xref: /openbmc/linux/kernel/sched/psi.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 /*
2  * Pressure stall information for CPU, memory and IO
3  *
4  * Copyright (c) 2018 Facebook, Inc.
5  * Author: Johannes Weiner <hannes@cmpxchg.org>
6  *
7  * When CPU, memory and IO are contended, tasks experience delays that
8  * reduce throughput and introduce latencies into the workload. Memory
9  * and IO contention, in addition, can cause a full loss of forward
10  * progress in which the CPU goes idle.
11  *
12  * This code aggregates individual task delays into resource pressure
13  * metrics that indicate problems with both workload health and
14  * resource utilization.
15  *
16  *			Model
17  *
18  * The time in which a task can execute on a CPU is our baseline for
19  * productivity. Pressure expresses the amount of time in which this
20  * potential cannot be realized due to resource contention.
21  *
22  * This concept of productivity has two components: the workload and
23  * the CPU. To measure the impact of pressure on both, we define two
24  * contention states for a resource: SOME and FULL.
25  *
26  * In the SOME state of a given resource, one or more tasks are
27  * delayed on that resource. This affects the workload's ability to
28  * perform work, but the CPU may still be executing other tasks.
29  *
30  * In the FULL state of a given resource, all non-idle tasks are
31  * delayed on that resource such that nobody is advancing and the CPU
32  * goes idle. This leaves both workload and CPU unproductive.
33  *
34  * (Naturally, the FULL state doesn't exist for the CPU resource.)
35  *
36  *	SOME = nr_delayed_tasks != 0
37  *	FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
38  *
39  * The percentage of wallclock time spent in those compound stall
40  * states gives pressure numbers between 0 and 100 for each resource,
41  * where the SOME percentage indicates workload slowdowns and the FULL
42  * percentage indicates reduced CPU utilization:
43  *
44  *	%SOME = time(SOME) / period
45  *	%FULL = time(FULL) / period
46  *
47  *			Multiple CPUs
48  *
49  * The more tasks and available CPUs there are, the more work can be
50  * performed concurrently. This means that the potential that can go
51  * unrealized due to resource contention *also* scales with non-idle
52  * tasks and CPUs.
53  *
54  * Consider a scenario where 257 number crunching tasks are trying to
55  * run concurrently on 256 CPUs. If we simply aggregated the task
56  * states, we would have to conclude a CPU SOME pressure number of
57  * 100%, since *somebody* is waiting on a runqueue at all
58  * times. However, that is clearly not the amount of contention the
59  * workload is experiencing: only one out of 256 possible exceution
60  * threads will be contended at any given time, or about 0.4%.
61  *
62  * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
63  * given time *one* of the tasks is delayed due to a lack of memory.
64  * Again, looking purely at the task state would yield a memory FULL
65  * pressure number of 0%, since *somebody* is always making forward
66  * progress. But again this wouldn't capture the amount of execution
67  * potential lost, which is 1 out of 4 CPUs, or 25%.
68  *
69  * To calculate wasted potential (pressure) with multiple processors,
70  * we have to base our calculation on the number of non-idle tasks in
71  * conjunction with the number of available CPUs, which is the number
72  * of potential execution threads. SOME becomes then the proportion of
73  * delayed tasks to possibe threads, and FULL is the share of possible
74  * threads that are unproductive due to delays:
75  *
76  *	threads = min(nr_nonidle_tasks, nr_cpus)
77  *	   SOME = min(nr_delayed_tasks / threads, 1)
78  *	   FULL = (threads - min(nr_running_tasks, threads)) / threads
79  *
80  * For the 257 number crunchers on 256 CPUs, this yields:
81  *
82  *	threads = min(257, 256)
83  *	   SOME = min(1 / 256, 1)             = 0.4%
84  *	   FULL = (256 - min(257, 256)) / 256 = 0%
85  *
86  * For the 1 out of 4 memory-delayed tasks, this yields:
87  *
88  *	threads = min(4, 4)
89  *	   SOME = min(1 / 4, 1)               = 25%
90  *	   FULL = (4 - min(3, 4)) / 4         = 25%
91  *
92  * [ Substitute nr_cpus with 1, and you can see that it's a natural
93  *   extension of the single-CPU model. ]
94  *
95  *			Implementation
96  *
97  * To assess the precise time spent in each such state, we would have
98  * to freeze the system on task changes and start/stop the state
99  * clocks accordingly. Obviously that doesn't scale in practice.
100  *
101  * Because the scheduler aims to distribute the compute load evenly
102  * among the available CPUs, we can track task state locally to each
103  * CPU and, at much lower frequency, extrapolate the global state for
104  * the cumulative stall times and the running averages.
105  *
106  * For each runqueue, we track:
107  *
108  *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
109  *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
110  *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
111  *
112  * and then periodically aggregate:
113  *
114  *	tNONIDLE = sum(tNONIDLE[i])
115  *
116  *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
117  *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
118  *
119  *	   %SOME = tSOME / period
120  *	   %FULL = tFULL / period
121  *
122  * This gives us an approximation of pressure that is practical
123  * cost-wise, yet way more sensitive and accurate than periodic
124  * sampling of the aggregate task states would be.
125  */
126 
127 #include <linux/sched/loadavg.h>
128 #include <linux/seq_file.h>
129 #include <linux/proc_fs.h>
130 #include <linux/seqlock.h>
131 #include <linux/cgroup.h>
132 #include <linux/module.h>
133 #include <linux/sched.h>
134 #include <linux/psi.h>
135 #include "sched.h"
136 
137 static int psi_bug __read_mostly;
138 
139 DEFINE_STATIC_KEY_FALSE(psi_disabled);
140 
141 #ifdef CONFIG_PSI_DEFAULT_DISABLED
142 bool psi_enable;
143 #else
144 bool psi_enable = true;
145 #endif
146 static int __init setup_psi(char *str)
147 {
148 	return kstrtobool(str, &psi_enable) == 0;
149 }
150 __setup("psi=", setup_psi);
151 
152 /* Running averages - we need to be higher-res than loadavg */
153 #define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
154 #define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
155 #define EXP_60s		1981		/* 1/exp(2s/60s) */
156 #define EXP_300s	2034		/* 1/exp(2s/300s) */
157 
158 /* Sampling frequency in nanoseconds */
159 static u64 psi_period __read_mostly;
160 
161 /* System-level pressure and stall tracking */
162 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
163 static struct psi_group psi_system = {
164 	.pcpu = &system_group_pcpu,
165 };
166 
167 static void psi_update_work(struct work_struct *work);
168 
169 static void group_init(struct psi_group *group)
170 {
171 	int cpu;
172 
173 	for_each_possible_cpu(cpu)
174 		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
175 	group->next_update = sched_clock() + psi_period;
176 	INIT_DELAYED_WORK(&group->clock_work, psi_update_work);
177 	mutex_init(&group->stat_lock);
178 }
179 
180 void __init psi_init(void)
181 {
182 	if (!psi_enable) {
183 		static_branch_enable(&psi_disabled);
184 		return;
185 	}
186 
187 	psi_period = jiffies_to_nsecs(PSI_FREQ);
188 	group_init(&psi_system);
189 }
190 
191 static bool test_state(unsigned int *tasks, enum psi_states state)
192 {
193 	switch (state) {
194 	case PSI_IO_SOME:
195 		return tasks[NR_IOWAIT];
196 	case PSI_IO_FULL:
197 		return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
198 	case PSI_MEM_SOME:
199 		return tasks[NR_MEMSTALL];
200 	case PSI_MEM_FULL:
201 		return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
202 	case PSI_CPU_SOME:
203 		return tasks[NR_RUNNING] > 1;
204 	case PSI_NONIDLE:
205 		return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
206 			tasks[NR_RUNNING];
207 	default:
208 		return false;
209 	}
210 }
211 
212 static void get_recent_times(struct psi_group *group, int cpu, u32 *times)
213 {
214 	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
215 	unsigned int tasks[NR_PSI_TASK_COUNTS];
216 	u64 now, state_start;
217 	unsigned int seq;
218 	int s;
219 
220 	/* Snapshot a coherent view of the CPU state */
221 	do {
222 		seq = read_seqcount_begin(&groupc->seq);
223 		now = cpu_clock(cpu);
224 		memcpy(times, groupc->times, sizeof(groupc->times));
225 		memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
226 		state_start = groupc->state_start;
227 	} while (read_seqcount_retry(&groupc->seq, seq));
228 
229 	/* Calculate state time deltas against the previous snapshot */
230 	for (s = 0; s < NR_PSI_STATES; s++) {
231 		u32 delta;
232 		/*
233 		 * In addition to already concluded states, we also
234 		 * incorporate currently active states on the CPU,
235 		 * since states may last for many sampling periods.
236 		 *
237 		 * This way we keep our delta sampling buckets small
238 		 * (u32) and our reported pressure close to what's
239 		 * actually happening.
240 		 */
241 		if (test_state(tasks, s))
242 			times[s] += now - state_start;
243 
244 		delta = times[s] - groupc->times_prev[s];
245 		groupc->times_prev[s] = times[s];
246 
247 		times[s] = delta;
248 	}
249 }
250 
251 static void calc_avgs(unsigned long avg[3], int missed_periods,
252 		      u64 time, u64 period)
253 {
254 	unsigned long pct;
255 
256 	/* Fill in zeroes for periods of no activity */
257 	if (missed_periods) {
258 		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
259 		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
260 		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
261 	}
262 
263 	/* Sample the most recent active period */
264 	pct = div_u64(time * 100, period);
265 	pct *= FIXED_1;
266 	avg[0] = calc_load(avg[0], EXP_10s, pct);
267 	avg[1] = calc_load(avg[1], EXP_60s, pct);
268 	avg[2] = calc_load(avg[2], EXP_300s, pct);
269 }
270 
271 static bool update_stats(struct psi_group *group)
272 {
273 	u64 deltas[NR_PSI_STATES - 1] = { 0, };
274 	unsigned long missed_periods = 0;
275 	unsigned long nonidle_total = 0;
276 	u64 now, expires, period;
277 	int cpu;
278 	int s;
279 
280 	mutex_lock(&group->stat_lock);
281 
282 	/*
283 	 * Collect the per-cpu time buckets and average them into a
284 	 * single time sample that is normalized to wallclock time.
285 	 *
286 	 * For averaging, each CPU is weighted by its non-idle time in
287 	 * the sampling period. This eliminates artifacts from uneven
288 	 * loading, or even entirely idle CPUs.
289 	 */
290 	for_each_possible_cpu(cpu) {
291 		u32 times[NR_PSI_STATES];
292 		u32 nonidle;
293 
294 		get_recent_times(group, cpu, times);
295 
296 		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
297 		nonidle_total += nonidle;
298 
299 		for (s = 0; s < PSI_NONIDLE; s++)
300 			deltas[s] += (u64)times[s] * nonidle;
301 	}
302 
303 	/*
304 	 * Integrate the sample into the running statistics that are
305 	 * reported to userspace: the cumulative stall times and the
306 	 * decaying averages.
307 	 *
308 	 * Pressure percentages are sampled at PSI_FREQ. We might be
309 	 * called more often when the user polls more frequently than
310 	 * that; we might be called less often when there is no task
311 	 * activity, thus no data, and clock ticks are sporadic. The
312 	 * below handles both.
313 	 */
314 
315 	/* total= */
316 	for (s = 0; s < NR_PSI_STATES - 1; s++)
317 		group->total[s] += div_u64(deltas[s], max(nonidle_total, 1UL));
318 
319 	/* avgX= */
320 	now = sched_clock();
321 	expires = group->next_update;
322 	if (now < expires)
323 		goto out;
324 	if (now - expires > psi_period)
325 		missed_periods = div_u64(now - expires, psi_period);
326 
327 	/*
328 	 * The periodic clock tick can get delayed for various
329 	 * reasons, especially on loaded systems. To avoid clock
330 	 * drift, we schedule the clock in fixed psi_period intervals.
331 	 * But the deltas we sample out of the per-cpu buckets above
332 	 * are based on the actual time elapsing between clock ticks.
333 	 */
334 	group->next_update = expires + ((1 + missed_periods) * psi_period);
335 	period = now - (group->last_update + (missed_periods * psi_period));
336 	group->last_update = now;
337 
338 	for (s = 0; s < NR_PSI_STATES - 1; s++) {
339 		u32 sample;
340 
341 		sample = group->total[s] - group->total_prev[s];
342 		/*
343 		 * Due to the lockless sampling of the time buckets,
344 		 * recorded time deltas can slip into the next period,
345 		 * which under full pressure can result in samples in
346 		 * excess of the period length.
347 		 *
348 		 * We don't want to report non-sensical pressures in
349 		 * excess of 100%, nor do we want to drop such events
350 		 * on the floor. Instead we punt any overage into the
351 		 * future until pressure subsides. By doing this we
352 		 * don't underreport the occurring pressure curve, we
353 		 * just report it delayed by one period length.
354 		 *
355 		 * The error isn't cumulative. As soon as another
356 		 * delta slips from a period P to P+1, by definition
357 		 * it frees up its time T in P.
358 		 */
359 		if (sample > period)
360 			sample = period;
361 		group->total_prev[s] += sample;
362 		calc_avgs(group->avg[s], missed_periods, sample, period);
363 	}
364 out:
365 	mutex_unlock(&group->stat_lock);
366 	return nonidle_total;
367 }
368 
369 static void psi_update_work(struct work_struct *work)
370 {
371 	struct delayed_work *dwork;
372 	struct psi_group *group;
373 	bool nonidle;
374 
375 	dwork = to_delayed_work(work);
376 	group = container_of(dwork, struct psi_group, clock_work);
377 
378 	/*
379 	 * If there is task activity, periodically fold the per-cpu
380 	 * times and feed samples into the running averages. If things
381 	 * are idle and there is no data to process, stop the clock.
382 	 * Once restarted, we'll catch up the running averages in one
383 	 * go - see calc_avgs() and missed_periods.
384 	 */
385 
386 	nonidle = update_stats(group);
387 
388 	if (nonidle) {
389 		unsigned long delay = 0;
390 		u64 now;
391 
392 		now = sched_clock();
393 		if (group->next_update > now)
394 			delay = nsecs_to_jiffies(group->next_update - now) + 1;
395 		schedule_delayed_work(dwork, delay);
396 	}
397 }
398 
399 static void record_times(struct psi_group_cpu *groupc, int cpu,
400 			 bool memstall_tick)
401 {
402 	u32 delta;
403 	u64 now;
404 
405 	now = cpu_clock(cpu);
406 	delta = now - groupc->state_start;
407 	groupc->state_start = now;
408 
409 	if (test_state(groupc->tasks, PSI_IO_SOME)) {
410 		groupc->times[PSI_IO_SOME] += delta;
411 		if (test_state(groupc->tasks, PSI_IO_FULL))
412 			groupc->times[PSI_IO_FULL] += delta;
413 	}
414 
415 	if (test_state(groupc->tasks, PSI_MEM_SOME)) {
416 		groupc->times[PSI_MEM_SOME] += delta;
417 		if (test_state(groupc->tasks, PSI_MEM_FULL))
418 			groupc->times[PSI_MEM_FULL] += delta;
419 		else if (memstall_tick) {
420 			u32 sample;
421 			/*
422 			 * Since we care about lost potential, a
423 			 * memstall is FULL when there are no other
424 			 * working tasks, but also when the CPU is
425 			 * actively reclaiming and nothing productive
426 			 * could run even if it were runnable.
427 			 *
428 			 * When the timer tick sees a reclaiming CPU,
429 			 * regardless of runnable tasks, sample a FULL
430 			 * tick (or less if it hasn't been a full tick
431 			 * since the last state change).
432 			 */
433 			sample = min(delta, (u32)jiffies_to_nsecs(1));
434 			groupc->times[PSI_MEM_FULL] += sample;
435 		}
436 	}
437 
438 	if (test_state(groupc->tasks, PSI_CPU_SOME))
439 		groupc->times[PSI_CPU_SOME] += delta;
440 
441 	if (test_state(groupc->tasks, PSI_NONIDLE))
442 		groupc->times[PSI_NONIDLE] += delta;
443 }
444 
445 static void psi_group_change(struct psi_group *group, int cpu,
446 			     unsigned int clear, unsigned int set)
447 {
448 	struct psi_group_cpu *groupc;
449 	unsigned int t, m;
450 
451 	groupc = per_cpu_ptr(group->pcpu, cpu);
452 
453 	/*
454 	 * First we assess the aggregate resource states this CPU's
455 	 * tasks have been in since the last change, and account any
456 	 * SOME and FULL time these may have resulted in.
457 	 *
458 	 * Then we update the task counts according to the state
459 	 * change requested through the @clear and @set bits.
460 	 */
461 	write_seqcount_begin(&groupc->seq);
462 
463 	record_times(groupc, cpu, false);
464 
465 	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
466 		if (!(m & (1 << t)))
467 			continue;
468 		if (groupc->tasks[t] == 0 && !psi_bug) {
469 			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n",
470 					cpu, t, groupc->tasks[0],
471 					groupc->tasks[1], groupc->tasks[2],
472 					clear, set);
473 			psi_bug = 1;
474 		}
475 		groupc->tasks[t]--;
476 	}
477 
478 	for (t = 0; set; set &= ~(1 << t), t++)
479 		if (set & (1 << t))
480 			groupc->tasks[t]++;
481 
482 	write_seqcount_end(&groupc->seq);
483 
484 	if (!delayed_work_pending(&group->clock_work))
485 		schedule_delayed_work(&group->clock_work, PSI_FREQ);
486 }
487 
488 static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
489 {
490 #ifdef CONFIG_CGROUPS
491 	struct cgroup *cgroup = NULL;
492 
493 	if (!*iter)
494 		cgroup = task->cgroups->dfl_cgrp;
495 	else if (*iter == &psi_system)
496 		return NULL;
497 	else
498 		cgroup = cgroup_parent(*iter);
499 
500 	if (cgroup && cgroup_parent(cgroup)) {
501 		*iter = cgroup;
502 		return cgroup_psi(cgroup);
503 	}
504 #else
505 	if (*iter)
506 		return NULL;
507 #endif
508 	*iter = &psi_system;
509 	return &psi_system;
510 }
511 
512 void psi_task_change(struct task_struct *task, int clear, int set)
513 {
514 	int cpu = task_cpu(task);
515 	struct psi_group *group;
516 	void *iter = NULL;
517 
518 	if (!task->pid)
519 		return;
520 
521 	if (((task->psi_flags & set) ||
522 	     (task->psi_flags & clear) != clear) &&
523 	    !psi_bug) {
524 		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
525 				task->pid, task->comm, cpu,
526 				task->psi_flags, clear, set);
527 		psi_bug = 1;
528 	}
529 
530 	task->psi_flags &= ~clear;
531 	task->psi_flags |= set;
532 
533 	while ((group = iterate_groups(task, &iter)))
534 		psi_group_change(group, cpu, clear, set);
535 }
536 
537 void psi_memstall_tick(struct task_struct *task, int cpu)
538 {
539 	struct psi_group *group;
540 	void *iter = NULL;
541 
542 	while ((group = iterate_groups(task, &iter))) {
543 		struct psi_group_cpu *groupc;
544 
545 		groupc = per_cpu_ptr(group->pcpu, cpu);
546 		write_seqcount_begin(&groupc->seq);
547 		record_times(groupc, cpu, true);
548 		write_seqcount_end(&groupc->seq);
549 	}
550 }
551 
552 /**
553  * psi_memstall_enter - mark the beginning of a memory stall section
554  * @flags: flags to handle nested sections
555  *
556  * Marks the calling task as being stalled due to a lack of memory,
557  * such as waiting for a refault or performing reclaim.
558  */
559 void psi_memstall_enter(unsigned long *flags)
560 {
561 	struct rq_flags rf;
562 	struct rq *rq;
563 
564 	if (static_branch_likely(&psi_disabled))
565 		return;
566 
567 	*flags = current->flags & PF_MEMSTALL;
568 	if (*flags)
569 		return;
570 	/*
571 	 * PF_MEMSTALL setting & accounting needs to be atomic wrt
572 	 * changes to the task's scheduling state, otherwise we can
573 	 * race with CPU migration.
574 	 */
575 	rq = this_rq_lock_irq(&rf);
576 
577 	current->flags |= PF_MEMSTALL;
578 	psi_task_change(current, 0, TSK_MEMSTALL);
579 
580 	rq_unlock_irq(rq, &rf);
581 }
582 
583 /**
584  * psi_memstall_leave - mark the end of an memory stall section
585  * @flags: flags to handle nested memdelay sections
586  *
587  * Marks the calling task as no longer stalled due to lack of memory.
588  */
589 void psi_memstall_leave(unsigned long *flags)
590 {
591 	struct rq_flags rf;
592 	struct rq *rq;
593 
594 	if (static_branch_likely(&psi_disabled))
595 		return;
596 
597 	if (*flags)
598 		return;
599 	/*
600 	 * PF_MEMSTALL clearing & accounting needs to be atomic wrt
601 	 * changes to the task's scheduling state, otherwise we could
602 	 * race with CPU migration.
603 	 */
604 	rq = this_rq_lock_irq(&rf);
605 
606 	current->flags &= ~PF_MEMSTALL;
607 	psi_task_change(current, TSK_MEMSTALL, 0);
608 
609 	rq_unlock_irq(rq, &rf);
610 }
611 
612 #ifdef CONFIG_CGROUPS
613 int psi_cgroup_alloc(struct cgroup *cgroup)
614 {
615 	if (static_branch_likely(&psi_disabled))
616 		return 0;
617 
618 	cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
619 	if (!cgroup->psi.pcpu)
620 		return -ENOMEM;
621 	group_init(&cgroup->psi);
622 	return 0;
623 }
624 
625 void psi_cgroup_free(struct cgroup *cgroup)
626 {
627 	if (static_branch_likely(&psi_disabled))
628 		return;
629 
630 	cancel_delayed_work_sync(&cgroup->psi.clock_work);
631 	free_percpu(cgroup->psi.pcpu);
632 }
633 
634 /**
635  * cgroup_move_task - move task to a different cgroup
636  * @task: the task
637  * @to: the target css_set
638  *
639  * Move task to a new cgroup and safely migrate its associated stall
640  * state between the different groups.
641  *
642  * This function acquires the task's rq lock to lock out concurrent
643  * changes to the task's scheduling state and - in case the task is
644  * running - concurrent changes to its stall state.
645  */
646 void cgroup_move_task(struct task_struct *task, struct css_set *to)
647 {
648 	unsigned int task_flags = 0;
649 	struct rq_flags rf;
650 	struct rq *rq;
651 
652 	if (static_branch_likely(&psi_disabled)) {
653 		/*
654 		 * Lame to do this here, but the scheduler cannot be locked
655 		 * from the outside, so we move cgroups from inside sched/.
656 		 */
657 		rcu_assign_pointer(task->cgroups, to);
658 		return;
659 	}
660 
661 	rq = task_rq_lock(task, &rf);
662 
663 	if (task_on_rq_queued(task))
664 		task_flags = TSK_RUNNING;
665 	else if (task->in_iowait)
666 		task_flags = TSK_IOWAIT;
667 
668 	if (task->flags & PF_MEMSTALL)
669 		task_flags |= TSK_MEMSTALL;
670 
671 	if (task_flags)
672 		psi_task_change(task, task_flags, 0);
673 
674 	/* See comment above */
675 	rcu_assign_pointer(task->cgroups, to);
676 
677 	if (task_flags)
678 		psi_task_change(task, 0, task_flags);
679 
680 	task_rq_unlock(rq, task, &rf);
681 }
682 #endif /* CONFIG_CGROUPS */
683 
684 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
685 {
686 	int full;
687 
688 	if (static_branch_likely(&psi_disabled))
689 		return -EOPNOTSUPP;
690 
691 	update_stats(group);
692 
693 	for (full = 0; full < 2 - (res == PSI_CPU); full++) {
694 		unsigned long avg[3];
695 		u64 total;
696 		int w;
697 
698 		for (w = 0; w < 3; w++)
699 			avg[w] = group->avg[res * 2 + full][w];
700 		total = div_u64(group->total[res * 2 + full], NSEC_PER_USEC);
701 
702 		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
703 			   full ? "full" : "some",
704 			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
705 			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
706 			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
707 			   total);
708 	}
709 
710 	return 0;
711 }
712 
713 static int psi_io_show(struct seq_file *m, void *v)
714 {
715 	return psi_show(m, &psi_system, PSI_IO);
716 }
717 
718 static int psi_memory_show(struct seq_file *m, void *v)
719 {
720 	return psi_show(m, &psi_system, PSI_MEM);
721 }
722 
723 static int psi_cpu_show(struct seq_file *m, void *v)
724 {
725 	return psi_show(m, &psi_system, PSI_CPU);
726 }
727 
728 static int psi_io_open(struct inode *inode, struct file *file)
729 {
730 	return single_open(file, psi_io_show, NULL);
731 }
732 
733 static int psi_memory_open(struct inode *inode, struct file *file)
734 {
735 	return single_open(file, psi_memory_show, NULL);
736 }
737 
738 static int psi_cpu_open(struct inode *inode, struct file *file)
739 {
740 	return single_open(file, psi_cpu_show, NULL);
741 }
742 
743 static const struct file_operations psi_io_fops = {
744 	.open           = psi_io_open,
745 	.read           = seq_read,
746 	.llseek         = seq_lseek,
747 	.release        = single_release,
748 };
749 
750 static const struct file_operations psi_memory_fops = {
751 	.open           = psi_memory_open,
752 	.read           = seq_read,
753 	.llseek         = seq_lseek,
754 	.release        = single_release,
755 };
756 
757 static const struct file_operations psi_cpu_fops = {
758 	.open           = psi_cpu_open,
759 	.read           = seq_read,
760 	.llseek         = seq_lseek,
761 	.release        = single_release,
762 };
763 
764 static int __init psi_proc_init(void)
765 {
766 	proc_mkdir("pressure", NULL);
767 	proc_create("pressure/io", 0, NULL, &psi_io_fops);
768 	proc_create("pressure/memory", 0, NULL, &psi_memory_fops);
769 	proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops);
770 	return 0;
771 }
772 module_init(psi_proc_init);
773