1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Pressure stall information for CPU, memory and IO 4 * 5 * Copyright (c) 2018 Facebook, Inc. 6 * Author: Johannes Weiner <hannes@cmpxchg.org> 7 * 8 * Polling support by Suren Baghdasaryan <surenb@google.com> 9 * Copyright (c) 2018 Google, Inc. 10 * 11 * When CPU, memory and IO are contended, tasks experience delays that 12 * reduce throughput and introduce latencies into the workload. Memory 13 * and IO contention, in addition, can cause a full loss of forward 14 * progress in which the CPU goes idle. 15 * 16 * This code aggregates individual task delays into resource pressure 17 * metrics that indicate problems with both workload health and 18 * resource utilization. 19 * 20 * Model 21 * 22 * The time in which a task can execute on a CPU is our baseline for 23 * productivity. Pressure expresses the amount of time in which this 24 * potential cannot be realized due to resource contention. 25 * 26 * This concept of productivity has two components: the workload and 27 * the CPU. To measure the impact of pressure on both, we define two 28 * contention states for a resource: SOME and FULL. 29 * 30 * In the SOME state of a given resource, one or more tasks are 31 * delayed on that resource. This affects the workload's ability to 32 * perform work, but the CPU may still be executing other tasks. 33 * 34 * In the FULL state of a given resource, all non-idle tasks are 35 * delayed on that resource such that nobody is advancing and the CPU 36 * goes idle. This leaves both workload and CPU unproductive. 37 * 38 * SOME = nr_delayed_tasks != 0 39 * FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0 40 * 41 * What it means for a task to be productive is defined differently 42 * for each resource. For IO, productive means a running task. For 43 * memory, productive means a running task that isn't a reclaimer. For 44 * CPU, productive means an oncpu task. 45 * 46 * Naturally, the FULL state doesn't exist for the CPU resource at the 47 * system level, but exist at the cgroup level. At the cgroup level, 48 * FULL means all non-idle tasks in the cgroup are delayed on the CPU 49 * resource which is being used by others outside of the cgroup or 50 * throttled by the cgroup cpu.max configuration. 51 * 52 * The percentage of wallclock time spent in those compound stall 53 * states gives pressure numbers between 0 and 100 for each resource, 54 * where the SOME percentage indicates workload slowdowns and the FULL 55 * percentage indicates reduced CPU utilization: 56 * 57 * %SOME = time(SOME) / period 58 * %FULL = time(FULL) / period 59 * 60 * Multiple CPUs 61 * 62 * The more tasks and available CPUs there are, the more work can be 63 * performed concurrently. This means that the potential that can go 64 * unrealized due to resource contention *also* scales with non-idle 65 * tasks and CPUs. 66 * 67 * Consider a scenario where 257 number crunching tasks are trying to 68 * run concurrently on 256 CPUs. If we simply aggregated the task 69 * states, we would have to conclude a CPU SOME pressure number of 70 * 100%, since *somebody* is waiting on a runqueue at all 71 * times. However, that is clearly not the amount of contention the 72 * workload is experiencing: only one out of 256 possible execution 73 * threads will be contended at any given time, or about 0.4%. 74 * 75 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any 76 * given time *one* of the tasks is delayed due to a lack of memory. 77 * Again, looking purely at the task state would yield a memory FULL 78 * pressure number of 0%, since *somebody* is always making forward 79 * progress. But again this wouldn't capture the amount of execution 80 * potential lost, which is 1 out of 4 CPUs, or 25%. 81 * 82 * To calculate wasted potential (pressure) with multiple processors, 83 * we have to base our calculation on the number of non-idle tasks in 84 * conjunction with the number of available CPUs, which is the number 85 * of potential execution threads. SOME becomes then the proportion of 86 * delayed tasks to possible threads, and FULL is the share of possible 87 * threads that are unproductive due to delays: 88 * 89 * threads = min(nr_nonidle_tasks, nr_cpus) 90 * SOME = min(nr_delayed_tasks / threads, 1) 91 * FULL = (threads - min(nr_productive_tasks, threads)) / threads 92 * 93 * For the 257 number crunchers on 256 CPUs, this yields: 94 * 95 * threads = min(257, 256) 96 * SOME = min(1 / 256, 1) = 0.4% 97 * FULL = (256 - min(256, 256)) / 256 = 0% 98 * 99 * For the 1 out of 4 memory-delayed tasks, this yields: 100 * 101 * threads = min(4, 4) 102 * SOME = min(1 / 4, 1) = 25% 103 * FULL = (4 - min(3, 4)) / 4 = 25% 104 * 105 * [ Substitute nr_cpus with 1, and you can see that it's a natural 106 * extension of the single-CPU model. ] 107 * 108 * Implementation 109 * 110 * To assess the precise time spent in each such state, we would have 111 * to freeze the system on task changes and start/stop the state 112 * clocks accordingly. Obviously that doesn't scale in practice. 113 * 114 * Because the scheduler aims to distribute the compute load evenly 115 * among the available CPUs, we can track task state locally to each 116 * CPU and, at much lower frequency, extrapolate the global state for 117 * the cumulative stall times and the running averages. 118 * 119 * For each runqueue, we track: 120 * 121 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0) 122 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu]) 123 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0) 124 * 125 * and then periodically aggregate: 126 * 127 * tNONIDLE = sum(tNONIDLE[i]) 128 * 129 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE 130 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE 131 * 132 * %SOME = tSOME / period 133 * %FULL = tFULL / period 134 * 135 * This gives us an approximation of pressure that is practical 136 * cost-wise, yet way more sensitive and accurate than periodic 137 * sampling of the aggregate task states would be. 138 */ 139 140 static int psi_bug __read_mostly; 141 142 DEFINE_STATIC_KEY_FALSE(psi_disabled); 143 DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled); 144 145 #ifdef CONFIG_PSI_DEFAULT_DISABLED 146 static bool psi_enable; 147 #else 148 static bool psi_enable = true; 149 #endif 150 static int __init setup_psi(char *str) 151 { 152 return kstrtobool(str, &psi_enable) == 0; 153 } 154 __setup("psi=", setup_psi); 155 156 /* Running averages - we need to be higher-res than loadavg */ 157 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */ 158 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */ 159 #define EXP_60s 1981 /* 1/exp(2s/60s) */ 160 #define EXP_300s 2034 /* 1/exp(2s/300s) */ 161 162 /* PSI trigger definitions */ 163 #define WINDOW_MIN_US 500000 /* Min window size is 500ms */ 164 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */ 165 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */ 166 167 /* Sampling frequency in nanoseconds */ 168 static u64 psi_period __read_mostly; 169 170 /* System-level pressure and stall tracking */ 171 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu); 172 struct psi_group psi_system = { 173 .pcpu = &system_group_pcpu, 174 }; 175 176 static void psi_avgs_work(struct work_struct *work); 177 178 static void poll_timer_fn(struct timer_list *t); 179 180 static void group_init(struct psi_group *group) 181 { 182 int cpu; 183 184 for_each_possible_cpu(cpu) 185 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq); 186 group->avg_last_update = sched_clock(); 187 group->avg_next_update = group->avg_last_update + psi_period; 188 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work); 189 mutex_init(&group->avgs_lock); 190 /* Init trigger-related members */ 191 mutex_init(&group->trigger_lock); 192 INIT_LIST_HEAD(&group->triggers); 193 memset(group->nr_triggers, 0, sizeof(group->nr_triggers)); 194 group->poll_states = 0; 195 group->poll_min_period = U32_MAX; 196 memset(group->polling_total, 0, sizeof(group->polling_total)); 197 group->polling_next_update = ULLONG_MAX; 198 group->polling_until = 0; 199 init_waitqueue_head(&group->poll_wait); 200 timer_setup(&group->poll_timer, poll_timer_fn, 0); 201 rcu_assign_pointer(group->poll_task, NULL); 202 } 203 204 void __init psi_init(void) 205 { 206 if (!psi_enable) { 207 static_branch_enable(&psi_disabled); 208 return; 209 } 210 211 if (!cgroup_psi_enabled()) 212 static_branch_disable(&psi_cgroups_enabled); 213 214 psi_period = jiffies_to_nsecs(PSI_FREQ); 215 group_init(&psi_system); 216 } 217 218 static bool test_state(unsigned int *tasks, enum psi_states state) 219 { 220 switch (state) { 221 case PSI_IO_SOME: 222 return unlikely(tasks[NR_IOWAIT]); 223 case PSI_IO_FULL: 224 return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]); 225 case PSI_MEM_SOME: 226 return unlikely(tasks[NR_MEMSTALL]); 227 case PSI_MEM_FULL: 228 return unlikely(tasks[NR_MEMSTALL] && 229 tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]); 230 case PSI_CPU_SOME: 231 return unlikely(tasks[NR_RUNNING] > tasks[NR_ONCPU]); 232 case PSI_CPU_FULL: 233 return unlikely(tasks[NR_RUNNING] && !tasks[NR_ONCPU]); 234 case PSI_NONIDLE: 235 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || 236 tasks[NR_RUNNING]; 237 default: 238 return false; 239 } 240 } 241 242 static void get_recent_times(struct psi_group *group, int cpu, 243 enum psi_aggregators aggregator, u32 *times, 244 u32 *pchanged_states) 245 { 246 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu); 247 u64 now, state_start; 248 enum psi_states s; 249 unsigned int seq; 250 u32 state_mask; 251 252 *pchanged_states = 0; 253 254 /* Snapshot a coherent view of the CPU state */ 255 do { 256 seq = read_seqcount_begin(&groupc->seq); 257 now = cpu_clock(cpu); 258 memcpy(times, groupc->times, sizeof(groupc->times)); 259 state_mask = groupc->state_mask; 260 state_start = groupc->state_start; 261 } while (read_seqcount_retry(&groupc->seq, seq)); 262 263 /* Calculate state time deltas against the previous snapshot */ 264 for (s = 0; s < NR_PSI_STATES; s++) { 265 u32 delta; 266 /* 267 * In addition to already concluded states, we also 268 * incorporate currently active states on the CPU, 269 * since states may last for many sampling periods. 270 * 271 * This way we keep our delta sampling buckets small 272 * (u32) and our reported pressure close to what's 273 * actually happening. 274 */ 275 if (state_mask & (1 << s)) 276 times[s] += now - state_start; 277 278 delta = times[s] - groupc->times_prev[aggregator][s]; 279 groupc->times_prev[aggregator][s] = times[s]; 280 281 times[s] = delta; 282 if (delta) 283 *pchanged_states |= (1 << s); 284 } 285 } 286 287 static void calc_avgs(unsigned long avg[3], int missed_periods, 288 u64 time, u64 period) 289 { 290 unsigned long pct; 291 292 /* Fill in zeroes for periods of no activity */ 293 if (missed_periods) { 294 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods); 295 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods); 296 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods); 297 } 298 299 /* Sample the most recent active period */ 300 pct = div_u64(time * 100, period); 301 pct *= FIXED_1; 302 avg[0] = calc_load(avg[0], EXP_10s, pct); 303 avg[1] = calc_load(avg[1], EXP_60s, pct); 304 avg[2] = calc_load(avg[2], EXP_300s, pct); 305 } 306 307 static void collect_percpu_times(struct psi_group *group, 308 enum psi_aggregators aggregator, 309 u32 *pchanged_states) 310 { 311 u64 deltas[NR_PSI_STATES - 1] = { 0, }; 312 unsigned long nonidle_total = 0; 313 u32 changed_states = 0; 314 int cpu; 315 int s; 316 317 /* 318 * Collect the per-cpu time buckets and average them into a 319 * single time sample that is normalized to wallclock time. 320 * 321 * For averaging, each CPU is weighted by its non-idle time in 322 * the sampling period. This eliminates artifacts from uneven 323 * loading, or even entirely idle CPUs. 324 */ 325 for_each_possible_cpu(cpu) { 326 u32 times[NR_PSI_STATES]; 327 u32 nonidle; 328 u32 cpu_changed_states; 329 330 get_recent_times(group, cpu, aggregator, times, 331 &cpu_changed_states); 332 changed_states |= cpu_changed_states; 333 334 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]); 335 nonidle_total += nonidle; 336 337 for (s = 0; s < PSI_NONIDLE; s++) 338 deltas[s] += (u64)times[s] * nonidle; 339 } 340 341 /* 342 * Integrate the sample into the running statistics that are 343 * reported to userspace: the cumulative stall times and the 344 * decaying averages. 345 * 346 * Pressure percentages are sampled at PSI_FREQ. We might be 347 * called more often when the user polls more frequently than 348 * that; we might be called less often when there is no task 349 * activity, thus no data, and clock ticks are sporadic. The 350 * below handles both. 351 */ 352 353 /* total= */ 354 for (s = 0; s < NR_PSI_STATES - 1; s++) 355 group->total[aggregator][s] += 356 div_u64(deltas[s], max(nonidle_total, 1UL)); 357 358 if (pchanged_states) 359 *pchanged_states = changed_states; 360 } 361 362 static u64 update_averages(struct psi_group *group, u64 now) 363 { 364 unsigned long missed_periods = 0; 365 u64 expires, period; 366 u64 avg_next_update; 367 int s; 368 369 /* avgX= */ 370 expires = group->avg_next_update; 371 if (now - expires >= psi_period) 372 missed_periods = div_u64(now - expires, psi_period); 373 374 /* 375 * The periodic clock tick can get delayed for various 376 * reasons, especially on loaded systems. To avoid clock 377 * drift, we schedule the clock in fixed psi_period intervals. 378 * But the deltas we sample out of the per-cpu buckets above 379 * are based on the actual time elapsing between clock ticks. 380 */ 381 avg_next_update = expires + ((1 + missed_periods) * psi_period); 382 period = now - (group->avg_last_update + (missed_periods * psi_period)); 383 group->avg_last_update = now; 384 385 for (s = 0; s < NR_PSI_STATES - 1; s++) { 386 u32 sample; 387 388 sample = group->total[PSI_AVGS][s] - group->avg_total[s]; 389 /* 390 * Due to the lockless sampling of the time buckets, 391 * recorded time deltas can slip into the next period, 392 * which under full pressure can result in samples in 393 * excess of the period length. 394 * 395 * We don't want to report non-sensical pressures in 396 * excess of 100%, nor do we want to drop such events 397 * on the floor. Instead we punt any overage into the 398 * future until pressure subsides. By doing this we 399 * don't underreport the occurring pressure curve, we 400 * just report it delayed by one period length. 401 * 402 * The error isn't cumulative. As soon as another 403 * delta slips from a period P to P+1, by definition 404 * it frees up its time T in P. 405 */ 406 if (sample > period) 407 sample = period; 408 group->avg_total[s] += sample; 409 calc_avgs(group->avg[s], missed_periods, sample, period); 410 } 411 412 return avg_next_update; 413 } 414 415 static void psi_avgs_work(struct work_struct *work) 416 { 417 struct delayed_work *dwork; 418 struct psi_group *group; 419 u32 changed_states; 420 bool nonidle; 421 u64 now; 422 423 dwork = to_delayed_work(work); 424 group = container_of(dwork, struct psi_group, avgs_work); 425 426 mutex_lock(&group->avgs_lock); 427 428 now = sched_clock(); 429 430 collect_percpu_times(group, PSI_AVGS, &changed_states); 431 nonidle = changed_states & (1 << PSI_NONIDLE); 432 /* 433 * If there is task activity, periodically fold the per-cpu 434 * times and feed samples into the running averages. If things 435 * are idle and there is no data to process, stop the clock. 436 * Once restarted, we'll catch up the running averages in one 437 * go - see calc_avgs() and missed_periods. 438 */ 439 if (now >= group->avg_next_update) 440 group->avg_next_update = update_averages(group, now); 441 442 if (nonidle) { 443 schedule_delayed_work(dwork, nsecs_to_jiffies( 444 group->avg_next_update - now) + 1); 445 } 446 447 mutex_unlock(&group->avgs_lock); 448 } 449 450 /* Trigger tracking window manipulations */ 451 static void window_reset(struct psi_window *win, u64 now, u64 value, 452 u64 prev_growth) 453 { 454 win->start_time = now; 455 win->start_value = value; 456 win->prev_growth = prev_growth; 457 } 458 459 /* 460 * PSI growth tracking window update and growth calculation routine. 461 * 462 * This approximates a sliding tracking window by interpolating 463 * partially elapsed windows using historical growth data from the 464 * previous intervals. This minimizes memory requirements (by not storing 465 * all the intermediate values in the previous window) and simplifies 466 * the calculations. It works well because PSI signal changes only in 467 * positive direction and over relatively small window sizes the growth 468 * is close to linear. 469 */ 470 static u64 window_update(struct psi_window *win, u64 now, u64 value) 471 { 472 u64 elapsed; 473 u64 growth; 474 475 elapsed = now - win->start_time; 476 growth = value - win->start_value; 477 /* 478 * After each tracking window passes win->start_value and 479 * win->start_time get reset and win->prev_growth stores 480 * the average per-window growth of the previous window. 481 * win->prev_growth is then used to interpolate additional 482 * growth from the previous window assuming it was linear. 483 */ 484 if (elapsed > win->size) 485 window_reset(win, now, value, growth); 486 else { 487 u32 remaining; 488 489 remaining = win->size - elapsed; 490 growth += div64_u64(win->prev_growth * remaining, win->size); 491 } 492 493 return growth; 494 } 495 496 static void init_triggers(struct psi_group *group, u64 now) 497 { 498 struct psi_trigger *t; 499 500 list_for_each_entry(t, &group->triggers, node) 501 window_reset(&t->win, now, 502 group->total[PSI_POLL][t->state], 0); 503 memcpy(group->polling_total, group->total[PSI_POLL], 504 sizeof(group->polling_total)); 505 group->polling_next_update = now + group->poll_min_period; 506 } 507 508 static u64 update_triggers(struct psi_group *group, u64 now) 509 { 510 struct psi_trigger *t; 511 bool update_total = false; 512 u64 *total = group->total[PSI_POLL]; 513 514 /* 515 * On subsequent updates, calculate growth deltas and let 516 * watchers know when their specified thresholds are exceeded. 517 */ 518 list_for_each_entry(t, &group->triggers, node) { 519 u64 growth; 520 bool new_stall; 521 522 new_stall = group->polling_total[t->state] != total[t->state]; 523 524 /* Check for stall activity or a previous threshold breach */ 525 if (!new_stall && !t->pending_event) 526 continue; 527 /* 528 * Check for new stall activity, as well as deferred 529 * events that occurred in the last window after the 530 * trigger had already fired (we want to ratelimit 531 * events without dropping any). 532 */ 533 if (new_stall) { 534 /* 535 * Multiple triggers might be looking at the same state, 536 * remember to update group->polling_total[] once we've 537 * been through all of them. Also remember to extend the 538 * polling time if we see new stall activity. 539 */ 540 update_total = true; 541 542 /* Calculate growth since last update */ 543 growth = window_update(&t->win, now, total[t->state]); 544 if (growth < t->threshold) 545 continue; 546 547 t->pending_event = true; 548 } 549 /* Limit event signaling to once per window */ 550 if (now < t->last_event_time + t->win.size) 551 continue; 552 553 /* Generate an event */ 554 if (cmpxchg(&t->event, 0, 1) == 0) 555 wake_up_interruptible(&t->event_wait); 556 t->last_event_time = now; 557 /* Reset threshold breach flag once event got generated */ 558 t->pending_event = false; 559 } 560 561 if (update_total) 562 memcpy(group->polling_total, total, 563 sizeof(group->polling_total)); 564 565 return now + group->poll_min_period; 566 } 567 568 /* Schedule polling if it's not already scheduled. */ 569 static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay) 570 { 571 struct task_struct *task; 572 573 /* 574 * Do not reschedule if already scheduled. 575 * Possible race with a timer scheduled after this check but before 576 * mod_timer below can be tolerated because group->polling_next_update 577 * will keep updates on schedule. 578 */ 579 if (timer_pending(&group->poll_timer)) 580 return; 581 582 rcu_read_lock(); 583 584 task = rcu_dereference(group->poll_task); 585 /* 586 * kworker might be NULL in case psi_trigger_destroy races with 587 * psi_task_change (hotpath) which can't use locks 588 */ 589 if (likely(task)) 590 mod_timer(&group->poll_timer, jiffies + delay); 591 592 rcu_read_unlock(); 593 } 594 595 static void psi_poll_work(struct psi_group *group) 596 { 597 u32 changed_states; 598 u64 now; 599 600 mutex_lock(&group->trigger_lock); 601 602 now = sched_clock(); 603 604 collect_percpu_times(group, PSI_POLL, &changed_states); 605 606 if (changed_states & group->poll_states) { 607 /* Initialize trigger windows when entering polling mode */ 608 if (now > group->polling_until) 609 init_triggers(group, now); 610 611 /* 612 * Keep the monitor active for at least the duration of the 613 * minimum tracking window as long as monitor states are 614 * changing. 615 */ 616 group->polling_until = now + 617 group->poll_min_period * UPDATES_PER_WINDOW; 618 } 619 620 if (now > group->polling_until) { 621 group->polling_next_update = ULLONG_MAX; 622 goto out; 623 } 624 625 if (now >= group->polling_next_update) 626 group->polling_next_update = update_triggers(group, now); 627 628 psi_schedule_poll_work(group, 629 nsecs_to_jiffies(group->polling_next_update - now) + 1); 630 631 out: 632 mutex_unlock(&group->trigger_lock); 633 } 634 635 static int psi_poll_worker(void *data) 636 { 637 struct psi_group *group = (struct psi_group *)data; 638 639 sched_set_fifo_low(current); 640 641 while (true) { 642 wait_event_interruptible(group->poll_wait, 643 atomic_cmpxchg(&group->poll_wakeup, 1, 0) || 644 kthread_should_stop()); 645 if (kthread_should_stop()) 646 break; 647 648 psi_poll_work(group); 649 } 650 return 0; 651 } 652 653 static void poll_timer_fn(struct timer_list *t) 654 { 655 struct psi_group *group = from_timer(group, t, poll_timer); 656 657 atomic_set(&group->poll_wakeup, 1); 658 wake_up_interruptible(&group->poll_wait); 659 } 660 661 static void record_times(struct psi_group_cpu *groupc, u64 now) 662 { 663 u32 delta; 664 665 delta = now - groupc->state_start; 666 groupc->state_start = now; 667 668 if (groupc->state_mask & (1 << PSI_IO_SOME)) { 669 groupc->times[PSI_IO_SOME] += delta; 670 if (groupc->state_mask & (1 << PSI_IO_FULL)) 671 groupc->times[PSI_IO_FULL] += delta; 672 } 673 674 if (groupc->state_mask & (1 << PSI_MEM_SOME)) { 675 groupc->times[PSI_MEM_SOME] += delta; 676 if (groupc->state_mask & (1 << PSI_MEM_FULL)) 677 groupc->times[PSI_MEM_FULL] += delta; 678 } 679 680 if (groupc->state_mask & (1 << PSI_CPU_SOME)) { 681 groupc->times[PSI_CPU_SOME] += delta; 682 if (groupc->state_mask & (1 << PSI_CPU_FULL)) 683 groupc->times[PSI_CPU_FULL] += delta; 684 } 685 686 if (groupc->state_mask & (1 << PSI_NONIDLE)) 687 groupc->times[PSI_NONIDLE] += delta; 688 } 689 690 static void psi_group_change(struct psi_group *group, int cpu, 691 unsigned int clear, unsigned int set, u64 now, 692 bool wake_clock) 693 { 694 struct psi_group_cpu *groupc; 695 u32 state_mask = 0; 696 unsigned int t, m; 697 enum psi_states s; 698 699 groupc = per_cpu_ptr(group->pcpu, cpu); 700 701 /* 702 * First we assess the aggregate resource states this CPU's 703 * tasks have been in since the last change, and account any 704 * SOME and FULL time these may have resulted in. 705 * 706 * Then we update the task counts according to the state 707 * change requested through the @clear and @set bits. 708 */ 709 write_seqcount_begin(&groupc->seq); 710 711 record_times(groupc, now); 712 713 for (t = 0, m = clear; m; m &= ~(1 << t), t++) { 714 if (!(m & (1 << t))) 715 continue; 716 if (groupc->tasks[t]) { 717 groupc->tasks[t]--; 718 } else if (!psi_bug) { 719 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u %u] clear=%x set=%x\n", 720 cpu, t, groupc->tasks[0], 721 groupc->tasks[1], groupc->tasks[2], 722 groupc->tasks[3], groupc->tasks[4], 723 clear, set); 724 psi_bug = 1; 725 } 726 } 727 728 for (t = 0; set; set &= ~(1 << t), t++) 729 if (set & (1 << t)) 730 groupc->tasks[t]++; 731 732 /* Calculate state mask representing active states */ 733 for (s = 0; s < NR_PSI_STATES; s++) { 734 if (test_state(groupc->tasks, s)) 735 state_mask |= (1 << s); 736 } 737 738 /* 739 * Since we care about lost potential, a memstall is FULL 740 * when there are no other working tasks, but also when 741 * the CPU is actively reclaiming and nothing productive 742 * could run even if it were runnable. So when the current 743 * task in a cgroup is in_memstall, the corresponding groupc 744 * on that cpu is in PSI_MEM_FULL state. 745 */ 746 if (unlikely(groupc->tasks[NR_ONCPU] && cpu_curr(cpu)->in_memstall)) 747 state_mask |= (1 << PSI_MEM_FULL); 748 749 groupc->state_mask = state_mask; 750 751 write_seqcount_end(&groupc->seq); 752 753 if (state_mask & group->poll_states) 754 psi_schedule_poll_work(group, 1); 755 756 if (wake_clock && !delayed_work_pending(&group->avgs_work)) 757 schedule_delayed_work(&group->avgs_work, PSI_FREQ); 758 } 759 760 static struct psi_group *iterate_groups(struct task_struct *task, void **iter) 761 { 762 if (*iter == &psi_system) 763 return NULL; 764 765 #ifdef CONFIG_CGROUPS 766 if (static_branch_likely(&psi_cgroups_enabled)) { 767 struct cgroup *cgroup = NULL; 768 769 if (!*iter) 770 cgroup = task->cgroups->dfl_cgrp; 771 else 772 cgroup = cgroup_parent(*iter); 773 774 if (cgroup && cgroup_parent(cgroup)) { 775 *iter = cgroup; 776 return cgroup_psi(cgroup); 777 } 778 } 779 #endif 780 *iter = &psi_system; 781 return &psi_system; 782 } 783 784 static void psi_flags_change(struct task_struct *task, int clear, int set) 785 { 786 if (((task->psi_flags & set) || 787 (task->psi_flags & clear) != clear) && 788 !psi_bug) { 789 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n", 790 task->pid, task->comm, task_cpu(task), 791 task->psi_flags, clear, set); 792 psi_bug = 1; 793 } 794 795 task->psi_flags &= ~clear; 796 task->psi_flags |= set; 797 } 798 799 void psi_task_change(struct task_struct *task, int clear, int set) 800 { 801 int cpu = task_cpu(task); 802 struct psi_group *group; 803 bool wake_clock = true; 804 void *iter = NULL; 805 u64 now; 806 807 if (!task->pid) 808 return; 809 810 psi_flags_change(task, clear, set); 811 812 now = cpu_clock(cpu); 813 /* 814 * Periodic aggregation shuts off if there is a period of no 815 * task changes, so we wake it back up if necessary. However, 816 * don't do this if the task change is the aggregation worker 817 * itself going to sleep, or we'll ping-pong forever. 818 */ 819 if (unlikely((clear & TSK_RUNNING) && 820 (task->flags & PF_WQ_WORKER) && 821 wq_worker_last_func(task) == psi_avgs_work)) 822 wake_clock = false; 823 824 while ((group = iterate_groups(task, &iter))) 825 psi_group_change(group, cpu, clear, set, now, wake_clock); 826 } 827 828 void psi_task_switch(struct task_struct *prev, struct task_struct *next, 829 bool sleep) 830 { 831 struct psi_group *group, *common = NULL; 832 int cpu = task_cpu(prev); 833 void *iter; 834 u64 now = cpu_clock(cpu); 835 836 if (next->pid) { 837 bool identical_state; 838 839 psi_flags_change(next, 0, TSK_ONCPU); 840 /* 841 * When switching between tasks that have an identical 842 * runtime state, the cgroup that contains both tasks 843 * we reach the first common ancestor. Iterate @next's 844 * ancestors only until we encounter @prev's ONCPU. 845 */ 846 identical_state = prev->psi_flags == next->psi_flags; 847 iter = NULL; 848 while ((group = iterate_groups(next, &iter))) { 849 if (identical_state && 850 per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) { 851 common = group; 852 break; 853 } 854 855 psi_group_change(group, cpu, 0, TSK_ONCPU, now, true); 856 } 857 } 858 859 if (prev->pid) { 860 int clear = TSK_ONCPU, set = 0; 861 862 /* 863 * When we're going to sleep, psi_dequeue() lets us 864 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and 865 * TSK_IOWAIT here, where we can combine it with 866 * TSK_ONCPU and save walking common ancestors twice. 867 */ 868 if (sleep) { 869 clear |= TSK_RUNNING; 870 if (prev->in_memstall) 871 clear |= TSK_MEMSTALL_RUNNING; 872 if (prev->in_iowait) 873 set |= TSK_IOWAIT; 874 } 875 876 psi_flags_change(prev, clear, set); 877 878 iter = NULL; 879 while ((group = iterate_groups(prev, &iter)) && group != common) 880 psi_group_change(group, cpu, clear, set, now, true); 881 882 /* 883 * TSK_ONCPU is handled up to the common ancestor. If we're tasked 884 * with dequeuing too, finish that for the rest of the hierarchy. 885 */ 886 if (sleep) { 887 clear &= ~TSK_ONCPU; 888 for (; group; group = iterate_groups(prev, &iter)) 889 psi_group_change(group, cpu, clear, set, now, true); 890 } 891 } 892 } 893 894 /** 895 * psi_memstall_enter - mark the beginning of a memory stall section 896 * @flags: flags to handle nested sections 897 * 898 * Marks the calling task as being stalled due to a lack of memory, 899 * such as waiting for a refault or performing reclaim. 900 */ 901 void psi_memstall_enter(unsigned long *flags) 902 { 903 struct rq_flags rf; 904 struct rq *rq; 905 906 if (static_branch_likely(&psi_disabled)) 907 return; 908 909 *flags = current->in_memstall; 910 if (*flags) 911 return; 912 /* 913 * in_memstall setting & accounting needs to be atomic wrt 914 * changes to the task's scheduling state, otherwise we can 915 * race with CPU migration. 916 */ 917 rq = this_rq_lock_irq(&rf); 918 919 current->in_memstall = 1; 920 psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING); 921 922 rq_unlock_irq(rq, &rf); 923 } 924 925 /** 926 * psi_memstall_leave - mark the end of an memory stall section 927 * @flags: flags to handle nested memdelay sections 928 * 929 * Marks the calling task as no longer stalled due to lack of memory. 930 */ 931 void psi_memstall_leave(unsigned long *flags) 932 { 933 struct rq_flags rf; 934 struct rq *rq; 935 936 if (static_branch_likely(&psi_disabled)) 937 return; 938 939 if (*flags) 940 return; 941 /* 942 * in_memstall clearing & accounting needs to be atomic wrt 943 * changes to the task's scheduling state, otherwise we could 944 * race with CPU migration. 945 */ 946 rq = this_rq_lock_irq(&rf); 947 948 current->in_memstall = 0; 949 psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0); 950 951 rq_unlock_irq(rq, &rf); 952 } 953 954 #ifdef CONFIG_CGROUPS 955 int psi_cgroup_alloc(struct cgroup *cgroup) 956 { 957 if (static_branch_likely(&psi_disabled)) 958 return 0; 959 960 cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu); 961 if (!cgroup->psi.pcpu) 962 return -ENOMEM; 963 group_init(&cgroup->psi); 964 return 0; 965 } 966 967 void psi_cgroup_free(struct cgroup *cgroup) 968 { 969 if (static_branch_likely(&psi_disabled)) 970 return; 971 972 cancel_delayed_work_sync(&cgroup->psi.avgs_work); 973 free_percpu(cgroup->psi.pcpu); 974 /* All triggers must be removed by now */ 975 WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n"); 976 } 977 978 /** 979 * cgroup_move_task - move task to a different cgroup 980 * @task: the task 981 * @to: the target css_set 982 * 983 * Move task to a new cgroup and safely migrate its associated stall 984 * state between the different groups. 985 * 986 * This function acquires the task's rq lock to lock out concurrent 987 * changes to the task's scheduling state and - in case the task is 988 * running - concurrent changes to its stall state. 989 */ 990 void cgroup_move_task(struct task_struct *task, struct css_set *to) 991 { 992 unsigned int task_flags; 993 struct rq_flags rf; 994 struct rq *rq; 995 996 if (static_branch_likely(&psi_disabled)) { 997 /* 998 * Lame to do this here, but the scheduler cannot be locked 999 * from the outside, so we move cgroups from inside sched/. 1000 */ 1001 rcu_assign_pointer(task->cgroups, to); 1002 return; 1003 } 1004 1005 rq = task_rq_lock(task, &rf); 1006 1007 /* 1008 * We may race with schedule() dropping the rq lock between 1009 * deactivating prev and switching to next. Because the psi 1010 * updates from the deactivation are deferred to the switch 1011 * callback to save cgroup tree updates, the task's scheduling 1012 * state here is not coherent with its psi state: 1013 * 1014 * schedule() cgroup_move_task() 1015 * rq_lock() 1016 * deactivate_task() 1017 * p->on_rq = 0 1018 * psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates 1019 * pick_next_task() 1020 * rq_unlock() 1021 * rq_lock() 1022 * psi_task_change() // old cgroup 1023 * task->cgroups = to 1024 * psi_task_change() // new cgroup 1025 * rq_unlock() 1026 * rq_lock() 1027 * psi_sched_switch() // does deferred updates in new cgroup 1028 * 1029 * Don't rely on the scheduling state. Use psi_flags instead. 1030 */ 1031 task_flags = task->psi_flags; 1032 1033 if (task_flags) 1034 psi_task_change(task, task_flags, 0); 1035 1036 /* See comment above */ 1037 rcu_assign_pointer(task->cgroups, to); 1038 1039 if (task_flags) 1040 psi_task_change(task, 0, task_flags); 1041 1042 task_rq_unlock(rq, task, &rf); 1043 } 1044 #endif /* CONFIG_CGROUPS */ 1045 1046 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res) 1047 { 1048 int full; 1049 u64 now; 1050 1051 if (static_branch_likely(&psi_disabled)) 1052 return -EOPNOTSUPP; 1053 1054 /* Update averages before reporting them */ 1055 mutex_lock(&group->avgs_lock); 1056 now = sched_clock(); 1057 collect_percpu_times(group, PSI_AVGS, NULL); 1058 if (now >= group->avg_next_update) 1059 group->avg_next_update = update_averages(group, now); 1060 mutex_unlock(&group->avgs_lock); 1061 1062 for (full = 0; full < 2; full++) { 1063 unsigned long avg[3] = { 0, }; 1064 u64 total = 0; 1065 int w; 1066 1067 /* CPU FULL is undefined at the system level */ 1068 if (!(group == &psi_system && res == PSI_CPU && full)) { 1069 for (w = 0; w < 3; w++) 1070 avg[w] = group->avg[res * 2 + full][w]; 1071 total = div_u64(group->total[PSI_AVGS][res * 2 + full], 1072 NSEC_PER_USEC); 1073 } 1074 1075 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n", 1076 full ? "full" : "some", 1077 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]), 1078 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]), 1079 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]), 1080 total); 1081 } 1082 1083 return 0; 1084 } 1085 1086 struct psi_trigger *psi_trigger_create(struct psi_group *group, 1087 char *buf, size_t nbytes, enum psi_res res) 1088 { 1089 struct psi_trigger *t; 1090 enum psi_states state; 1091 u32 threshold_us; 1092 u32 window_us; 1093 1094 if (static_branch_likely(&psi_disabled)) 1095 return ERR_PTR(-EOPNOTSUPP); 1096 1097 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2) 1098 state = PSI_IO_SOME + res * 2; 1099 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2) 1100 state = PSI_IO_FULL + res * 2; 1101 else 1102 return ERR_PTR(-EINVAL); 1103 1104 if (state >= PSI_NONIDLE) 1105 return ERR_PTR(-EINVAL); 1106 1107 if (window_us < WINDOW_MIN_US || 1108 window_us > WINDOW_MAX_US) 1109 return ERR_PTR(-EINVAL); 1110 1111 /* Check threshold */ 1112 if (threshold_us == 0 || threshold_us > window_us) 1113 return ERR_PTR(-EINVAL); 1114 1115 t = kmalloc(sizeof(*t), GFP_KERNEL); 1116 if (!t) 1117 return ERR_PTR(-ENOMEM); 1118 1119 t->group = group; 1120 t->state = state; 1121 t->threshold = threshold_us * NSEC_PER_USEC; 1122 t->win.size = window_us * NSEC_PER_USEC; 1123 window_reset(&t->win, sched_clock(), 1124 group->total[PSI_POLL][t->state], 0); 1125 1126 t->event = 0; 1127 t->last_event_time = 0; 1128 init_waitqueue_head(&t->event_wait); 1129 t->pending_event = false; 1130 1131 mutex_lock(&group->trigger_lock); 1132 1133 if (!rcu_access_pointer(group->poll_task)) { 1134 struct task_struct *task; 1135 1136 task = kthread_create(psi_poll_worker, group, "psimon"); 1137 if (IS_ERR(task)) { 1138 kfree(t); 1139 mutex_unlock(&group->trigger_lock); 1140 return ERR_CAST(task); 1141 } 1142 atomic_set(&group->poll_wakeup, 0); 1143 wake_up_process(task); 1144 rcu_assign_pointer(group->poll_task, task); 1145 } 1146 1147 list_add(&t->node, &group->triggers); 1148 group->poll_min_period = min(group->poll_min_period, 1149 div_u64(t->win.size, UPDATES_PER_WINDOW)); 1150 group->nr_triggers[t->state]++; 1151 group->poll_states |= (1 << t->state); 1152 1153 mutex_unlock(&group->trigger_lock); 1154 1155 return t; 1156 } 1157 1158 void psi_trigger_destroy(struct psi_trigger *t) 1159 { 1160 struct psi_group *group; 1161 struct task_struct *task_to_destroy = NULL; 1162 1163 /* 1164 * We do not check psi_disabled since it might have been disabled after 1165 * the trigger got created. 1166 */ 1167 if (!t) 1168 return; 1169 1170 group = t->group; 1171 /* 1172 * Wakeup waiters to stop polling. Can happen if cgroup is deleted 1173 * from under a polling process. 1174 */ 1175 wake_up_interruptible(&t->event_wait); 1176 1177 mutex_lock(&group->trigger_lock); 1178 1179 if (!list_empty(&t->node)) { 1180 struct psi_trigger *tmp; 1181 u64 period = ULLONG_MAX; 1182 1183 list_del(&t->node); 1184 group->nr_triggers[t->state]--; 1185 if (!group->nr_triggers[t->state]) 1186 group->poll_states &= ~(1 << t->state); 1187 /* reset min update period for the remaining triggers */ 1188 list_for_each_entry(tmp, &group->triggers, node) 1189 period = min(period, div_u64(tmp->win.size, 1190 UPDATES_PER_WINDOW)); 1191 group->poll_min_period = period; 1192 /* Destroy poll_task when the last trigger is destroyed */ 1193 if (group->poll_states == 0) { 1194 group->polling_until = 0; 1195 task_to_destroy = rcu_dereference_protected( 1196 group->poll_task, 1197 lockdep_is_held(&group->trigger_lock)); 1198 rcu_assign_pointer(group->poll_task, NULL); 1199 del_timer(&group->poll_timer); 1200 } 1201 } 1202 1203 mutex_unlock(&group->trigger_lock); 1204 1205 /* 1206 * Wait for psi_schedule_poll_work RCU to complete its read-side 1207 * critical section before destroying the trigger and optionally the 1208 * poll_task. 1209 */ 1210 synchronize_rcu(); 1211 /* 1212 * Stop kthread 'psimon' after releasing trigger_lock to prevent a 1213 * deadlock while waiting for psi_poll_work to acquire trigger_lock 1214 */ 1215 if (task_to_destroy) { 1216 /* 1217 * After the RCU grace period has expired, the worker 1218 * can no longer be found through group->poll_task. 1219 */ 1220 kthread_stop(task_to_destroy); 1221 } 1222 kfree(t); 1223 } 1224 1225 __poll_t psi_trigger_poll(void **trigger_ptr, 1226 struct file *file, poll_table *wait) 1227 { 1228 __poll_t ret = DEFAULT_POLLMASK; 1229 struct psi_trigger *t; 1230 1231 if (static_branch_likely(&psi_disabled)) 1232 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; 1233 1234 t = smp_load_acquire(trigger_ptr); 1235 if (!t) 1236 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; 1237 1238 poll_wait(file, &t->event_wait, wait); 1239 1240 if (cmpxchg(&t->event, 1, 0) == 1) 1241 ret |= EPOLLPRI; 1242 1243 return ret; 1244 } 1245 1246 #ifdef CONFIG_PROC_FS 1247 static int psi_io_show(struct seq_file *m, void *v) 1248 { 1249 return psi_show(m, &psi_system, PSI_IO); 1250 } 1251 1252 static int psi_memory_show(struct seq_file *m, void *v) 1253 { 1254 return psi_show(m, &psi_system, PSI_MEM); 1255 } 1256 1257 static int psi_cpu_show(struct seq_file *m, void *v) 1258 { 1259 return psi_show(m, &psi_system, PSI_CPU); 1260 } 1261 1262 static int psi_open(struct file *file, int (*psi_show)(struct seq_file *, void *)) 1263 { 1264 if (file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE)) 1265 return -EPERM; 1266 1267 return single_open(file, psi_show, NULL); 1268 } 1269 1270 static int psi_io_open(struct inode *inode, struct file *file) 1271 { 1272 return psi_open(file, psi_io_show); 1273 } 1274 1275 static int psi_memory_open(struct inode *inode, struct file *file) 1276 { 1277 return psi_open(file, psi_memory_show); 1278 } 1279 1280 static int psi_cpu_open(struct inode *inode, struct file *file) 1281 { 1282 return psi_open(file, psi_cpu_show); 1283 } 1284 1285 static ssize_t psi_write(struct file *file, const char __user *user_buf, 1286 size_t nbytes, enum psi_res res) 1287 { 1288 char buf[32]; 1289 size_t buf_size; 1290 struct seq_file *seq; 1291 struct psi_trigger *new; 1292 1293 if (static_branch_likely(&psi_disabled)) 1294 return -EOPNOTSUPP; 1295 1296 if (!nbytes) 1297 return -EINVAL; 1298 1299 buf_size = min(nbytes, sizeof(buf)); 1300 if (copy_from_user(buf, user_buf, buf_size)) 1301 return -EFAULT; 1302 1303 buf[buf_size - 1] = '\0'; 1304 1305 seq = file->private_data; 1306 1307 /* Take seq->lock to protect seq->private from concurrent writes */ 1308 mutex_lock(&seq->lock); 1309 1310 /* Allow only one trigger per file descriptor */ 1311 if (seq->private) { 1312 mutex_unlock(&seq->lock); 1313 return -EBUSY; 1314 } 1315 1316 new = psi_trigger_create(&psi_system, buf, nbytes, res); 1317 if (IS_ERR(new)) { 1318 mutex_unlock(&seq->lock); 1319 return PTR_ERR(new); 1320 } 1321 1322 smp_store_release(&seq->private, new); 1323 mutex_unlock(&seq->lock); 1324 1325 return nbytes; 1326 } 1327 1328 static ssize_t psi_io_write(struct file *file, const char __user *user_buf, 1329 size_t nbytes, loff_t *ppos) 1330 { 1331 return psi_write(file, user_buf, nbytes, PSI_IO); 1332 } 1333 1334 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf, 1335 size_t nbytes, loff_t *ppos) 1336 { 1337 return psi_write(file, user_buf, nbytes, PSI_MEM); 1338 } 1339 1340 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf, 1341 size_t nbytes, loff_t *ppos) 1342 { 1343 return psi_write(file, user_buf, nbytes, PSI_CPU); 1344 } 1345 1346 static __poll_t psi_fop_poll(struct file *file, poll_table *wait) 1347 { 1348 struct seq_file *seq = file->private_data; 1349 1350 return psi_trigger_poll(&seq->private, file, wait); 1351 } 1352 1353 static int psi_fop_release(struct inode *inode, struct file *file) 1354 { 1355 struct seq_file *seq = file->private_data; 1356 1357 psi_trigger_destroy(seq->private); 1358 return single_release(inode, file); 1359 } 1360 1361 static const struct proc_ops psi_io_proc_ops = { 1362 .proc_open = psi_io_open, 1363 .proc_read = seq_read, 1364 .proc_lseek = seq_lseek, 1365 .proc_write = psi_io_write, 1366 .proc_poll = psi_fop_poll, 1367 .proc_release = psi_fop_release, 1368 }; 1369 1370 static const struct proc_ops psi_memory_proc_ops = { 1371 .proc_open = psi_memory_open, 1372 .proc_read = seq_read, 1373 .proc_lseek = seq_lseek, 1374 .proc_write = psi_memory_write, 1375 .proc_poll = psi_fop_poll, 1376 .proc_release = psi_fop_release, 1377 }; 1378 1379 static const struct proc_ops psi_cpu_proc_ops = { 1380 .proc_open = psi_cpu_open, 1381 .proc_read = seq_read, 1382 .proc_lseek = seq_lseek, 1383 .proc_write = psi_cpu_write, 1384 .proc_poll = psi_fop_poll, 1385 .proc_release = psi_fop_release, 1386 }; 1387 1388 static int __init psi_proc_init(void) 1389 { 1390 if (psi_enable) { 1391 proc_mkdir("pressure", NULL); 1392 proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops); 1393 proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops); 1394 proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops); 1395 } 1396 return 0; 1397 } 1398 module_init(psi_proc_init); 1399 1400 #endif /* CONFIG_PROC_FS */ 1401