1 /* 2 * Pressure stall information for CPU, memory and IO 3 * 4 * Copyright (c) 2018 Facebook, Inc. 5 * Author: Johannes Weiner <hannes@cmpxchg.org> 6 * 7 * Polling support by Suren Baghdasaryan <surenb@google.com> 8 * Copyright (c) 2018 Google, Inc. 9 * 10 * When CPU, memory and IO are contended, tasks experience delays that 11 * reduce throughput and introduce latencies into the workload. Memory 12 * and IO contention, in addition, can cause a full loss of forward 13 * progress in which the CPU goes idle. 14 * 15 * This code aggregates individual task delays into resource pressure 16 * metrics that indicate problems with both workload health and 17 * resource utilization. 18 * 19 * Model 20 * 21 * The time in which a task can execute on a CPU is our baseline for 22 * productivity. Pressure expresses the amount of time in which this 23 * potential cannot be realized due to resource contention. 24 * 25 * This concept of productivity has two components: the workload and 26 * the CPU. To measure the impact of pressure on both, we define two 27 * contention states for a resource: SOME and FULL. 28 * 29 * In the SOME state of a given resource, one or more tasks are 30 * delayed on that resource. This affects the workload's ability to 31 * perform work, but the CPU may still be executing other tasks. 32 * 33 * In the FULL state of a given resource, all non-idle tasks are 34 * delayed on that resource such that nobody is advancing and the CPU 35 * goes idle. This leaves both workload and CPU unproductive. 36 * 37 * (Naturally, the FULL state doesn't exist for the CPU resource.) 38 * 39 * SOME = nr_delayed_tasks != 0 40 * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0 41 * 42 * The percentage of wallclock time spent in those compound stall 43 * states gives pressure numbers between 0 and 100 for each resource, 44 * where the SOME percentage indicates workload slowdowns and the FULL 45 * percentage indicates reduced CPU utilization: 46 * 47 * %SOME = time(SOME) / period 48 * %FULL = time(FULL) / period 49 * 50 * Multiple CPUs 51 * 52 * The more tasks and available CPUs there are, the more work can be 53 * performed concurrently. This means that the potential that can go 54 * unrealized due to resource contention *also* scales with non-idle 55 * tasks and CPUs. 56 * 57 * Consider a scenario where 257 number crunching tasks are trying to 58 * run concurrently on 256 CPUs. If we simply aggregated the task 59 * states, we would have to conclude a CPU SOME pressure number of 60 * 100%, since *somebody* is waiting on a runqueue at all 61 * times. However, that is clearly not the amount of contention the 62 * workload is experiencing: only one out of 256 possible exceution 63 * threads will be contended at any given time, or about 0.4%. 64 * 65 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any 66 * given time *one* of the tasks is delayed due to a lack of memory. 67 * Again, looking purely at the task state would yield a memory FULL 68 * pressure number of 0%, since *somebody* is always making forward 69 * progress. But again this wouldn't capture the amount of execution 70 * potential lost, which is 1 out of 4 CPUs, or 25%. 71 * 72 * To calculate wasted potential (pressure) with multiple processors, 73 * we have to base our calculation on the number of non-idle tasks in 74 * conjunction with the number of available CPUs, which is the number 75 * of potential execution threads. SOME becomes then the proportion of 76 * delayed tasks to possibe threads, and FULL is the share of possible 77 * threads that are unproductive due to delays: 78 * 79 * threads = min(nr_nonidle_tasks, nr_cpus) 80 * SOME = min(nr_delayed_tasks / threads, 1) 81 * FULL = (threads - min(nr_running_tasks, threads)) / threads 82 * 83 * For the 257 number crunchers on 256 CPUs, this yields: 84 * 85 * threads = min(257, 256) 86 * SOME = min(1 / 256, 1) = 0.4% 87 * FULL = (256 - min(257, 256)) / 256 = 0% 88 * 89 * For the 1 out of 4 memory-delayed tasks, this yields: 90 * 91 * threads = min(4, 4) 92 * SOME = min(1 / 4, 1) = 25% 93 * FULL = (4 - min(3, 4)) / 4 = 25% 94 * 95 * [ Substitute nr_cpus with 1, and you can see that it's a natural 96 * extension of the single-CPU model. ] 97 * 98 * Implementation 99 * 100 * To assess the precise time spent in each such state, we would have 101 * to freeze the system on task changes and start/stop the state 102 * clocks accordingly. Obviously that doesn't scale in practice. 103 * 104 * Because the scheduler aims to distribute the compute load evenly 105 * among the available CPUs, we can track task state locally to each 106 * CPU and, at much lower frequency, extrapolate the global state for 107 * the cumulative stall times and the running averages. 108 * 109 * For each runqueue, we track: 110 * 111 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0) 112 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu]) 113 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0) 114 * 115 * and then periodically aggregate: 116 * 117 * tNONIDLE = sum(tNONIDLE[i]) 118 * 119 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE 120 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE 121 * 122 * %SOME = tSOME / period 123 * %FULL = tFULL / period 124 * 125 * This gives us an approximation of pressure that is practical 126 * cost-wise, yet way more sensitive and accurate than periodic 127 * sampling of the aggregate task states would be. 128 */ 129 130 #include "../workqueue_internal.h" 131 #include <linux/sched/loadavg.h> 132 #include <linux/seq_file.h> 133 #include <linux/proc_fs.h> 134 #include <linux/seqlock.h> 135 #include <linux/uaccess.h> 136 #include <linux/cgroup.h> 137 #include <linux/module.h> 138 #include <linux/sched.h> 139 #include <linux/ctype.h> 140 #include <linux/file.h> 141 #include <linux/poll.h> 142 #include <linux/psi.h> 143 #include "sched.h" 144 145 static int psi_bug __read_mostly; 146 147 DEFINE_STATIC_KEY_FALSE(psi_disabled); 148 149 #ifdef CONFIG_PSI_DEFAULT_DISABLED 150 static bool psi_enable; 151 #else 152 static bool psi_enable = true; 153 #endif 154 static int __init setup_psi(char *str) 155 { 156 return kstrtobool(str, &psi_enable) == 0; 157 } 158 __setup("psi=", setup_psi); 159 160 /* Running averages - we need to be higher-res than loadavg */ 161 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */ 162 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */ 163 #define EXP_60s 1981 /* 1/exp(2s/60s) */ 164 #define EXP_300s 2034 /* 1/exp(2s/300s) */ 165 166 /* PSI trigger definitions */ 167 #define WINDOW_MIN_US 500000 /* Min window size is 500ms */ 168 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */ 169 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */ 170 171 /* Sampling frequency in nanoseconds */ 172 static u64 psi_period __read_mostly; 173 174 /* System-level pressure and stall tracking */ 175 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu); 176 struct psi_group psi_system = { 177 .pcpu = &system_group_pcpu, 178 }; 179 180 static void psi_avgs_work(struct work_struct *work); 181 182 static void group_init(struct psi_group *group) 183 { 184 int cpu; 185 186 for_each_possible_cpu(cpu) 187 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq); 188 group->avg_last_update = sched_clock(); 189 group->avg_next_update = group->avg_last_update + psi_period; 190 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work); 191 mutex_init(&group->avgs_lock); 192 /* Init trigger-related members */ 193 mutex_init(&group->trigger_lock); 194 INIT_LIST_HEAD(&group->triggers); 195 memset(group->nr_triggers, 0, sizeof(group->nr_triggers)); 196 group->poll_states = 0; 197 group->poll_min_period = U32_MAX; 198 memset(group->polling_total, 0, sizeof(group->polling_total)); 199 group->polling_next_update = ULLONG_MAX; 200 group->polling_until = 0; 201 rcu_assign_pointer(group->poll_task, NULL); 202 } 203 204 void __init psi_init(void) 205 { 206 if (!psi_enable) { 207 static_branch_enable(&psi_disabled); 208 return; 209 } 210 211 psi_period = jiffies_to_nsecs(PSI_FREQ); 212 group_init(&psi_system); 213 } 214 215 static bool test_state(unsigned int *tasks, enum psi_states state) 216 { 217 switch (state) { 218 case PSI_IO_SOME: 219 return tasks[NR_IOWAIT]; 220 case PSI_IO_FULL: 221 return tasks[NR_IOWAIT] && !tasks[NR_RUNNING]; 222 case PSI_MEM_SOME: 223 return tasks[NR_MEMSTALL]; 224 case PSI_MEM_FULL: 225 return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING]; 226 case PSI_CPU_SOME: 227 return tasks[NR_RUNNING] > tasks[NR_ONCPU]; 228 case PSI_NONIDLE: 229 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || 230 tasks[NR_RUNNING]; 231 default: 232 return false; 233 } 234 } 235 236 static void get_recent_times(struct psi_group *group, int cpu, 237 enum psi_aggregators aggregator, u32 *times, 238 u32 *pchanged_states) 239 { 240 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu); 241 u64 now, state_start; 242 enum psi_states s; 243 unsigned int seq; 244 u32 state_mask; 245 246 *pchanged_states = 0; 247 248 /* Snapshot a coherent view of the CPU state */ 249 do { 250 seq = read_seqcount_begin(&groupc->seq); 251 now = cpu_clock(cpu); 252 memcpy(times, groupc->times, sizeof(groupc->times)); 253 state_mask = groupc->state_mask; 254 state_start = groupc->state_start; 255 } while (read_seqcount_retry(&groupc->seq, seq)); 256 257 /* Calculate state time deltas against the previous snapshot */ 258 for (s = 0; s < NR_PSI_STATES; s++) { 259 u32 delta; 260 /* 261 * In addition to already concluded states, we also 262 * incorporate currently active states on the CPU, 263 * since states may last for many sampling periods. 264 * 265 * This way we keep our delta sampling buckets small 266 * (u32) and our reported pressure close to what's 267 * actually happening. 268 */ 269 if (state_mask & (1 << s)) 270 times[s] += now - state_start; 271 272 delta = times[s] - groupc->times_prev[aggregator][s]; 273 groupc->times_prev[aggregator][s] = times[s]; 274 275 times[s] = delta; 276 if (delta) 277 *pchanged_states |= (1 << s); 278 } 279 } 280 281 static void calc_avgs(unsigned long avg[3], int missed_periods, 282 u64 time, u64 period) 283 { 284 unsigned long pct; 285 286 /* Fill in zeroes for periods of no activity */ 287 if (missed_periods) { 288 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods); 289 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods); 290 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods); 291 } 292 293 /* Sample the most recent active period */ 294 pct = div_u64(time * 100, period); 295 pct *= FIXED_1; 296 avg[0] = calc_load(avg[0], EXP_10s, pct); 297 avg[1] = calc_load(avg[1], EXP_60s, pct); 298 avg[2] = calc_load(avg[2], EXP_300s, pct); 299 } 300 301 static void collect_percpu_times(struct psi_group *group, 302 enum psi_aggregators aggregator, 303 u32 *pchanged_states) 304 { 305 u64 deltas[NR_PSI_STATES - 1] = { 0, }; 306 unsigned long nonidle_total = 0; 307 u32 changed_states = 0; 308 int cpu; 309 int s; 310 311 /* 312 * Collect the per-cpu time buckets and average them into a 313 * single time sample that is normalized to wallclock time. 314 * 315 * For averaging, each CPU is weighted by its non-idle time in 316 * the sampling period. This eliminates artifacts from uneven 317 * loading, or even entirely idle CPUs. 318 */ 319 for_each_possible_cpu(cpu) { 320 u32 times[NR_PSI_STATES]; 321 u32 nonidle; 322 u32 cpu_changed_states; 323 324 get_recent_times(group, cpu, aggregator, times, 325 &cpu_changed_states); 326 changed_states |= cpu_changed_states; 327 328 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]); 329 nonidle_total += nonidle; 330 331 for (s = 0; s < PSI_NONIDLE; s++) 332 deltas[s] += (u64)times[s] * nonidle; 333 } 334 335 /* 336 * Integrate the sample into the running statistics that are 337 * reported to userspace: the cumulative stall times and the 338 * decaying averages. 339 * 340 * Pressure percentages are sampled at PSI_FREQ. We might be 341 * called more often when the user polls more frequently than 342 * that; we might be called less often when there is no task 343 * activity, thus no data, and clock ticks are sporadic. The 344 * below handles both. 345 */ 346 347 /* total= */ 348 for (s = 0; s < NR_PSI_STATES - 1; s++) 349 group->total[aggregator][s] += 350 div_u64(deltas[s], max(nonidle_total, 1UL)); 351 352 if (pchanged_states) 353 *pchanged_states = changed_states; 354 } 355 356 static u64 update_averages(struct psi_group *group, u64 now) 357 { 358 unsigned long missed_periods = 0; 359 u64 expires, period; 360 u64 avg_next_update; 361 int s; 362 363 /* avgX= */ 364 expires = group->avg_next_update; 365 if (now - expires >= psi_period) 366 missed_periods = div_u64(now - expires, psi_period); 367 368 /* 369 * The periodic clock tick can get delayed for various 370 * reasons, especially on loaded systems. To avoid clock 371 * drift, we schedule the clock in fixed psi_period intervals. 372 * But the deltas we sample out of the per-cpu buckets above 373 * are based on the actual time elapsing between clock ticks. 374 */ 375 avg_next_update = expires + ((1 + missed_periods) * psi_period); 376 period = now - (group->avg_last_update + (missed_periods * psi_period)); 377 group->avg_last_update = now; 378 379 for (s = 0; s < NR_PSI_STATES - 1; s++) { 380 u32 sample; 381 382 sample = group->total[PSI_AVGS][s] - group->avg_total[s]; 383 /* 384 * Due to the lockless sampling of the time buckets, 385 * recorded time deltas can slip into the next period, 386 * which under full pressure can result in samples in 387 * excess of the period length. 388 * 389 * We don't want to report non-sensical pressures in 390 * excess of 100%, nor do we want to drop such events 391 * on the floor. Instead we punt any overage into the 392 * future until pressure subsides. By doing this we 393 * don't underreport the occurring pressure curve, we 394 * just report it delayed by one period length. 395 * 396 * The error isn't cumulative. As soon as another 397 * delta slips from a period P to P+1, by definition 398 * it frees up its time T in P. 399 */ 400 if (sample > period) 401 sample = period; 402 group->avg_total[s] += sample; 403 calc_avgs(group->avg[s], missed_periods, sample, period); 404 } 405 406 return avg_next_update; 407 } 408 409 static void psi_avgs_work(struct work_struct *work) 410 { 411 struct delayed_work *dwork; 412 struct psi_group *group; 413 u32 changed_states; 414 bool nonidle; 415 u64 now; 416 417 dwork = to_delayed_work(work); 418 group = container_of(dwork, struct psi_group, avgs_work); 419 420 mutex_lock(&group->avgs_lock); 421 422 now = sched_clock(); 423 424 collect_percpu_times(group, PSI_AVGS, &changed_states); 425 nonidle = changed_states & (1 << PSI_NONIDLE); 426 /* 427 * If there is task activity, periodically fold the per-cpu 428 * times and feed samples into the running averages. If things 429 * are idle and there is no data to process, stop the clock. 430 * Once restarted, we'll catch up the running averages in one 431 * go - see calc_avgs() and missed_periods. 432 */ 433 if (now >= group->avg_next_update) 434 group->avg_next_update = update_averages(group, now); 435 436 if (nonidle) { 437 schedule_delayed_work(dwork, nsecs_to_jiffies( 438 group->avg_next_update - now) + 1); 439 } 440 441 mutex_unlock(&group->avgs_lock); 442 } 443 444 /* Trigger tracking window manupulations */ 445 static void window_reset(struct psi_window *win, u64 now, u64 value, 446 u64 prev_growth) 447 { 448 win->start_time = now; 449 win->start_value = value; 450 win->prev_growth = prev_growth; 451 } 452 453 /* 454 * PSI growth tracking window update and growth calculation routine. 455 * 456 * This approximates a sliding tracking window by interpolating 457 * partially elapsed windows using historical growth data from the 458 * previous intervals. This minimizes memory requirements (by not storing 459 * all the intermediate values in the previous window) and simplifies 460 * the calculations. It works well because PSI signal changes only in 461 * positive direction and over relatively small window sizes the growth 462 * is close to linear. 463 */ 464 static u64 window_update(struct psi_window *win, u64 now, u64 value) 465 { 466 u64 elapsed; 467 u64 growth; 468 469 elapsed = now - win->start_time; 470 growth = value - win->start_value; 471 /* 472 * After each tracking window passes win->start_value and 473 * win->start_time get reset and win->prev_growth stores 474 * the average per-window growth of the previous window. 475 * win->prev_growth is then used to interpolate additional 476 * growth from the previous window assuming it was linear. 477 */ 478 if (elapsed > win->size) 479 window_reset(win, now, value, growth); 480 else { 481 u32 remaining; 482 483 remaining = win->size - elapsed; 484 growth += div64_u64(win->prev_growth * remaining, win->size); 485 } 486 487 return growth; 488 } 489 490 static void init_triggers(struct psi_group *group, u64 now) 491 { 492 struct psi_trigger *t; 493 494 list_for_each_entry(t, &group->triggers, node) 495 window_reset(&t->win, now, 496 group->total[PSI_POLL][t->state], 0); 497 memcpy(group->polling_total, group->total[PSI_POLL], 498 sizeof(group->polling_total)); 499 group->polling_next_update = now + group->poll_min_period; 500 } 501 502 static u64 update_triggers(struct psi_group *group, u64 now) 503 { 504 struct psi_trigger *t; 505 bool new_stall = false; 506 u64 *total = group->total[PSI_POLL]; 507 508 /* 509 * On subsequent updates, calculate growth deltas and let 510 * watchers know when their specified thresholds are exceeded. 511 */ 512 list_for_each_entry(t, &group->triggers, node) { 513 u64 growth; 514 515 /* Check for stall activity */ 516 if (group->polling_total[t->state] == total[t->state]) 517 continue; 518 519 /* 520 * Multiple triggers might be looking at the same state, 521 * remember to update group->polling_total[] once we've 522 * been through all of them. Also remember to extend the 523 * polling time if we see new stall activity. 524 */ 525 new_stall = true; 526 527 /* Calculate growth since last update */ 528 growth = window_update(&t->win, now, total[t->state]); 529 if (growth < t->threshold) 530 continue; 531 532 /* Limit event signaling to once per window */ 533 if (now < t->last_event_time + t->win.size) 534 continue; 535 536 /* Generate an event */ 537 if (cmpxchg(&t->event, 0, 1) == 0) 538 wake_up_interruptible(&t->event_wait); 539 t->last_event_time = now; 540 } 541 542 if (new_stall) 543 memcpy(group->polling_total, total, 544 sizeof(group->polling_total)); 545 546 return now + group->poll_min_period; 547 } 548 549 /* Schedule polling if it's not already scheduled. */ 550 static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay) 551 { 552 struct task_struct *task; 553 554 /* 555 * Do not reschedule if already scheduled. 556 * Possible race with a timer scheduled after this check but before 557 * mod_timer below can be tolerated because group->polling_next_update 558 * will keep updates on schedule. 559 */ 560 if (timer_pending(&group->poll_timer)) 561 return; 562 563 rcu_read_lock(); 564 565 task = rcu_dereference(group->poll_task); 566 /* 567 * kworker might be NULL in case psi_trigger_destroy races with 568 * psi_task_change (hotpath) which can't use locks 569 */ 570 if (likely(task)) 571 mod_timer(&group->poll_timer, jiffies + delay); 572 573 rcu_read_unlock(); 574 } 575 576 static void psi_poll_work(struct psi_group *group) 577 { 578 u32 changed_states; 579 u64 now; 580 581 mutex_lock(&group->trigger_lock); 582 583 now = sched_clock(); 584 585 collect_percpu_times(group, PSI_POLL, &changed_states); 586 587 if (changed_states & group->poll_states) { 588 /* Initialize trigger windows when entering polling mode */ 589 if (now > group->polling_until) 590 init_triggers(group, now); 591 592 /* 593 * Keep the monitor active for at least the duration of the 594 * minimum tracking window as long as monitor states are 595 * changing. 596 */ 597 group->polling_until = now + 598 group->poll_min_period * UPDATES_PER_WINDOW; 599 } 600 601 if (now > group->polling_until) { 602 group->polling_next_update = ULLONG_MAX; 603 goto out; 604 } 605 606 if (now >= group->polling_next_update) 607 group->polling_next_update = update_triggers(group, now); 608 609 psi_schedule_poll_work(group, 610 nsecs_to_jiffies(group->polling_next_update - now) + 1); 611 612 out: 613 mutex_unlock(&group->trigger_lock); 614 } 615 616 static int psi_poll_worker(void *data) 617 { 618 struct psi_group *group = (struct psi_group *)data; 619 620 sched_set_fifo_low(current); 621 622 while (true) { 623 wait_event_interruptible(group->poll_wait, 624 atomic_cmpxchg(&group->poll_wakeup, 1, 0) || 625 kthread_should_stop()); 626 if (kthread_should_stop()) 627 break; 628 629 psi_poll_work(group); 630 } 631 return 0; 632 } 633 634 static void poll_timer_fn(struct timer_list *t) 635 { 636 struct psi_group *group = from_timer(group, t, poll_timer); 637 638 atomic_set(&group->poll_wakeup, 1); 639 wake_up_interruptible(&group->poll_wait); 640 } 641 642 static void record_times(struct psi_group_cpu *groupc, int cpu, 643 bool memstall_tick) 644 { 645 u32 delta; 646 u64 now; 647 648 now = cpu_clock(cpu); 649 delta = now - groupc->state_start; 650 groupc->state_start = now; 651 652 if (groupc->state_mask & (1 << PSI_IO_SOME)) { 653 groupc->times[PSI_IO_SOME] += delta; 654 if (groupc->state_mask & (1 << PSI_IO_FULL)) 655 groupc->times[PSI_IO_FULL] += delta; 656 } 657 658 if (groupc->state_mask & (1 << PSI_MEM_SOME)) { 659 groupc->times[PSI_MEM_SOME] += delta; 660 if (groupc->state_mask & (1 << PSI_MEM_FULL)) 661 groupc->times[PSI_MEM_FULL] += delta; 662 else if (memstall_tick) { 663 u32 sample; 664 /* 665 * Since we care about lost potential, a 666 * memstall is FULL when there are no other 667 * working tasks, but also when the CPU is 668 * actively reclaiming and nothing productive 669 * could run even if it were runnable. 670 * 671 * When the timer tick sees a reclaiming CPU, 672 * regardless of runnable tasks, sample a FULL 673 * tick (or less if it hasn't been a full tick 674 * since the last state change). 675 */ 676 sample = min(delta, (u32)jiffies_to_nsecs(1)); 677 groupc->times[PSI_MEM_FULL] += sample; 678 } 679 } 680 681 if (groupc->state_mask & (1 << PSI_CPU_SOME)) 682 groupc->times[PSI_CPU_SOME] += delta; 683 684 if (groupc->state_mask & (1 << PSI_NONIDLE)) 685 groupc->times[PSI_NONIDLE] += delta; 686 } 687 688 static void psi_group_change(struct psi_group *group, int cpu, 689 unsigned int clear, unsigned int set, 690 bool wake_clock) 691 { 692 struct psi_group_cpu *groupc; 693 u32 state_mask = 0; 694 unsigned int t, m; 695 enum psi_states s; 696 697 groupc = per_cpu_ptr(group->pcpu, cpu); 698 699 /* 700 * First we assess the aggregate resource states this CPU's 701 * tasks have been in since the last change, and account any 702 * SOME and FULL time these may have resulted in. 703 * 704 * Then we update the task counts according to the state 705 * change requested through the @clear and @set bits. 706 */ 707 write_seqcount_begin(&groupc->seq); 708 709 record_times(groupc, cpu, false); 710 711 for (t = 0, m = clear; m; m &= ~(1 << t), t++) { 712 if (!(m & (1 << t))) 713 continue; 714 if (groupc->tasks[t] == 0 && !psi_bug) { 715 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n", 716 cpu, t, groupc->tasks[0], 717 groupc->tasks[1], groupc->tasks[2], 718 groupc->tasks[3], clear, set); 719 psi_bug = 1; 720 } 721 groupc->tasks[t]--; 722 } 723 724 for (t = 0; set; set &= ~(1 << t), t++) 725 if (set & (1 << t)) 726 groupc->tasks[t]++; 727 728 /* Calculate state mask representing active states */ 729 for (s = 0; s < NR_PSI_STATES; s++) { 730 if (test_state(groupc->tasks, s)) 731 state_mask |= (1 << s); 732 } 733 groupc->state_mask = state_mask; 734 735 write_seqcount_end(&groupc->seq); 736 737 if (state_mask & group->poll_states) 738 psi_schedule_poll_work(group, 1); 739 740 if (wake_clock && !delayed_work_pending(&group->avgs_work)) 741 schedule_delayed_work(&group->avgs_work, PSI_FREQ); 742 } 743 744 static struct psi_group *iterate_groups(struct task_struct *task, void **iter) 745 { 746 #ifdef CONFIG_CGROUPS 747 struct cgroup *cgroup = NULL; 748 749 if (!*iter) 750 cgroup = task->cgroups->dfl_cgrp; 751 else if (*iter == &psi_system) 752 return NULL; 753 else 754 cgroup = cgroup_parent(*iter); 755 756 if (cgroup && cgroup_parent(cgroup)) { 757 *iter = cgroup; 758 return cgroup_psi(cgroup); 759 } 760 #else 761 if (*iter) 762 return NULL; 763 #endif 764 *iter = &psi_system; 765 return &psi_system; 766 } 767 768 static void psi_flags_change(struct task_struct *task, int clear, int set) 769 { 770 if (((task->psi_flags & set) || 771 (task->psi_flags & clear) != clear) && 772 !psi_bug) { 773 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n", 774 task->pid, task->comm, task_cpu(task), 775 task->psi_flags, clear, set); 776 psi_bug = 1; 777 } 778 779 task->psi_flags &= ~clear; 780 task->psi_flags |= set; 781 } 782 783 void psi_task_change(struct task_struct *task, int clear, int set) 784 { 785 int cpu = task_cpu(task); 786 struct psi_group *group; 787 bool wake_clock = true; 788 void *iter = NULL; 789 790 if (!task->pid) 791 return; 792 793 psi_flags_change(task, clear, set); 794 795 /* 796 * Periodic aggregation shuts off if there is a period of no 797 * task changes, so we wake it back up if necessary. However, 798 * don't do this if the task change is the aggregation worker 799 * itself going to sleep, or we'll ping-pong forever. 800 */ 801 if (unlikely((clear & TSK_RUNNING) && 802 (task->flags & PF_WQ_WORKER) && 803 wq_worker_last_func(task) == psi_avgs_work)) 804 wake_clock = false; 805 806 while ((group = iterate_groups(task, &iter))) 807 psi_group_change(group, cpu, clear, set, wake_clock); 808 } 809 810 void psi_task_switch(struct task_struct *prev, struct task_struct *next, 811 bool sleep) 812 { 813 struct psi_group *group, *common = NULL; 814 int cpu = task_cpu(prev); 815 void *iter; 816 817 if (next->pid) { 818 psi_flags_change(next, 0, TSK_ONCPU); 819 /* 820 * When moving state between tasks, the group that 821 * contains them both does not change: we can stop 822 * updating the tree once we reach the first common 823 * ancestor. Iterate @next's ancestors until we 824 * encounter @prev's state. 825 */ 826 iter = NULL; 827 while ((group = iterate_groups(next, &iter))) { 828 if (per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) { 829 common = group; 830 break; 831 } 832 833 psi_group_change(group, cpu, 0, TSK_ONCPU, true); 834 } 835 } 836 837 /* 838 * If this is a voluntary sleep, dequeue will have taken care 839 * of the outgoing TSK_ONCPU alongside TSK_RUNNING already. We 840 * only need to deal with it during preemption. 841 */ 842 if (sleep) 843 return; 844 845 if (prev->pid) { 846 psi_flags_change(prev, TSK_ONCPU, 0); 847 848 iter = NULL; 849 while ((group = iterate_groups(prev, &iter)) && group != common) 850 psi_group_change(group, cpu, TSK_ONCPU, 0, true); 851 } 852 } 853 854 void psi_memstall_tick(struct task_struct *task, int cpu) 855 { 856 struct psi_group *group; 857 void *iter = NULL; 858 859 while ((group = iterate_groups(task, &iter))) { 860 struct psi_group_cpu *groupc; 861 862 groupc = per_cpu_ptr(group->pcpu, cpu); 863 write_seqcount_begin(&groupc->seq); 864 record_times(groupc, cpu, true); 865 write_seqcount_end(&groupc->seq); 866 } 867 } 868 869 /** 870 * psi_memstall_enter - mark the beginning of a memory stall section 871 * @flags: flags to handle nested sections 872 * 873 * Marks the calling task as being stalled due to a lack of memory, 874 * such as waiting for a refault or performing reclaim. 875 */ 876 void psi_memstall_enter(unsigned long *flags) 877 { 878 struct rq_flags rf; 879 struct rq *rq; 880 881 if (static_branch_likely(&psi_disabled)) 882 return; 883 884 *flags = current->in_memstall; 885 if (*flags) 886 return; 887 /* 888 * in_memstall setting & accounting needs to be atomic wrt 889 * changes to the task's scheduling state, otherwise we can 890 * race with CPU migration. 891 */ 892 rq = this_rq_lock_irq(&rf); 893 894 current->in_memstall = 1; 895 psi_task_change(current, 0, TSK_MEMSTALL); 896 897 rq_unlock_irq(rq, &rf); 898 } 899 900 /** 901 * psi_memstall_leave - mark the end of an memory stall section 902 * @flags: flags to handle nested memdelay sections 903 * 904 * Marks the calling task as no longer stalled due to lack of memory. 905 */ 906 void psi_memstall_leave(unsigned long *flags) 907 { 908 struct rq_flags rf; 909 struct rq *rq; 910 911 if (static_branch_likely(&psi_disabled)) 912 return; 913 914 if (*flags) 915 return; 916 /* 917 * in_memstall clearing & accounting needs to be atomic wrt 918 * changes to the task's scheduling state, otherwise we could 919 * race with CPU migration. 920 */ 921 rq = this_rq_lock_irq(&rf); 922 923 current->in_memstall = 0; 924 psi_task_change(current, TSK_MEMSTALL, 0); 925 926 rq_unlock_irq(rq, &rf); 927 } 928 929 #ifdef CONFIG_CGROUPS 930 int psi_cgroup_alloc(struct cgroup *cgroup) 931 { 932 if (static_branch_likely(&psi_disabled)) 933 return 0; 934 935 cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu); 936 if (!cgroup->psi.pcpu) 937 return -ENOMEM; 938 group_init(&cgroup->psi); 939 return 0; 940 } 941 942 void psi_cgroup_free(struct cgroup *cgroup) 943 { 944 if (static_branch_likely(&psi_disabled)) 945 return; 946 947 cancel_delayed_work_sync(&cgroup->psi.avgs_work); 948 free_percpu(cgroup->psi.pcpu); 949 /* All triggers must be removed by now */ 950 WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n"); 951 } 952 953 /** 954 * cgroup_move_task - move task to a different cgroup 955 * @task: the task 956 * @to: the target css_set 957 * 958 * Move task to a new cgroup and safely migrate its associated stall 959 * state between the different groups. 960 * 961 * This function acquires the task's rq lock to lock out concurrent 962 * changes to the task's scheduling state and - in case the task is 963 * running - concurrent changes to its stall state. 964 */ 965 void cgroup_move_task(struct task_struct *task, struct css_set *to) 966 { 967 unsigned int task_flags = 0; 968 struct rq_flags rf; 969 struct rq *rq; 970 971 if (static_branch_likely(&psi_disabled)) { 972 /* 973 * Lame to do this here, but the scheduler cannot be locked 974 * from the outside, so we move cgroups from inside sched/. 975 */ 976 rcu_assign_pointer(task->cgroups, to); 977 return; 978 } 979 980 rq = task_rq_lock(task, &rf); 981 982 if (task_on_rq_queued(task)) { 983 task_flags = TSK_RUNNING; 984 if (task_current(rq, task)) 985 task_flags |= TSK_ONCPU; 986 } else if (task->in_iowait) 987 task_flags = TSK_IOWAIT; 988 989 if (task->in_memstall) 990 task_flags |= TSK_MEMSTALL; 991 992 if (task_flags) 993 psi_task_change(task, task_flags, 0); 994 995 /* See comment above */ 996 rcu_assign_pointer(task->cgroups, to); 997 998 if (task_flags) 999 psi_task_change(task, 0, task_flags); 1000 1001 task_rq_unlock(rq, task, &rf); 1002 } 1003 #endif /* CONFIG_CGROUPS */ 1004 1005 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res) 1006 { 1007 int full; 1008 u64 now; 1009 1010 if (static_branch_likely(&psi_disabled)) 1011 return -EOPNOTSUPP; 1012 1013 /* Update averages before reporting them */ 1014 mutex_lock(&group->avgs_lock); 1015 now = sched_clock(); 1016 collect_percpu_times(group, PSI_AVGS, NULL); 1017 if (now >= group->avg_next_update) 1018 group->avg_next_update = update_averages(group, now); 1019 mutex_unlock(&group->avgs_lock); 1020 1021 for (full = 0; full < 2 - (res == PSI_CPU); full++) { 1022 unsigned long avg[3]; 1023 u64 total; 1024 int w; 1025 1026 for (w = 0; w < 3; w++) 1027 avg[w] = group->avg[res * 2 + full][w]; 1028 total = div_u64(group->total[PSI_AVGS][res * 2 + full], 1029 NSEC_PER_USEC); 1030 1031 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n", 1032 full ? "full" : "some", 1033 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]), 1034 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]), 1035 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]), 1036 total); 1037 } 1038 1039 return 0; 1040 } 1041 1042 static int psi_io_show(struct seq_file *m, void *v) 1043 { 1044 return psi_show(m, &psi_system, PSI_IO); 1045 } 1046 1047 static int psi_memory_show(struct seq_file *m, void *v) 1048 { 1049 return psi_show(m, &psi_system, PSI_MEM); 1050 } 1051 1052 static int psi_cpu_show(struct seq_file *m, void *v) 1053 { 1054 return psi_show(m, &psi_system, PSI_CPU); 1055 } 1056 1057 static int psi_io_open(struct inode *inode, struct file *file) 1058 { 1059 return single_open(file, psi_io_show, NULL); 1060 } 1061 1062 static int psi_memory_open(struct inode *inode, struct file *file) 1063 { 1064 return single_open(file, psi_memory_show, NULL); 1065 } 1066 1067 static int psi_cpu_open(struct inode *inode, struct file *file) 1068 { 1069 return single_open(file, psi_cpu_show, NULL); 1070 } 1071 1072 struct psi_trigger *psi_trigger_create(struct psi_group *group, 1073 char *buf, size_t nbytes, enum psi_res res) 1074 { 1075 struct psi_trigger *t; 1076 enum psi_states state; 1077 u32 threshold_us; 1078 u32 window_us; 1079 1080 if (static_branch_likely(&psi_disabled)) 1081 return ERR_PTR(-EOPNOTSUPP); 1082 1083 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2) 1084 state = PSI_IO_SOME + res * 2; 1085 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2) 1086 state = PSI_IO_FULL + res * 2; 1087 else 1088 return ERR_PTR(-EINVAL); 1089 1090 if (state >= PSI_NONIDLE) 1091 return ERR_PTR(-EINVAL); 1092 1093 if (window_us < WINDOW_MIN_US || 1094 window_us > WINDOW_MAX_US) 1095 return ERR_PTR(-EINVAL); 1096 1097 /* Check threshold */ 1098 if (threshold_us == 0 || threshold_us > window_us) 1099 return ERR_PTR(-EINVAL); 1100 1101 t = kmalloc(sizeof(*t), GFP_KERNEL); 1102 if (!t) 1103 return ERR_PTR(-ENOMEM); 1104 1105 t->group = group; 1106 t->state = state; 1107 t->threshold = threshold_us * NSEC_PER_USEC; 1108 t->win.size = window_us * NSEC_PER_USEC; 1109 window_reset(&t->win, 0, 0, 0); 1110 1111 t->event = 0; 1112 t->last_event_time = 0; 1113 init_waitqueue_head(&t->event_wait); 1114 kref_init(&t->refcount); 1115 1116 mutex_lock(&group->trigger_lock); 1117 1118 if (!rcu_access_pointer(group->poll_task)) { 1119 struct task_struct *task; 1120 1121 task = kthread_create(psi_poll_worker, group, "psimon"); 1122 if (IS_ERR(task)) { 1123 kfree(t); 1124 mutex_unlock(&group->trigger_lock); 1125 return ERR_CAST(task); 1126 } 1127 atomic_set(&group->poll_wakeup, 0); 1128 init_waitqueue_head(&group->poll_wait); 1129 wake_up_process(task); 1130 timer_setup(&group->poll_timer, poll_timer_fn, 0); 1131 rcu_assign_pointer(group->poll_task, task); 1132 } 1133 1134 list_add(&t->node, &group->triggers); 1135 group->poll_min_period = min(group->poll_min_period, 1136 div_u64(t->win.size, UPDATES_PER_WINDOW)); 1137 group->nr_triggers[t->state]++; 1138 group->poll_states |= (1 << t->state); 1139 1140 mutex_unlock(&group->trigger_lock); 1141 1142 return t; 1143 } 1144 1145 static void psi_trigger_destroy(struct kref *ref) 1146 { 1147 struct psi_trigger *t = container_of(ref, struct psi_trigger, refcount); 1148 struct psi_group *group = t->group; 1149 struct task_struct *task_to_destroy = NULL; 1150 1151 if (static_branch_likely(&psi_disabled)) 1152 return; 1153 1154 /* 1155 * Wakeup waiters to stop polling. Can happen if cgroup is deleted 1156 * from under a polling process. 1157 */ 1158 wake_up_interruptible(&t->event_wait); 1159 1160 mutex_lock(&group->trigger_lock); 1161 1162 if (!list_empty(&t->node)) { 1163 struct psi_trigger *tmp; 1164 u64 period = ULLONG_MAX; 1165 1166 list_del(&t->node); 1167 group->nr_triggers[t->state]--; 1168 if (!group->nr_triggers[t->state]) 1169 group->poll_states &= ~(1 << t->state); 1170 /* reset min update period for the remaining triggers */ 1171 list_for_each_entry(tmp, &group->triggers, node) 1172 period = min(period, div_u64(tmp->win.size, 1173 UPDATES_PER_WINDOW)); 1174 group->poll_min_period = period; 1175 /* Destroy poll_task when the last trigger is destroyed */ 1176 if (group->poll_states == 0) { 1177 group->polling_until = 0; 1178 task_to_destroy = rcu_dereference_protected( 1179 group->poll_task, 1180 lockdep_is_held(&group->trigger_lock)); 1181 rcu_assign_pointer(group->poll_task, NULL); 1182 } 1183 } 1184 1185 mutex_unlock(&group->trigger_lock); 1186 1187 /* 1188 * Wait for both *trigger_ptr from psi_trigger_replace and 1189 * poll_task RCUs to complete their read-side critical sections 1190 * before destroying the trigger and optionally the poll_task 1191 */ 1192 synchronize_rcu(); 1193 /* 1194 * Destroy the kworker after releasing trigger_lock to prevent a 1195 * deadlock while waiting for psi_poll_work to acquire trigger_lock 1196 */ 1197 if (task_to_destroy) { 1198 /* 1199 * After the RCU grace period has expired, the worker 1200 * can no longer be found through group->poll_task. 1201 * But it might have been already scheduled before 1202 * that - deschedule it cleanly before destroying it. 1203 */ 1204 del_timer_sync(&group->poll_timer); 1205 kthread_stop(task_to_destroy); 1206 } 1207 kfree(t); 1208 } 1209 1210 void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *new) 1211 { 1212 struct psi_trigger *old = *trigger_ptr; 1213 1214 if (static_branch_likely(&psi_disabled)) 1215 return; 1216 1217 rcu_assign_pointer(*trigger_ptr, new); 1218 if (old) 1219 kref_put(&old->refcount, psi_trigger_destroy); 1220 } 1221 1222 __poll_t psi_trigger_poll(void **trigger_ptr, 1223 struct file *file, poll_table *wait) 1224 { 1225 __poll_t ret = DEFAULT_POLLMASK; 1226 struct psi_trigger *t; 1227 1228 if (static_branch_likely(&psi_disabled)) 1229 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; 1230 1231 rcu_read_lock(); 1232 1233 t = rcu_dereference(*(void __rcu __force **)trigger_ptr); 1234 if (!t) { 1235 rcu_read_unlock(); 1236 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; 1237 } 1238 kref_get(&t->refcount); 1239 1240 rcu_read_unlock(); 1241 1242 poll_wait(file, &t->event_wait, wait); 1243 1244 if (cmpxchg(&t->event, 1, 0) == 1) 1245 ret |= EPOLLPRI; 1246 1247 kref_put(&t->refcount, psi_trigger_destroy); 1248 1249 return ret; 1250 } 1251 1252 static ssize_t psi_write(struct file *file, const char __user *user_buf, 1253 size_t nbytes, enum psi_res res) 1254 { 1255 char buf[32]; 1256 size_t buf_size; 1257 struct seq_file *seq; 1258 struct psi_trigger *new; 1259 1260 if (static_branch_likely(&psi_disabled)) 1261 return -EOPNOTSUPP; 1262 1263 if (!nbytes) 1264 return -EINVAL; 1265 1266 buf_size = min(nbytes, sizeof(buf)); 1267 if (copy_from_user(buf, user_buf, buf_size)) 1268 return -EFAULT; 1269 1270 buf[buf_size - 1] = '\0'; 1271 1272 new = psi_trigger_create(&psi_system, buf, nbytes, res); 1273 if (IS_ERR(new)) 1274 return PTR_ERR(new); 1275 1276 seq = file->private_data; 1277 /* Take seq->lock to protect seq->private from concurrent writes */ 1278 mutex_lock(&seq->lock); 1279 psi_trigger_replace(&seq->private, new); 1280 mutex_unlock(&seq->lock); 1281 1282 return nbytes; 1283 } 1284 1285 static ssize_t psi_io_write(struct file *file, const char __user *user_buf, 1286 size_t nbytes, loff_t *ppos) 1287 { 1288 return psi_write(file, user_buf, nbytes, PSI_IO); 1289 } 1290 1291 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf, 1292 size_t nbytes, loff_t *ppos) 1293 { 1294 return psi_write(file, user_buf, nbytes, PSI_MEM); 1295 } 1296 1297 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf, 1298 size_t nbytes, loff_t *ppos) 1299 { 1300 return psi_write(file, user_buf, nbytes, PSI_CPU); 1301 } 1302 1303 static __poll_t psi_fop_poll(struct file *file, poll_table *wait) 1304 { 1305 struct seq_file *seq = file->private_data; 1306 1307 return psi_trigger_poll(&seq->private, file, wait); 1308 } 1309 1310 static int psi_fop_release(struct inode *inode, struct file *file) 1311 { 1312 struct seq_file *seq = file->private_data; 1313 1314 psi_trigger_replace(&seq->private, NULL); 1315 return single_release(inode, file); 1316 } 1317 1318 static const struct proc_ops psi_io_proc_ops = { 1319 .proc_open = psi_io_open, 1320 .proc_read = seq_read, 1321 .proc_lseek = seq_lseek, 1322 .proc_write = psi_io_write, 1323 .proc_poll = psi_fop_poll, 1324 .proc_release = psi_fop_release, 1325 }; 1326 1327 static const struct proc_ops psi_memory_proc_ops = { 1328 .proc_open = psi_memory_open, 1329 .proc_read = seq_read, 1330 .proc_lseek = seq_lseek, 1331 .proc_write = psi_memory_write, 1332 .proc_poll = psi_fop_poll, 1333 .proc_release = psi_fop_release, 1334 }; 1335 1336 static const struct proc_ops psi_cpu_proc_ops = { 1337 .proc_open = psi_cpu_open, 1338 .proc_read = seq_read, 1339 .proc_lseek = seq_lseek, 1340 .proc_write = psi_cpu_write, 1341 .proc_poll = psi_fop_poll, 1342 .proc_release = psi_fop_release, 1343 }; 1344 1345 static int __init psi_proc_init(void) 1346 { 1347 if (psi_enable) { 1348 proc_mkdir("pressure", NULL); 1349 proc_create("pressure/io", 0, NULL, &psi_io_proc_ops); 1350 proc_create("pressure/memory", 0, NULL, &psi_memory_proc_ops); 1351 proc_create("pressure/cpu", 0, NULL, &psi_cpu_proc_ops); 1352 } 1353 return 0; 1354 } 1355 module_init(psi_proc_init); 1356