3039 	}
3040 	mutex_unlock(&mutex);
3041 
3042 	return ret;
3043 }
3044 
3045 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3046 		size_t *lenp, loff_t *ppos)
3047 {
3048 	int ret;
3049 	static DEFINE_MUTEX(mutex);
3050 
3051 	mutex_lock(&mutex);
3052 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
3053 	/*
3054 	 * Make sure that internally we keep jiffies.
3055 	 * Also, writing zero resets the timeslice to default:
3056 	 */
3057 	if (!ret && write) {
3058 		sched_rr_timeslice =
3059 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3060 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
3061 
3062 		if (sysctl_sched_rr_timeslice <= 0)
3063 			sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
3064 	}
3065 	mutex_unlock(&mutex);
3066 
3067 	return ret;
3068 }
3069 #endif /* CONFIG_SYSCTL */
3070 
3071 #ifdef CONFIG_SCHED_DEBUG
3072 void print_rt_stats(struct seq_file *m, int cpu)
3073 {
3074 	rt_rq_iter_t iter;
3075 	struct rt_rq *rt_rq;
3076 
3077 	rcu_read_lock();
3078 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3079 		print_rt_rq(m, cpu, rt_rq);
3080 	rcu_read_unlock();
3081 }
3082 #endif /* CONFIG_SCHED_DEBUG */
3083