xref: /openbmc/linux/kernel/sched/psi.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 /*
2  * Pressure stall information for CPU, memory and IO
3  *
4  * Copyright (c) 2018 Facebook, Inc.
5  * Author: Johannes Weiner <hannes@cmpxchg.org>
6  *
7  * Polling support by Suren Baghdasaryan <surenb@google.com>
8  * Copyright (c) 2018 Google, Inc.
9  *
10  * When CPU, memory and IO are contended, tasks experience delays that
11  * reduce throughput and introduce latencies into the workload. Memory
12  * and IO contention, in addition, can cause a full loss of forward
13  * progress in which the CPU goes idle.
14  *
15  * This code aggregates individual task delays into resource pressure
16  * metrics that indicate problems with both workload health and
17  * resource utilization.
18  *
19  *			Model
20  *
21  * The time in which a task can execute on a CPU is our baseline for
22  * productivity. Pressure expresses the amount of time in which this
23  * potential cannot be realized due to resource contention.
24  *
25  * This concept of productivity has two components: the workload and
26  * the CPU. To measure the impact of pressure on both, we define two
27  * contention states for a resource: SOME and FULL.
28  *
29  * In the SOME state of a given resource, one or more tasks are
30  * delayed on that resource. This affects the workload's ability to
31  * perform work, but the CPU may still be executing other tasks.
32  *
33  * In the FULL state of a given resource, all non-idle tasks are
34  * delayed on that resource such that nobody is advancing and the CPU
35  * goes idle. This leaves both workload and CPU unproductive.
36  *
37  * Naturally, the FULL state doesn't exist for the CPU resource at the
38  * system level, but exist at the cgroup level, means all non-idle tasks
39  * in a cgroup are delayed on the CPU resource which used by others outside
40  * of the cgroup or throttled by the cgroup cpu.max configuration.
41  *
42  *	SOME = nr_delayed_tasks != 0
43  *	FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
44  *
45  * The percentage of wallclock time spent in those compound stall
46  * states gives pressure numbers between 0 and 100 for each resource,
47  * where the SOME percentage indicates workload slowdowns and the FULL
48  * percentage indicates reduced CPU utilization:
49  *
50  *	%SOME = time(SOME) / period
51  *	%FULL = time(FULL) / period
52  *
53  *			Multiple CPUs
54  *
55  * The more tasks and available CPUs there are, the more work can be
56  * performed concurrently. This means that the potential that can go
57  * unrealized due to resource contention *also* scales with non-idle
58  * tasks and CPUs.
59  *
60  * Consider a scenario where 257 number crunching tasks are trying to
61  * run concurrently on 256 CPUs. If we simply aggregated the task
62  * states, we would have to conclude a CPU SOME pressure number of
63  * 100%, since *somebody* is waiting on a runqueue at all
64  * times. However, that is clearly not the amount of contention the
65  * workload is experiencing: only one out of 256 possible execution
66  * threads will be contended at any given time, or about 0.4%.
67  *
68  * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
69  * given time *one* of the tasks is delayed due to a lack of memory.
70  * Again, looking purely at the task state would yield a memory FULL
71  * pressure number of 0%, since *somebody* is always making forward
72  * progress. But again this wouldn't capture the amount of execution
73  * potential lost, which is 1 out of 4 CPUs, or 25%.
74  *
75  * To calculate wasted potential (pressure) with multiple processors,
76  * we have to base our calculation on the number of non-idle tasks in
77  * conjunction with the number of available CPUs, which is the number
78  * of potential execution threads. SOME becomes then the proportion of
79  * delayed tasks to possible threads, and FULL is the share of possible
80  * threads that are unproductive due to delays:
81  *
82  *	threads = min(nr_nonidle_tasks, nr_cpus)
83  *	   SOME = min(nr_delayed_tasks / threads, 1)
84  *	   FULL = (threads - min(nr_running_tasks, threads)) / threads
85  *
86  * For the 257 number crunchers on 256 CPUs, this yields:
87  *
88  *	threads = min(257, 256)
89  *	   SOME = min(1 / 256, 1)             = 0.4%
90  *	   FULL = (256 - min(257, 256)) / 256 = 0%
91  *
92  * For the 1 out of 4 memory-delayed tasks, this yields:
93  *
94  *	threads = min(4, 4)
95  *	   SOME = min(1 / 4, 1)               = 25%
96  *	   FULL = (4 - min(3, 4)) / 4         = 25%
97  *
98  * [ Substitute nr_cpus with 1, and you can see that it's a natural
99  *   extension of the single-CPU model. ]
100  *
101  *			Implementation
102  *
103  * To assess the precise time spent in each such state, we would have
104  * to freeze the system on task changes and start/stop the state
105  * clocks accordingly. Obviously that doesn't scale in practice.
106  *
107  * Because the scheduler aims to distribute the compute load evenly
108  * among the available CPUs, we can track task state locally to each
109  * CPU and, at much lower frequency, extrapolate the global state for
110  * the cumulative stall times and the running averages.
111  *
112  * For each runqueue, we track:
113  *
114  *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
115  *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
116  *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
117  *
118  * and then periodically aggregate:
119  *
120  *	tNONIDLE = sum(tNONIDLE[i])
121  *
122  *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
123  *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
124  *
125  *	   %SOME = tSOME / period
126  *	   %FULL = tFULL / period
127  *
128  * This gives us an approximation of pressure that is practical
129  * cost-wise, yet way more sensitive and accurate than periodic
130  * sampling of the aggregate task states would be.
131  */
132 
133 #include "../workqueue_internal.h"
134 #include <linux/sched/loadavg.h>
135 #include <linux/seq_file.h>
136 #include <linux/proc_fs.h>
137 #include <linux/seqlock.h>
138 #include <linux/uaccess.h>
139 #include <linux/cgroup.h>
140 #include <linux/module.h>
141 #include <linux/sched.h>
142 #include <linux/ctype.h>
143 #include <linux/file.h>
144 #include <linux/poll.h>
145 #include <linux/psi.h>
146 #include "sched.h"
147 
148 static int psi_bug __read_mostly;
149 
150 DEFINE_STATIC_KEY_FALSE(psi_disabled);
151 
152 #ifdef CONFIG_PSI_DEFAULT_DISABLED
153 static bool psi_enable;
154 #else
155 static bool psi_enable = true;
156 #endif
157 static int __init setup_psi(char *str)
158 {
159 	return kstrtobool(str, &psi_enable) == 0;
160 }
161 __setup("psi=", setup_psi);
162 
163 /* Running averages - we need to be higher-res than loadavg */
164 #define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
165 #define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
166 #define EXP_60s		1981		/* 1/exp(2s/60s) */
167 #define EXP_300s	2034		/* 1/exp(2s/300s) */
168 
169 /* PSI trigger definitions */
170 #define WINDOW_MIN_US 500000	/* Min window size is 500ms */
171 #define WINDOW_MAX_US 10000000	/* Max window size is 10s */
172 #define UPDATES_PER_WINDOW 10	/* 10 updates per window */
173 
174 /* Sampling frequency in nanoseconds */
175 static u64 psi_period __read_mostly;
176 
177 /* System-level pressure and stall tracking */
178 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
179 struct psi_group psi_system = {
180 	.pcpu = &system_group_pcpu,
181 };
182 
183 static void psi_avgs_work(struct work_struct *work);
184 
185 static void group_init(struct psi_group *group)
186 {
187 	int cpu;
188 
189 	for_each_possible_cpu(cpu)
190 		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
191 	group->avg_last_update = sched_clock();
192 	group->avg_next_update = group->avg_last_update + psi_period;
193 	INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
194 	mutex_init(&group->avgs_lock);
195 	/* Init trigger-related members */
196 	mutex_init(&group->trigger_lock);
197 	INIT_LIST_HEAD(&group->triggers);
198 	memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
199 	group->poll_states = 0;
200 	group->poll_min_period = U32_MAX;
201 	memset(group->polling_total, 0, sizeof(group->polling_total));
202 	group->polling_next_update = ULLONG_MAX;
203 	group->polling_until = 0;
204 	rcu_assign_pointer(group->poll_task, NULL);
205 }
206 
207 void __init psi_init(void)
208 {
209 	if (!psi_enable) {
210 		static_branch_enable(&psi_disabled);
211 		return;
212 	}
213 
214 	psi_period = jiffies_to_nsecs(PSI_FREQ);
215 	group_init(&psi_system);
216 }
217 
218 static bool test_state(unsigned int *tasks, enum psi_states state)
219 {
220 	switch (state) {
221 	case PSI_IO_SOME:
222 		return unlikely(tasks[NR_IOWAIT]);
223 	case PSI_IO_FULL:
224 		return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]);
225 	case PSI_MEM_SOME:
226 		return unlikely(tasks[NR_MEMSTALL]);
227 	case PSI_MEM_FULL:
228 		return unlikely(tasks[NR_MEMSTALL] && !tasks[NR_RUNNING]);
229 	case PSI_CPU_SOME:
230 		return unlikely(tasks[NR_RUNNING] > tasks[NR_ONCPU]);
231 	case PSI_CPU_FULL:
232 		return unlikely(tasks[NR_RUNNING] && !tasks[NR_ONCPU]);
233 	case PSI_NONIDLE:
234 		return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
235 			tasks[NR_RUNNING];
236 	default:
237 		return false;
238 	}
239 }
240 
241 static void get_recent_times(struct psi_group *group, int cpu,
242 			     enum psi_aggregators aggregator, u32 *times,
243 			     u32 *pchanged_states)
244 {
245 	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
246 	u64 now, state_start;
247 	enum psi_states s;
248 	unsigned int seq;
249 	u32 state_mask;
250 
251 	*pchanged_states = 0;
252 
253 	/* Snapshot a coherent view of the CPU state */
254 	do {
255 		seq = read_seqcount_begin(&groupc->seq);
256 		now = cpu_clock(cpu);
257 		memcpy(times, groupc->times, sizeof(groupc->times));
258 		state_mask = groupc->state_mask;
259 		state_start = groupc->state_start;
260 	} while (read_seqcount_retry(&groupc->seq, seq));
261 
262 	/* Calculate state time deltas against the previous snapshot */
263 	for (s = 0; s < NR_PSI_STATES; s++) {
264 		u32 delta;
265 		/*
266 		 * In addition to already concluded states, we also
267 		 * incorporate currently active states on the CPU,
268 		 * since states may last for many sampling periods.
269 		 *
270 		 * This way we keep our delta sampling buckets small
271 		 * (u32) and our reported pressure close to what's
272 		 * actually happening.
273 		 */
274 		if (state_mask & (1 << s))
275 			times[s] += now - state_start;
276 
277 		delta = times[s] - groupc->times_prev[aggregator][s];
278 		groupc->times_prev[aggregator][s] = times[s];
279 
280 		times[s] = delta;
281 		if (delta)
282 			*pchanged_states |= (1 << s);
283 	}
284 }
285 
286 static void calc_avgs(unsigned long avg[3], int missed_periods,
287 		      u64 time, u64 period)
288 {
289 	unsigned long pct;
290 
291 	/* Fill in zeroes for periods of no activity */
292 	if (missed_periods) {
293 		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
294 		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
295 		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
296 	}
297 
298 	/* Sample the most recent active period */
299 	pct = div_u64(time * 100, period);
300 	pct *= FIXED_1;
301 	avg[0] = calc_load(avg[0], EXP_10s, pct);
302 	avg[1] = calc_load(avg[1], EXP_60s, pct);
303 	avg[2] = calc_load(avg[2], EXP_300s, pct);
304 }
305 
306 static void collect_percpu_times(struct psi_group *group,
307 				 enum psi_aggregators aggregator,
308 				 u32 *pchanged_states)
309 {
310 	u64 deltas[NR_PSI_STATES - 1] = { 0, };
311 	unsigned long nonidle_total = 0;
312 	u32 changed_states = 0;
313 	int cpu;
314 	int s;
315 
316 	/*
317 	 * Collect the per-cpu time buckets and average them into a
318 	 * single time sample that is normalized to wallclock time.
319 	 *
320 	 * For averaging, each CPU is weighted by its non-idle time in
321 	 * the sampling period. This eliminates artifacts from uneven
322 	 * loading, or even entirely idle CPUs.
323 	 */
324 	for_each_possible_cpu(cpu) {
325 		u32 times[NR_PSI_STATES];
326 		u32 nonidle;
327 		u32 cpu_changed_states;
328 
329 		get_recent_times(group, cpu, aggregator, times,
330 				&cpu_changed_states);
331 		changed_states |= cpu_changed_states;
332 
333 		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
334 		nonidle_total += nonidle;
335 
336 		for (s = 0; s < PSI_NONIDLE; s++)
337 			deltas[s] += (u64)times[s] * nonidle;
338 	}
339 
340 	/*
341 	 * Integrate the sample into the running statistics that are
342 	 * reported to userspace: the cumulative stall times and the
343 	 * decaying averages.
344 	 *
345 	 * Pressure percentages are sampled at PSI_FREQ. We might be
346 	 * called more often when the user polls more frequently than
347 	 * that; we might be called less often when there is no task
348 	 * activity, thus no data, and clock ticks are sporadic. The
349 	 * below handles both.
350 	 */
351 
352 	/* total= */
353 	for (s = 0; s < NR_PSI_STATES - 1; s++)
354 		group->total[aggregator][s] +=
355 				div_u64(deltas[s], max(nonidle_total, 1UL));
356 
357 	if (pchanged_states)
358 		*pchanged_states = changed_states;
359 }
360 
361 static u64 update_averages(struct psi_group *group, u64 now)
362 {
363 	unsigned long missed_periods = 0;
364 	u64 expires, period;
365 	u64 avg_next_update;
366 	int s;
367 
368 	/* avgX= */
369 	expires = group->avg_next_update;
370 	if (now - expires >= psi_period)
371 		missed_periods = div_u64(now - expires, psi_period);
372 
373 	/*
374 	 * The periodic clock tick can get delayed for various
375 	 * reasons, especially on loaded systems. To avoid clock
376 	 * drift, we schedule the clock in fixed psi_period intervals.
377 	 * But the deltas we sample out of the per-cpu buckets above
378 	 * are based on the actual time elapsing between clock ticks.
379 	 */
380 	avg_next_update = expires + ((1 + missed_periods) * psi_period);
381 	period = now - (group->avg_last_update + (missed_periods * psi_period));
382 	group->avg_last_update = now;
383 
384 	for (s = 0; s < NR_PSI_STATES - 1; s++) {
385 		u32 sample;
386 
387 		sample = group->total[PSI_AVGS][s] - group->avg_total[s];
388 		/*
389 		 * Due to the lockless sampling of the time buckets,
390 		 * recorded time deltas can slip into the next period,
391 		 * which under full pressure can result in samples in
392 		 * excess of the period length.
393 		 *
394 		 * We don't want to report non-sensical pressures in
395 		 * excess of 100%, nor do we want to drop such events
396 		 * on the floor. Instead we punt any overage into the
397 		 * future until pressure subsides. By doing this we
398 		 * don't underreport the occurring pressure curve, we
399 		 * just report it delayed by one period length.
400 		 *
401 		 * The error isn't cumulative. As soon as another
402 		 * delta slips from a period P to P+1, by definition
403 		 * it frees up its time T in P.
404 		 */
405 		if (sample > period)
406 			sample = period;
407 		group->avg_total[s] += sample;
408 		calc_avgs(group->avg[s], missed_periods, sample, period);
409 	}
410 
411 	return avg_next_update;
412 }
413 
414 static void psi_avgs_work(struct work_struct *work)
415 {
416 	struct delayed_work *dwork;
417 	struct psi_group *group;
418 	u32 changed_states;
419 	bool nonidle;
420 	u64 now;
421 
422 	dwork = to_delayed_work(work);
423 	group = container_of(dwork, struct psi_group, avgs_work);
424 
425 	mutex_lock(&group->avgs_lock);
426 
427 	now = sched_clock();
428 
429 	collect_percpu_times(group, PSI_AVGS, &changed_states);
430 	nonidle = changed_states & (1 << PSI_NONIDLE);
431 	/*
432 	 * If there is task activity, periodically fold the per-cpu
433 	 * times and feed samples into the running averages. If things
434 	 * are idle and there is no data to process, stop the clock.
435 	 * Once restarted, we'll catch up the running averages in one
436 	 * go - see calc_avgs() and missed_periods.
437 	 */
438 	if (now >= group->avg_next_update)
439 		group->avg_next_update = update_averages(group, now);
440 
441 	if (nonidle) {
442 		schedule_delayed_work(dwork, nsecs_to_jiffies(
443 				group->avg_next_update - now) + 1);
444 	}
445 
446 	mutex_unlock(&group->avgs_lock);
447 }
448 
449 /* Trigger tracking window manipulations */
450 static void window_reset(struct psi_window *win, u64 now, u64 value,
451 			 u64 prev_growth)
452 {
453 	win->start_time = now;
454 	win->start_value = value;
455 	win->prev_growth = prev_growth;
456 }
457 
458 /*
459  * PSI growth tracking window update and growth calculation routine.
460  *
461  * This approximates a sliding tracking window by interpolating
462  * partially elapsed windows using historical growth data from the
463  * previous intervals. This minimizes memory requirements (by not storing
464  * all the intermediate values in the previous window) and simplifies
465  * the calculations. It works well because PSI signal changes only in
466  * positive direction and over relatively small window sizes the growth
467  * is close to linear.
468  */
469 static u64 window_update(struct psi_window *win, u64 now, u64 value)
470 {
471 	u64 elapsed;
472 	u64 growth;
473 
474 	elapsed = now - win->start_time;
475 	growth = value - win->start_value;
476 	/*
477 	 * After each tracking window passes win->start_value and
478 	 * win->start_time get reset and win->prev_growth stores
479 	 * the average per-window growth of the previous window.
480 	 * win->prev_growth is then used to interpolate additional
481 	 * growth from the previous window assuming it was linear.
482 	 */
483 	if (elapsed > win->size)
484 		window_reset(win, now, value, growth);
485 	else {
486 		u32 remaining;
487 
488 		remaining = win->size - elapsed;
489 		growth += div64_u64(win->prev_growth * remaining, win->size);
490 	}
491 
492 	return growth;
493 }
494 
495 static void init_triggers(struct psi_group *group, u64 now)
496 {
497 	struct psi_trigger *t;
498 
499 	list_for_each_entry(t, &group->triggers, node)
500 		window_reset(&t->win, now,
501 				group->total[PSI_POLL][t->state], 0);
502 	memcpy(group->polling_total, group->total[PSI_POLL],
503 		   sizeof(group->polling_total));
504 	group->polling_next_update = now + group->poll_min_period;
505 }
506 
507 static u64 update_triggers(struct psi_group *group, u64 now)
508 {
509 	struct psi_trigger *t;
510 	bool new_stall = false;
511 	u64 *total = group->total[PSI_POLL];
512 
513 	/*
514 	 * On subsequent updates, calculate growth deltas and let
515 	 * watchers know when their specified thresholds are exceeded.
516 	 */
517 	list_for_each_entry(t, &group->triggers, node) {
518 		u64 growth;
519 
520 		/* Check for stall activity */
521 		if (group->polling_total[t->state] == total[t->state])
522 			continue;
523 
524 		/*
525 		 * Multiple triggers might be looking at the same state,
526 		 * remember to update group->polling_total[] once we've
527 		 * been through all of them. Also remember to extend the
528 		 * polling time if we see new stall activity.
529 		 */
530 		new_stall = true;
531 
532 		/* Calculate growth since last update */
533 		growth = window_update(&t->win, now, total[t->state]);
534 		if (growth < t->threshold)
535 			continue;
536 
537 		/* Limit event signaling to once per window */
538 		if (now < t->last_event_time + t->win.size)
539 			continue;
540 
541 		/* Generate an event */
542 		if (cmpxchg(&t->event, 0, 1) == 0)
543 			wake_up_interruptible(&t->event_wait);
544 		t->last_event_time = now;
545 	}
546 
547 	if (new_stall)
548 		memcpy(group->polling_total, total,
549 				sizeof(group->polling_total));
550 
551 	return now + group->poll_min_period;
552 }
553 
554 /* Schedule polling if it's not already scheduled. */
555 static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
556 {
557 	struct task_struct *task;
558 
559 	/*
560 	 * Do not reschedule if already scheduled.
561 	 * Possible race with a timer scheduled after this check but before
562 	 * mod_timer below can be tolerated because group->polling_next_update
563 	 * will keep updates on schedule.
564 	 */
565 	if (timer_pending(&group->poll_timer))
566 		return;
567 
568 	rcu_read_lock();
569 
570 	task = rcu_dereference(group->poll_task);
571 	/*
572 	 * kworker might be NULL in case psi_trigger_destroy races with
573 	 * psi_task_change (hotpath) which can't use locks
574 	 */
575 	if (likely(task))
576 		mod_timer(&group->poll_timer, jiffies + delay);
577 
578 	rcu_read_unlock();
579 }
580 
581 static void psi_poll_work(struct psi_group *group)
582 {
583 	u32 changed_states;
584 	u64 now;
585 
586 	mutex_lock(&group->trigger_lock);
587 
588 	now = sched_clock();
589 
590 	collect_percpu_times(group, PSI_POLL, &changed_states);
591 
592 	if (changed_states & group->poll_states) {
593 		/* Initialize trigger windows when entering polling mode */
594 		if (now > group->polling_until)
595 			init_triggers(group, now);
596 
597 		/*
598 		 * Keep the monitor active for at least the duration of the
599 		 * minimum tracking window as long as monitor states are
600 		 * changing.
601 		 */
602 		group->polling_until = now +
603 			group->poll_min_period * UPDATES_PER_WINDOW;
604 	}
605 
606 	if (now > group->polling_until) {
607 		group->polling_next_update = ULLONG_MAX;
608 		goto out;
609 	}
610 
611 	if (now >= group->polling_next_update)
612 		group->polling_next_update = update_triggers(group, now);
613 
614 	psi_schedule_poll_work(group,
615 		nsecs_to_jiffies(group->polling_next_update - now) + 1);
616 
617 out:
618 	mutex_unlock(&group->trigger_lock);
619 }
620 
621 static int psi_poll_worker(void *data)
622 {
623 	struct psi_group *group = (struct psi_group *)data;
624 
625 	sched_set_fifo_low(current);
626 
627 	while (true) {
628 		wait_event_interruptible(group->poll_wait,
629 				atomic_cmpxchg(&group->poll_wakeup, 1, 0) ||
630 				kthread_should_stop());
631 		if (kthread_should_stop())
632 			break;
633 
634 		psi_poll_work(group);
635 	}
636 	return 0;
637 }
638 
639 static void poll_timer_fn(struct timer_list *t)
640 {
641 	struct psi_group *group = from_timer(group, t, poll_timer);
642 
643 	atomic_set(&group->poll_wakeup, 1);
644 	wake_up_interruptible(&group->poll_wait);
645 }
646 
647 static void record_times(struct psi_group_cpu *groupc, u64 now)
648 {
649 	u32 delta;
650 
651 	delta = now - groupc->state_start;
652 	groupc->state_start = now;
653 
654 	if (groupc->state_mask & (1 << PSI_IO_SOME)) {
655 		groupc->times[PSI_IO_SOME] += delta;
656 		if (groupc->state_mask & (1 << PSI_IO_FULL))
657 			groupc->times[PSI_IO_FULL] += delta;
658 	}
659 
660 	if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
661 		groupc->times[PSI_MEM_SOME] += delta;
662 		if (groupc->state_mask & (1 << PSI_MEM_FULL))
663 			groupc->times[PSI_MEM_FULL] += delta;
664 	}
665 
666 	if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
667 		groupc->times[PSI_CPU_SOME] += delta;
668 		if (groupc->state_mask & (1 << PSI_CPU_FULL))
669 			groupc->times[PSI_CPU_FULL] += delta;
670 	}
671 
672 	if (groupc->state_mask & (1 << PSI_NONIDLE))
673 		groupc->times[PSI_NONIDLE] += delta;
674 }
675 
676 static void psi_group_change(struct psi_group *group, int cpu,
677 			     unsigned int clear, unsigned int set, u64 now,
678 			     bool wake_clock)
679 {
680 	struct psi_group_cpu *groupc;
681 	u32 state_mask = 0;
682 	unsigned int t, m;
683 	enum psi_states s;
684 
685 	groupc = per_cpu_ptr(group->pcpu, cpu);
686 
687 	/*
688 	 * First we assess the aggregate resource states this CPU's
689 	 * tasks have been in since the last change, and account any
690 	 * SOME and FULL time these may have resulted in.
691 	 *
692 	 * Then we update the task counts according to the state
693 	 * change requested through the @clear and @set bits.
694 	 */
695 	write_seqcount_begin(&groupc->seq);
696 
697 	record_times(groupc, now);
698 
699 	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
700 		if (!(m & (1 << t)))
701 			continue;
702 		if (groupc->tasks[t]) {
703 			groupc->tasks[t]--;
704 		} else if (!psi_bug) {
705 			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
706 					cpu, t, groupc->tasks[0],
707 					groupc->tasks[1], groupc->tasks[2],
708 					groupc->tasks[3], clear, set);
709 			psi_bug = 1;
710 		}
711 	}
712 
713 	for (t = 0; set; set &= ~(1 << t), t++)
714 		if (set & (1 << t))
715 			groupc->tasks[t]++;
716 
717 	/* Calculate state mask representing active states */
718 	for (s = 0; s < NR_PSI_STATES; s++) {
719 		if (test_state(groupc->tasks, s))
720 			state_mask |= (1 << s);
721 	}
722 
723 	/*
724 	 * Since we care about lost potential, a memstall is FULL
725 	 * when there are no other working tasks, but also when
726 	 * the CPU is actively reclaiming and nothing productive
727 	 * could run even if it were runnable. So when the current
728 	 * task in a cgroup is in_memstall, the corresponding groupc
729 	 * on that cpu is in PSI_MEM_FULL state.
730 	 */
731 	if (unlikely(groupc->tasks[NR_ONCPU] && cpu_curr(cpu)->in_memstall))
732 		state_mask |= (1 << PSI_MEM_FULL);
733 
734 	groupc->state_mask = state_mask;
735 
736 	write_seqcount_end(&groupc->seq);
737 
738 	if (state_mask & group->poll_states)
739 		psi_schedule_poll_work(group, 1);
740 
741 	if (wake_clock && !delayed_work_pending(&group->avgs_work))
742 		schedule_delayed_work(&group->avgs_work, PSI_FREQ);
743 }
744 
745 static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
746 {
747 #ifdef CONFIG_CGROUPS
748 	struct cgroup *cgroup = NULL;
749 
750 	if (!*iter)
751 		cgroup = task->cgroups->dfl_cgrp;
752 	else if (*iter == &psi_system)
753 		return NULL;
754 	else
755 		cgroup = cgroup_parent(*iter);
756 
757 	if (cgroup && cgroup_parent(cgroup)) {
758 		*iter = cgroup;
759 		return cgroup_psi(cgroup);
760 	}
761 #else
762 	if (*iter)
763 		return NULL;
764 #endif
765 	*iter = &psi_system;
766 	return &psi_system;
767 }
768 
769 static void psi_flags_change(struct task_struct *task, int clear, int set)
770 {
771 	if (((task->psi_flags & set) ||
772 	     (task->psi_flags & clear) != clear) &&
773 	    !psi_bug) {
774 		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
775 				task->pid, task->comm, task_cpu(task),
776 				task->psi_flags, clear, set);
777 		psi_bug = 1;
778 	}
779 
780 	task->psi_flags &= ~clear;
781 	task->psi_flags |= set;
782 }
783 
784 void psi_task_change(struct task_struct *task, int clear, int set)
785 {
786 	int cpu = task_cpu(task);
787 	struct psi_group *group;
788 	bool wake_clock = true;
789 	void *iter = NULL;
790 	u64 now;
791 
792 	if (!task->pid)
793 		return;
794 
795 	psi_flags_change(task, clear, set);
796 
797 	now = cpu_clock(cpu);
798 	/*
799 	 * Periodic aggregation shuts off if there is a period of no
800 	 * task changes, so we wake it back up if necessary. However,
801 	 * don't do this if the task change is the aggregation worker
802 	 * itself going to sleep, or we'll ping-pong forever.
803 	 */
804 	if (unlikely((clear & TSK_RUNNING) &&
805 		     (task->flags & PF_WQ_WORKER) &&
806 		     wq_worker_last_func(task) == psi_avgs_work))
807 		wake_clock = false;
808 
809 	while ((group = iterate_groups(task, &iter)))
810 		psi_group_change(group, cpu, clear, set, now, wake_clock);
811 }
812 
813 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
814 		     bool sleep)
815 {
816 	struct psi_group *group, *common = NULL;
817 	int cpu = task_cpu(prev);
818 	void *iter;
819 	u64 now = cpu_clock(cpu);
820 
821 	if (next->pid) {
822 		bool identical_state;
823 
824 		psi_flags_change(next, 0, TSK_ONCPU);
825 		/*
826 		 * When switching between tasks that have an identical
827 		 * runtime state, the cgroup that contains both tasks
828 		 * runtime state, the cgroup that contains both tasks
829 		 * we reach the first common ancestor. Iterate @next's
830 		 * ancestors only until we encounter @prev's ONCPU.
831 		 */
832 		identical_state = prev->psi_flags == next->psi_flags;
833 		iter = NULL;
834 		while ((group = iterate_groups(next, &iter))) {
835 			if (identical_state &&
836 			    per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) {
837 				common = group;
838 				break;
839 			}
840 
841 			psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
842 		}
843 	}
844 
845 	if (prev->pid) {
846 		int clear = TSK_ONCPU, set = 0;
847 
848 		/*
849 		 * When we're going to sleep, psi_dequeue() lets us handle
850 		 * TSK_RUNNING and TSK_IOWAIT here, where we can combine it
851 		 * with TSK_ONCPU and save walking common ancestors twice.
852 		 */
853 		if (sleep) {
854 			clear |= TSK_RUNNING;
855 			if (prev->in_iowait)
856 				set |= TSK_IOWAIT;
857 		}
858 
859 		psi_flags_change(prev, clear, set);
860 
861 		iter = NULL;
862 		while ((group = iterate_groups(prev, &iter)) && group != common)
863 			psi_group_change(group, cpu, clear, set, now, true);
864 
865 		/*
866 		 * TSK_ONCPU is handled up to the common ancestor. If we're tasked
867 		 * with dequeuing too, finish that for the rest of the hierarchy.
868 		 */
869 		if (sleep) {
870 			clear &= ~TSK_ONCPU;
871 			for (; group; group = iterate_groups(prev, &iter))
872 				psi_group_change(group, cpu, clear, set, now, true);
873 		}
874 	}
875 }
876 
877 /**
878  * psi_memstall_enter - mark the beginning of a memory stall section
879  * @flags: flags to handle nested sections
880  *
881  * Marks the calling task as being stalled due to a lack of memory,
882  * such as waiting for a refault or performing reclaim.
883  */
884 void psi_memstall_enter(unsigned long *flags)
885 {
886 	struct rq_flags rf;
887 	struct rq *rq;
888 
889 	if (static_branch_likely(&psi_disabled))
890 		return;
891 
892 	*flags = current->in_memstall;
893 	if (*flags)
894 		return;
895 	/*
896 	 * in_memstall setting & accounting needs to be atomic wrt
897 	 * changes to the task's scheduling state, otherwise we can
898 	 * race with CPU migration.
899 	 */
900 	rq = this_rq_lock_irq(&rf);
901 
902 	current->in_memstall = 1;
903 	psi_task_change(current, 0, TSK_MEMSTALL);
904 
905 	rq_unlock_irq(rq, &rf);
906 }
907 
908 /**
909  * psi_memstall_leave - mark the end of an memory stall section
910  * @flags: flags to handle nested memdelay sections
911  *
912  * Marks the calling task as no longer stalled due to lack of memory.
913  */
914 void psi_memstall_leave(unsigned long *flags)
915 {
916 	struct rq_flags rf;
917 	struct rq *rq;
918 
919 	if (static_branch_likely(&psi_disabled))
920 		return;
921 
922 	if (*flags)
923 		return;
924 	/*
925 	 * in_memstall clearing & accounting needs to be atomic wrt
926 	 * changes to the task's scheduling state, otherwise we could
927 	 * race with CPU migration.
928 	 */
929 	rq = this_rq_lock_irq(&rf);
930 
931 	current->in_memstall = 0;
932 	psi_task_change(current, TSK_MEMSTALL, 0);
933 
934 	rq_unlock_irq(rq, &rf);
935 }
936 
937 #ifdef CONFIG_CGROUPS
938 int psi_cgroup_alloc(struct cgroup *cgroup)
939 {
940 	if (static_branch_likely(&psi_disabled))
941 		return 0;
942 
943 	cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
944 	if (!cgroup->psi.pcpu)
945 		return -ENOMEM;
946 	group_init(&cgroup->psi);
947 	return 0;
948 }
949 
950 void psi_cgroup_free(struct cgroup *cgroup)
951 {
952 	if (static_branch_likely(&psi_disabled))
953 		return;
954 
955 	cancel_delayed_work_sync(&cgroup->psi.avgs_work);
956 	free_percpu(cgroup->psi.pcpu);
957 	/* All triggers must be removed by now */
958 	WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
959 }
960 
961 /**
962  * cgroup_move_task - move task to a different cgroup
963  * @task: the task
964  * @to: the target css_set
965  *
966  * Move task to a new cgroup and safely migrate its associated stall
967  * state between the different groups.
968  *
969  * This function acquires the task's rq lock to lock out concurrent
970  * changes to the task's scheduling state and - in case the task is
971  * running - concurrent changes to its stall state.
972  */
973 void cgroup_move_task(struct task_struct *task, struct css_set *to)
974 {
975 	unsigned int task_flags;
976 	struct rq_flags rf;
977 	struct rq *rq;
978 
979 	if (static_branch_likely(&psi_disabled)) {
980 		/*
981 		 * Lame to do this here, but the scheduler cannot be locked
982 		 * from the outside, so we move cgroups from inside sched/.
983 		 */
984 		rcu_assign_pointer(task->cgroups, to);
985 		return;
986 	}
987 
988 	rq = task_rq_lock(task, &rf);
989 
990 	/*
991 	 * We may race with schedule() dropping the rq lock between
992 	 * deactivating prev and switching to next. Because the psi
993 	 * updates from the deactivation are deferred to the switch
994 	 * callback to save cgroup tree updates, the task's scheduling
995 	 * state here is not coherent with its psi state:
996 	 *
997 	 * schedule()                   cgroup_move_task()
998 	 *   rq_lock()
999 	 *   deactivate_task()
1000 	 *     p->on_rq = 0
1001 	 *     psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1002 	 *   pick_next_task()
1003 	 *     rq_unlock()
1004 	 *                                rq_lock()
1005 	 *                                psi_task_change() // old cgroup
1006 	 *                                task->cgroups = to
1007 	 *                                psi_task_change() // new cgroup
1008 	 *                                rq_unlock()
1009 	 *     rq_lock()
1010 	 *   psi_sched_switch() // does deferred updates in new cgroup
1011 	 *
1012 	 * Don't rely on the scheduling state. Use psi_flags instead.
1013 	 */
1014 	task_flags = task->psi_flags;
1015 
1016 	if (task_flags)
1017 		psi_task_change(task, task_flags, 0);
1018 
1019 	/* See comment above */
1020 	rcu_assign_pointer(task->cgroups, to);
1021 
1022 	if (task_flags)
1023 		psi_task_change(task, 0, task_flags);
1024 
1025 	task_rq_unlock(rq, task, &rf);
1026 }
1027 #endif /* CONFIG_CGROUPS */
1028 
1029 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1030 {
1031 	int full;
1032 	u64 now;
1033 
1034 	if (static_branch_likely(&psi_disabled))
1035 		return -EOPNOTSUPP;
1036 
1037 	/* Update averages before reporting them */
1038 	mutex_lock(&group->avgs_lock);
1039 	now = sched_clock();
1040 	collect_percpu_times(group, PSI_AVGS, NULL);
1041 	if (now >= group->avg_next_update)
1042 		group->avg_next_update = update_averages(group, now);
1043 	mutex_unlock(&group->avgs_lock);
1044 
1045 	for (full = 0; full < 2; full++) {
1046 		unsigned long avg[3];
1047 		u64 total;
1048 		int w;
1049 
1050 		for (w = 0; w < 3; w++)
1051 			avg[w] = group->avg[res * 2 + full][w];
1052 		total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1053 				NSEC_PER_USEC);
1054 
1055 		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1056 			   full ? "full" : "some",
1057 			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1058 			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1059 			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1060 			   total);
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 static int psi_io_show(struct seq_file *m, void *v)
1067 {
1068 	return psi_show(m, &psi_system, PSI_IO);
1069 }
1070 
1071 static int psi_memory_show(struct seq_file *m, void *v)
1072 {
1073 	return psi_show(m, &psi_system, PSI_MEM);
1074 }
1075 
1076 static int psi_cpu_show(struct seq_file *m, void *v)
1077 {
1078 	return psi_show(m, &psi_system, PSI_CPU);
1079 }
1080 
1081 static int psi_open(struct file *file, int (*psi_show)(struct seq_file *, void *))
1082 {
1083 	if (file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE))
1084 		return -EPERM;
1085 
1086 	return single_open(file, psi_show, NULL);
1087 }
1088 
1089 static int psi_io_open(struct inode *inode, struct file *file)
1090 {
1091 	return psi_open(file, psi_io_show);
1092 }
1093 
1094 static int psi_memory_open(struct inode *inode, struct file *file)
1095 {
1096 	return psi_open(file, psi_memory_show);
1097 }
1098 
1099 static int psi_cpu_open(struct inode *inode, struct file *file)
1100 {
1101 	return psi_open(file, psi_cpu_show);
1102 }
1103 
1104 struct psi_trigger *psi_trigger_create(struct psi_group *group,
1105 			char *buf, size_t nbytes, enum psi_res res)
1106 {
1107 	struct psi_trigger *t;
1108 	enum psi_states state;
1109 	u32 threshold_us;
1110 	u32 window_us;
1111 
1112 	if (static_branch_likely(&psi_disabled))
1113 		return ERR_PTR(-EOPNOTSUPP);
1114 
1115 	if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1116 		state = PSI_IO_SOME + res * 2;
1117 	else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1118 		state = PSI_IO_FULL + res * 2;
1119 	else
1120 		return ERR_PTR(-EINVAL);
1121 
1122 	if (state >= PSI_NONIDLE)
1123 		return ERR_PTR(-EINVAL);
1124 
1125 	if (window_us < WINDOW_MIN_US ||
1126 		window_us > WINDOW_MAX_US)
1127 		return ERR_PTR(-EINVAL);
1128 
1129 	/* Check threshold */
1130 	if (threshold_us == 0 || threshold_us > window_us)
1131 		return ERR_PTR(-EINVAL);
1132 
1133 	t = kmalloc(sizeof(*t), GFP_KERNEL);
1134 	if (!t)
1135 		return ERR_PTR(-ENOMEM);
1136 
1137 	t->group = group;
1138 	t->state = state;
1139 	t->threshold = threshold_us * NSEC_PER_USEC;
1140 	t->win.size = window_us * NSEC_PER_USEC;
1141 	window_reset(&t->win, 0, 0, 0);
1142 
1143 	t->event = 0;
1144 	t->last_event_time = 0;
1145 	init_waitqueue_head(&t->event_wait);
1146 	kref_init(&t->refcount);
1147 
1148 	mutex_lock(&group->trigger_lock);
1149 
1150 	if (!rcu_access_pointer(group->poll_task)) {
1151 		struct task_struct *task;
1152 
1153 		task = kthread_create(psi_poll_worker, group, "psimon");
1154 		if (IS_ERR(task)) {
1155 			kfree(t);
1156 			mutex_unlock(&group->trigger_lock);
1157 			return ERR_CAST(task);
1158 		}
1159 		atomic_set(&group->poll_wakeup, 0);
1160 		init_waitqueue_head(&group->poll_wait);
1161 		wake_up_process(task);
1162 		timer_setup(&group->poll_timer, poll_timer_fn, 0);
1163 		rcu_assign_pointer(group->poll_task, task);
1164 	}
1165 
1166 	list_add(&t->node, &group->triggers);
1167 	group->poll_min_period = min(group->poll_min_period,
1168 		div_u64(t->win.size, UPDATES_PER_WINDOW));
1169 	group->nr_triggers[t->state]++;
1170 	group->poll_states |= (1 << t->state);
1171 
1172 	mutex_unlock(&group->trigger_lock);
1173 
1174 	return t;
1175 }
1176 
1177 static void psi_trigger_destroy(struct kref *ref)
1178 {
1179 	struct psi_trigger *t = container_of(ref, struct psi_trigger, refcount);
1180 	struct psi_group *group = t->group;
1181 	struct task_struct *task_to_destroy = NULL;
1182 
1183 	if (static_branch_likely(&psi_disabled))
1184 		return;
1185 
1186 	/*
1187 	 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1188 	 * from under a polling process.
1189 	 */
1190 	wake_up_interruptible(&t->event_wait);
1191 
1192 	mutex_lock(&group->trigger_lock);
1193 
1194 	if (!list_empty(&t->node)) {
1195 		struct psi_trigger *tmp;
1196 		u64 period = ULLONG_MAX;
1197 
1198 		list_del(&t->node);
1199 		group->nr_triggers[t->state]--;
1200 		if (!group->nr_triggers[t->state])
1201 			group->poll_states &= ~(1 << t->state);
1202 		/* reset min update period for the remaining triggers */
1203 		list_for_each_entry(tmp, &group->triggers, node)
1204 			period = min(period, div_u64(tmp->win.size,
1205 					UPDATES_PER_WINDOW));
1206 		group->poll_min_period = period;
1207 		/* Destroy poll_task when the last trigger is destroyed */
1208 		if (group->poll_states == 0) {
1209 			group->polling_until = 0;
1210 			task_to_destroy = rcu_dereference_protected(
1211 					group->poll_task,
1212 					lockdep_is_held(&group->trigger_lock));
1213 			rcu_assign_pointer(group->poll_task, NULL);
1214 		}
1215 	}
1216 
1217 	mutex_unlock(&group->trigger_lock);
1218 
1219 	/*
1220 	 * Wait for both *trigger_ptr from psi_trigger_replace and
1221 	 * poll_task RCUs to complete their read-side critical sections
1222 	 * before destroying the trigger and optionally the poll_task
1223 	 */
1224 	synchronize_rcu();
1225 	/*
1226 	 * Destroy the kworker after releasing trigger_lock to prevent a
1227 	 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1228 	 */
1229 	if (task_to_destroy) {
1230 		/*
1231 		 * After the RCU grace period has expired, the worker
1232 		 * can no longer be found through group->poll_task.
1233 		 * But it might have been already scheduled before
1234 		 * that - deschedule it cleanly before destroying it.
1235 		 */
1236 		del_timer_sync(&group->poll_timer);
1237 		kthread_stop(task_to_destroy);
1238 	}
1239 	kfree(t);
1240 }
1241 
1242 void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *new)
1243 {
1244 	struct psi_trigger *old = *trigger_ptr;
1245 
1246 	if (static_branch_likely(&psi_disabled))
1247 		return;
1248 
1249 	rcu_assign_pointer(*trigger_ptr, new);
1250 	if (old)
1251 		kref_put(&old->refcount, psi_trigger_destroy);
1252 }
1253 
1254 __poll_t psi_trigger_poll(void **trigger_ptr,
1255 				struct file *file, poll_table *wait)
1256 {
1257 	__poll_t ret = DEFAULT_POLLMASK;
1258 	struct psi_trigger *t;
1259 
1260 	if (static_branch_likely(&psi_disabled))
1261 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1262 
1263 	rcu_read_lock();
1264 
1265 	t = rcu_dereference(*(void __rcu __force **)trigger_ptr);
1266 	if (!t) {
1267 		rcu_read_unlock();
1268 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1269 	}
1270 	kref_get(&t->refcount);
1271 
1272 	rcu_read_unlock();
1273 
1274 	poll_wait(file, &t->event_wait, wait);
1275 
1276 	if (cmpxchg(&t->event, 1, 0) == 1)
1277 		ret |= EPOLLPRI;
1278 
1279 	kref_put(&t->refcount, psi_trigger_destroy);
1280 
1281 	return ret;
1282 }
1283 
1284 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1285 			 size_t nbytes, enum psi_res res)
1286 {
1287 	char buf[32];
1288 	size_t buf_size;
1289 	struct seq_file *seq;
1290 	struct psi_trigger *new;
1291 
1292 	if (static_branch_likely(&psi_disabled))
1293 		return -EOPNOTSUPP;
1294 
1295 	if (!nbytes)
1296 		return -EINVAL;
1297 
1298 	buf_size = min(nbytes, sizeof(buf));
1299 	if (copy_from_user(buf, user_buf, buf_size))
1300 		return -EFAULT;
1301 
1302 	buf[buf_size - 1] = '\0';
1303 
1304 	new = psi_trigger_create(&psi_system, buf, nbytes, res);
1305 	if (IS_ERR(new))
1306 		return PTR_ERR(new);
1307 
1308 	seq = file->private_data;
1309 	/* Take seq->lock to protect seq->private from concurrent writes */
1310 	mutex_lock(&seq->lock);
1311 	psi_trigger_replace(&seq->private, new);
1312 	mutex_unlock(&seq->lock);
1313 
1314 	return nbytes;
1315 }
1316 
1317 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1318 			    size_t nbytes, loff_t *ppos)
1319 {
1320 	return psi_write(file, user_buf, nbytes, PSI_IO);
1321 }
1322 
1323 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1324 				size_t nbytes, loff_t *ppos)
1325 {
1326 	return psi_write(file, user_buf, nbytes, PSI_MEM);
1327 }
1328 
1329 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1330 			     size_t nbytes, loff_t *ppos)
1331 {
1332 	return psi_write(file, user_buf, nbytes, PSI_CPU);
1333 }
1334 
1335 static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1336 {
1337 	struct seq_file *seq = file->private_data;
1338 
1339 	return psi_trigger_poll(&seq->private, file, wait);
1340 }
1341 
1342 static int psi_fop_release(struct inode *inode, struct file *file)
1343 {
1344 	struct seq_file *seq = file->private_data;
1345 
1346 	psi_trigger_replace(&seq->private, NULL);
1347 	return single_release(inode, file);
1348 }
1349 
1350 static const struct proc_ops psi_io_proc_ops = {
1351 	.proc_open	= psi_io_open,
1352 	.proc_read	= seq_read,
1353 	.proc_lseek	= seq_lseek,
1354 	.proc_write	= psi_io_write,
1355 	.proc_poll	= psi_fop_poll,
1356 	.proc_release	= psi_fop_release,
1357 };
1358 
1359 static const struct proc_ops psi_memory_proc_ops = {
1360 	.proc_open	= psi_memory_open,
1361 	.proc_read	= seq_read,
1362 	.proc_lseek	= seq_lseek,
1363 	.proc_write	= psi_memory_write,
1364 	.proc_poll	= psi_fop_poll,
1365 	.proc_release	= psi_fop_release,
1366 };
1367 
1368 static const struct proc_ops psi_cpu_proc_ops = {
1369 	.proc_open	= psi_cpu_open,
1370 	.proc_read	= seq_read,
1371 	.proc_lseek	= seq_lseek,
1372 	.proc_write	= psi_cpu_write,
1373 	.proc_poll	= psi_fop_poll,
1374 	.proc_release	= psi_fop_release,
1375 };
1376 
1377 static int __init psi_proc_init(void)
1378 {
1379 	if (psi_enable) {
1380 		proc_mkdir("pressure", NULL);
1381 		proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
1382 		proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
1383 		proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
1384 	}
1385 	return 0;
1386 }
1387 module_init(psi_proc_init);
1388