1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
10
11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12
13 struct rt_bandwidth def_rt_bandwidth;
14
15 /*
16 * period over which we measure -rt task CPU usage in us.
17 * default: 1s
18 */
19 unsigned int sysctl_sched_rt_period = 1000000;
20
21 /*
22 * part of the period that we allow rt tasks to run in us.
23 * default: 0.95s
24 */
25 int sysctl_sched_rt_runtime = 950000;
26
27 #ifdef CONFIG_SYSCTL
28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
30 size_t *lenp, loff_t *ppos);
31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
32 size_t *lenp, loff_t *ppos);
33 static struct ctl_table sched_rt_sysctls[] = {
34 {
35 .procname = "sched_rt_period_us",
36 .data = &sysctl_sched_rt_period,
37 .maxlen = sizeof(unsigned int),
38 .mode = 0644,
39 .proc_handler = sched_rt_handler,
40 .extra1 = SYSCTL_ONE,
41 .extra2 = SYSCTL_INT_MAX,
42 },
43 {
44 .procname = "sched_rt_runtime_us",
45 .data = &sysctl_sched_rt_runtime,
46 .maxlen = sizeof(int),
47 .mode = 0644,
48 .proc_handler = sched_rt_handler,
49 .extra1 = SYSCTL_NEG_ONE,
50 .extra2 = SYSCTL_INT_MAX,
51 },
52 {
53 .procname = "sched_rr_timeslice_ms",
54 .data = &sysctl_sched_rr_timeslice,
55 .maxlen = sizeof(int),
56 .mode = 0644,
57 .proc_handler = sched_rr_handler,
58 },
59 {}
60 };
61
sched_rt_sysctl_init(void)62 static int __init sched_rt_sysctl_init(void)
63 {
64 register_sysctl_init("kernel", sched_rt_sysctls);
65 return 0;
66 }
67 late_initcall(sched_rt_sysctl_init);
68 #endif
69
sched_rt_period_timer(struct hrtimer * timer)70 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
71 {
72 struct rt_bandwidth *rt_b =
73 container_of(timer, struct rt_bandwidth, rt_period_timer);
74 int idle = 0;
75 int overrun;
76
77 raw_spin_lock(&rt_b->rt_runtime_lock);
78 for (;;) {
79 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
80 if (!overrun)
81 break;
82
83 raw_spin_unlock(&rt_b->rt_runtime_lock);
84 idle = do_sched_rt_period_timer(rt_b, overrun);
85 raw_spin_lock(&rt_b->rt_runtime_lock);
86 }
87 if (idle)
88 rt_b->rt_period_active = 0;
89 raw_spin_unlock(&rt_b->rt_runtime_lock);
90
91 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
92 }
93
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)94 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
95 {
96 rt_b->rt_period = ns_to_ktime(period);
97 rt_b->rt_runtime = runtime;
98
99 raw_spin_lock_init(&rt_b->rt_runtime_lock);
100
101 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
102 HRTIMER_MODE_REL_HARD);
103 rt_b->rt_period_timer.function = sched_rt_period_timer;
104 }
105
do_start_rt_bandwidth(struct rt_bandwidth * rt_b)106 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
107 {
108 raw_spin_lock(&rt_b->rt_runtime_lock);
109 if (!rt_b->rt_period_active) {
110 rt_b->rt_period_active = 1;
111 /*
112 * SCHED_DEADLINE updates the bandwidth, as a run away
113 * RT task with a DL task could hog a CPU. But DL does
114 * not reset the period. If a deadline task was running
115 * without an RT task running, it can cause RT tasks to
116 * throttle when they start up. Kick the timer right away
117 * to update the period.
118 */
119 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
120 hrtimer_start_expires(&rt_b->rt_period_timer,
121 HRTIMER_MODE_ABS_PINNED_HARD);
122 }
123 raw_spin_unlock(&rt_b->rt_runtime_lock);
124 }
125
start_rt_bandwidth(struct rt_bandwidth * rt_b)126 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
127 {
128 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
129 return;
130
131 do_start_rt_bandwidth(rt_b);
132 }
133
init_rt_rq(struct rt_rq * rt_rq)134 void init_rt_rq(struct rt_rq *rt_rq)
135 {
136 struct rt_prio_array *array;
137 int i;
138
139 array = &rt_rq->active;
140 for (i = 0; i < MAX_RT_PRIO; i++) {
141 INIT_LIST_HEAD(array->queue + i);
142 __clear_bit(i, array->bitmap);
143 }
144 /* delimiter for bitsearch: */
145 __set_bit(MAX_RT_PRIO, array->bitmap);
146
147 #if defined CONFIG_SMP
148 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
149 rt_rq->highest_prio.next = MAX_RT_PRIO-1;
150 rt_rq->rt_nr_migratory = 0;
151 rt_rq->overloaded = 0;
152 plist_head_init(&rt_rq->pushable_tasks);
153 #endif /* CONFIG_SMP */
154 /* We start is dequeued state, because no RT tasks are queued */
155 rt_rq->rt_queued = 0;
156
157 rt_rq->rt_time = 0;
158 rt_rq->rt_throttled = 0;
159 rt_rq->rt_runtime = 0;
160 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
161 }
162
163 #ifdef CONFIG_RT_GROUP_SCHED
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)164 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
165 {
166 hrtimer_cancel(&rt_b->rt_period_timer);
167 }
168
169 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
170
rt_task_of(struct sched_rt_entity * rt_se)171 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
172 {
173 #ifdef CONFIG_SCHED_DEBUG
174 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
175 #endif
176 return container_of(rt_se, struct task_struct, rt);
177 }
178
rq_of_rt_rq(struct rt_rq * rt_rq)179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180 {
181 return rt_rq->rq;
182 }
183
rt_rq_of_se(struct sched_rt_entity * rt_se)184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185 {
186 return rt_se->rt_rq;
187 }
188
rq_of_rt_se(struct sched_rt_entity * rt_se)189 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
190 {
191 struct rt_rq *rt_rq = rt_se->rt_rq;
192
193 return rt_rq->rq;
194 }
195
unregister_rt_sched_group(struct task_group * tg)196 void unregister_rt_sched_group(struct task_group *tg)
197 {
198 if (tg->rt_se)
199 destroy_rt_bandwidth(&tg->rt_bandwidth);
200
201 }
202
free_rt_sched_group(struct task_group * tg)203 void free_rt_sched_group(struct task_group *tg)
204 {
205 int i;
206
207 for_each_possible_cpu(i) {
208 if (tg->rt_rq)
209 kfree(tg->rt_rq[i]);
210 if (tg->rt_se)
211 kfree(tg->rt_se[i]);
212 }
213
214 kfree(tg->rt_rq);
215 kfree(tg->rt_se);
216 }
217
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)218 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
219 struct sched_rt_entity *rt_se, int cpu,
220 struct sched_rt_entity *parent)
221 {
222 struct rq *rq = cpu_rq(cpu);
223
224 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
225 rt_rq->rt_nr_boosted = 0;
226 rt_rq->rq = rq;
227 rt_rq->tg = tg;
228
229 tg->rt_rq[cpu] = rt_rq;
230 tg->rt_se[cpu] = rt_se;
231
232 if (!rt_se)
233 return;
234
235 if (!parent)
236 rt_se->rt_rq = &rq->rt;
237 else
238 rt_se->rt_rq = parent->my_q;
239
240 rt_se->my_q = rt_rq;
241 rt_se->parent = parent;
242 INIT_LIST_HEAD(&rt_se->run_list);
243 }
244
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)245 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
246 {
247 struct rt_rq *rt_rq;
248 struct sched_rt_entity *rt_se;
249 int i;
250
251 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
252 if (!tg->rt_rq)
253 goto err;
254 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
255 if (!tg->rt_se)
256 goto err;
257
258 init_rt_bandwidth(&tg->rt_bandwidth,
259 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
260
261 for_each_possible_cpu(i) {
262 rt_rq = kzalloc_node(sizeof(struct rt_rq),
263 GFP_KERNEL, cpu_to_node(i));
264 if (!rt_rq)
265 goto err;
266
267 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
268 GFP_KERNEL, cpu_to_node(i));
269 if (!rt_se)
270 goto err_free_rq;
271
272 init_rt_rq(rt_rq);
273 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
274 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
275 }
276
277 return 1;
278
279 err_free_rq:
280 kfree(rt_rq);
281 err:
282 return 0;
283 }
284
285 #else /* CONFIG_RT_GROUP_SCHED */
286
287 #define rt_entity_is_task(rt_se) (1)
288
rt_task_of(struct sched_rt_entity * rt_se)289 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
290 {
291 return container_of(rt_se, struct task_struct, rt);
292 }
293
rq_of_rt_rq(struct rt_rq * rt_rq)294 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
295 {
296 return container_of(rt_rq, struct rq, rt);
297 }
298
rq_of_rt_se(struct sched_rt_entity * rt_se)299 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
300 {
301 struct task_struct *p = rt_task_of(rt_se);
302
303 return task_rq(p);
304 }
305
rt_rq_of_se(struct sched_rt_entity * rt_se)306 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
307 {
308 struct rq *rq = rq_of_rt_se(rt_se);
309
310 return &rq->rt;
311 }
312
unregister_rt_sched_group(struct task_group * tg)313 void unregister_rt_sched_group(struct task_group *tg) { }
314
free_rt_sched_group(struct task_group * tg)315 void free_rt_sched_group(struct task_group *tg) { }
316
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)317 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
318 {
319 return 1;
320 }
321 #endif /* CONFIG_RT_GROUP_SCHED */
322
323 #ifdef CONFIG_SMP
324
need_pull_rt_task(struct rq * rq,struct task_struct * prev)325 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
326 {
327 /* Try to pull RT tasks here if we lower this rq's prio */
328 return rq->online && rq->rt.highest_prio.curr > prev->prio;
329 }
330
rt_overloaded(struct rq * rq)331 static inline int rt_overloaded(struct rq *rq)
332 {
333 return atomic_read(&rq->rd->rto_count);
334 }
335
rt_set_overload(struct rq * rq)336 static inline void rt_set_overload(struct rq *rq)
337 {
338 if (!rq->online)
339 return;
340
341 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
342 /*
343 * Make sure the mask is visible before we set
344 * the overload count. That is checked to determine
345 * if we should look at the mask. It would be a shame
346 * if we looked at the mask, but the mask was not
347 * updated yet.
348 *
349 * Matched by the barrier in pull_rt_task().
350 */
351 smp_wmb();
352 atomic_inc(&rq->rd->rto_count);
353 }
354
rt_clear_overload(struct rq * rq)355 static inline void rt_clear_overload(struct rq *rq)
356 {
357 if (!rq->online)
358 return;
359
360 /* the order here really doesn't matter */
361 atomic_dec(&rq->rd->rto_count);
362 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
363 }
364
update_rt_migration(struct rt_rq * rt_rq)365 static void update_rt_migration(struct rt_rq *rt_rq)
366 {
367 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
368 if (!rt_rq->overloaded) {
369 rt_set_overload(rq_of_rt_rq(rt_rq));
370 rt_rq->overloaded = 1;
371 }
372 } else if (rt_rq->overloaded) {
373 rt_clear_overload(rq_of_rt_rq(rt_rq));
374 rt_rq->overloaded = 0;
375 }
376 }
377
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)378 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
379 {
380 struct task_struct *p;
381
382 if (!rt_entity_is_task(rt_se))
383 return;
384
385 p = rt_task_of(rt_se);
386 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
387
388 rt_rq->rt_nr_total++;
389 if (p->nr_cpus_allowed > 1)
390 rt_rq->rt_nr_migratory++;
391
392 update_rt_migration(rt_rq);
393 }
394
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)395 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
396 {
397 struct task_struct *p;
398
399 if (!rt_entity_is_task(rt_se))
400 return;
401
402 p = rt_task_of(rt_se);
403 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
404
405 rt_rq->rt_nr_total--;
406 if (p->nr_cpus_allowed > 1)
407 rt_rq->rt_nr_migratory--;
408
409 update_rt_migration(rt_rq);
410 }
411
has_pushable_tasks(struct rq * rq)412 static inline int has_pushable_tasks(struct rq *rq)
413 {
414 return !plist_head_empty(&rq->rt.pushable_tasks);
415 }
416
417 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
418 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
419
420 static void push_rt_tasks(struct rq *);
421 static void pull_rt_task(struct rq *);
422
rt_queue_push_tasks(struct rq * rq)423 static inline void rt_queue_push_tasks(struct rq *rq)
424 {
425 if (!has_pushable_tasks(rq))
426 return;
427
428 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
429 }
430
rt_queue_pull_task(struct rq * rq)431 static inline void rt_queue_pull_task(struct rq *rq)
432 {
433 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
434 }
435
enqueue_pushable_task(struct rq * rq,struct task_struct * p)436 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
437 {
438 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
439 plist_node_init(&p->pushable_tasks, p->prio);
440 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
441
442 /* Update the highest prio pushable task */
443 if (p->prio < rq->rt.highest_prio.next)
444 rq->rt.highest_prio.next = p->prio;
445 }
446
dequeue_pushable_task(struct rq * rq,struct task_struct * p)447 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
448 {
449 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
450
451 /* Update the new highest prio pushable task */
452 if (has_pushable_tasks(rq)) {
453 p = plist_first_entry(&rq->rt.pushable_tasks,
454 struct task_struct, pushable_tasks);
455 rq->rt.highest_prio.next = p->prio;
456 } else {
457 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
458 }
459 }
460
461 #else
462
enqueue_pushable_task(struct rq * rq,struct task_struct * p)463 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
464 {
465 }
466
dequeue_pushable_task(struct rq * rq,struct task_struct * p)467 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
468 {
469 }
470
471 static inline
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)472 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
473 {
474 }
475
476 static inline
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)477 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
478 {
479 }
480
rt_queue_push_tasks(struct rq * rq)481 static inline void rt_queue_push_tasks(struct rq *rq)
482 {
483 }
484 #endif /* CONFIG_SMP */
485
486 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
487 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
488
on_rt_rq(struct sched_rt_entity * rt_se)489 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
490 {
491 return rt_se->on_rq;
492 }
493
494 #ifdef CONFIG_UCLAMP_TASK
495 /*
496 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
497 * settings.
498 *
499 * This check is only important for heterogeneous systems where uclamp_min value
500 * is higher than the capacity of a @cpu. For non-heterogeneous system this
501 * function will always return true.
502 *
503 * The function will return true if the capacity of the @cpu is >= the
504 * uclamp_min and false otherwise.
505 *
506 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
507 * > uclamp_max.
508 */
rt_task_fits_capacity(struct task_struct * p,int cpu)509 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
510 {
511 unsigned int min_cap;
512 unsigned int max_cap;
513 unsigned int cpu_cap;
514
515 /* Only heterogeneous systems can benefit from this check */
516 if (!sched_asym_cpucap_active())
517 return true;
518
519 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
520 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
521
522 cpu_cap = capacity_orig_of(cpu);
523
524 return cpu_cap >= min(min_cap, max_cap);
525 }
526 #else
rt_task_fits_capacity(struct task_struct * p,int cpu)527 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
528 {
529 return true;
530 }
531 #endif
532
533 #ifdef CONFIG_RT_GROUP_SCHED
534
sched_rt_runtime(struct rt_rq * rt_rq)535 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
536 {
537 if (!rt_rq->tg)
538 return RUNTIME_INF;
539
540 return rt_rq->rt_runtime;
541 }
542
sched_rt_period(struct rt_rq * rt_rq)543 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
544 {
545 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
546 }
547
548 typedef struct task_group *rt_rq_iter_t;
549
next_task_group(struct task_group * tg)550 static inline struct task_group *next_task_group(struct task_group *tg)
551 {
552 do {
553 tg = list_entry_rcu(tg->list.next,
554 typeof(struct task_group), list);
555 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
556
557 if (&tg->list == &task_groups)
558 tg = NULL;
559
560 return tg;
561 }
562
563 #define for_each_rt_rq(rt_rq, iter, rq) \
564 for (iter = container_of(&task_groups, typeof(*iter), list); \
565 (iter = next_task_group(iter)) && \
566 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
567
568 #define for_each_sched_rt_entity(rt_se) \
569 for (; rt_se; rt_se = rt_se->parent)
570
group_rt_rq(struct sched_rt_entity * rt_se)571 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
572 {
573 return rt_se->my_q;
574 }
575
576 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
577 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
578
sched_rt_rq_enqueue(struct rt_rq * rt_rq)579 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
580 {
581 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
582 struct rq *rq = rq_of_rt_rq(rt_rq);
583 struct sched_rt_entity *rt_se;
584
585 int cpu = cpu_of(rq);
586
587 rt_se = rt_rq->tg->rt_se[cpu];
588
589 if (rt_rq->rt_nr_running) {
590 if (!rt_se)
591 enqueue_top_rt_rq(rt_rq);
592 else if (!on_rt_rq(rt_se))
593 enqueue_rt_entity(rt_se, 0);
594
595 if (rt_rq->highest_prio.curr < curr->prio)
596 resched_curr(rq);
597 }
598 }
599
sched_rt_rq_dequeue(struct rt_rq * rt_rq)600 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
601 {
602 struct sched_rt_entity *rt_se;
603 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
604
605 rt_se = rt_rq->tg->rt_se[cpu];
606
607 if (!rt_se) {
608 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
609 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
610 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
611 }
612 else if (on_rt_rq(rt_se))
613 dequeue_rt_entity(rt_se, 0);
614 }
615
rt_rq_throttled(struct rt_rq * rt_rq)616 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
617 {
618 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
619 }
620
rt_se_boosted(struct sched_rt_entity * rt_se)621 static int rt_se_boosted(struct sched_rt_entity *rt_se)
622 {
623 struct rt_rq *rt_rq = group_rt_rq(rt_se);
624 struct task_struct *p;
625
626 if (rt_rq)
627 return !!rt_rq->rt_nr_boosted;
628
629 p = rt_task_of(rt_se);
630 return p->prio != p->normal_prio;
631 }
632
633 #ifdef CONFIG_SMP
sched_rt_period_mask(void)634 static inline const struct cpumask *sched_rt_period_mask(void)
635 {
636 return this_rq()->rd->span;
637 }
638 #else
sched_rt_period_mask(void)639 static inline const struct cpumask *sched_rt_period_mask(void)
640 {
641 return cpu_online_mask;
642 }
643 #endif
644
645 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)646 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
647 {
648 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
649 }
650
sched_rt_bandwidth(struct rt_rq * rt_rq)651 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
652 {
653 return &rt_rq->tg->rt_bandwidth;
654 }
655
656 #else /* !CONFIG_RT_GROUP_SCHED */
657
sched_rt_runtime(struct rt_rq * rt_rq)658 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
659 {
660 return rt_rq->rt_runtime;
661 }
662
sched_rt_period(struct rt_rq * rt_rq)663 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
664 {
665 return ktime_to_ns(def_rt_bandwidth.rt_period);
666 }
667
668 typedef struct rt_rq *rt_rq_iter_t;
669
670 #define for_each_rt_rq(rt_rq, iter, rq) \
671 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
672
673 #define for_each_sched_rt_entity(rt_se) \
674 for (; rt_se; rt_se = NULL)
675
group_rt_rq(struct sched_rt_entity * rt_se)676 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
677 {
678 return NULL;
679 }
680
sched_rt_rq_enqueue(struct rt_rq * rt_rq)681 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
682 {
683 struct rq *rq = rq_of_rt_rq(rt_rq);
684
685 if (!rt_rq->rt_nr_running)
686 return;
687
688 enqueue_top_rt_rq(rt_rq);
689 resched_curr(rq);
690 }
691
sched_rt_rq_dequeue(struct rt_rq * rt_rq)692 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
693 {
694 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
695 }
696
rt_rq_throttled(struct rt_rq * rt_rq)697 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
698 {
699 return rt_rq->rt_throttled;
700 }
701
sched_rt_period_mask(void)702 static inline const struct cpumask *sched_rt_period_mask(void)
703 {
704 return cpu_online_mask;
705 }
706
707 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)708 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
709 {
710 return &cpu_rq(cpu)->rt;
711 }
712
sched_rt_bandwidth(struct rt_rq * rt_rq)713 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
714 {
715 return &def_rt_bandwidth;
716 }
717
718 #endif /* CONFIG_RT_GROUP_SCHED */
719
sched_rt_bandwidth_account(struct rt_rq * rt_rq)720 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
721 {
722 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
723
724 return (hrtimer_active(&rt_b->rt_period_timer) ||
725 rt_rq->rt_time < rt_b->rt_runtime);
726 }
727
728 #ifdef CONFIG_SMP
729 /*
730 * We ran out of runtime, see if we can borrow some from our neighbours.
731 */
do_balance_runtime(struct rt_rq * rt_rq)732 static void do_balance_runtime(struct rt_rq *rt_rq)
733 {
734 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
735 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
736 int i, weight;
737 u64 rt_period;
738
739 weight = cpumask_weight(rd->span);
740
741 raw_spin_lock(&rt_b->rt_runtime_lock);
742 rt_period = ktime_to_ns(rt_b->rt_period);
743 for_each_cpu(i, rd->span) {
744 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
745 s64 diff;
746
747 if (iter == rt_rq)
748 continue;
749
750 raw_spin_lock(&iter->rt_runtime_lock);
751 /*
752 * Either all rqs have inf runtime and there's nothing to steal
753 * or __disable_runtime() below sets a specific rq to inf to
754 * indicate its been disabled and disallow stealing.
755 */
756 if (iter->rt_runtime == RUNTIME_INF)
757 goto next;
758
759 /*
760 * From runqueues with spare time, take 1/n part of their
761 * spare time, but no more than our period.
762 */
763 diff = iter->rt_runtime - iter->rt_time;
764 if (diff > 0) {
765 diff = div_u64((u64)diff, weight);
766 if (rt_rq->rt_runtime + diff > rt_period)
767 diff = rt_period - rt_rq->rt_runtime;
768 iter->rt_runtime -= diff;
769 rt_rq->rt_runtime += diff;
770 if (rt_rq->rt_runtime == rt_period) {
771 raw_spin_unlock(&iter->rt_runtime_lock);
772 break;
773 }
774 }
775 next:
776 raw_spin_unlock(&iter->rt_runtime_lock);
777 }
778 raw_spin_unlock(&rt_b->rt_runtime_lock);
779 }
780
781 /*
782 * Ensure this RQ takes back all the runtime it lend to its neighbours.
783 */
__disable_runtime(struct rq * rq)784 static void __disable_runtime(struct rq *rq)
785 {
786 struct root_domain *rd = rq->rd;
787 rt_rq_iter_t iter;
788 struct rt_rq *rt_rq;
789
790 if (unlikely(!scheduler_running))
791 return;
792
793 for_each_rt_rq(rt_rq, iter, rq) {
794 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
795 s64 want;
796 int i;
797
798 raw_spin_lock(&rt_b->rt_runtime_lock);
799 raw_spin_lock(&rt_rq->rt_runtime_lock);
800 /*
801 * Either we're all inf and nobody needs to borrow, or we're
802 * already disabled and thus have nothing to do, or we have
803 * exactly the right amount of runtime to take out.
804 */
805 if (rt_rq->rt_runtime == RUNTIME_INF ||
806 rt_rq->rt_runtime == rt_b->rt_runtime)
807 goto balanced;
808 raw_spin_unlock(&rt_rq->rt_runtime_lock);
809
810 /*
811 * Calculate the difference between what we started out with
812 * and what we current have, that's the amount of runtime
813 * we lend and now have to reclaim.
814 */
815 want = rt_b->rt_runtime - rt_rq->rt_runtime;
816
817 /*
818 * Greedy reclaim, take back as much as we can.
819 */
820 for_each_cpu(i, rd->span) {
821 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
822 s64 diff;
823
824 /*
825 * Can't reclaim from ourselves or disabled runqueues.
826 */
827 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
828 continue;
829
830 raw_spin_lock(&iter->rt_runtime_lock);
831 if (want > 0) {
832 diff = min_t(s64, iter->rt_runtime, want);
833 iter->rt_runtime -= diff;
834 want -= diff;
835 } else {
836 iter->rt_runtime -= want;
837 want -= want;
838 }
839 raw_spin_unlock(&iter->rt_runtime_lock);
840
841 if (!want)
842 break;
843 }
844
845 raw_spin_lock(&rt_rq->rt_runtime_lock);
846 /*
847 * We cannot be left wanting - that would mean some runtime
848 * leaked out of the system.
849 */
850 WARN_ON_ONCE(want);
851 balanced:
852 /*
853 * Disable all the borrow logic by pretending we have inf
854 * runtime - in which case borrowing doesn't make sense.
855 */
856 rt_rq->rt_runtime = RUNTIME_INF;
857 rt_rq->rt_throttled = 0;
858 raw_spin_unlock(&rt_rq->rt_runtime_lock);
859 raw_spin_unlock(&rt_b->rt_runtime_lock);
860
861 /* Make rt_rq available for pick_next_task() */
862 sched_rt_rq_enqueue(rt_rq);
863 }
864 }
865
__enable_runtime(struct rq * rq)866 static void __enable_runtime(struct rq *rq)
867 {
868 rt_rq_iter_t iter;
869 struct rt_rq *rt_rq;
870
871 if (unlikely(!scheduler_running))
872 return;
873
874 /*
875 * Reset each runqueue's bandwidth settings
876 */
877 for_each_rt_rq(rt_rq, iter, rq) {
878 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
879
880 raw_spin_lock(&rt_b->rt_runtime_lock);
881 raw_spin_lock(&rt_rq->rt_runtime_lock);
882 rt_rq->rt_runtime = rt_b->rt_runtime;
883 rt_rq->rt_time = 0;
884 rt_rq->rt_throttled = 0;
885 raw_spin_unlock(&rt_rq->rt_runtime_lock);
886 raw_spin_unlock(&rt_b->rt_runtime_lock);
887 }
888 }
889
balance_runtime(struct rt_rq * rt_rq)890 static void balance_runtime(struct rt_rq *rt_rq)
891 {
892 if (!sched_feat(RT_RUNTIME_SHARE))
893 return;
894
895 if (rt_rq->rt_time > rt_rq->rt_runtime) {
896 raw_spin_unlock(&rt_rq->rt_runtime_lock);
897 do_balance_runtime(rt_rq);
898 raw_spin_lock(&rt_rq->rt_runtime_lock);
899 }
900 }
901 #else /* !CONFIG_SMP */
balance_runtime(struct rt_rq * rt_rq)902 static inline void balance_runtime(struct rt_rq *rt_rq) {}
903 #endif /* CONFIG_SMP */
904
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)905 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
906 {
907 int i, idle = 1, throttled = 0;
908 const struct cpumask *span;
909
910 span = sched_rt_period_mask();
911 #ifdef CONFIG_RT_GROUP_SCHED
912 /*
913 * FIXME: isolated CPUs should really leave the root task group,
914 * whether they are isolcpus or were isolated via cpusets, lest
915 * the timer run on a CPU which does not service all runqueues,
916 * potentially leaving other CPUs indefinitely throttled. If
917 * isolation is really required, the user will turn the throttle
918 * off to kill the perturbations it causes anyway. Meanwhile,
919 * this maintains functionality for boot and/or troubleshooting.
920 */
921 if (rt_b == &root_task_group.rt_bandwidth)
922 span = cpu_online_mask;
923 #endif
924 for_each_cpu(i, span) {
925 int enqueue = 0;
926 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
927 struct rq *rq = rq_of_rt_rq(rt_rq);
928 struct rq_flags rf;
929 int skip;
930
931 /*
932 * When span == cpu_online_mask, taking each rq->lock
933 * can be time-consuming. Try to avoid it when possible.
934 */
935 raw_spin_lock(&rt_rq->rt_runtime_lock);
936 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
937 rt_rq->rt_runtime = rt_b->rt_runtime;
938 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
939 raw_spin_unlock(&rt_rq->rt_runtime_lock);
940 if (skip)
941 continue;
942
943 rq_lock(rq, &rf);
944 update_rq_clock(rq);
945
946 if (rt_rq->rt_time) {
947 u64 runtime;
948
949 raw_spin_lock(&rt_rq->rt_runtime_lock);
950 if (rt_rq->rt_throttled)
951 balance_runtime(rt_rq);
952 runtime = rt_rq->rt_runtime;
953 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
954 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
955 rt_rq->rt_throttled = 0;
956 enqueue = 1;
957
958 /*
959 * When we're idle and a woken (rt) task is
960 * throttled check_preempt_curr() will set
961 * skip_update and the time between the wakeup
962 * and this unthrottle will get accounted as
963 * 'runtime'.
964 */
965 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
966 rq_clock_cancel_skipupdate(rq);
967 }
968 if (rt_rq->rt_time || rt_rq->rt_nr_running)
969 idle = 0;
970 raw_spin_unlock(&rt_rq->rt_runtime_lock);
971 } else if (rt_rq->rt_nr_running) {
972 idle = 0;
973 if (!rt_rq_throttled(rt_rq))
974 enqueue = 1;
975 }
976 if (rt_rq->rt_throttled)
977 throttled = 1;
978
979 if (enqueue)
980 sched_rt_rq_enqueue(rt_rq);
981 rq_unlock(rq, &rf);
982 }
983
984 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
985 return 1;
986
987 return idle;
988 }
989
rt_se_prio(struct sched_rt_entity * rt_se)990 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
991 {
992 #ifdef CONFIG_RT_GROUP_SCHED
993 struct rt_rq *rt_rq = group_rt_rq(rt_se);
994
995 if (rt_rq)
996 return rt_rq->highest_prio.curr;
997 #endif
998
999 return rt_task_of(rt_se)->prio;
1000 }
1001
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)1002 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
1003 {
1004 u64 runtime = sched_rt_runtime(rt_rq);
1005
1006 if (rt_rq->rt_throttled)
1007 return rt_rq_throttled(rt_rq);
1008
1009 if (runtime >= sched_rt_period(rt_rq))
1010 return 0;
1011
1012 balance_runtime(rt_rq);
1013 runtime = sched_rt_runtime(rt_rq);
1014 if (runtime == RUNTIME_INF)
1015 return 0;
1016
1017 if (rt_rq->rt_time > runtime) {
1018 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
1019
1020 /*
1021 * Don't actually throttle groups that have no runtime assigned
1022 * but accrue some time due to boosting.
1023 */
1024 if (likely(rt_b->rt_runtime)) {
1025 rt_rq->rt_throttled = 1;
1026 printk_deferred_once("sched: RT throttling activated\n");
1027 } else {
1028 /*
1029 * In case we did anyway, make it go away,
1030 * replenishment is a joke, since it will replenish us
1031 * with exactly 0 ns.
1032 */
1033 rt_rq->rt_time = 0;
1034 }
1035
1036 if (rt_rq_throttled(rt_rq)) {
1037 sched_rt_rq_dequeue(rt_rq);
1038 return 1;
1039 }
1040 }
1041
1042 return 0;
1043 }
1044
1045 /*
1046 * Update the current task's runtime statistics. Skip current tasks that
1047 * are not in our scheduling class.
1048 */
update_curr_rt(struct rq * rq)1049 static void update_curr_rt(struct rq *rq)
1050 {
1051 struct task_struct *curr = rq->curr;
1052 struct sched_rt_entity *rt_se = &curr->rt;
1053 u64 delta_exec;
1054 u64 now;
1055
1056 if (curr->sched_class != &rt_sched_class)
1057 return;
1058
1059 now = rq_clock_task(rq);
1060 delta_exec = now - curr->se.exec_start;
1061 if (unlikely((s64)delta_exec <= 0))
1062 return;
1063
1064 schedstat_set(curr->stats.exec_max,
1065 max(curr->stats.exec_max, delta_exec));
1066
1067 trace_sched_stat_runtime(curr, delta_exec, 0);
1068
1069 update_current_exec_runtime(curr, now, delta_exec);
1070
1071 if (!rt_bandwidth_enabled())
1072 return;
1073
1074 for_each_sched_rt_entity(rt_se) {
1075 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1076 int exceeded;
1077
1078 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1079 raw_spin_lock(&rt_rq->rt_runtime_lock);
1080 rt_rq->rt_time += delta_exec;
1081 exceeded = sched_rt_runtime_exceeded(rt_rq);
1082 if (exceeded)
1083 resched_curr(rq);
1084 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1085 if (exceeded)
1086 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1087 }
1088 }
1089 }
1090
1091 static void
dequeue_top_rt_rq(struct rt_rq * rt_rq,unsigned int count)1092 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1093 {
1094 struct rq *rq = rq_of_rt_rq(rt_rq);
1095
1096 BUG_ON(&rq->rt != rt_rq);
1097
1098 if (!rt_rq->rt_queued)
1099 return;
1100
1101 BUG_ON(!rq->nr_running);
1102
1103 sub_nr_running(rq, count);
1104 rt_rq->rt_queued = 0;
1105
1106 }
1107
1108 static void
enqueue_top_rt_rq(struct rt_rq * rt_rq)1109 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1110 {
1111 struct rq *rq = rq_of_rt_rq(rt_rq);
1112
1113 BUG_ON(&rq->rt != rt_rq);
1114
1115 if (rt_rq->rt_queued)
1116 return;
1117
1118 if (rt_rq_throttled(rt_rq))
1119 return;
1120
1121 if (rt_rq->rt_nr_running) {
1122 add_nr_running(rq, rt_rq->rt_nr_running);
1123 rt_rq->rt_queued = 1;
1124 }
1125
1126 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1127 cpufreq_update_util(rq, 0);
1128 }
1129
1130 #if defined CONFIG_SMP
1131
1132 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1133 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1134 {
1135 struct rq *rq = rq_of_rt_rq(rt_rq);
1136
1137 #ifdef CONFIG_RT_GROUP_SCHED
1138 /*
1139 * Change rq's cpupri only if rt_rq is the top queue.
1140 */
1141 if (&rq->rt != rt_rq)
1142 return;
1143 #endif
1144 if (rq->online && prio < prev_prio)
1145 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1146 }
1147
1148 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1149 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1150 {
1151 struct rq *rq = rq_of_rt_rq(rt_rq);
1152
1153 #ifdef CONFIG_RT_GROUP_SCHED
1154 /*
1155 * Change rq's cpupri only if rt_rq is the top queue.
1156 */
1157 if (&rq->rt != rt_rq)
1158 return;
1159 #endif
1160 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1161 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1162 }
1163
1164 #else /* CONFIG_SMP */
1165
1166 static inline
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1167 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1168 static inline
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1169 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1170
1171 #endif /* CONFIG_SMP */
1172
1173 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1174 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)1175 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1176 {
1177 int prev_prio = rt_rq->highest_prio.curr;
1178
1179 if (prio < prev_prio)
1180 rt_rq->highest_prio.curr = prio;
1181
1182 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1183 }
1184
1185 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)1186 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1187 {
1188 int prev_prio = rt_rq->highest_prio.curr;
1189
1190 if (rt_rq->rt_nr_running) {
1191
1192 WARN_ON(prio < prev_prio);
1193
1194 /*
1195 * This may have been our highest task, and therefore
1196 * we may have some recomputation to do
1197 */
1198 if (prio == prev_prio) {
1199 struct rt_prio_array *array = &rt_rq->active;
1200
1201 rt_rq->highest_prio.curr =
1202 sched_find_first_bit(array->bitmap);
1203 }
1204
1205 } else {
1206 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1207 }
1208
1209 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1210 }
1211
1212 #else
1213
inc_rt_prio(struct rt_rq * rt_rq,int prio)1214 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
dec_rt_prio(struct rt_rq * rt_rq,int prio)1215 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1216
1217 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1218
1219 #ifdef CONFIG_RT_GROUP_SCHED
1220
1221 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1222 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1223 {
1224 if (rt_se_boosted(rt_se))
1225 rt_rq->rt_nr_boosted++;
1226
1227 if (rt_rq->tg)
1228 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1229 }
1230
1231 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1232 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1233 {
1234 if (rt_se_boosted(rt_se))
1235 rt_rq->rt_nr_boosted--;
1236
1237 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1238 }
1239
1240 #else /* CONFIG_RT_GROUP_SCHED */
1241
1242 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1243 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1244 {
1245 start_rt_bandwidth(&def_rt_bandwidth);
1246 }
1247
1248 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1249 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1250
1251 #endif /* CONFIG_RT_GROUP_SCHED */
1252
1253 static inline
rt_se_nr_running(struct sched_rt_entity * rt_se)1254 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1255 {
1256 struct rt_rq *group_rq = group_rt_rq(rt_se);
1257
1258 if (group_rq)
1259 return group_rq->rt_nr_running;
1260 else
1261 return 1;
1262 }
1263
1264 static inline
rt_se_rr_nr_running(struct sched_rt_entity * rt_se)1265 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1266 {
1267 struct rt_rq *group_rq = group_rt_rq(rt_se);
1268 struct task_struct *tsk;
1269
1270 if (group_rq)
1271 return group_rq->rr_nr_running;
1272
1273 tsk = rt_task_of(rt_se);
1274
1275 return (tsk->policy == SCHED_RR) ? 1 : 0;
1276 }
1277
1278 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1279 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1280 {
1281 int prio = rt_se_prio(rt_se);
1282
1283 WARN_ON(!rt_prio(prio));
1284 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1285 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1286
1287 inc_rt_prio(rt_rq, prio);
1288 inc_rt_migration(rt_se, rt_rq);
1289 inc_rt_group(rt_se, rt_rq);
1290 }
1291
1292 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1293 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1294 {
1295 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1296 WARN_ON(!rt_rq->rt_nr_running);
1297 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1298 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1299
1300 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1301 dec_rt_migration(rt_se, rt_rq);
1302 dec_rt_group(rt_se, rt_rq);
1303 }
1304
1305 /*
1306 * Change rt_se->run_list location unless SAVE && !MOVE
1307 *
1308 * assumes ENQUEUE/DEQUEUE flags match
1309 */
move_entity(unsigned int flags)1310 static inline bool move_entity(unsigned int flags)
1311 {
1312 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1313 return false;
1314
1315 return true;
1316 }
1317
__delist_rt_entity(struct sched_rt_entity * rt_se,struct rt_prio_array * array)1318 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1319 {
1320 list_del_init(&rt_se->run_list);
1321
1322 if (list_empty(array->queue + rt_se_prio(rt_se)))
1323 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1324
1325 rt_se->on_list = 0;
1326 }
1327
1328 static inline struct sched_statistics *
__schedstats_from_rt_se(struct sched_rt_entity * rt_se)1329 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1330 {
1331 #ifdef CONFIG_RT_GROUP_SCHED
1332 /* schedstats is not supported for rt group. */
1333 if (!rt_entity_is_task(rt_se))
1334 return NULL;
1335 #endif
1336
1337 return &rt_task_of(rt_se)->stats;
1338 }
1339
1340 static inline void
update_stats_wait_start_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1341 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1342 {
1343 struct sched_statistics *stats;
1344 struct task_struct *p = NULL;
1345
1346 if (!schedstat_enabled())
1347 return;
1348
1349 if (rt_entity_is_task(rt_se))
1350 p = rt_task_of(rt_se);
1351
1352 stats = __schedstats_from_rt_se(rt_se);
1353 if (!stats)
1354 return;
1355
1356 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1357 }
1358
1359 static inline void
update_stats_enqueue_sleeper_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1360 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1361 {
1362 struct sched_statistics *stats;
1363 struct task_struct *p = NULL;
1364
1365 if (!schedstat_enabled())
1366 return;
1367
1368 if (rt_entity_is_task(rt_se))
1369 p = rt_task_of(rt_se);
1370
1371 stats = __schedstats_from_rt_se(rt_se);
1372 if (!stats)
1373 return;
1374
1375 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1376 }
1377
1378 static inline void
update_stats_enqueue_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int flags)1379 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1380 int flags)
1381 {
1382 if (!schedstat_enabled())
1383 return;
1384
1385 if (flags & ENQUEUE_WAKEUP)
1386 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1387 }
1388
1389 static inline void
update_stats_wait_end_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1390 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1391 {
1392 struct sched_statistics *stats;
1393 struct task_struct *p = NULL;
1394
1395 if (!schedstat_enabled())
1396 return;
1397
1398 if (rt_entity_is_task(rt_se))
1399 p = rt_task_of(rt_se);
1400
1401 stats = __schedstats_from_rt_se(rt_se);
1402 if (!stats)
1403 return;
1404
1405 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1406 }
1407
1408 static inline void
update_stats_dequeue_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int flags)1409 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1410 int flags)
1411 {
1412 struct task_struct *p = NULL;
1413
1414 if (!schedstat_enabled())
1415 return;
1416
1417 if (rt_entity_is_task(rt_se))
1418 p = rt_task_of(rt_se);
1419
1420 if ((flags & DEQUEUE_SLEEP) && p) {
1421 unsigned int state;
1422
1423 state = READ_ONCE(p->__state);
1424 if (state & TASK_INTERRUPTIBLE)
1425 __schedstat_set(p->stats.sleep_start,
1426 rq_clock(rq_of_rt_rq(rt_rq)));
1427
1428 if (state & TASK_UNINTERRUPTIBLE)
1429 __schedstat_set(p->stats.block_start,
1430 rq_clock(rq_of_rt_rq(rt_rq)));
1431 }
1432 }
1433
__enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1434 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1435 {
1436 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1437 struct rt_prio_array *array = &rt_rq->active;
1438 struct rt_rq *group_rq = group_rt_rq(rt_se);
1439 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1440
1441 /*
1442 * Don't enqueue the group if its throttled, or when empty.
1443 * The latter is a consequence of the former when a child group
1444 * get throttled and the current group doesn't have any other
1445 * active members.
1446 */
1447 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1448 if (rt_se->on_list)
1449 __delist_rt_entity(rt_se, array);
1450 return;
1451 }
1452
1453 if (move_entity(flags)) {
1454 WARN_ON_ONCE(rt_se->on_list);
1455 if (flags & ENQUEUE_HEAD)
1456 list_add(&rt_se->run_list, queue);
1457 else
1458 list_add_tail(&rt_se->run_list, queue);
1459
1460 __set_bit(rt_se_prio(rt_se), array->bitmap);
1461 rt_se->on_list = 1;
1462 }
1463 rt_se->on_rq = 1;
1464
1465 inc_rt_tasks(rt_se, rt_rq);
1466 }
1467
__dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1468 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1469 {
1470 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1471 struct rt_prio_array *array = &rt_rq->active;
1472
1473 if (move_entity(flags)) {
1474 WARN_ON_ONCE(!rt_se->on_list);
1475 __delist_rt_entity(rt_se, array);
1476 }
1477 rt_se->on_rq = 0;
1478
1479 dec_rt_tasks(rt_se, rt_rq);
1480 }
1481
1482 /*
1483 * Because the prio of an upper entry depends on the lower
1484 * entries, we must remove entries top - down.
1485 */
dequeue_rt_stack(struct sched_rt_entity * rt_se,unsigned int flags)1486 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1487 {
1488 struct sched_rt_entity *back = NULL;
1489 unsigned int rt_nr_running;
1490
1491 for_each_sched_rt_entity(rt_se) {
1492 rt_se->back = back;
1493 back = rt_se;
1494 }
1495
1496 rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1497
1498 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1499 if (on_rt_rq(rt_se))
1500 __dequeue_rt_entity(rt_se, flags);
1501 }
1502
1503 dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1504 }
1505
enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1506 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1507 {
1508 struct rq *rq = rq_of_rt_se(rt_se);
1509
1510 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1511
1512 dequeue_rt_stack(rt_se, flags);
1513 for_each_sched_rt_entity(rt_se)
1514 __enqueue_rt_entity(rt_se, flags);
1515 enqueue_top_rt_rq(&rq->rt);
1516 }
1517
dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1518 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1519 {
1520 struct rq *rq = rq_of_rt_se(rt_se);
1521
1522 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1523
1524 dequeue_rt_stack(rt_se, flags);
1525
1526 for_each_sched_rt_entity(rt_se) {
1527 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1528
1529 if (rt_rq && rt_rq->rt_nr_running)
1530 __enqueue_rt_entity(rt_se, flags);
1531 }
1532 enqueue_top_rt_rq(&rq->rt);
1533 }
1534
1535 /*
1536 * Adding/removing a task to/from a priority array:
1537 */
1538 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)1539 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1540 {
1541 struct sched_rt_entity *rt_se = &p->rt;
1542
1543 if (flags & ENQUEUE_WAKEUP)
1544 rt_se->timeout = 0;
1545
1546 check_schedstat_required();
1547 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1548
1549 enqueue_rt_entity(rt_se, flags);
1550
1551 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1552 enqueue_pushable_task(rq, p);
1553 }
1554
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)1555 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1556 {
1557 struct sched_rt_entity *rt_se = &p->rt;
1558
1559 update_curr_rt(rq);
1560 dequeue_rt_entity(rt_se, flags);
1561
1562 dequeue_pushable_task(rq, p);
1563 }
1564
1565 /*
1566 * Put task to the head or the end of the run list without the overhead of
1567 * dequeue followed by enqueue.
1568 */
1569 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)1570 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1571 {
1572 if (on_rt_rq(rt_se)) {
1573 struct rt_prio_array *array = &rt_rq->active;
1574 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1575
1576 if (head)
1577 list_move(&rt_se->run_list, queue);
1578 else
1579 list_move_tail(&rt_se->run_list, queue);
1580 }
1581 }
1582
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)1583 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1584 {
1585 struct sched_rt_entity *rt_se = &p->rt;
1586 struct rt_rq *rt_rq;
1587
1588 for_each_sched_rt_entity(rt_se) {
1589 rt_rq = rt_rq_of_se(rt_se);
1590 requeue_rt_entity(rt_rq, rt_se, head);
1591 }
1592 }
1593
yield_task_rt(struct rq * rq)1594 static void yield_task_rt(struct rq *rq)
1595 {
1596 requeue_task_rt(rq, rq->curr, 0);
1597 }
1598
1599 #ifdef CONFIG_SMP
1600 static int find_lowest_rq(struct task_struct *task);
1601
1602 static int
select_task_rq_rt(struct task_struct * p,int cpu,int flags)1603 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1604 {
1605 struct task_struct *curr;
1606 struct rq *rq;
1607 bool test;
1608
1609 /* For anything but wake ups, just return the task_cpu */
1610 if (!(flags & (WF_TTWU | WF_FORK)))
1611 goto out;
1612
1613 rq = cpu_rq(cpu);
1614
1615 rcu_read_lock();
1616 curr = READ_ONCE(rq->curr); /* unlocked access */
1617
1618 /*
1619 * If the current task on @p's runqueue is an RT task, then
1620 * try to see if we can wake this RT task up on another
1621 * runqueue. Otherwise simply start this RT task
1622 * on its current runqueue.
1623 *
1624 * We want to avoid overloading runqueues. If the woken
1625 * task is a higher priority, then it will stay on this CPU
1626 * and the lower prio task should be moved to another CPU.
1627 * Even though this will probably make the lower prio task
1628 * lose its cache, we do not want to bounce a higher task
1629 * around just because it gave up its CPU, perhaps for a
1630 * lock?
1631 *
1632 * For equal prio tasks, we just let the scheduler sort it out.
1633 *
1634 * Otherwise, just let it ride on the affined RQ and the
1635 * post-schedule router will push the preempted task away
1636 *
1637 * This test is optimistic, if we get it wrong the load-balancer
1638 * will have to sort it out.
1639 *
1640 * We take into account the capacity of the CPU to ensure it fits the
1641 * requirement of the task - which is only important on heterogeneous
1642 * systems like big.LITTLE.
1643 */
1644 test = curr &&
1645 unlikely(rt_task(curr)) &&
1646 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1647
1648 if (test || !rt_task_fits_capacity(p, cpu)) {
1649 int target = find_lowest_rq(p);
1650
1651 /*
1652 * Bail out if we were forcing a migration to find a better
1653 * fitting CPU but our search failed.
1654 */
1655 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1656 goto out_unlock;
1657
1658 /*
1659 * Don't bother moving it if the destination CPU is
1660 * not running a lower priority task.
1661 */
1662 if (target != -1 &&
1663 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1664 cpu = target;
1665 }
1666
1667 out_unlock:
1668 rcu_read_unlock();
1669
1670 out:
1671 return cpu;
1672 }
1673
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1674 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1675 {
1676 /*
1677 * Current can't be migrated, useless to reschedule,
1678 * let's hope p can move out.
1679 */
1680 if (rq->curr->nr_cpus_allowed == 1 ||
1681 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1682 return;
1683
1684 /*
1685 * p is migratable, so let's not schedule it and
1686 * see if it is pushed or pulled somewhere else.
1687 */
1688 if (p->nr_cpus_allowed != 1 &&
1689 cpupri_find(&rq->rd->cpupri, p, NULL))
1690 return;
1691
1692 /*
1693 * There appear to be other CPUs that can accept
1694 * the current task but none can run 'p', so lets reschedule
1695 * to try and push the current task away:
1696 */
1697 requeue_task_rt(rq, p, 1);
1698 resched_curr(rq);
1699 }
1700
balance_rt(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1701 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1702 {
1703 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1704 /*
1705 * This is OK, because current is on_cpu, which avoids it being
1706 * picked for load-balance and preemption/IRQs are still
1707 * disabled avoiding further scheduler activity on it and we've
1708 * not yet started the picking loop.
1709 */
1710 rq_unpin_lock(rq, rf);
1711 pull_rt_task(rq);
1712 rq_repin_lock(rq, rf);
1713 }
1714
1715 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1716 }
1717 #endif /* CONFIG_SMP */
1718
1719 /*
1720 * Preempt the current task with a newly woken task if needed:
1721 */
check_preempt_curr_rt(struct rq * rq,struct task_struct * p,int flags)1722 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1723 {
1724 if (p->prio < rq->curr->prio) {
1725 resched_curr(rq);
1726 return;
1727 }
1728
1729 #ifdef CONFIG_SMP
1730 /*
1731 * If:
1732 *
1733 * - the newly woken task is of equal priority to the current task
1734 * - the newly woken task is non-migratable while current is migratable
1735 * - current will be preempted on the next reschedule
1736 *
1737 * we should check to see if current can readily move to a different
1738 * cpu. If so, we will reschedule to allow the push logic to try
1739 * to move current somewhere else, making room for our non-migratable
1740 * task.
1741 */
1742 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1743 check_preempt_equal_prio(rq, p);
1744 #endif
1745 }
1746
set_next_task_rt(struct rq * rq,struct task_struct * p,bool first)1747 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1748 {
1749 struct sched_rt_entity *rt_se = &p->rt;
1750 struct rt_rq *rt_rq = &rq->rt;
1751
1752 p->se.exec_start = rq_clock_task(rq);
1753 if (on_rt_rq(&p->rt))
1754 update_stats_wait_end_rt(rt_rq, rt_se);
1755
1756 /* The running task is never eligible for pushing */
1757 dequeue_pushable_task(rq, p);
1758
1759 if (!first)
1760 return;
1761
1762 /*
1763 * If prev task was rt, put_prev_task() has already updated the
1764 * utilization. We only care of the case where we start to schedule a
1765 * rt task
1766 */
1767 if (rq->curr->sched_class != &rt_sched_class)
1768 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1769
1770 rt_queue_push_tasks(rq);
1771 }
1772
pick_next_rt_entity(struct rt_rq * rt_rq)1773 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1774 {
1775 struct rt_prio_array *array = &rt_rq->active;
1776 struct sched_rt_entity *next = NULL;
1777 struct list_head *queue;
1778 int idx;
1779
1780 idx = sched_find_first_bit(array->bitmap);
1781 BUG_ON(idx >= MAX_RT_PRIO);
1782
1783 queue = array->queue + idx;
1784 if (SCHED_WARN_ON(list_empty(queue)))
1785 return NULL;
1786 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1787
1788 return next;
1789 }
1790
_pick_next_task_rt(struct rq * rq)1791 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1792 {
1793 struct sched_rt_entity *rt_se;
1794 struct rt_rq *rt_rq = &rq->rt;
1795
1796 do {
1797 rt_se = pick_next_rt_entity(rt_rq);
1798 if (unlikely(!rt_se))
1799 return NULL;
1800 rt_rq = group_rt_rq(rt_se);
1801 } while (rt_rq);
1802
1803 return rt_task_of(rt_se);
1804 }
1805
pick_task_rt(struct rq * rq)1806 static struct task_struct *pick_task_rt(struct rq *rq)
1807 {
1808 struct task_struct *p;
1809
1810 if (!sched_rt_runnable(rq))
1811 return NULL;
1812
1813 p = _pick_next_task_rt(rq);
1814
1815 return p;
1816 }
1817
pick_next_task_rt(struct rq * rq)1818 static struct task_struct *pick_next_task_rt(struct rq *rq)
1819 {
1820 struct task_struct *p = pick_task_rt(rq);
1821
1822 if (p)
1823 set_next_task_rt(rq, p, true);
1824
1825 return p;
1826 }
1827
put_prev_task_rt(struct rq * rq,struct task_struct * p)1828 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1829 {
1830 struct sched_rt_entity *rt_se = &p->rt;
1831 struct rt_rq *rt_rq = &rq->rt;
1832
1833 if (on_rt_rq(&p->rt))
1834 update_stats_wait_start_rt(rt_rq, rt_se);
1835
1836 update_curr_rt(rq);
1837
1838 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1839
1840 /*
1841 * The previous task needs to be made eligible for pushing
1842 * if it is still active
1843 */
1844 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1845 enqueue_pushable_task(rq, p);
1846 }
1847
1848 #ifdef CONFIG_SMP
1849
1850 /* Only try algorithms three times */
1851 #define RT_MAX_TRIES 3
1852
pick_rt_task(struct rq * rq,struct task_struct * p,int cpu)1853 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1854 {
1855 if (!task_on_cpu(rq, p) &&
1856 cpumask_test_cpu(cpu, &p->cpus_mask))
1857 return 1;
1858
1859 return 0;
1860 }
1861
1862 /*
1863 * Return the highest pushable rq's task, which is suitable to be executed
1864 * on the CPU, NULL otherwise
1865 */
pick_highest_pushable_task(struct rq * rq,int cpu)1866 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1867 {
1868 struct plist_head *head = &rq->rt.pushable_tasks;
1869 struct task_struct *p;
1870
1871 if (!has_pushable_tasks(rq))
1872 return NULL;
1873
1874 plist_for_each_entry(p, head, pushable_tasks) {
1875 if (pick_rt_task(rq, p, cpu))
1876 return p;
1877 }
1878
1879 return NULL;
1880 }
1881
1882 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1883
find_lowest_rq(struct task_struct * task)1884 static int find_lowest_rq(struct task_struct *task)
1885 {
1886 struct sched_domain *sd;
1887 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1888 int this_cpu = smp_processor_id();
1889 int cpu = task_cpu(task);
1890 int ret;
1891
1892 /* Make sure the mask is initialized first */
1893 if (unlikely(!lowest_mask))
1894 return -1;
1895
1896 if (task->nr_cpus_allowed == 1)
1897 return -1; /* No other targets possible */
1898
1899 /*
1900 * If we're on asym system ensure we consider the different capacities
1901 * of the CPUs when searching for the lowest_mask.
1902 */
1903 if (sched_asym_cpucap_active()) {
1904
1905 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1906 task, lowest_mask,
1907 rt_task_fits_capacity);
1908 } else {
1909
1910 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1911 task, lowest_mask);
1912 }
1913
1914 if (!ret)
1915 return -1; /* No targets found */
1916
1917 /*
1918 * At this point we have built a mask of CPUs representing the
1919 * lowest priority tasks in the system. Now we want to elect
1920 * the best one based on our affinity and topology.
1921 *
1922 * We prioritize the last CPU that the task executed on since
1923 * it is most likely cache-hot in that location.
1924 */
1925 if (cpumask_test_cpu(cpu, lowest_mask))
1926 return cpu;
1927
1928 /*
1929 * Otherwise, we consult the sched_domains span maps to figure
1930 * out which CPU is logically closest to our hot cache data.
1931 */
1932 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1933 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1934
1935 rcu_read_lock();
1936 for_each_domain(cpu, sd) {
1937 if (sd->flags & SD_WAKE_AFFINE) {
1938 int best_cpu;
1939
1940 /*
1941 * "this_cpu" is cheaper to preempt than a
1942 * remote processor.
1943 */
1944 if (this_cpu != -1 &&
1945 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1946 rcu_read_unlock();
1947 return this_cpu;
1948 }
1949
1950 best_cpu = cpumask_any_and_distribute(lowest_mask,
1951 sched_domain_span(sd));
1952 if (best_cpu < nr_cpu_ids) {
1953 rcu_read_unlock();
1954 return best_cpu;
1955 }
1956 }
1957 }
1958 rcu_read_unlock();
1959
1960 /*
1961 * And finally, if there were no matches within the domains
1962 * just give the caller *something* to work with from the compatible
1963 * locations.
1964 */
1965 if (this_cpu != -1)
1966 return this_cpu;
1967
1968 cpu = cpumask_any_distribute(lowest_mask);
1969 if (cpu < nr_cpu_ids)
1970 return cpu;
1971
1972 return -1;
1973 }
1974
1975 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)1976 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1977 {
1978 struct rq *lowest_rq = NULL;
1979 int tries;
1980 int cpu;
1981
1982 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1983 cpu = find_lowest_rq(task);
1984
1985 if ((cpu == -1) || (cpu == rq->cpu))
1986 break;
1987
1988 lowest_rq = cpu_rq(cpu);
1989
1990 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1991 /*
1992 * Target rq has tasks of equal or higher priority,
1993 * retrying does not release any lock and is unlikely
1994 * to yield a different result.
1995 */
1996 lowest_rq = NULL;
1997 break;
1998 }
1999
2000 /* if the prio of this runqueue changed, try again */
2001 if (double_lock_balance(rq, lowest_rq)) {
2002 /*
2003 * We had to unlock the run queue. In
2004 * the mean time, task could have
2005 * migrated already or had its affinity changed.
2006 * Also make sure that it wasn't scheduled on its rq.
2007 * It is possible the task was scheduled, set
2008 * "migrate_disabled" and then got preempted, so we must
2009 * check the task migration disable flag here too.
2010 */
2011 if (unlikely(task_rq(task) != rq ||
2012 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
2013 task_on_cpu(rq, task) ||
2014 !rt_task(task) ||
2015 is_migration_disabled(task) ||
2016 !task_on_rq_queued(task))) {
2017
2018 double_unlock_balance(rq, lowest_rq);
2019 lowest_rq = NULL;
2020 break;
2021 }
2022 }
2023
2024 /* If this rq is still suitable use it. */
2025 if (lowest_rq->rt.highest_prio.curr > task->prio)
2026 break;
2027
2028 /* try again */
2029 double_unlock_balance(rq, lowest_rq);
2030 lowest_rq = NULL;
2031 }
2032
2033 return lowest_rq;
2034 }
2035
pick_next_pushable_task(struct rq * rq)2036 static struct task_struct *pick_next_pushable_task(struct rq *rq)
2037 {
2038 struct task_struct *p;
2039
2040 if (!has_pushable_tasks(rq))
2041 return NULL;
2042
2043 p = plist_first_entry(&rq->rt.pushable_tasks,
2044 struct task_struct, pushable_tasks);
2045
2046 BUG_ON(rq->cpu != task_cpu(p));
2047 BUG_ON(task_current(rq, p));
2048 BUG_ON(p->nr_cpus_allowed <= 1);
2049
2050 BUG_ON(!task_on_rq_queued(p));
2051 BUG_ON(!rt_task(p));
2052
2053 return p;
2054 }
2055
2056 /*
2057 * If the current CPU has more than one RT task, see if the non
2058 * running task can migrate over to a CPU that is running a task
2059 * of lesser priority.
2060 */
push_rt_task(struct rq * rq,bool pull)2061 static int push_rt_task(struct rq *rq, bool pull)
2062 {
2063 struct task_struct *next_task;
2064 struct rq *lowest_rq;
2065 int ret = 0;
2066
2067 if (!rq->rt.overloaded)
2068 return 0;
2069
2070 next_task = pick_next_pushable_task(rq);
2071 if (!next_task)
2072 return 0;
2073
2074 retry:
2075 /*
2076 * It's possible that the next_task slipped in of
2077 * higher priority than current. If that's the case
2078 * just reschedule current.
2079 */
2080 if (unlikely(next_task->prio < rq->curr->prio)) {
2081 resched_curr(rq);
2082 return 0;
2083 }
2084
2085 if (is_migration_disabled(next_task)) {
2086 struct task_struct *push_task = NULL;
2087 int cpu;
2088
2089 if (!pull || rq->push_busy)
2090 return 0;
2091
2092 /*
2093 * Invoking find_lowest_rq() on anything but an RT task doesn't
2094 * make sense. Per the above priority check, curr has to
2095 * be of higher priority than next_task, so no need to
2096 * reschedule when bailing out.
2097 *
2098 * Note that the stoppers are masqueraded as SCHED_FIFO
2099 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2100 */
2101 if (rq->curr->sched_class != &rt_sched_class)
2102 return 0;
2103
2104 cpu = find_lowest_rq(rq->curr);
2105 if (cpu == -1 || cpu == rq->cpu)
2106 return 0;
2107
2108 /*
2109 * Given we found a CPU with lower priority than @next_task,
2110 * therefore it should be running. However we cannot migrate it
2111 * to this other CPU, instead attempt to push the current
2112 * running task on this CPU away.
2113 */
2114 push_task = get_push_task(rq);
2115 if (push_task) {
2116 preempt_disable();
2117 raw_spin_rq_unlock(rq);
2118 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2119 push_task, &rq->push_work);
2120 preempt_enable();
2121 raw_spin_rq_lock(rq);
2122 }
2123
2124 return 0;
2125 }
2126
2127 if (WARN_ON(next_task == rq->curr))
2128 return 0;
2129
2130 /* We might release rq lock */
2131 get_task_struct(next_task);
2132
2133 /* find_lock_lowest_rq locks the rq if found */
2134 lowest_rq = find_lock_lowest_rq(next_task, rq);
2135 if (!lowest_rq) {
2136 struct task_struct *task;
2137 /*
2138 * find_lock_lowest_rq releases rq->lock
2139 * so it is possible that next_task has migrated.
2140 *
2141 * We need to make sure that the task is still on the same
2142 * run-queue and is also still the next task eligible for
2143 * pushing.
2144 */
2145 task = pick_next_pushable_task(rq);
2146 if (task == next_task) {
2147 /*
2148 * The task hasn't migrated, and is still the next
2149 * eligible task, but we failed to find a run-queue
2150 * to push it to. Do not retry in this case, since
2151 * other CPUs will pull from us when ready.
2152 */
2153 goto out;
2154 }
2155
2156 if (!task)
2157 /* No more tasks, just exit */
2158 goto out;
2159
2160 /*
2161 * Something has shifted, try again.
2162 */
2163 put_task_struct(next_task);
2164 next_task = task;
2165 goto retry;
2166 }
2167
2168 deactivate_task(rq, next_task, 0);
2169 set_task_cpu(next_task, lowest_rq->cpu);
2170 activate_task(lowest_rq, next_task, 0);
2171 resched_curr(lowest_rq);
2172 ret = 1;
2173
2174 double_unlock_balance(rq, lowest_rq);
2175 out:
2176 put_task_struct(next_task);
2177
2178 return ret;
2179 }
2180
push_rt_tasks(struct rq * rq)2181 static void push_rt_tasks(struct rq *rq)
2182 {
2183 /* push_rt_task will return true if it moved an RT */
2184 while (push_rt_task(rq, false))
2185 ;
2186 }
2187
2188 #ifdef HAVE_RT_PUSH_IPI
2189
2190 /*
2191 * When a high priority task schedules out from a CPU and a lower priority
2192 * task is scheduled in, a check is made to see if there's any RT tasks
2193 * on other CPUs that are waiting to run because a higher priority RT task
2194 * is currently running on its CPU. In this case, the CPU with multiple RT
2195 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2196 * up that may be able to run one of its non-running queued RT tasks.
2197 *
2198 * All CPUs with overloaded RT tasks need to be notified as there is currently
2199 * no way to know which of these CPUs have the highest priority task waiting
2200 * to run. Instead of trying to take a spinlock on each of these CPUs,
2201 * which has shown to cause large latency when done on machines with many
2202 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2203 * RT tasks waiting to run.
2204 *
2205 * Just sending an IPI to each of the CPUs is also an issue, as on large
2206 * count CPU machines, this can cause an IPI storm on a CPU, especially
2207 * if its the only CPU with multiple RT tasks queued, and a large number
2208 * of CPUs scheduling a lower priority task at the same time.
2209 *
2210 * Each root domain has its own irq work function that can iterate over
2211 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2212 * task must be checked if there's one or many CPUs that are lowering
2213 * their priority, there's a single irq work iterator that will try to
2214 * push off RT tasks that are waiting to run.
2215 *
2216 * When a CPU schedules a lower priority task, it will kick off the
2217 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2218 * As it only takes the first CPU that schedules a lower priority task
2219 * to start the process, the rto_start variable is incremented and if
2220 * the atomic result is one, then that CPU will try to take the rto_lock.
2221 * This prevents high contention on the lock as the process handles all
2222 * CPUs scheduling lower priority tasks.
2223 *
2224 * All CPUs that are scheduling a lower priority task will increment the
2225 * rt_loop_next variable. This will make sure that the irq work iterator
2226 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2227 * priority task, even if the iterator is in the middle of a scan. Incrementing
2228 * the rt_loop_next will cause the iterator to perform another scan.
2229 *
2230 */
rto_next_cpu(struct root_domain * rd)2231 static int rto_next_cpu(struct root_domain *rd)
2232 {
2233 int next;
2234 int cpu;
2235
2236 /*
2237 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2238 * rt_next_cpu() will simply return the first CPU found in
2239 * the rto_mask.
2240 *
2241 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2242 * will return the next CPU found in the rto_mask.
2243 *
2244 * If there are no more CPUs left in the rto_mask, then a check is made
2245 * against rto_loop and rto_loop_next. rto_loop is only updated with
2246 * the rto_lock held, but any CPU may increment the rto_loop_next
2247 * without any locking.
2248 */
2249 for (;;) {
2250
2251 /* When rto_cpu is -1 this acts like cpumask_first() */
2252 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2253
2254 rd->rto_cpu = cpu;
2255
2256 if (cpu < nr_cpu_ids)
2257 return cpu;
2258
2259 rd->rto_cpu = -1;
2260
2261 /*
2262 * ACQUIRE ensures we see the @rto_mask changes
2263 * made prior to the @next value observed.
2264 *
2265 * Matches WMB in rt_set_overload().
2266 */
2267 next = atomic_read_acquire(&rd->rto_loop_next);
2268
2269 if (rd->rto_loop == next)
2270 break;
2271
2272 rd->rto_loop = next;
2273 }
2274
2275 return -1;
2276 }
2277
rto_start_trylock(atomic_t * v)2278 static inline bool rto_start_trylock(atomic_t *v)
2279 {
2280 return !atomic_cmpxchg_acquire(v, 0, 1);
2281 }
2282
rto_start_unlock(atomic_t * v)2283 static inline void rto_start_unlock(atomic_t *v)
2284 {
2285 atomic_set_release(v, 0);
2286 }
2287
tell_cpu_to_push(struct rq * rq)2288 static void tell_cpu_to_push(struct rq *rq)
2289 {
2290 int cpu = -1;
2291
2292 /* Keep the loop going if the IPI is currently active */
2293 atomic_inc(&rq->rd->rto_loop_next);
2294
2295 /* Only one CPU can initiate a loop at a time */
2296 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2297 return;
2298
2299 raw_spin_lock(&rq->rd->rto_lock);
2300
2301 /*
2302 * The rto_cpu is updated under the lock, if it has a valid CPU
2303 * then the IPI is still running and will continue due to the
2304 * update to loop_next, and nothing needs to be done here.
2305 * Otherwise it is finishing up and an ipi needs to be sent.
2306 */
2307 if (rq->rd->rto_cpu < 0)
2308 cpu = rto_next_cpu(rq->rd);
2309
2310 raw_spin_unlock(&rq->rd->rto_lock);
2311
2312 rto_start_unlock(&rq->rd->rto_loop_start);
2313
2314 if (cpu >= 0) {
2315 /* Make sure the rd does not get freed while pushing */
2316 sched_get_rd(rq->rd);
2317 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2318 }
2319 }
2320
2321 /* Called from hardirq context */
rto_push_irq_work_func(struct irq_work * work)2322 void rto_push_irq_work_func(struct irq_work *work)
2323 {
2324 struct root_domain *rd =
2325 container_of(work, struct root_domain, rto_push_work);
2326 struct rq *rq;
2327 int cpu;
2328
2329 rq = this_rq();
2330
2331 /*
2332 * We do not need to grab the lock to check for has_pushable_tasks.
2333 * When it gets updated, a check is made if a push is possible.
2334 */
2335 if (has_pushable_tasks(rq)) {
2336 raw_spin_rq_lock(rq);
2337 while (push_rt_task(rq, true))
2338 ;
2339 raw_spin_rq_unlock(rq);
2340 }
2341
2342 raw_spin_lock(&rd->rto_lock);
2343
2344 /* Pass the IPI to the next rt overloaded queue */
2345 cpu = rto_next_cpu(rd);
2346
2347 raw_spin_unlock(&rd->rto_lock);
2348
2349 if (cpu < 0) {
2350 sched_put_rd(rd);
2351 return;
2352 }
2353
2354 /* Try the next RT overloaded CPU */
2355 irq_work_queue_on(&rd->rto_push_work, cpu);
2356 }
2357 #endif /* HAVE_RT_PUSH_IPI */
2358
pull_rt_task(struct rq * this_rq)2359 static void pull_rt_task(struct rq *this_rq)
2360 {
2361 int this_cpu = this_rq->cpu, cpu;
2362 bool resched = false;
2363 struct task_struct *p, *push_task;
2364 struct rq *src_rq;
2365 int rt_overload_count = rt_overloaded(this_rq);
2366
2367 if (likely(!rt_overload_count))
2368 return;
2369
2370 /*
2371 * Match the barrier from rt_set_overloaded; this guarantees that if we
2372 * see overloaded we must also see the rto_mask bit.
2373 */
2374 smp_rmb();
2375
2376 /* If we are the only overloaded CPU do nothing */
2377 if (rt_overload_count == 1 &&
2378 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2379 return;
2380
2381 #ifdef HAVE_RT_PUSH_IPI
2382 if (sched_feat(RT_PUSH_IPI)) {
2383 tell_cpu_to_push(this_rq);
2384 return;
2385 }
2386 #endif
2387
2388 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2389 if (this_cpu == cpu)
2390 continue;
2391
2392 src_rq = cpu_rq(cpu);
2393
2394 /*
2395 * Don't bother taking the src_rq->lock if the next highest
2396 * task is known to be lower-priority than our current task.
2397 * This may look racy, but if this value is about to go
2398 * logically higher, the src_rq will push this task away.
2399 * And if its going logically lower, we do not care
2400 */
2401 if (src_rq->rt.highest_prio.next >=
2402 this_rq->rt.highest_prio.curr)
2403 continue;
2404
2405 /*
2406 * We can potentially drop this_rq's lock in
2407 * double_lock_balance, and another CPU could
2408 * alter this_rq
2409 */
2410 push_task = NULL;
2411 double_lock_balance(this_rq, src_rq);
2412
2413 /*
2414 * We can pull only a task, which is pushable
2415 * on its rq, and no others.
2416 */
2417 p = pick_highest_pushable_task(src_rq, this_cpu);
2418
2419 /*
2420 * Do we have an RT task that preempts
2421 * the to-be-scheduled task?
2422 */
2423 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2424 WARN_ON(p == src_rq->curr);
2425 WARN_ON(!task_on_rq_queued(p));
2426
2427 /*
2428 * There's a chance that p is higher in priority
2429 * than what's currently running on its CPU.
2430 * This is just that p is waking up and hasn't
2431 * had a chance to schedule. We only pull
2432 * p if it is lower in priority than the
2433 * current task on the run queue
2434 */
2435 if (p->prio < src_rq->curr->prio)
2436 goto skip;
2437
2438 if (is_migration_disabled(p)) {
2439 push_task = get_push_task(src_rq);
2440 } else {
2441 deactivate_task(src_rq, p, 0);
2442 set_task_cpu(p, this_cpu);
2443 activate_task(this_rq, p, 0);
2444 resched = true;
2445 }
2446 /*
2447 * We continue with the search, just in
2448 * case there's an even higher prio task
2449 * in another runqueue. (low likelihood
2450 * but possible)
2451 */
2452 }
2453 skip:
2454 double_unlock_balance(this_rq, src_rq);
2455
2456 if (push_task) {
2457 preempt_disable();
2458 raw_spin_rq_unlock(this_rq);
2459 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2460 push_task, &src_rq->push_work);
2461 preempt_enable();
2462 raw_spin_rq_lock(this_rq);
2463 }
2464 }
2465
2466 if (resched)
2467 resched_curr(this_rq);
2468 }
2469
2470 /*
2471 * If we are not running and we are not going to reschedule soon, we should
2472 * try to push tasks away now
2473 */
task_woken_rt(struct rq * rq,struct task_struct * p)2474 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2475 {
2476 bool need_to_push = !task_on_cpu(rq, p) &&
2477 !test_tsk_need_resched(rq->curr) &&
2478 p->nr_cpus_allowed > 1 &&
2479 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2480 (rq->curr->nr_cpus_allowed < 2 ||
2481 rq->curr->prio <= p->prio);
2482
2483 if (need_to_push)
2484 push_rt_tasks(rq);
2485 }
2486
2487 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)2488 static void rq_online_rt(struct rq *rq)
2489 {
2490 if (rq->rt.overloaded)
2491 rt_set_overload(rq);
2492
2493 __enable_runtime(rq);
2494
2495 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2496 }
2497
2498 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)2499 static void rq_offline_rt(struct rq *rq)
2500 {
2501 if (rq->rt.overloaded)
2502 rt_clear_overload(rq);
2503
2504 __disable_runtime(rq);
2505
2506 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2507 }
2508
2509 /*
2510 * When switch from the rt queue, we bring ourselves to a position
2511 * that we might want to pull RT tasks from other runqueues.
2512 */
switched_from_rt(struct rq * rq,struct task_struct * p)2513 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2514 {
2515 /*
2516 * If there are other RT tasks then we will reschedule
2517 * and the scheduling of the other RT tasks will handle
2518 * the balancing. But if we are the last RT task
2519 * we may need to handle the pulling of RT tasks
2520 * now.
2521 */
2522 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2523 return;
2524
2525 rt_queue_pull_task(rq);
2526 }
2527
init_sched_rt_class(void)2528 void __init init_sched_rt_class(void)
2529 {
2530 unsigned int i;
2531
2532 for_each_possible_cpu(i) {
2533 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2534 GFP_KERNEL, cpu_to_node(i));
2535 }
2536 }
2537 #endif /* CONFIG_SMP */
2538
2539 /*
2540 * When switching a task to RT, we may overload the runqueue
2541 * with RT tasks. In this case we try to push them off to
2542 * other runqueues.
2543 */
switched_to_rt(struct rq * rq,struct task_struct * p)2544 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2545 {
2546 /*
2547 * If we are running, update the avg_rt tracking, as the running time
2548 * will now on be accounted into the latter.
2549 */
2550 if (task_current(rq, p)) {
2551 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2552 return;
2553 }
2554
2555 /*
2556 * If we are not running we may need to preempt the current
2557 * running task. If that current running task is also an RT task
2558 * then see if we can move to another run queue.
2559 */
2560 if (task_on_rq_queued(p)) {
2561 #ifdef CONFIG_SMP
2562 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2563 rt_queue_push_tasks(rq);
2564 #endif /* CONFIG_SMP */
2565 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2566 resched_curr(rq);
2567 }
2568 }
2569
2570 /*
2571 * Priority of the task has changed. This may cause
2572 * us to initiate a push or pull.
2573 */
2574 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio)2575 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2576 {
2577 if (!task_on_rq_queued(p))
2578 return;
2579
2580 if (task_current(rq, p)) {
2581 #ifdef CONFIG_SMP
2582 /*
2583 * If our priority decreases while running, we
2584 * may need to pull tasks to this runqueue.
2585 */
2586 if (oldprio < p->prio)
2587 rt_queue_pull_task(rq);
2588
2589 /*
2590 * If there's a higher priority task waiting to run
2591 * then reschedule.
2592 */
2593 if (p->prio > rq->rt.highest_prio.curr)
2594 resched_curr(rq);
2595 #else
2596 /* For UP simply resched on drop of prio */
2597 if (oldprio < p->prio)
2598 resched_curr(rq);
2599 #endif /* CONFIG_SMP */
2600 } else {
2601 /*
2602 * This task is not running, but if it is
2603 * greater than the current running task
2604 * then reschedule.
2605 */
2606 if (p->prio < rq->curr->prio)
2607 resched_curr(rq);
2608 }
2609 }
2610
2611 #ifdef CONFIG_POSIX_TIMERS
watchdog(struct rq * rq,struct task_struct * p)2612 static void watchdog(struct rq *rq, struct task_struct *p)
2613 {
2614 unsigned long soft, hard;
2615
2616 /* max may change after cur was read, this will be fixed next tick */
2617 soft = task_rlimit(p, RLIMIT_RTTIME);
2618 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2619
2620 if (soft != RLIM_INFINITY) {
2621 unsigned long next;
2622
2623 if (p->rt.watchdog_stamp != jiffies) {
2624 p->rt.timeout++;
2625 p->rt.watchdog_stamp = jiffies;
2626 }
2627
2628 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2629 if (p->rt.timeout > next) {
2630 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2631 p->se.sum_exec_runtime);
2632 }
2633 }
2634 }
2635 #else
watchdog(struct rq * rq,struct task_struct * p)2636 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2637 #endif
2638
2639 /*
2640 * scheduler tick hitting a task of our scheduling class.
2641 *
2642 * NOTE: This function can be called remotely by the tick offload that
2643 * goes along full dynticks. Therefore no local assumption can be made
2644 * and everything must be accessed through the @rq and @curr passed in
2645 * parameters.
2646 */
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)2647 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2648 {
2649 struct sched_rt_entity *rt_se = &p->rt;
2650
2651 update_curr_rt(rq);
2652 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2653
2654 watchdog(rq, p);
2655
2656 /*
2657 * RR tasks need a special form of timeslice management.
2658 * FIFO tasks have no timeslices.
2659 */
2660 if (p->policy != SCHED_RR)
2661 return;
2662
2663 if (--p->rt.time_slice)
2664 return;
2665
2666 p->rt.time_slice = sched_rr_timeslice;
2667
2668 /*
2669 * Requeue to the end of queue if we (and all of our ancestors) are not
2670 * the only element on the queue
2671 */
2672 for_each_sched_rt_entity(rt_se) {
2673 if (rt_se->run_list.prev != rt_se->run_list.next) {
2674 requeue_task_rt(rq, p, 0);
2675 resched_curr(rq);
2676 return;
2677 }
2678 }
2679 }
2680
get_rr_interval_rt(struct rq * rq,struct task_struct * task)2681 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2682 {
2683 /*
2684 * Time slice is 0 for SCHED_FIFO tasks
2685 */
2686 if (task->policy == SCHED_RR)
2687 return sched_rr_timeslice;
2688 else
2689 return 0;
2690 }
2691
2692 #ifdef CONFIG_SCHED_CORE
task_is_throttled_rt(struct task_struct * p,int cpu)2693 static int task_is_throttled_rt(struct task_struct *p, int cpu)
2694 {
2695 struct rt_rq *rt_rq;
2696
2697 #ifdef CONFIG_RT_GROUP_SCHED
2698 rt_rq = task_group(p)->rt_rq[cpu];
2699 #else
2700 rt_rq = &cpu_rq(cpu)->rt;
2701 #endif
2702
2703 return rt_rq_throttled(rt_rq);
2704 }
2705 #endif
2706
2707 DEFINE_SCHED_CLASS(rt) = {
2708
2709 .enqueue_task = enqueue_task_rt,
2710 .dequeue_task = dequeue_task_rt,
2711 .yield_task = yield_task_rt,
2712
2713 .check_preempt_curr = check_preempt_curr_rt,
2714
2715 .pick_next_task = pick_next_task_rt,
2716 .put_prev_task = put_prev_task_rt,
2717 .set_next_task = set_next_task_rt,
2718
2719 #ifdef CONFIG_SMP
2720 .balance = balance_rt,
2721 .pick_task = pick_task_rt,
2722 .select_task_rq = select_task_rq_rt,
2723 .set_cpus_allowed = set_cpus_allowed_common,
2724 .rq_online = rq_online_rt,
2725 .rq_offline = rq_offline_rt,
2726 .task_woken = task_woken_rt,
2727 .switched_from = switched_from_rt,
2728 .find_lock_rq = find_lock_lowest_rq,
2729 #endif
2730
2731 .task_tick = task_tick_rt,
2732
2733 .get_rr_interval = get_rr_interval_rt,
2734
2735 .prio_changed = prio_changed_rt,
2736 .switched_to = switched_to_rt,
2737
2738 .update_curr = update_curr_rt,
2739
2740 #ifdef CONFIG_SCHED_CORE
2741 .task_is_throttled = task_is_throttled_rt,
2742 #endif
2743
2744 #ifdef CONFIG_UCLAMP_TASK
2745 .uclamp_enabled = 1,
2746 #endif
2747 };
2748
2749 #ifdef CONFIG_RT_GROUP_SCHED
2750 /*
2751 * Ensure that the real time constraints are schedulable.
2752 */
2753 static DEFINE_MUTEX(rt_constraints_mutex);
2754
tg_has_rt_tasks(struct task_group * tg)2755 static inline int tg_has_rt_tasks(struct task_group *tg)
2756 {
2757 struct task_struct *task;
2758 struct css_task_iter it;
2759 int ret = 0;
2760
2761 /*
2762 * Autogroups do not have RT tasks; see autogroup_create().
2763 */
2764 if (task_group_is_autogroup(tg))
2765 return 0;
2766
2767 css_task_iter_start(&tg->css, 0, &it);
2768 while (!ret && (task = css_task_iter_next(&it)))
2769 ret |= rt_task(task);
2770 css_task_iter_end(&it);
2771
2772 return ret;
2773 }
2774
2775 struct rt_schedulable_data {
2776 struct task_group *tg;
2777 u64 rt_period;
2778 u64 rt_runtime;
2779 };
2780
tg_rt_schedulable(struct task_group * tg,void * data)2781 static int tg_rt_schedulable(struct task_group *tg, void *data)
2782 {
2783 struct rt_schedulable_data *d = data;
2784 struct task_group *child;
2785 unsigned long total, sum = 0;
2786 u64 period, runtime;
2787
2788 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2789 runtime = tg->rt_bandwidth.rt_runtime;
2790
2791 if (tg == d->tg) {
2792 period = d->rt_period;
2793 runtime = d->rt_runtime;
2794 }
2795
2796 /*
2797 * Cannot have more runtime than the period.
2798 */
2799 if (runtime > period && runtime != RUNTIME_INF)
2800 return -EINVAL;
2801
2802 /*
2803 * Ensure we don't starve existing RT tasks if runtime turns zero.
2804 */
2805 if (rt_bandwidth_enabled() && !runtime &&
2806 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2807 return -EBUSY;
2808
2809 total = to_ratio(period, runtime);
2810
2811 /*
2812 * Nobody can have more than the global setting allows.
2813 */
2814 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2815 return -EINVAL;
2816
2817 /*
2818 * The sum of our children's runtime should not exceed our own.
2819 */
2820 list_for_each_entry_rcu(child, &tg->children, siblings) {
2821 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2822 runtime = child->rt_bandwidth.rt_runtime;
2823
2824 if (child == d->tg) {
2825 period = d->rt_period;
2826 runtime = d->rt_runtime;
2827 }
2828
2829 sum += to_ratio(period, runtime);
2830 }
2831
2832 if (sum > total)
2833 return -EINVAL;
2834
2835 return 0;
2836 }
2837
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)2838 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2839 {
2840 int ret;
2841
2842 struct rt_schedulable_data data = {
2843 .tg = tg,
2844 .rt_period = period,
2845 .rt_runtime = runtime,
2846 };
2847
2848 rcu_read_lock();
2849 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2850 rcu_read_unlock();
2851
2852 return ret;
2853 }
2854
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)2855 static int tg_set_rt_bandwidth(struct task_group *tg,
2856 u64 rt_period, u64 rt_runtime)
2857 {
2858 int i, err = 0;
2859
2860 /*
2861 * Disallowing the root group RT runtime is BAD, it would disallow the
2862 * kernel creating (and or operating) RT threads.
2863 */
2864 if (tg == &root_task_group && rt_runtime == 0)
2865 return -EINVAL;
2866
2867 /* No period doesn't make any sense. */
2868 if (rt_period == 0)
2869 return -EINVAL;
2870
2871 /*
2872 * Bound quota to defend quota against overflow during bandwidth shift.
2873 */
2874 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2875 return -EINVAL;
2876
2877 mutex_lock(&rt_constraints_mutex);
2878 err = __rt_schedulable(tg, rt_period, rt_runtime);
2879 if (err)
2880 goto unlock;
2881
2882 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2883 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2884 tg->rt_bandwidth.rt_runtime = rt_runtime;
2885
2886 for_each_possible_cpu(i) {
2887 struct rt_rq *rt_rq = tg->rt_rq[i];
2888
2889 raw_spin_lock(&rt_rq->rt_runtime_lock);
2890 rt_rq->rt_runtime = rt_runtime;
2891 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2892 }
2893 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2894 unlock:
2895 mutex_unlock(&rt_constraints_mutex);
2896
2897 return err;
2898 }
2899
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)2900 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2901 {
2902 u64 rt_runtime, rt_period;
2903
2904 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2905 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2906 if (rt_runtime_us < 0)
2907 rt_runtime = RUNTIME_INF;
2908 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2909 return -EINVAL;
2910
2911 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2912 }
2913
sched_group_rt_runtime(struct task_group * tg)2914 long sched_group_rt_runtime(struct task_group *tg)
2915 {
2916 u64 rt_runtime_us;
2917
2918 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2919 return -1;
2920
2921 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2922 do_div(rt_runtime_us, NSEC_PER_USEC);
2923 return rt_runtime_us;
2924 }
2925
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)2926 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2927 {
2928 u64 rt_runtime, rt_period;
2929
2930 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2931 return -EINVAL;
2932
2933 rt_period = rt_period_us * NSEC_PER_USEC;
2934 rt_runtime = tg->rt_bandwidth.rt_runtime;
2935
2936 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2937 }
2938
sched_group_rt_period(struct task_group * tg)2939 long sched_group_rt_period(struct task_group *tg)
2940 {
2941 u64 rt_period_us;
2942
2943 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2944 do_div(rt_period_us, NSEC_PER_USEC);
2945 return rt_period_us;
2946 }
2947
2948 #ifdef CONFIG_SYSCTL
sched_rt_global_constraints(void)2949 static int sched_rt_global_constraints(void)
2950 {
2951 int ret = 0;
2952
2953 mutex_lock(&rt_constraints_mutex);
2954 ret = __rt_schedulable(NULL, 0, 0);
2955 mutex_unlock(&rt_constraints_mutex);
2956
2957 return ret;
2958 }
2959 #endif /* CONFIG_SYSCTL */
2960
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)2961 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2962 {
2963 /* Don't accept realtime tasks when there is no way for them to run */
2964 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2965 return 0;
2966
2967 return 1;
2968 }
2969
2970 #else /* !CONFIG_RT_GROUP_SCHED */
2971
2972 #ifdef CONFIG_SYSCTL
sched_rt_global_constraints(void)2973 static int sched_rt_global_constraints(void)
2974 {
2975 unsigned long flags;
2976 int i;
2977
2978 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2979 for_each_possible_cpu(i) {
2980 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2981
2982 raw_spin_lock(&rt_rq->rt_runtime_lock);
2983 rt_rq->rt_runtime = global_rt_runtime();
2984 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2985 }
2986 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2987
2988 return 0;
2989 }
2990 #endif /* CONFIG_SYSCTL */
2991 #endif /* CONFIG_RT_GROUP_SCHED */
2992
2993 #ifdef CONFIG_SYSCTL
sched_rt_global_validate(void)2994 static int sched_rt_global_validate(void)
2995 {
2996 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2997 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2998 ((u64)sysctl_sched_rt_runtime *
2999 NSEC_PER_USEC > max_rt_runtime)))
3000 return -EINVAL;
3001
3002 return 0;
3003 }
3004
sched_rt_do_global(void)3005 static void sched_rt_do_global(void)
3006 {
3007 unsigned long flags;
3008
3009 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
3010 def_rt_bandwidth.rt_runtime = global_rt_runtime();
3011 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
3012 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
3013 }
3014
sched_rt_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3015 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
3016 size_t *lenp, loff_t *ppos)
3017 {
3018 int old_period, old_runtime;
3019 static DEFINE_MUTEX(mutex);
3020 int ret;
3021
3022 mutex_lock(&mutex);
3023 old_period = sysctl_sched_rt_period;
3024 old_runtime = sysctl_sched_rt_runtime;
3025
3026 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3027
3028 if (!ret && write) {
3029 ret = sched_rt_global_validate();
3030 if (ret)
3031 goto undo;
3032
3033 ret = sched_dl_global_validate();
3034 if (ret)
3035 goto undo;
3036
3037 ret = sched_rt_global_constraints();
3038 if (ret)
3039 goto undo;
3040
3041 sched_rt_do_global();
3042 sched_dl_do_global();
3043 }
3044 if (0) {
3045 undo:
3046 sysctl_sched_rt_period = old_period;
3047 sysctl_sched_rt_runtime = old_runtime;
3048 }
3049 mutex_unlock(&mutex);
3050
3051 return ret;
3052 }
3053
sched_rr_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3054 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3055 size_t *lenp, loff_t *ppos)
3056 {
3057 int ret;
3058 static DEFINE_MUTEX(mutex);
3059
3060 mutex_lock(&mutex);
3061 ret = proc_dointvec(table, write, buffer, lenp, ppos);
3062 /*
3063 * Make sure that internally we keep jiffies.
3064 * Also, writing zero resets the timeslice to default:
3065 */
3066 if (!ret && write) {
3067 sched_rr_timeslice =
3068 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3069 msecs_to_jiffies(sysctl_sched_rr_timeslice);
3070
3071 if (sysctl_sched_rr_timeslice <= 0)
3072 sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
3073 }
3074 mutex_unlock(&mutex);
3075
3076 return ret;
3077 }
3078 #endif /* CONFIG_SYSCTL */
3079
3080 #ifdef CONFIG_SCHED_DEBUG
print_rt_stats(struct seq_file * m,int cpu)3081 void print_rt_stats(struct seq_file *m, int cpu)
3082 {
3083 rt_rq_iter_t iter;
3084 struct rt_rq *rt_rq;
3085
3086 rcu_read_lock();
3087 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3088 print_rt_rq(m, cpu, rt_rq);
3089 rcu_read_unlock();
3090 }
3091 #endif /* CONFIG_SCHED_DEBUG */
3092