xref: /openbmc/linux/kernel/sched/psi.c (revision ed84ef1c)
1 /*
2  * Pressure stall information for CPU, memory and IO
3  *
4  * Copyright (c) 2018 Facebook, Inc.
5  * Author: Johannes Weiner <hannes@cmpxchg.org>
6  *
7  * Polling support by Suren Baghdasaryan <surenb@google.com>
8  * Copyright (c) 2018 Google, Inc.
9  *
10  * When CPU, memory and IO are contended, tasks experience delays that
11  * reduce throughput and introduce latencies into the workload. Memory
12  * and IO contention, in addition, can cause a full loss of forward
13  * progress in which the CPU goes idle.
14  *
15  * This code aggregates individual task delays into resource pressure
16  * metrics that indicate problems with both workload health and
17  * resource utilization.
18  *
19  *			Model
20  *
21  * The time in which a task can execute on a CPU is our baseline for
22  * productivity. Pressure expresses the amount of time in which this
23  * potential cannot be realized due to resource contention.
24  *
25  * This concept of productivity has two components: the workload and
26  * the CPU. To measure the impact of pressure on both, we define two
27  * contention states for a resource: SOME and FULL.
28  *
29  * In the SOME state of a given resource, one or more tasks are
30  * delayed on that resource. This affects the workload's ability to
31  * perform work, but the CPU may still be executing other tasks.
32  *
33  * In the FULL state of a given resource, all non-idle tasks are
34  * delayed on that resource such that nobody is advancing and the CPU
35  * goes idle. This leaves both workload and CPU unproductive.
36  *
37  * Naturally, the FULL state doesn't exist for the CPU resource at the
38  * system level, but exist at the cgroup level, means all non-idle tasks
39  * in a cgroup are delayed on the CPU resource which used by others outside
40  * of the cgroup or throttled by the cgroup cpu.max configuration.
41  *
42  *	SOME = nr_delayed_tasks != 0
43  *	FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
44  *
45  * The percentage of wallclock time spent in those compound stall
46  * states gives pressure numbers between 0 and 100 for each resource,
47  * where the SOME percentage indicates workload slowdowns and the FULL
48  * percentage indicates reduced CPU utilization:
49  *
50  *	%SOME = time(SOME) / period
51  *	%FULL = time(FULL) / period
52  *
53  *			Multiple CPUs
54  *
55  * The more tasks and available CPUs there are, the more work can be
56  * performed concurrently. This means that the potential that can go
57  * unrealized due to resource contention *also* scales with non-idle
58  * tasks and CPUs.
59  *
60  * Consider a scenario where 257 number crunching tasks are trying to
61  * run concurrently on 256 CPUs. If we simply aggregated the task
62  * states, we would have to conclude a CPU SOME pressure number of
63  * 100%, since *somebody* is waiting on a runqueue at all
64  * times. However, that is clearly not the amount of contention the
65  * workload is experiencing: only one out of 256 possible execution
66  * threads will be contended at any given time, or about 0.4%.
67  *
68  * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
69  * given time *one* of the tasks is delayed due to a lack of memory.
70  * Again, looking purely at the task state would yield a memory FULL
71  * pressure number of 0%, since *somebody* is always making forward
72  * progress. But again this wouldn't capture the amount of execution
73  * potential lost, which is 1 out of 4 CPUs, or 25%.
74  *
75  * To calculate wasted potential (pressure) with multiple processors,
76  * we have to base our calculation on the number of non-idle tasks in
77  * conjunction with the number of available CPUs, which is the number
78  * of potential execution threads. SOME becomes then the proportion of
79  * delayed tasks to possible threads, and FULL is the share of possible
80  * threads that are unproductive due to delays:
81  *
82  *	threads = min(nr_nonidle_tasks, nr_cpus)
83  *	   SOME = min(nr_delayed_tasks / threads, 1)
84  *	   FULL = (threads - min(nr_running_tasks, threads)) / threads
85  *
86  * For the 257 number crunchers on 256 CPUs, this yields:
87  *
88  *	threads = min(257, 256)
89  *	   SOME = min(1 / 256, 1)             = 0.4%
90  *	   FULL = (256 - min(257, 256)) / 256 = 0%
91  *
92  * For the 1 out of 4 memory-delayed tasks, this yields:
93  *
94  *	threads = min(4, 4)
95  *	   SOME = min(1 / 4, 1)               = 25%
96  *	   FULL = (4 - min(3, 4)) / 4         = 25%
97  *
98  * [ Substitute nr_cpus with 1, and you can see that it's a natural
99  *   extension of the single-CPU model. ]
100  *
101  *			Implementation
102  *
103  * To assess the precise time spent in each such state, we would have
104  * to freeze the system on task changes and start/stop the state
105  * clocks accordingly. Obviously that doesn't scale in practice.
106  *
107  * Because the scheduler aims to distribute the compute load evenly
108  * among the available CPUs, we can track task state locally to each
109  * CPU and, at much lower frequency, extrapolate the global state for
110  * the cumulative stall times and the running averages.
111  *
112  * For each runqueue, we track:
113  *
114  *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
115  *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
116  *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
117  *
118  * and then periodically aggregate:
119  *
120  *	tNONIDLE = sum(tNONIDLE[i])
121  *
122  *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
123  *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
124  *
125  *	   %SOME = tSOME / period
126  *	   %FULL = tFULL / period
127  *
128  * This gives us an approximation of pressure that is practical
129  * cost-wise, yet way more sensitive and accurate than periodic
130  * sampling of the aggregate task states would be.
131  */
132 
133 #include "../workqueue_internal.h"
134 #include <linux/sched/loadavg.h>
135 #include <linux/seq_file.h>
136 #include <linux/proc_fs.h>
137 #include <linux/seqlock.h>
138 #include <linux/uaccess.h>
139 #include <linux/cgroup.h>
140 #include <linux/module.h>
141 #include <linux/sched.h>
142 #include <linux/ctype.h>
143 #include <linux/file.h>
144 #include <linux/poll.h>
145 #include <linux/psi.h>
146 #include "sched.h"
147 
148 static int psi_bug __read_mostly;
149 
150 DEFINE_STATIC_KEY_FALSE(psi_disabled);
151 DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
152 
153 #ifdef CONFIG_PSI_DEFAULT_DISABLED
154 static bool psi_enable;
155 #else
156 static bool psi_enable = true;
157 #endif
158 static int __init setup_psi(char *str)
159 {
160 	return kstrtobool(str, &psi_enable) == 0;
161 }
162 __setup("psi=", setup_psi);
163 
164 /* Running averages - we need to be higher-res than loadavg */
165 #define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
166 #define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
167 #define EXP_60s		1981		/* 1/exp(2s/60s) */
168 #define EXP_300s	2034		/* 1/exp(2s/300s) */
169 
170 /* PSI trigger definitions */
171 #define WINDOW_MIN_US 500000	/* Min window size is 500ms */
172 #define WINDOW_MAX_US 10000000	/* Max window size is 10s */
173 #define UPDATES_PER_WINDOW 10	/* 10 updates per window */
174 
175 /* Sampling frequency in nanoseconds */
176 static u64 psi_period __read_mostly;
177 
178 /* System-level pressure and stall tracking */
179 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
180 struct psi_group psi_system = {
181 	.pcpu = &system_group_pcpu,
182 };
183 
184 static void psi_avgs_work(struct work_struct *work);
185 
186 static void poll_timer_fn(struct timer_list *t);
187 
188 static void group_init(struct psi_group *group)
189 {
190 	int cpu;
191 
192 	for_each_possible_cpu(cpu)
193 		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
194 	group->avg_last_update = sched_clock();
195 	group->avg_next_update = group->avg_last_update + psi_period;
196 	INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
197 	mutex_init(&group->avgs_lock);
198 	/* Init trigger-related members */
199 	mutex_init(&group->trigger_lock);
200 	INIT_LIST_HEAD(&group->triggers);
201 	memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
202 	group->poll_states = 0;
203 	group->poll_min_period = U32_MAX;
204 	memset(group->polling_total, 0, sizeof(group->polling_total));
205 	group->polling_next_update = ULLONG_MAX;
206 	group->polling_until = 0;
207 	init_waitqueue_head(&group->poll_wait);
208 	timer_setup(&group->poll_timer, poll_timer_fn, 0);
209 	rcu_assign_pointer(group->poll_task, NULL);
210 }
211 
212 void __init psi_init(void)
213 {
214 	if (!psi_enable) {
215 		static_branch_enable(&psi_disabled);
216 		return;
217 	}
218 
219 	if (!cgroup_psi_enabled())
220 		static_branch_disable(&psi_cgroups_enabled);
221 
222 	psi_period = jiffies_to_nsecs(PSI_FREQ);
223 	group_init(&psi_system);
224 }
225 
226 static bool test_state(unsigned int *tasks, enum psi_states state)
227 {
228 	switch (state) {
229 	case PSI_IO_SOME:
230 		return unlikely(tasks[NR_IOWAIT]);
231 	case PSI_IO_FULL:
232 		return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]);
233 	case PSI_MEM_SOME:
234 		return unlikely(tasks[NR_MEMSTALL]);
235 	case PSI_MEM_FULL:
236 		return unlikely(tasks[NR_MEMSTALL] && !tasks[NR_RUNNING]);
237 	case PSI_CPU_SOME:
238 		return unlikely(tasks[NR_RUNNING] > tasks[NR_ONCPU]);
239 	case PSI_CPU_FULL:
240 		return unlikely(tasks[NR_RUNNING] && !tasks[NR_ONCPU]);
241 	case PSI_NONIDLE:
242 		return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
243 			tasks[NR_RUNNING];
244 	default:
245 		return false;
246 	}
247 }
248 
249 static void get_recent_times(struct psi_group *group, int cpu,
250 			     enum psi_aggregators aggregator, u32 *times,
251 			     u32 *pchanged_states)
252 {
253 	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
254 	u64 now, state_start;
255 	enum psi_states s;
256 	unsigned int seq;
257 	u32 state_mask;
258 
259 	*pchanged_states = 0;
260 
261 	/* Snapshot a coherent view of the CPU state */
262 	do {
263 		seq = read_seqcount_begin(&groupc->seq);
264 		now = cpu_clock(cpu);
265 		memcpy(times, groupc->times, sizeof(groupc->times));
266 		state_mask = groupc->state_mask;
267 		state_start = groupc->state_start;
268 	} while (read_seqcount_retry(&groupc->seq, seq));
269 
270 	/* Calculate state time deltas against the previous snapshot */
271 	for (s = 0; s < NR_PSI_STATES; s++) {
272 		u32 delta;
273 		/*
274 		 * In addition to already concluded states, we also
275 		 * incorporate currently active states on the CPU,
276 		 * since states may last for many sampling periods.
277 		 *
278 		 * This way we keep our delta sampling buckets small
279 		 * (u32) and our reported pressure close to what's
280 		 * actually happening.
281 		 */
282 		if (state_mask & (1 << s))
283 			times[s] += now - state_start;
284 
285 		delta = times[s] - groupc->times_prev[aggregator][s];
286 		groupc->times_prev[aggregator][s] = times[s];
287 
288 		times[s] = delta;
289 		if (delta)
290 			*pchanged_states |= (1 << s);
291 	}
292 }
293 
294 static void calc_avgs(unsigned long avg[3], int missed_periods,
295 		      u64 time, u64 period)
296 {
297 	unsigned long pct;
298 
299 	/* Fill in zeroes for periods of no activity */
300 	if (missed_periods) {
301 		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
302 		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
303 		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
304 	}
305 
306 	/* Sample the most recent active period */
307 	pct = div_u64(time * 100, period);
308 	pct *= FIXED_1;
309 	avg[0] = calc_load(avg[0], EXP_10s, pct);
310 	avg[1] = calc_load(avg[1], EXP_60s, pct);
311 	avg[2] = calc_load(avg[2], EXP_300s, pct);
312 }
313 
314 static void collect_percpu_times(struct psi_group *group,
315 				 enum psi_aggregators aggregator,
316 				 u32 *pchanged_states)
317 {
318 	u64 deltas[NR_PSI_STATES - 1] = { 0, };
319 	unsigned long nonidle_total = 0;
320 	u32 changed_states = 0;
321 	int cpu;
322 	int s;
323 
324 	/*
325 	 * Collect the per-cpu time buckets and average them into a
326 	 * single time sample that is normalized to wallclock time.
327 	 *
328 	 * For averaging, each CPU is weighted by its non-idle time in
329 	 * the sampling period. This eliminates artifacts from uneven
330 	 * loading, or even entirely idle CPUs.
331 	 */
332 	for_each_possible_cpu(cpu) {
333 		u32 times[NR_PSI_STATES];
334 		u32 nonidle;
335 		u32 cpu_changed_states;
336 
337 		get_recent_times(group, cpu, aggregator, times,
338 				&cpu_changed_states);
339 		changed_states |= cpu_changed_states;
340 
341 		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
342 		nonidle_total += nonidle;
343 
344 		for (s = 0; s < PSI_NONIDLE; s++)
345 			deltas[s] += (u64)times[s] * nonidle;
346 	}
347 
348 	/*
349 	 * Integrate the sample into the running statistics that are
350 	 * reported to userspace: the cumulative stall times and the
351 	 * decaying averages.
352 	 *
353 	 * Pressure percentages are sampled at PSI_FREQ. We might be
354 	 * called more often when the user polls more frequently than
355 	 * that; we might be called less often when there is no task
356 	 * activity, thus no data, and clock ticks are sporadic. The
357 	 * below handles both.
358 	 */
359 
360 	/* total= */
361 	for (s = 0; s < NR_PSI_STATES - 1; s++)
362 		group->total[aggregator][s] +=
363 				div_u64(deltas[s], max(nonidle_total, 1UL));
364 
365 	if (pchanged_states)
366 		*pchanged_states = changed_states;
367 }
368 
369 static u64 update_averages(struct psi_group *group, u64 now)
370 {
371 	unsigned long missed_periods = 0;
372 	u64 expires, period;
373 	u64 avg_next_update;
374 	int s;
375 
376 	/* avgX= */
377 	expires = group->avg_next_update;
378 	if (now - expires >= psi_period)
379 		missed_periods = div_u64(now - expires, psi_period);
380 
381 	/*
382 	 * The periodic clock tick can get delayed for various
383 	 * reasons, especially on loaded systems. To avoid clock
384 	 * drift, we schedule the clock in fixed psi_period intervals.
385 	 * But the deltas we sample out of the per-cpu buckets above
386 	 * are based on the actual time elapsing between clock ticks.
387 	 */
388 	avg_next_update = expires + ((1 + missed_periods) * psi_period);
389 	period = now - (group->avg_last_update + (missed_periods * psi_period));
390 	group->avg_last_update = now;
391 
392 	for (s = 0; s < NR_PSI_STATES - 1; s++) {
393 		u32 sample;
394 
395 		sample = group->total[PSI_AVGS][s] - group->avg_total[s];
396 		/*
397 		 * Due to the lockless sampling of the time buckets,
398 		 * recorded time deltas can slip into the next period,
399 		 * which under full pressure can result in samples in
400 		 * excess of the period length.
401 		 *
402 		 * We don't want to report non-sensical pressures in
403 		 * excess of 100%, nor do we want to drop such events
404 		 * on the floor. Instead we punt any overage into the
405 		 * future until pressure subsides. By doing this we
406 		 * don't underreport the occurring pressure curve, we
407 		 * just report it delayed by one period length.
408 		 *
409 		 * The error isn't cumulative. As soon as another
410 		 * delta slips from a period P to P+1, by definition
411 		 * it frees up its time T in P.
412 		 */
413 		if (sample > period)
414 			sample = period;
415 		group->avg_total[s] += sample;
416 		calc_avgs(group->avg[s], missed_periods, sample, period);
417 	}
418 
419 	return avg_next_update;
420 }
421 
422 static void psi_avgs_work(struct work_struct *work)
423 {
424 	struct delayed_work *dwork;
425 	struct psi_group *group;
426 	u32 changed_states;
427 	bool nonidle;
428 	u64 now;
429 
430 	dwork = to_delayed_work(work);
431 	group = container_of(dwork, struct psi_group, avgs_work);
432 
433 	mutex_lock(&group->avgs_lock);
434 
435 	now = sched_clock();
436 
437 	collect_percpu_times(group, PSI_AVGS, &changed_states);
438 	nonidle = changed_states & (1 << PSI_NONIDLE);
439 	/*
440 	 * If there is task activity, periodically fold the per-cpu
441 	 * times and feed samples into the running averages. If things
442 	 * are idle and there is no data to process, stop the clock.
443 	 * Once restarted, we'll catch up the running averages in one
444 	 * go - see calc_avgs() and missed_periods.
445 	 */
446 	if (now >= group->avg_next_update)
447 		group->avg_next_update = update_averages(group, now);
448 
449 	if (nonidle) {
450 		schedule_delayed_work(dwork, nsecs_to_jiffies(
451 				group->avg_next_update - now) + 1);
452 	}
453 
454 	mutex_unlock(&group->avgs_lock);
455 }
456 
457 /* Trigger tracking window manipulations */
458 static void window_reset(struct psi_window *win, u64 now, u64 value,
459 			 u64 prev_growth)
460 {
461 	win->start_time = now;
462 	win->start_value = value;
463 	win->prev_growth = prev_growth;
464 }
465 
466 /*
467  * PSI growth tracking window update and growth calculation routine.
468  *
469  * This approximates a sliding tracking window by interpolating
470  * partially elapsed windows using historical growth data from the
471  * previous intervals. This minimizes memory requirements (by not storing
472  * all the intermediate values in the previous window) and simplifies
473  * the calculations. It works well because PSI signal changes only in
474  * positive direction and over relatively small window sizes the growth
475  * is close to linear.
476  */
477 static u64 window_update(struct psi_window *win, u64 now, u64 value)
478 {
479 	u64 elapsed;
480 	u64 growth;
481 
482 	elapsed = now - win->start_time;
483 	growth = value - win->start_value;
484 	/*
485 	 * After each tracking window passes win->start_value and
486 	 * win->start_time get reset and win->prev_growth stores
487 	 * the average per-window growth of the previous window.
488 	 * win->prev_growth is then used to interpolate additional
489 	 * growth from the previous window assuming it was linear.
490 	 */
491 	if (elapsed > win->size)
492 		window_reset(win, now, value, growth);
493 	else {
494 		u32 remaining;
495 
496 		remaining = win->size - elapsed;
497 		growth += div64_u64(win->prev_growth * remaining, win->size);
498 	}
499 
500 	return growth;
501 }
502 
503 static void init_triggers(struct psi_group *group, u64 now)
504 {
505 	struct psi_trigger *t;
506 
507 	list_for_each_entry(t, &group->triggers, node)
508 		window_reset(&t->win, now,
509 				group->total[PSI_POLL][t->state], 0);
510 	memcpy(group->polling_total, group->total[PSI_POLL],
511 		   sizeof(group->polling_total));
512 	group->polling_next_update = now + group->poll_min_period;
513 }
514 
515 static u64 update_triggers(struct psi_group *group, u64 now)
516 {
517 	struct psi_trigger *t;
518 	bool new_stall = false;
519 	u64 *total = group->total[PSI_POLL];
520 
521 	/*
522 	 * On subsequent updates, calculate growth deltas and let
523 	 * watchers know when their specified thresholds are exceeded.
524 	 */
525 	list_for_each_entry(t, &group->triggers, node) {
526 		u64 growth;
527 
528 		/* Check for stall activity */
529 		if (group->polling_total[t->state] == total[t->state])
530 			continue;
531 
532 		/*
533 		 * Multiple triggers might be looking at the same state,
534 		 * remember to update group->polling_total[] once we've
535 		 * been through all of them. Also remember to extend the
536 		 * polling time if we see new stall activity.
537 		 */
538 		new_stall = true;
539 
540 		/* Calculate growth since last update */
541 		growth = window_update(&t->win, now, total[t->state]);
542 		if (growth < t->threshold)
543 			continue;
544 
545 		/* Limit event signaling to once per window */
546 		if (now < t->last_event_time + t->win.size)
547 			continue;
548 
549 		/* Generate an event */
550 		if (cmpxchg(&t->event, 0, 1) == 0)
551 			wake_up_interruptible(&t->event_wait);
552 		t->last_event_time = now;
553 	}
554 
555 	if (new_stall)
556 		memcpy(group->polling_total, total,
557 				sizeof(group->polling_total));
558 
559 	return now + group->poll_min_period;
560 }
561 
562 /* Schedule polling if it's not already scheduled. */
563 static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
564 {
565 	struct task_struct *task;
566 
567 	/*
568 	 * Do not reschedule if already scheduled.
569 	 * Possible race with a timer scheduled after this check but before
570 	 * mod_timer below can be tolerated because group->polling_next_update
571 	 * will keep updates on schedule.
572 	 */
573 	if (timer_pending(&group->poll_timer))
574 		return;
575 
576 	rcu_read_lock();
577 
578 	task = rcu_dereference(group->poll_task);
579 	/*
580 	 * kworker might be NULL in case psi_trigger_destroy races with
581 	 * psi_task_change (hotpath) which can't use locks
582 	 */
583 	if (likely(task))
584 		mod_timer(&group->poll_timer, jiffies + delay);
585 
586 	rcu_read_unlock();
587 }
588 
589 static void psi_poll_work(struct psi_group *group)
590 {
591 	u32 changed_states;
592 	u64 now;
593 
594 	mutex_lock(&group->trigger_lock);
595 
596 	now = sched_clock();
597 
598 	collect_percpu_times(group, PSI_POLL, &changed_states);
599 
600 	if (changed_states & group->poll_states) {
601 		/* Initialize trigger windows when entering polling mode */
602 		if (now > group->polling_until)
603 			init_triggers(group, now);
604 
605 		/*
606 		 * Keep the monitor active for at least the duration of the
607 		 * minimum tracking window as long as monitor states are
608 		 * changing.
609 		 */
610 		group->polling_until = now +
611 			group->poll_min_period * UPDATES_PER_WINDOW;
612 	}
613 
614 	if (now > group->polling_until) {
615 		group->polling_next_update = ULLONG_MAX;
616 		goto out;
617 	}
618 
619 	if (now >= group->polling_next_update)
620 		group->polling_next_update = update_triggers(group, now);
621 
622 	psi_schedule_poll_work(group,
623 		nsecs_to_jiffies(group->polling_next_update - now) + 1);
624 
625 out:
626 	mutex_unlock(&group->trigger_lock);
627 }
628 
629 static int psi_poll_worker(void *data)
630 {
631 	struct psi_group *group = (struct psi_group *)data;
632 
633 	sched_set_fifo_low(current);
634 
635 	while (true) {
636 		wait_event_interruptible(group->poll_wait,
637 				atomic_cmpxchg(&group->poll_wakeup, 1, 0) ||
638 				kthread_should_stop());
639 		if (kthread_should_stop())
640 			break;
641 
642 		psi_poll_work(group);
643 	}
644 	return 0;
645 }
646 
647 static void poll_timer_fn(struct timer_list *t)
648 {
649 	struct psi_group *group = from_timer(group, t, poll_timer);
650 
651 	atomic_set(&group->poll_wakeup, 1);
652 	wake_up_interruptible(&group->poll_wait);
653 }
654 
655 static void record_times(struct psi_group_cpu *groupc, u64 now)
656 {
657 	u32 delta;
658 
659 	delta = now - groupc->state_start;
660 	groupc->state_start = now;
661 
662 	if (groupc->state_mask & (1 << PSI_IO_SOME)) {
663 		groupc->times[PSI_IO_SOME] += delta;
664 		if (groupc->state_mask & (1 << PSI_IO_FULL))
665 			groupc->times[PSI_IO_FULL] += delta;
666 	}
667 
668 	if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
669 		groupc->times[PSI_MEM_SOME] += delta;
670 		if (groupc->state_mask & (1 << PSI_MEM_FULL))
671 			groupc->times[PSI_MEM_FULL] += delta;
672 	}
673 
674 	if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
675 		groupc->times[PSI_CPU_SOME] += delta;
676 		if (groupc->state_mask & (1 << PSI_CPU_FULL))
677 			groupc->times[PSI_CPU_FULL] += delta;
678 	}
679 
680 	if (groupc->state_mask & (1 << PSI_NONIDLE))
681 		groupc->times[PSI_NONIDLE] += delta;
682 }
683 
684 static void psi_group_change(struct psi_group *group, int cpu,
685 			     unsigned int clear, unsigned int set, u64 now,
686 			     bool wake_clock)
687 {
688 	struct psi_group_cpu *groupc;
689 	u32 state_mask = 0;
690 	unsigned int t, m;
691 	enum psi_states s;
692 
693 	groupc = per_cpu_ptr(group->pcpu, cpu);
694 
695 	/*
696 	 * First we assess the aggregate resource states this CPU's
697 	 * tasks have been in since the last change, and account any
698 	 * SOME and FULL time these may have resulted in.
699 	 *
700 	 * Then we update the task counts according to the state
701 	 * change requested through the @clear and @set bits.
702 	 */
703 	write_seqcount_begin(&groupc->seq);
704 
705 	record_times(groupc, now);
706 
707 	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
708 		if (!(m & (1 << t)))
709 			continue;
710 		if (groupc->tasks[t]) {
711 			groupc->tasks[t]--;
712 		} else if (!psi_bug) {
713 			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
714 					cpu, t, groupc->tasks[0],
715 					groupc->tasks[1], groupc->tasks[2],
716 					groupc->tasks[3], clear, set);
717 			psi_bug = 1;
718 		}
719 	}
720 
721 	for (t = 0; set; set &= ~(1 << t), t++)
722 		if (set & (1 << t))
723 			groupc->tasks[t]++;
724 
725 	/* Calculate state mask representing active states */
726 	for (s = 0; s < NR_PSI_STATES; s++) {
727 		if (test_state(groupc->tasks, s))
728 			state_mask |= (1 << s);
729 	}
730 
731 	/*
732 	 * Since we care about lost potential, a memstall is FULL
733 	 * when there are no other working tasks, but also when
734 	 * the CPU is actively reclaiming and nothing productive
735 	 * could run even if it were runnable. So when the current
736 	 * task in a cgroup is in_memstall, the corresponding groupc
737 	 * on that cpu is in PSI_MEM_FULL state.
738 	 */
739 	if (unlikely(groupc->tasks[NR_ONCPU] && cpu_curr(cpu)->in_memstall))
740 		state_mask |= (1 << PSI_MEM_FULL);
741 
742 	groupc->state_mask = state_mask;
743 
744 	write_seqcount_end(&groupc->seq);
745 
746 	if (state_mask & group->poll_states)
747 		psi_schedule_poll_work(group, 1);
748 
749 	if (wake_clock && !delayed_work_pending(&group->avgs_work))
750 		schedule_delayed_work(&group->avgs_work, PSI_FREQ);
751 }
752 
753 static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
754 {
755 	if (*iter == &psi_system)
756 		return NULL;
757 
758 #ifdef CONFIG_CGROUPS
759 	if (static_branch_likely(&psi_cgroups_enabled)) {
760 		struct cgroup *cgroup = NULL;
761 
762 		if (!*iter)
763 			cgroup = task->cgroups->dfl_cgrp;
764 		else
765 			cgroup = cgroup_parent(*iter);
766 
767 		if (cgroup && cgroup_parent(cgroup)) {
768 			*iter = cgroup;
769 			return cgroup_psi(cgroup);
770 		}
771 	}
772 #endif
773 	*iter = &psi_system;
774 	return &psi_system;
775 }
776 
777 static void psi_flags_change(struct task_struct *task, int clear, int set)
778 {
779 	if (((task->psi_flags & set) ||
780 	     (task->psi_flags & clear) != clear) &&
781 	    !psi_bug) {
782 		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
783 				task->pid, task->comm, task_cpu(task),
784 				task->psi_flags, clear, set);
785 		psi_bug = 1;
786 	}
787 
788 	task->psi_flags &= ~clear;
789 	task->psi_flags |= set;
790 }
791 
792 void psi_task_change(struct task_struct *task, int clear, int set)
793 {
794 	int cpu = task_cpu(task);
795 	struct psi_group *group;
796 	bool wake_clock = true;
797 	void *iter = NULL;
798 	u64 now;
799 
800 	if (!task->pid)
801 		return;
802 
803 	psi_flags_change(task, clear, set);
804 
805 	now = cpu_clock(cpu);
806 	/*
807 	 * Periodic aggregation shuts off if there is a period of no
808 	 * task changes, so we wake it back up if necessary. However,
809 	 * don't do this if the task change is the aggregation worker
810 	 * itself going to sleep, or we'll ping-pong forever.
811 	 */
812 	if (unlikely((clear & TSK_RUNNING) &&
813 		     (task->flags & PF_WQ_WORKER) &&
814 		     wq_worker_last_func(task) == psi_avgs_work))
815 		wake_clock = false;
816 
817 	while ((group = iterate_groups(task, &iter)))
818 		psi_group_change(group, cpu, clear, set, now, wake_clock);
819 }
820 
821 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
822 		     bool sleep)
823 {
824 	struct psi_group *group, *common = NULL;
825 	int cpu = task_cpu(prev);
826 	void *iter;
827 	u64 now = cpu_clock(cpu);
828 
829 	if (next->pid) {
830 		bool identical_state;
831 
832 		psi_flags_change(next, 0, TSK_ONCPU);
833 		/*
834 		 * When switching between tasks that have an identical
835 		 * runtime state, the cgroup that contains both tasks
836 		 * runtime state, the cgroup that contains both tasks
837 		 * we reach the first common ancestor. Iterate @next's
838 		 * ancestors only until we encounter @prev's ONCPU.
839 		 */
840 		identical_state = prev->psi_flags == next->psi_flags;
841 		iter = NULL;
842 		while ((group = iterate_groups(next, &iter))) {
843 			if (identical_state &&
844 			    per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) {
845 				common = group;
846 				break;
847 			}
848 
849 			psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
850 		}
851 	}
852 
853 	if (prev->pid) {
854 		int clear = TSK_ONCPU, set = 0;
855 
856 		/*
857 		 * When we're going to sleep, psi_dequeue() lets us handle
858 		 * TSK_RUNNING and TSK_IOWAIT here, where we can combine it
859 		 * with TSK_ONCPU and save walking common ancestors twice.
860 		 */
861 		if (sleep) {
862 			clear |= TSK_RUNNING;
863 			if (prev->in_iowait)
864 				set |= TSK_IOWAIT;
865 		}
866 
867 		psi_flags_change(prev, clear, set);
868 
869 		iter = NULL;
870 		while ((group = iterate_groups(prev, &iter)) && group != common)
871 			psi_group_change(group, cpu, clear, set, now, true);
872 
873 		/*
874 		 * TSK_ONCPU is handled up to the common ancestor. If we're tasked
875 		 * with dequeuing too, finish that for the rest of the hierarchy.
876 		 */
877 		if (sleep) {
878 			clear &= ~TSK_ONCPU;
879 			for (; group; group = iterate_groups(prev, &iter))
880 				psi_group_change(group, cpu, clear, set, now, true);
881 		}
882 	}
883 }
884 
885 /**
886  * psi_memstall_enter - mark the beginning of a memory stall section
887  * @flags: flags to handle nested sections
888  *
889  * Marks the calling task as being stalled due to a lack of memory,
890  * such as waiting for a refault or performing reclaim.
891  */
892 void psi_memstall_enter(unsigned long *flags)
893 {
894 	struct rq_flags rf;
895 	struct rq *rq;
896 
897 	if (static_branch_likely(&psi_disabled))
898 		return;
899 
900 	*flags = current->in_memstall;
901 	if (*flags)
902 		return;
903 	/*
904 	 * in_memstall setting & accounting needs to be atomic wrt
905 	 * changes to the task's scheduling state, otherwise we can
906 	 * race with CPU migration.
907 	 */
908 	rq = this_rq_lock_irq(&rf);
909 
910 	current->in_memstall = 1;
911 	psi_task_change(current, 0, TSK_MEMSTALL);
912 
913 	rq_unlock_irq(rq, &rf);
914 }
915 
916 /**
917  * psi_memstall_leave - mark the end of an memory stall section
918  * @flags: flags to handle nested memdelay sections
919  *
920  * Marks the calling task as no longer stalled due to lack of memory.
921  */
922 void psi_memstall_leave(unsigned long *flags)
923 {
924 	struct rq_flags rf;
925 	struct rq *rq;
926 
927 	if (static_branch_likely(&psi_disabled))
928 		return;
929 
930 	if (*flags)
931 		return;
932 	/*
933 	 * in_memstall clearing & accounting needs to be atomic wrt
934 	 * changes to the task's scheduling state, otherwise we could
935 	 * race with CPU migration.
936 	 */
937 	rq = this_rq_lock_irq(&rf);
938 
939 	current->in_memstall = 0;
940 	psi_task_change(current, TSK_MEMSTALL, 0);
941 
942 	rq_unlock_irq(rq, &rf);
943 }
944 
945 #ifdef CONFIG_CGROUPS
946 int psi_cgroup_alloc(struct cgroup *cgroup)
947 {
948 	if (static_branch_likely(&psi_disabled))
949 		return 0;
950 
951 	cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
952 	if (!cgroup->psi.pcpu)
953 		return -ENOMEM;
954 	group_init(&cgroup->psi);
955 	return 0;
956 }
957 
958 void psi_cgroup_free(struct cgroup *cgroup)
959 {
960 	if (static_branch_likely(&psi_disabled))
961 		return;
962 
963 	cancel_delayed_work_sync(&cgroup->psi.avgs_work);
964 	free_percpu(cgroup->psi.pcpu);
965 	/* All triggers must be removed by now */
966 	WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
967 }
968 
969 /**
970  * cgroup_move_task - move task to a different cgroup
971  * @task: the task
972  * @to: the target css_set
973  *
974  * Move task to a new cgroup and safely migrate its associated stall
975  * state between the different groups.
976  *
977  * This function acquires the task's rq lock to lock out concurrent
978  * changes to the task's scheduling state and - in case the task is
979  * running - concurrent changes to its stall state.
980  */
981 void cgroup_move_task(struct task_struct *task, struct css_set *to)
982 {
983 	unsigned int task_flags;
984 	struct rq_flags rf;
985 	struct rq *rq;
986 
987 	if (static_branch_likely(&psi_disabled)) {
988 		/*
989 		 * Lame to do this here, but the scheduler cannot be locked
990 		 * from the outside, so we move cgroups from inside sched/.
991 		 */
992 		rcu_assign_pointer(task->cgroups, to);
993 		return;
994 	}
995 
996 	rq = task_rq_lock(task, &rf);
997 
998 	/*
999 	 * We may race with schedule() dropping the rq lock between
1000 	 * deactivating prev and switching to next. Because the psi
1001 	 * updates from the deactivation are deferred to the switch
1002 	 * callback to save cgroup tree updates, the task's scheduling
1003 	 * state here is not coherent with its psi state:
1004 	 *
1005 	 * schedule()                   cgroup_move_task()
1006 	 *   rq_lock()
1007 	 *   deactivate_task()
1008 	 *     p->on_rq = 0
1009 	 *     psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1010 	 *   pick_next_task()
1011 	 *     rq_unlock()
1012 	 *                                rq_lock()
1013 	 *                                psi_task_change() // old cgroup
1014 	 *                                task->cgroups = to
1015 	 *                                psi_task_change() // new cgroup
1016 	 *                                rq_unlock()
1017 	 *     rq_lock()
1018 	 *   psi_sched_switch() // does deferred updates in new cgroup
1019 	 *
1020 	 * Don't rely on the scheduling state. Use psi_flags instead.
1021 	 */
1022 	task_flags = task->psi_flags;
1023 
1024 	if (task_flags)
1025 		psi_task_change(task, task_flags, 0);
1026 
1027 	/* See comment above */
1028 	rcu_assign_pointer(task->cgroups, to);
1029 
1030 	if (task_flags)
1031 		psi_task_change(task, 0, task_flags);
1032 
1033 	task_rq_unlock(rq, task, &rf);
1034 }
1035 #endif /* CONFIG_CGROUPS */
1036 
1037 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1038 {
1039 	int full;
1040 	u64 now;
1041 
1042 	if (static_branch_likely(&psi_disabled))
1043 		return -EOPNOTSUPP;
1044 
1045 	/* Update averages before reporting them */
1046 	mutex_lock(&group->avgs_lock);
1047 	now = sched_clock();
1048 	collect_percpu_times(group, PSI_AVGS, NULL);
1049 	if (now >= group->avg_next_update)
1050 		group->avg_next_update = update_averages(group, now);
1051 	mutex_unlock(&group->avgs_lock);
1052 
1053 	for (full = 0; full < 2; full++) {
1054 		unsigned long avg[3];
1055 		u64 total;
1056 		int w;
1057 
1058 		for (w = 0; w < 3; w++)
1059 			avg[w] = group->avg[res * 2 + full][w];
1060 		total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1061 				NSEC_PER_USEC);
1062 
1063 		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1064 			   full ? "full" : "some",
1065 			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1066 			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1067 			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1068 			   total);
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 static int psi_io_show(struct seq_file *m, void *v)
1075 {
1076 	return psi_show(m, &psi_system, PSI_IO);
1077 }
1078 
1079 static int psi_memory_show(struct seq_file *m, void *v)
1080 {
1081 	return psi_show(m, &psi_system, PSI_MEM);
1082 }
1083 
1084 static int psi_cpu_show(struct seq_file *m, void *v)
1085 {
1086 	return psi_show(m, &psi_system, PSI_CPU);
1087 }
1088 
1089 static int psi_open(struct file *file, int (*psi_show)(struct seq_file *, void *))
1090 {
1091 	if (file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE))
1092 		return -EPERM;
1093 
1094 	return single_open(file, psi_show, NULL);
1095 }
1096 
1097 static int psi_io_open(struct inode *inode, struct file *file)
1098 {
1099 	return psi_open(file, psi_io_show);
1100 }
1101 
1102 static int psi_memory_open(struct inode *inode, struct file *file)
1103 {
1104 	return psi_open(file, psi_memory_show);
1105 }
1106 
1107 static int psi_cpu_open(struct inode *inode, struct file *file)
1108 {
1109 	return psi_open(file, psi_cpu_show);
1110 }
1111 
1112 struct psi_trigger *psi_trigger_create(struct psi_group *group,
1113 			char *buf, size_t nbytes, enum psi_res res)
1114 {
1115 	struct psi_trigger *t;
1116 	enum psi_states state;
1117 	u32 threshold_us;
1118 	u32 window_us;
1119 
1120 	if (static_branch_likely(&psi_disabled))
1121 		return ERR_PTR(-EOPNOTSUPP);
1122 
1123 	if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1124 		state = PSI_IO_SOME + res * 2;
1125 	else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1126 		state = PSI_IO_FULL + res * 2;
1127 	else
1128 		return ERR_PTR(-EINVAL);
1129 
1130 	if (state >= PSI_NONIDLE)
1131 		return ERR_PTR(-EINVAL);
1132 
1133 	if (window_us < WINDOW_MIN_US ||
1134 		window_us > WINDOW_MAX_US)
1135 		return ERR_PTR(-EINVAL);
1136 
1137 	/* Check threshold */
1138 	if (threshold_us == 0 || threshold_us > window_us)
1139 		return ERR_PTR(-EINVAL);
1140 
1141 	t = kmalloc(sizeof(*t), GFP_KERNEL);
1142 	if (!t)
1143 		return ERR_PTR(-ENOMEM);
1144 
1145 	t->group = group;
1146 	t->state = state;
1147 	t->threshold = threshold_us * NSEC_PER_USEC;
1148 	t->win.size = window_us * NSEC_PER_USEC;
1149 	window_reset(&t->win, 0, 0, 0);
1150 
1151 	t->event = 0;
1152 	t->last_event_time = 0;
1153 	init_waitqueue_head(&t->event_wait);
1154 	kref_init(&t->refcount);
1155 
1156 	mutex_lock(&group->trigger_lock);
1157 
1158 	if (!rcu_access_pointer(group->poll_task)) {
1159 		struct task_struct *task;
1160 
1161 		task = kthread_create(psi_poll_worker, group, "psimon");
1162 		if (IS_ERR(task)) {
1163 			kfree(t);
1164 			mutex_unlock(&group->trigger_lock);
1165 			return ERR_CAST(task);
1166 		}
1167 		atomic_set(&group->poll_wakeup, 0);
1168 		wake_up_process(task);
1169 		rcu_assign_pointer(group->poll_task, task);
1170 	}
1171 
1172 	list_add(&t->node, &group->triggers);
1173 	group->poll_min_period = min(group->poll_min_period,
1174 		div_u64(t->win.size, UPDATES_PER_WINDOW));
1175 	group->nr_triggers[t->state]++;
1176 	group->poll_states |= (1 << t->state);
1177 
1178 	mutex_unlock(&group->trigger_lock);
1179 
1180 	return t;
1181 }
1182 
1183 static void psi_trigger_destroy(struct kref *ref)
1184 {
1185 	struct psi_trigger *t = container_of(ref, struct psi_trigger, refcount);
1186 	struct psi_group *group = t->group;
1187 	struct task_struct *task_to_destroy = NULL;
1188 
1189 	if (static_branch_likely(&psi_disabled))
1190 		return;
1191 
1192 	/*
1193 	 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1194 	 * from under a polling process.
1195 	 */
1196 	wake_up_interruptible(&t->event_wait);
1197 
1198 	mutex_lock(&group->trigger_lock);
1199 
1200 	if (!list_empty(&t->node)) {
1201 		struct psi_trigger *tmp;
1202 		u64 period = ULLONG_MAX;
1203 
1204 		list_del(&t->node);
1205 		group->nr_triggers[t->state]--;
1206 		if (!group->nr_triggers[t->state])
1207 			group->poll_states &= ~(1 << t->state);
1208 		/* reset min update period for the remaining triggers */
1209 		list_for_each_entry(tmp, &group->triggers, node)
1210 			period = min(period, div_u64(tmp->win.size,
1211 					UPDATES_PER_WINDOW));
1212 		group->poll_min_period = period;
1213 		/* Destroy poll_task when the last trigger is destroyed */
1214 		if (group->poll_states == 0) {
1215 			group->polling_until = 0;
1216 			task_to_destroy = rcu_dereference_protected(
1217 					group->poll_task,
1218 					lockdep_is_held(&group->trigger_lock));
1219 			rcu_assign_pointer(group->poll_task, NULL);
1220 			del_timer(&group->poll_timer);
1221 		}
1222 	}
1223 
1224 	mutex_unlock(&group->trigger_lock);
1225 
1226 	/*
1227 	 * Wait for both *trigger_ptr from psi_trigger_replace and
1228 	 * poll_task RCUs to complete their read-side critical sections
1229 	 * before destroying the trigger and optionally the poll_task
1230 	 */
1231 	synchronize_rcu();
1232 	/*
1233 	 * Stop kthread 'psimon' after releasing trigger_lock to prevent a
1234 	 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1235 	 */
1236 	if (task_to_destroy) {
1237 		/*
1238 		 * After the RCU grace period has expired, the worker
1239 		 * can no longer be found through group->poll_task.
1240 		 */
1241 		kthread_stop(task_to_destroy);
1242 	}
1243 	kfree(t);
1244 }
1245 
1246 void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *new)
1247 {
1248 	struct psi_trigger *old = *trigger_ptr;
1249 
1250 	if (static_branch_likely(&psi_disabled))
1251 		return;
1252 
1253 	rcu_assign_pointer(*trigger_ptr, new);
1254 	if (old)
1255 		kref_put(&old->refcount, psi_trigger_destroy);
1256 }
1257 
1258 __poll_t psi_trigger_poll(void **trigger_ptr,
1259 				struct file *file, poll_table *wait)
1260 {
1261 	__poll_t ret = DEFAULT_POLLMASK;
1262 	struct psi_trigger *t;
1263 
1264 	if (static_branch_likely(&psi_disabled))
1265 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1266 
1267 	rcu_read_lock();
1268 
1269 	t = rcu_dereference(*(void __rcu __force **)trigger_ptr);
1270 	if (!t) {
1271 		rcu_read_unlock();
1272 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1273 	}
1274 	kref_get(&t->refcount);
1275 
1276 	rcu_read_unlock();
1277 
1278 	poll_wait(file, &t->event_wait, wait);
1279 
1280 	if (cmpxchg(&t->event, 1, 0) == 1)
1281 		ret |= EPOLLPRI;
1282 
1283 	kref_put(&t->refcount, psi_trigger_destroy);
1284 
1285 	return ret;
1286 }
1287 
1288 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1289 			 size_t nbytes, enum psi_res res)
1290 {
1291 	char buf[32];
1292 	size_t buf_size;
1293 	struct seq_file *seq;
1294 	struct psi_trigger *new;
1295 
1296 	if (static_branch_likely(&psi_disabled))
1297 		return -EOPNOTSUPP;
1298 
1299 	if (!nbytes)
1300 		return -EINVAL;
1301 
1302 	buf_size = min(nbytes, sizeof(buf));
1303 	if (copy_from_user(buf, user_buf, buf_size))
1304 		return -EFAULT;
1305 
1306 	buf[buf_size - 1] = '\0';
1307 
1308 	new = psi_trigger_create(&psi_system, buf, nbytes, res);
1309 	if (IS_ERR(new))
1310 		return PTR_ERR(new);
1311 
1312 	seq = file->private_data;
1313 	/* Take seq->lock to protect seq->private from concurrent writes */
1314 	mutex_lock(&seq->lock);
1315 	psi_trigger_replace(&seq->private, new);
1316 	mutex_unlock(&seq->lock);
1317 
1318 	return nbytes;
1319 }
1320 
1321 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1322 			    size_t nbytes, loff_t *ppos)
1323 {
1324 	return psi_write(file, user_buf, nbytes, PSI_IO);
1325 }
1326 
1327 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1328 				size_t nbytes, loff_t *ppos)
1329 {
1330 	return psi_write(file, user_buf, nbytes, PSI_MEM);
1331 }
1332 
1333 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1334 			     size_t nbytes, loff_t *ppos)
1335 {
1336 	return psi_write(file, user_buf, nbytes, PSI_CPU);
1337 }
1338 
1339 static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1340 {
1341 	struct seq_file *seq = file->private_data;
1342 
1343 	return psi_trigger_poll(&seq->private, file, wait);
1344 }
1345 
1346 static int psi_fop_release(struct inode *inode, struct file *file)
1347 {
1348 	struct seq_file *seq = file->private_data;
1349 
1350 	psi_trigger_replace(&seq->private, NULL);
1351 	return single_release(inode, file);
1352 }
1353 
1354 static const struct proc_ops psi_io_proc_ops = {
1355 	.proc_open	= psi_io_open,
1356 	.proc_read	= seq_read,
1357 	.proc_lseek	= seq_lseek,
1358 	.proc_write	= psi_io_write,
1359 	.proc_poll	= psi_fop_poll,
1360 	.proc_release	= psi_fop_release,
1361 };
1362 
1363 static const struct proc_ops psi_memory_proc_ops = {
1364 	.proc_open	= psi_memory_open,
1365 	.proc_read	= seq_read,
1366 	.proc_lseek	= seq_lseek,
1367 	.proc_write	= psi_memory_write,
1368 	.proc_poll	= psi_fop_poll,
1369 	.proc_release	= psi_fop_release,
1370 };
1371 
1372 static const struct proc_ops psi_cpu_proc_ops = {
1373 	.proc_open	= psi_cpu_open,
1374 	.proc_read	= seq_read,
1375 	.proc_lseek	= seq_lseek,
1376 	.proc_write	= psi_cpu_write,
1377 	.proc_poll	= psi_fop_poll,
1378 	.proc_release	= psi_fop_release,
1379 };
1380 
1381 static int __init psi_proc_init(void)
1382 {
1383 	if (psi_enable) {
1384 		proc_mkdir("pressure", NULL);
1385 		proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
1386 		proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
1387 		proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
1388 	}
1389 	return 0;
1390 }
1391 module_init(psi_proc_init);
1392