xref: /openbmc/linux/kernel/sched/psi.c (revision 9b68f30b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Pressure stall information for CPU, memory and IO
4  *
5  * Copyright (c) 2018 Facebook, Inc.
6  * Author: Johannes Weiner <hannes@cmpxchg.org>
7  *
8  * Polling support by Suren Baghdasaryan <surenb@google.com>
9  * Copyright (c) 2018 Google, Inc.
10  *
11  * When CPU, memory and IO are contended, tasks experience delays that
12  * reduce throughput and introduce latencies into the workload. Memory
13  * and IO contention, in addition, can cause a full loss of forward
14  * progress in which the CPU goes idle.
15  *
16  * This code aggregates individual task delays into resource pressure
17  * metrics that indicate problems with both workload health and
18  * resource utilization.
19  *
20  *			Model
21  *
22  * The time in which a task can execute on a CPU is our baseline for
23  * productivity. Pressure expresses the amount of time in which this
24  * potential cannot be realized due to resource contention.
25  *
26  * This concept of productivity has two components: the workload and
27  * the CPU. To measure the impact of pressure on both, we define two
28  * contention states for a resource: SOME and FULL.
29  *
30  * In the SOME state of a given resource, one or more tasks are
31  * delayed on that resource. This affects the workload's ability to
32  * perform work, but the CPU may still be executing other tasks.
33  *
34  * In the FULL state of a given resource, all non-idle tasks are
35  * delayed on that resource such that nobody is advancing and the CPU
36  * goes idle. This leaves both workload and CPU unproductive.
37  *
38  *	SOME = nr_delayed_tasks != 0
39  *	FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
40  *
41  * What it means for a task to be productive is defined differently
42  * for each resource. For IO, productive means a running task. For
43  * memory, productive means a running task that isn't a reclaimer. For
44  * CPU, productive means an oncpu task.
45  *
46  * Naturally, the FULL state doesn't exist for the CPU resource at the
47  * system level, but exist at the cgroup level. At the cgroup level,
48  * FULL means all non-idle tasks in the cgroup are delayed on the CPU
49  * resource which is being used by others outside of the cgroup or
50  * throttled by the cgroup cpu.max configuration.
51  *
52  * The percentage of wallclock time spent in those compound stall
53  * states gives pressure numbers between 0 and 100 for each resource,
54  * where the SOME percentage indicates workload slowdowns and the FULL
55  * percentage indicates reduced CPU utilization:
56  *
57  *	%SOME = time(SOME) / period
58  *	%FULL = time(FULL) / period
59  *
60  *			Multiple CPUs
61  *
62  * The more tasks and available CPUs there are, the more work can be
63  * performed concurrently. This means that the potential that can go
64  * unrealized due to resource contention *also* scales with non-idle
65  * tasks and CPUs.
66  *
67  * Consider a scenario where 257 number crunching tasks are trying to
68  * run concurrently on 256 CPUs. If we simply aggregated the task
69  * states, we would have to conclude a CPU SOME pressure number of
70  * 100%, since *somebody* is waiting on a runqueue at all
71  * times. However, that is clearly not the amount of contention the
72  * workload is experiencing: only one out of 256 possible execution
73  * threads will be contended at any given time, or about 0.4%.
74  *
75  * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
76  * given time *one* of the tasks is delayed due to a lack of memory.
77  * Again, looking purely at the task state would yield a memory FULL
78  * pressure number of 0%, since *somebody* is always making forward
79  * progress. But again this wouldn't capture the amount of execution
80  * potential lost, which is 1 out of 4 CPUs, or 25%.
81  *
82  * To calculate wasted potential (pressure) with multiple processors,
83  * we have to base our calculation on the number of non-idle tasks in
84  * conjunction with the number of available CPUs, which is the number
85  * of potential execution threads. SOME becomes then the proportion of
86  * delayed tasks to possible threads, and FULL is the share of possible
87  * threads that are unproductive due to delays:
88  *
89  *	threads = min(nr_nonidle_tasks, nr_cpus)
90  *	   SOME = min(nr_delayed_tasks / threads, 1)
91  *	   FULL = (threads - min(nr_productive_tasks, threads)) / threads
92  *
93  * For the 257 number crunchers on 256 CPUs, this yields:
94  *
95  *	threads = min(257, 256)
96  *	   SOME = min(1 / 256, 1)             = 0.4%
97  *	   FULL = (256 - min(256, 256)) / 256 = 0%
98  *
99  * For the 1 out of 4 memory-delayed tasks, this yields:
100  *
101  *	threads = min(4, 4)
102  *	   SOME = min(1 / 4, 1)               = 25%
103  *	   FULL = (4 - min(3, 4)) / 4         = 25%
104  *
105  * [ Substitute nr_cpus with 1, and you can see that it's a natural
106  *   extension of the single-CPU model. ]
107  *
108  *			Implementation
109  *
110  * To assess the precise time spent in each such state, we would have
111  * to freeze the system on task changes and start/stop the state
112  * clocks accordingly. Obviously that doesn't scale in practice.
113  *
114  * Because the scheduler aims to distribute the compute load evenly
115  * among the available CPUs, we can track task state locally to each
116  * CPU and, at much lower frequency, extrapolate the global state for
117  * the cumulative stall times and the running averages.
118  *
119  * For each runqueue, we track:
120  *
121  *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
122  *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
123  *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
124  *
125  * and then periodically aggregate:
126  *
127  *	tNONIDLE = sum(tNONIDLE[i])
128  *
129  *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
130  *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
131  *
132  *	   %SOME = tSOME / period
133  *	   %FULL = tFULL / period
134  *
135  * This gives us an approximation of pressure that is practical
136  * cost-wise, yet way more sensitive and accurate than periodic
137  * sampling of the aggregate task states would be.
138  */
139 
140 static int psi_bug __read_mostly;
141 
142 DEFINE_STATIC_KEY_FALSE(psi_disabled);
143 DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
144 
145 #ifdef CONFIG_PSI_DEFAULT_DISABLED
146 static bool psi_enable;
147 #else
148 static bool psi_enable = true;
149 #endif
150 static int __init setup_psi(char *str)
151 {
152 	return kstrtobool(str, &psi_enable) == 0;
153 }
154 __setup("psi=", setup_psi);
155 
156 /* Running averages - we need to be higher-res than loadavg */
157 #define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
158 #define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
159 #define EXP_60s		1981		/* 1/exp(2s/60s) */
160 #define EXP_300s	2034		/* 1/exp(2s/300s) */
161 
162 /* PSI trigger definitions */
163 #define WINDOW_MIN_US 500000	/* Min window size is 500ms */
164 #define WINDOW_MAX_US 10000000	/* Max window size is 10s */
165 #define UPDATES_PER_WINDOW 10	/* 10 updates per window */
166 
167 /* Sampling frequency in nanoseconds */
168 static u64 psi_period __read_mostly;
169 
170 /* System-level pressure and stall tracking */
171 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
172 struct psi_group psi_system = {
173 	.pcpu = &system_group_pcpu,
174 };
175 
176 static void psi_avgs_work(struct work_struct *work);
177 
178 static void poll_timer_fn(struct timer_list *t);
179 
180 static void group_init(struct psi_group *group)
181 {
182 	int cpu;
183 
184 	group->enabled = true;
185 	for_each_possible_cpu(cpu)
186 		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
187 	group->avg_last_update = sched_clock();
188 	group->avg_next_update = group->avg_last_update + psi_period;
189 	mutex_init(&group->avgs_lock);
190 
191 	/* Init avg trigger-related members */
192 	INIT_LIST_HEAD(&group->avg_triggers);
193 	memset(group->avg_nr_triggers, 0, sizeof(group->avg_nr_triggers));
194 	INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
195 
196 	/* Init rtpoll trigger-related members */
197 	atomic_set(&group->rtpoll_scheduled, 0);
198 	mutex_init(&group->rtpoll_trigger_lock);
199 	INIT_LIST_HEAD(&group->rtpoll_triggers);
200 	group->rtpoll_min_period = U32_MAX;
201 	group->rtpoll_next_update = ULLONG_MAX;
202 	init_waitqueue_head(&group->rtpoll_wait);
203 	timer_setup(&group->rtpoll_timer, poll_timer_fn, 0);
204 	rcu_assign_pointer(group->rtpoll_task, NULL);
205 }
206 
207 void __init psi_init(void)
208 {
209 	if (!psi_enable) {
210 		static_branch_enable(&psi_disabled);
211 		static_branch_disable(&psi_cgroups_enabled);
212 		return;
213 	}
214 
215 	if (!cgroup_psi_enabled())
216 		static_branch_disable(&psi_cgroups_enabled);
217 
218 	psi_period = jiffies_to_nsecs(PSI_FREQ);
219 	group_init(&psi_system);
220 }
221 
222 static bool test_state(unsigned int *tasks, enum psi_states state, bool oncpu)
223 {
224 	switch (state) {
225 	case PSI_IO_SOME:
226 		return unlikely(tasks[NR_IOWAIT]);
227 	case PSI_IO_FULL:
228 		return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]);
229 	case PSI_MEM_SOME:
230 		return unlikely(tasks[NR_MEMSTALL]);
231 	case PSI_MEM_FULL:
232 		return unlikely(tasks[NR_MEMSTALL] &&
233 			tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]);
234 	case PSI_CPU_SOME:
235 		return unlikely(tasks[NR_RUNNING] > oncpu);
236 	case PSI_CPU_FULL:
237 		return unlikely(tasks[NR_RUNNING] && !oncpu);
238 	case PSI_NONIDLE:
239 		return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
240 			tasks[NR_RUNNING];
241 	default:
242 		return false;
243 	}
244 }
245 
246 static void get_recent_times(struct psi_group *group, int cpu,
247 			     enum psi_aggregators aggregator, u32 *times,
248 			     u32 *pchanged_states)
249 {
250 	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
251 	int current_cpu = raw_smp_processor_id();
252 	unsigned int tasks[NR_PSI_TASK_COUNTS];
253 	u64 now, state_start;
254 	enum psi_states s;
255 	unsigned int seq;
256 	u32 state_mask;
257 
258 	*pchanged_states = 0;
259 
260 	/* Snapshot a coherent view of the CPU state */
261 	do {
262 		seq = read_seqcount_begin(&groupc->seq);
263 		now = cpu_clock(cpu);
264 		memcpy(times, groupc->times, sizeof(groupc->times));
265 		state_mask = groupc->state_mask;
266 		state_start = groupc->state_start;
267 		if (cpu == current_cpu)
268 			memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
269 	} while (read_seqcount_retry(&groupc->seq, seq));
270 
271 	/* Calculate state time deltas against the previous snapshot */
272 	for (s = 0; s < NR_PSI_STATES; s++) {
273 		u32 delta;
274 		/*
275 		 * In addition to already concluded states, we also
276 		 * incorporate currently active states on the CPU,
277 		 * since states may last for many sampling periods.
278 		 *
279 		 * This way we keep our delta sampling buckets small
280 		 * (u32) and our reported pressure close to what's
281 		 * actually happening.
282 		 */
283 		if (state_mask & (1 << s))
284 			times[s] += now - state_start;
285 
286 		delta = times[s] - groupc->times_prev[aggregator][s];
287 		groupc->times_prev[aggregator][s] = times[s];
288 
289 		times[s] = delta;
290 		if (delta)
291 			*pchanged_states |= (1 << s);
292 	}
293 
294 	/*
295 	 * When collect_percpu_times() from the avgs_work, we don't want to
296 	 * re-arm avgs_work when all CPUs are IDLE. But the current CPU running
297 	 * this avgs_work is never IDLE, cause avgs_work can't be shut off.
298 	 * So for the current CPU, we need to re-arm avgs_work only when
299 	 * (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs
300 	 * we can just check PSI_NONIDLE delta.
301 	 */
302 	if (current_work() == &group->avgs_work.work) {
303 		bool reschedule;
304 
305 		if (cpu == current_cpu)
306 			reschedule = tasks[NR_RUNNING] +
307 				     tasks[NR_IOWAIT] +
308 				     tasks[NR_MEMSTALL] > 1;
309 		else
310 			reschedule = *pchanged_states & (1 << PSI_NONIDLE);
311 
312 		if (reschedule)
313 			*pchanged_states |= PSI_STATE_RESCHEDULE;
314 	}
315 }
316 
317 static void calc_avgs(unsigned long avg[3], int missed_periods,
318 		      u64 time, u64 period)
319 {
320 	unsigned long pct;
321 
322 	/* Fill in zeroes for periods of no activity */
323 	if (missed_periods) {
324 		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
325 		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
326 		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
327 	}
328 
329 	/* Sample the most recent active period */
330 	pct = div_u64(time * 100, period);
331 	pct *= FIXED_1;
332 	avg[0] = calc_load(avg[0], EXP_10s, pct);
333 	avg[1] = calc_load(avg[1], EXP_60s, pct);
334 	avg[2] = calc_load(avg[2], EXP_300s, pct);
335 }
336 
337 static void collect_percpu_times(struct psi_group *group,
338 				 enum psi_aggregators aggregator,
339 				 u32 *pchanged_states)
340 {
341 	u64 deltas[NR_PSI_STATES - 1] = { 0, };
342 	unsigned long nonidle_total = 0;
343 	u32 changed_states = 0;
344 	int cpu;
345 	int s;
346 
347 	/*
348 	 * Collect the per-cpu time buckets and average them into a
349 	 * single time sample that is normalized to wallclock time.
350 	 *
351 	 * For averaging, each CPU is weighted by its non-idle time in
352 	 * the sampling period. This eliminates artifacts from uneven
353 	 * loading, or even entirely idle CPUs.
354 	 */
355 	for_each_possible_cpu(cpu) {
356 		u32 times[NR_PSI_STATES];
357 		u32 nonidle;
358 		u32 cpu_changed_states;
359 
360 		get_recent_times(group, cpu, aggregator, times,
361 				&cpu_changed_states);
362 		changed_states |= cpu_changed_states;
363 
364 		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
365 		nonidle_total += nonidle;
366 
367 		for (s = 0; s < PSI_NONIDLE; s++)
368 			deltas[s] += (u64)times[s] * nonidle;
369 	}
370 
371 	/*
372 	 * Integrate the sample into the running statistics that are
373 	 * reported to userspace: the cumulative stall times and the
374 	 * decaying averages.
375 	 *
376 	 * Pressure percentages are sampled at PSI_FREQ. We might be
377 	 * called more often when the user polls more frequently than
378 	 * that; we might be called less often when there is no task
379 	 * activity, thus no data, and clock ticks are sporadic. The
380 	 * below handles both.
381 	 */
382 
383 	/* total= */
384 	for (s = 0; s < NR_PSI_STATES - 1; s++)
385 		group->total[aggregator][s] +=
386 				div_u64(deltas[s], max(nonidle_total, 1UL));
387 
388 	if (pchanged_states)
389 		*pchanged_states = changed_states;
390 }
391 
392 /* Trigger tracking window manipulations */
393 static void window_reset(struct psi_window *win, u64 now, u64 value,
394 			 u64 prev_growth)
395 {
396 	win->start_time = now;
397 	win->start_value = value;
398 	win->prev_growth = prev_growth;
399 }
400 
401 /*
402  * PSI growth tracking window update and growth calculation routine.
403  *
404  * This approximates a sliding tracking window by interpolating
405  * partially elapsed windows using historical growth data from the
406  * previous intervals. This minimizes memory requirements (by not storing
407  * all the intermediate values in the previous window) and simplifies
408  * the calculations. It works well because PSI signal changes only in
409  * positive direction and over relatively small window sizes the growth
410  * is close to linear.
411  */
412 static u64 window_update(struct psi_window *win, u64 now, u64 value)
413 {
414 	u64 elapsed;
415 	u64 growth;
416 
417 	elapsed = now - win->start_time;
418 	growth = value - win->start_value;
419 	/*
420 	 * After each tracking window passes win->start_value and
421 	 * win->start_time get reset and win->prev_growth stores
422 	 * the average per-window growth of the previous window.
423 	 * win->prev_growth is then used to interpolate additional
424 	 * growth from the previous window assuming it was linear.
425 	 */
426 	if (elapsed > win->size)
427 		window_reset(win, now, value, growth);
428 	else {
429 		u32 remaining;
430 
431 		remaining = win->size - elapsed;
432 		growth += div64_u64(win->prev_growth * remaining, win->size);
433 	}
434 
435 	return growth;
436 }
437 
438 static u64 update_triggers(struct psi_group *group, u64 now, bool *update_total,
439 						   enum psi_aggregators aggregator)
440 {
441 	struct psi_trigger *t;
442 	u64 *total = group->total[aggregator];
443 	struct list_head *triggers;
444 	u64 *aggregator_total;
445 	*update_total = false;
446 
447 	if (aggregator == PSI_AVGS) {
448 		triggers = &group->avg_triggers;
449 		aggregator_total = group->avg_total;
450 	} else {
451 		triggers = &group->rtpoll_triggers;
452 		aggregator_total = group->rtpoll_total;
453 	}
454 
455 	/*
456 	 * On subsequent updates, calculate growth deltas and let
457 	 * watchers know when their specified thresholds are exceeded.
458 	 */
459 	list_for_each_entry(t, triggers, node) {
460 		u64 growth;
461 		bool new_stall;
462 
463 		new_stall = aggregator_total[t->state] != total[t->state];
464 
465 		/* Check for stall activity or a previous threshold breach */
466 		if (!new_stall && !t->pending_event)
467 			continue;
468 		/*
469 		 * Check for new stall activity, as well as deferred
470 		 * events that occurred in the last window after the
471 		 * trigger had already fired (we want to ratelimit
472 		 * events without dropping any).
473 		 */
474 		if (new_stall) {
475 			/*
476 			 * Multiple triggers might be looking at the same state,
477 			 * remember to update group->polling_total[] once we've
478 			 * been through all of them. Also remember to extend the
479 			 * polling time if we see new stall activity.
480 			 */
481 			*update_total = true;
482 
483 			/* Calculate growth since last update */
484 			growth = window_update(&t->win, now, total[t->state]);
485 			if (!t->pending_event) {
486 				if (growth < t->threshold)
487 					continue;
488 
489 				t->pending_event = true;
490 			}
491 		}
492 		/* Limit event signaling to once per window */
493 		if (now < t->last_event_time + t->win.size)
494 			continue;
495 
496 		/* Generate an event */
497 		if (cmpxchg(&t->event, 0, 1) == 0)
498 			wake_up_interruptible(&t->event_wait);
499 		t->last_event_time = now;
500 		/* Reset threshold breach flag once event got generated */
501 		t->pending_event = false;
502 	}
503 
504 	return now + group->rtpoll_min_period;
505 }
506 
507 static u64 update_averages(struct psi_group *group, u64 now)
508 {
509 	unsigned long missed_periods = 0;
510 	u64 expires, period;
511 	u64 avg_next_update;
512 	int s;
513 
514 	/* avgX= */
515 	expires = group->avg_next_update;
516 	if (now - expires >= psi_period)
517 		missed_periods = div_u64(now - expires, psi_period);
518 
519 	/*
520 	 * The periodic clock tick can get delayed for various
521 	 * reasons, especially on loaded systems. To avoid clock
522 	 * drift, we schedule the clock in fixed psi_period intervals.
523 	 * But the deltas we sample out of the per-cpu buckets above
524 	 * are based on the actual time elapsing between clock ticks.
525 	 */
526 	avg_next_update = expires + ((1 + missed_periods) * psi_period);
527 	period = now - (group->avg_last_update + (missed_periods * psi_period));
528 	group->avg_last_update = now;
529 
530 	for (s = 0; s < NR_PSI_STATES - 1; s++) {
531 		u32 sample;
532 
533 		sample = group->total[PSI_AVGS][s] - group->avg_total[s];
534 		/*
535 		 * Due to the lockless sampling of the time buckets,
536 		 * recorded time deltas can slip into the next period,
537 		 * which under full pressure can result in samples in
538 		 * excess of the period length.
539 		 *
540 		 * We don't want to report non-sensical pressures in
541 		 * excess of 100%, nor do we want to drop such events
542 		 * on the floor. Instead we punt any overage into the
543 		 * future until pressure subsides. By doing this we
544 		 * don't underreport the occurring pressure curve, we
545 		 * just report it delayed by one period length.
546 		 *
547 		 * The error isn't cumulative. As soon as another
548 		 * delta slips from a period P to P+1, by definition
549 		 * it frees up its time T in P.
550 		 */
551 		if (sample > period)
552 			sample = period;
553 		group->avg_total[s] += sample;
554 		calc_avgs(group->avg[s], missed_periods, sample, period);
555 	}
556 
557 	return avg_next_update;
558 }
559 
560 static void psi_avgs_work(struct work_struct *work)
561 {
562 	struct delayed_work *dwork;
563 	struct psi_group *group;
564 	u32 changed_states;
565 	bool update_total;
566 	u64 now;
567 
568 	dwork = to_delayed_work(work);
569 	group = container_of(dwork, struct psi_group, avgs_work);
570 
571 	mutex_lock(&group->avgs_lock);
572 
573 	now = sched_clock();
574 
575 	collect_percpu_times(group, PSI_AVGS, &changed_states);
576 	/*
577 	 * If there is task activity, periodically fold the per-cpu
578 	 * times and feed samples into the running averages. If things
579 	 * are idle and there is no data to process, stop the clock.
580 	 * Once restarted, we'll catch up the running averages in one
581 	 * go - see calc_avgs() and missed_periods.
582 	 */
583 	if (now >= group->avg_next_update) {
584 		update_triggers(group, now, &update_total, PSI_AVGS);
585 		group->avg_next_update = update_averages(group, now);
586 	}
587 
588 	if (changed_states & PSI_STATE_RESCHEDULE) {
589 		schedule_delayed_work(dwork, nsecs_to_jiffies(
590 				group->avg_next_update - now) + 1);
591 	}
592 
593 	mutex_unlock(&group->avgs_lock);
594 }
595 
596 static void init_rtpoll_triggers(struct psi_group *group, u64 now)
597 {
598 	struct psi_trigger *t;
599 
600 	list_for_each_entry(t, &group->rtpoll_triggers, node)
601 		window_reset(&t->win, now,
602 				group->total[PSI_POLL][t->state], 0);
603 	memcpy(group->rtpoll_total, group->total[PSI_POLL],
604 		   sizeof(group->rtpoll_total));
605 	group->rtpoll_next_update = now + group->rtpoll_min_period;
606 }
607 
608 /* Schedule polling if it's not already scheduled or forced. */
609 static void psi_schedule_rtpoll_work(struct psi_group *group, unsigned long delay,
610 				   bool force)
611 {
612 	struct task_struct *task;
613 
614 	/*
615 	 * atomic_xchg should be called even when !force to provide a
616 	 * full memory barrier (see the comment inside psi_rtpoll_work).
617 	 */
618 	if (atomic_xchg(&group->rtpoll_scheduled, 1) && !force)
619 		return;
620 
621 	rcu_read_lock();
622 
623 	task = rcu_dereference(group->rtpoll_task);
624 	/*
625 	 * kworker might be NULL in case psi_trigger_destroy races with
626 	 * psi_task_change (hotpath) which can't use locks
627 	 */
628 	if (likely(task))
629 		mod_timer(&group->rtpoll_timer, jiffies + delay);
630 	else
631 		atomic_set(&group->rtpoll_scheduled, 0);
632 
633 	rcu_read_unlock();
634 }
635 
636 static void psi_rtpoll_work(struct psi_group *group)
637 {
638 	bool force_reschedule = false;
639 	u32 changed_states;
640 	bool update_total;
641 	u64 now;
642 
643 	mutex_lock(&group->rtpoll_trigger_lock);
644 
645 	now = sched_clock();
646 
647 	if (now > group->rtpoll_until) {
648 		/*
649 		 * We are either about to start or might stop polling if no
650 		 * state change was recorded. Resetting poll_scheduled leaves
651 		 * a small window for psi_group_change to sneak in and schedule
652 		 * an immediate poll_work before we get to rescheduling. One
653 		 * potential extra wakeup at the end of the polling window
654 		 * should be negligible and polling_next_update still keeps
655 		 * updates correctly on schedule.
656 		 */
657 		atomic_set(&group->rtpoll_scheduled, 0);
658 		/*
659 		 * A task change can race with the poll worker that is supposed to
660 		 * report on it. To avoid missing events, ensure ordering between
661 		 * poll_scheduled and the task state accesses, such that if the poll
662 		 * worker misses the state update, the task change is guaranteed to
663 		 * reschedule the poll worker:
664 		 *
665 		 * poll worker:
666 		 *   atomic_set(poll_scheduled, 0)
667 		 *   smp_mb()
668 		 *   LOAD states
669 		 *
670 		 * task change:
671 		 *   STORE states
672 		 *   if atomic_xchg(poll_scheduled, 1) == 0:
673 		 *     schedule poll worker
674 		 *
675 		 * The atomic_xchg() implies a full barrier.
676 		 */
677 		smp_mb();
678 	} else {
679 		/* Polling window is not over, keep rescheduling */
680 		force_reschedule = true;
681 	}
682 
683 
684 	collect_percpu_times(group, PSI_POLL, &changed_states);
685 
686 	if (changed_states & group->rtpoll_states) {
687 		/* Initialize trigger windows when entering polling mode */
688 		if (now > group->rtpoll_until)
689 			init_rtpoll_triggers(group, now);
690 
691 		/*
692 		 * Keep the monitor active for at least the duration of the
693 		 * minimum tracking window as long as monitor states are
694 		 * changing.
695 		 */
696 		group->rtpoll_until = now +
697 			group->rtpoll_min_period * UPDATES_PER_WINDOW;
698 	}
699 
700 	if (now > group->rtpoll_until) {
701 		group->rtpoll_next_update = ULLONG_MAX;
702 		goto out;
703 	}
704 
705 	if (now >= group->rtpoll_next_update) {
706 		group->rtpoll_next_update = update_triggers(group, now, &update_total, PSI_POLL);
707 		if (update_total)
708 			memcpy(group->rtpoll_total, group->total[PSI_POLL],
709 				   sizeof(group->rtpoll_total));
710 	}
711 
712 	psi_schedule_rtpoll_work(group,
713 		nsecs_to_jiffies(group->rtpoll_next_update - now) + 1,
714 		force_reschedule);
715 
716 out:
717 	mutex_unlock(&group->rtpoll_trigger_lock);
718 }
719 
720 static int psi_rtpoll_worker(void *data)
721 {
722 	struct psi_group *group = (struct psi_group *)data;
723 
724 	sched_set_fifo_low(current);
725 
726 	while (true) {
727 		wait_event_interruptible(group->rtpoll_wait,
728 				atomic_cmpxchg(&group->rtpoll_wakeup, 1, 0) ||
729 				kthread_should_stop());
730 		if (kthread_should_stop())
731 			break;
732 
733 		psi_rtpoll_work(group);
734 	}
735 	return 0;
736 }
737 
738 static void poll_timer_fn(struct timer_list *t)
739 {
740 	struct psi_group *group = from_timer(group, t, rtpoll_timer);
741 
742 	atomic_set(&group->rtpoll_wakeup, 1);
743 	wake_up_interruptible(&group->rtpoll_wait);
744 }
745 
746 static void record_times(struct psi_group_cpu *groupc, u64 now)
747 {
748 	u32 delta;
749 
750 	delta = now - groupc->state_start;
751 	groupc->state_start = now;
752 
753 	if (groupc->state_mask & (1 << PSI_IO_SOME)) {
754 		groupc->times[PSI_IO_SOME] += delta;
755 		if (groupc->state_mask & (1 << PSI_IO_FULL))
756 			groupc->times[PSI_IO_FULL] += delta;
757 	}
758 
759 	if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
760 		groupc->times[PSI_MEM_SOME] += delta;
761 		if (groupc->state_mask & (1 << PSI_MEM_FULL))
762 			groupc->times[PSI_MEM_FULL] += delta;
763 	}
764 
765 	if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
766 		groupc->times[PSI_CPU_SOME] += delta;
767 		if (groupc->state_mask & (1 << PSI_CPU_FULL))
768 			groupc->times[PSI_CPU_FULL] += delta;
769 	}
770 
771 	if (groupc->state_mask & (1 << PSI_NONIDLE))
772 		groupc->times[PSI_NONIDLE] += delta;
773 }
774 
775 static void psi_group_change(struct psi_group *group, int cpu,
776 			     unsigned int clear, unsigned int set, u64 now,
777 			     bool wake_clock)
778 {
779 	struct psi_group_cpu *groupc;
780 	unsigned int t, m;
781 	enum psi_states s;
782 	u32 state_mask;
783 
784 	groupc = per_cpu_ptr(group->pcpu, cpu);
785 
786 	/*
787 	 * First we update the task counts according to the state
788 	 * change requested through the @clear and @set bits.
789 	 *
790 	 * Then if the cgroup PSI stats accounting enabled, we
791 	 * assess the aggregate resource states this CPU's tasks
792 	 * have been in since the last change, and account any
793 	 * SOME and FULL time these may have resulted in.
794 	 */
795 	write_seqcount_begin(&groupc->seq);
796 
797 	/*
798 	 * Start with TSK_ONCPU, which doesn't have a corresponding
799 	 * task count - it's just a boolean flag directly encoded in
800 	 * the state mask. Clear, set, or carry the current state if
801 	 * no changes are requested.
802 	 */
803 	if (unlikely(clear & TSK_ONCPU)) {
804 		state_mask = 0;
805 		clear &= ~TSK_ONCPU;
806 	} else if (unlikely(set & TSK_ONCPU)) {
807 		state_mask = PSI_ONCPU;
808 		set &= ~TSK_ONCPU;
809 	} else {
810 		state_mask = groupc->state_mask & PSI_ONCPU;
811 	}
812 
813 	/*
814 	 * The rest of the state mask is calculated based on the task
815 	 * counts. Update those first, then construct the mask.
816 	 */
817 	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
818 		if (!(m & (1 << t)))
819 			continue;
820 		if (groupc->tasks[t]) {
821 			groupc->tasks[t]--;
822 		} else if (!psi_bug) {
823 			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
824 					cpu, t, groupc->tasks[0],
825 					groupc->tasks[1], groupc->tasks[2],
826 					groupc->tasks[3], clear, set);
827 			psi_bug = 1;
828 		}
829 	}
830 
831 	for (t = 0; set; set &= ~(1 << t), t++)
832 		if (set & (1 << t))
833 			groupc->tasks[t]++;
834 
835 	if (!group->enabled) {
836 		/*
837 		 * On the first group change after disabling PSI, conclude
838 		 * the current state and flush its time. This is unlikely
839 		 * to matter to the user, but aggregation (get_recent_times)
840 		 * may have already incorporated the live state into times_prev;
841 		 * avoid a delta sample underflow when PSI is later re-enabled.
842 		 */
843 		if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE)))
844 			record_times(groupc, now);
845 
846 		groupc->state_mask = state_mask;
847 
848 		write_seqcount_end(&groupc->seq);
849 		return;
850 	}
851 
852 	for (s = 0; s < NR_PSI_STATES; s++) {
853 		if (test_state(groupc->tasks, s, state_mask & PSI_ONCPU))
854 			state_mask |= (1 << s);
855 	}
856 
857 	/*
858 	 * Since we care about lost potential, a memstall is FULL
859 	 * when there are no other working tasks, but also when
860 	 * the CPU is actively reclaiming and nothing productive
861 	 * could run even if it were runnable. So when the current
862 	 * task in a cgroup is in_memstall, the corresponding groupc
863 	 * on that cpu is in PSI_MEM_FULL state.
864 	 */
865 	if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall))
866 		state_mask |= (1 << PSI_MEM_FULL);
867 
868 	record_times(groupc, now);
869 
870 	groupc->state_mask = state_mask;
871 
872 	write_seqcount_end(&groupc->seq);
873 
874 	if (state_mask & group->rtpoll_states)
875 		psi_schedule_rtpoll_work(group, 1, false);
876 
877 	if (wake_clock && !delayed_work_pending(&group->avgs_work))
878 		schedule_delayed_work(&group->avgs_work, PSI_FREQ);
879 }
880 
881 static inline struct psi_group *task_psi_group(struct task_struct *task)
882 {
883 #ifdef CONFIG_CGROUPS
884 	if (static_branch_likely(&psi_cgroups_enabled))
885 		return cgroup_psi(task_dfl_cgroup(task));
886 #endif
887 	return &psi_system;
888 }
889 
890 static void psi_flags_change(struct task_struct *task, int clear, int set)
891 {
892 	if (((task->psi_flags & set) ||
893 	     (task->psi_flags & clear) != clear) &&
894 	    !psi_bug) {
895 		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
896 				task->pid, task->comm, task_cpu(task),
897 				task->psi_flags, clear, set);
898 		psi_bug = 1;
899 	}
900 
901 	task->psi_flags &= ~clear;
902 	task->psi_flags |= set;
903 }
904 
905 void psi_task_change(struct task_struct *task, int clear, int set)
906 {
907 	int cpu = task_cpu(task);
908 	struct psi_group *group;
909 	u64 now;
910 
911 	if (!task->pid)
912 		return;
913 
914 	psi_flags_change(task, clear, set);
915 
916 	now = cpu_clock(cpu);
917 
918 	group = task_psi_group(task);
919 	do {
920 		psi_group_change(group, cpu, clear, set, now, true);
921 	} while ((group = group->parent));
922 }
923 
924 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
925 		     bool sleep)
926 {
927 	struct psi_group *group, *common = NULL;
928 	int cpu = task_cpu(prev);
929 	u64 now = cpu_clock(cpu);
930 
931 	if (next->pid) {
932 		psi_flags_change(next, 0, TSK_ONCPU);
933 		/*
934 		 * Set TSK_ONCPU on @next's cgroups. If @next shares any
935 		 * ancestors with @prev, those will already have @prev's
936 		 * TSK_ONCPU bit set, and we can stop the iteration there.
937 		 */
938 		group = task_psi_group(next);
939 		do {
940 			if (per_cpu_ptr(group->pcpu, cpu)->state_mask &
941 			    PSI_ONCPU) {
942 				common = group;
943 				break;
944 			}
945 
946 			psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
947 		} while ((group = group->parent));
948 	}
949 
950 	if (prev->pid) {
951 		int clear = TSK_ONCPU, set = 0;
952 		bool wake_clock = true;
953 
954 		/*
955 		 * When we're going to sleep, psi_dequeue() lets us
956 		 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
957 		 * TSK_IOWAIT here, where we can combine it with
958 		 * TSK_ONCPU and save walking common ancestors twice.
959 		 */
960 		if (sleep) {
961 			clear |= TSK_RUNNING;
962 			if (prev->in_memstall)
963 				clear |= TSK_MEMSTALL_RUNNING;
964 			if (prev->in_iowait)
965 				set |= TSK_IOWAIT;
966 
967 			/*
968 			 * Periodic aggregation shuts off if there is a period of no
969 			 * task changes, so we wake it back up if necessary. However,
970 			 * don't do this if the task change is the aggregation worker
971 			 * itself going to sleep, or we'll ping-pong forever.
972 			 */
973 			if (unlikely((prev->flags & PF_WQ_WORKER) &&
974 				     wq_worker_last_func(prev) == psi_avgs_work))
975 				wake_clock = false;
976 		}
977 
978 		psi_flags_change(prev, clear, set);
979 
980 		group = task_psi_group(prev);
981 		do {
982 			if (group == common)
983 				break;
984 			psi_group_change(group, cpu, clear, set, now, wake_clock);
985 		} while ((group = group->parent));
986 
987 		/*
988 		 * TSK_ONCPU is handled up to the common ancestor. If there are
989 		 * any other differences between the two tasks (e.g. prev goes
990 		 * to sleep, or only one task is memstall), finish propagating
991 		 * those differences all the way up to the root.
992 		 */
993 		if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) {
994 			clear &= ~TSK_ONCPU;
995 			for (; group; group = group->parent)
996 				psi_group_change(group, cpu, clear, set, now, wake_clock);
997 		}
998 	}
999 }
1000 
1001 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1002 void psi_account_irqtime(struct task_struct *task, u32 delta)
1003 {
1004 	int cpu = task_cpu(task);
1005 	struct psi_group *group;
1006 	struct psi_group_cpu *groupc;
1007 	u64 now;
1008 
1009 	if (!task->pid)
1010 		return;
1011 
1012 	now = cpu_clock(cpu);
1013 
1014 	group = task_psi_group(task);
1015 	do {
1016 		if (!group->enabled)
1017 			continue;
1018 
1019 		groupc = per_cpu_ptr(group->pcpu, cpu);
1020 
1021 		write_seqcount_begin(&groupc->seq);
1022 
1023 		record_times(groupc, now);
1024 		groupc->times[PSI_IRQ_FULL] += delta;
1025 
1026 		write_seqcount_end(&groupc->seq);
1027 
1028 		if (group->rtpoll_states & (1 << PSI_IRQ_FULL))
1029 			psi_schedule_rtpoll_work(group, 1, false);
1030 	} while ((group = group->parent));
1031 }
1032 #endif
1033 
1034 /**
1035  * psi_memstall_enter - mark the beginning of a memory stall section
1036  * @flags: flags to handle nested sections
1037  *
1038  * Marks the calling task as being stalled due to a lack of memory,
1039  * such as waiting for a refault or performing reclaim.
1040  */
1041 void psi_memstall_enter(unsigned long *flags)
1042 {
1043 	struct rq_flags rf;
1044 	struct rq *rq;
1045 
1046 	if (static_branch_likely(&psi_disabled))
1047 		return;
1048 
1049 	*flags = current->in_memstall;
1050 	if (*flags)
1051 		return;
1052 	/*
1053 	 * in_memstall setting & accounting needs to be atomic wrt
1054 	 * changes to the task's scheduling state, otherwise we can
1055 	 * race with CPU migration.
1056 	 */
1057 	rq = this_rq_lock_irq(&rf);
1058 
1059 	current->in_memstall = 1;
1060 	psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
1061 
1062 	rq_unlock_irq(rq, &rf);
1063 }
1064 EXPORT_SYMBOL_GPL(psi_memstall_enter);
1065 
1066 /**
1067  * psi_memstall_leave - mark the end of an memory stall section
1068  * @flags: flags to handle nested memdelay sections
1069  *
1070  * Marks the calling task as no longer stalled due to lack of memory.
1071  */
1072 void psi_memstall_leave(unsigned long *flags)
1073 {
1074 	struct rq_flags rf;
1075 	struct rq *rq;
1076 
1077 	if (static_branch_likely(&psi_disabled))
1078 		return;
1079 
1080 	if (*flags)
1081 		return;
1082 	/*
1083 	 * in_memstall clearing & accounting needs to be atomic wrt
1084 	 * changes to the task's scheduling state, otherwise we could
1085 	 * race with CPU migration.
1086 	 */
1087 	rq = this_rq_lock_irq(&rf);
1088 
1089 	current->in_memstall = 0;
1090 	psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);
1091 
1092 	rq_unlock_irq(rq, &rf);
1093 }
1094 EXPORT_SYMBOL_GPL(psi_memstall_leave);
1095 
1096 #ifdef CONFIG_CGROUPS
1097 int psi_cgroup_alloc(struct cgroup *cgroup)
1098 {
1099 	if (!static_branch_likely(&psi_cgroups_enabled))
1100 		return 0;
1101 
1102 	cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL);
1103 	if (!cgroup->psi)
1104 		return -ENOMEM;
1105 
1106 	cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu);
1107 	if (!cgroup->psi->pcpu) {
1108 		kfree(cgroup->psi);
1109 		return -ENOMEM;
1110 	}
1111 	group_init(cgroup->psi);
1112 	cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup));
1113 	return 0;
1114 }
1115 
1116 void psi_cgroup_free(struct cgroup *cgroup)
1117 {
1118 	if (!static_branch_likely(&psi_cgroups_enabled))
1119 		return;
1120 
1121 	cancel_delayed_work_sync(&cgroup->psi->avgs_work);
1122 	free_percpu(cgroup->psi->pcpu);
1123 	/* All triggers must be removed by now */
1124 	WARN_ONCE(cgroup->psi->rtpoll_states, "psi: trigger leak\n");
1125 	kfree(cgroup->psi);
1126 }
1127 
1128 /**
1129  * cgroup_move_task - move task to a different cgroup
1130  * @task: the task
1131  * @to: the target css_set
1132  *
1133  * Move task to a new cgroup and safely migrate its associated stall
1134  * state between the different groups.
1135  *
1136  * This function acquires the task's rq lock to lock out concurrent
1137  * changes to the task's scheduling state and - in case the task is
1138  * running - concurrent changes to its stall state.
1139  */
1140 void cgroup_move_task(struct task_struct *task, struct css_set *to)
1141 {
1142 	unsigned int task_flags;
1143 	struct rq_flags rf;
1144 	struct rq *rq;
1145 
1146 	if (!static_branch_likely(&psi_cgroups_enabled)) {
1147 		/*
1148 		 * Lame to do this here, but the scheduler cannot be locked
1149 		 * from the outside, so we move cgroups from inside sched/.
1150 		 */
1151 		rcu_assign_pointer(task->cgroups, to);
1152 		return;
1153 	}
1154 
1155 	rq = task_rq_lock(task, &rf);
1156 
1157 	/*
1158 	 * We may race with schedule() dropping the rq lock between
1159 	 * deactivating prev and switching to next. Because the psi
1160 	 * updates from the deactivation are deferred to the switch
1161 	 * callback to save cgroup tree updates, the task's scheduling
1162 	 * state here is not coherent with its psi state:
1163 	 *
1164 	 * schedule()                   cgroup_move_task()
1165 	 *   rq_lock()
1166 	 *   deactivate_task()
1167 	 *     p->on_rq = 0
1168 	 *     psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1169 	 *   pick_next_task()
1170 	 *     rq_unlock()
1171 	 *                                rq_lock()
1172 	 *                                psi_task_change() // old cgroup
1173 	 *                                task->cgroups = to
1174 	 *                                psi_task_change() // new cgroup
1175 	 *                                rq_unlock()
1176 	 *     rq_lock()
1177 	 *   psi_sched_switch() // does deferred updates in new cgroup
1178 	 *
1179 	 * Don't rely on the scheduling state. Use psi_flags instead.
1180 	 */
1181 	task_flags = task->psi_flags;
1182 
1183 	if (task_flags)
1184 		psi_task_change(task, task_flags, 0);
1185 
1186 	/* See comment above */
1187 	rcu_assign_pointer(task->cgroups, to);
1188 
1189 	if (task_flags)
1190 		psi_task_change(task, 0, task_flags);
1191 
1192 	task_rq_unlock(rq, task, &rf);
1193 }
1194 
1195 void psi_cgroup_restart(struct psi_group *group)
1196 {
1197 	int cpu;
1198 
1199 	/*
1200 	 * After we disable psi_group->enabled, we don't actually
1201 	 * stop percpu tasks accounting in each psi_group_cpu,
1202 	 * instead only stop test_state() loop, record_times()
1203 	 * and averaging worker, see psi_group_change() for details.
1204 	 *
1205 	 * When disable cgroup PSI, this function has nothing to sync
1206 	 * since cgroup pressure files are hidden and percpu psi_group_cpu
1207 	 * would see !psi_group->enabled and only do task accounting.
1208 	 *
1209 	 * When re-enable cgroup PSI, this function use psi_group_change()
1210 	 * to get correct state mask from test_state() loop on tasks[],
1211 	 * and restart groupc->state_start from now, use .clear = .set = 0
1212 	 * here since no task status really changed.
1213 	 */
1214 	if (!group->enabled)
1215 		return;
1216 
1217 	for_each_possible_cpu(cpu) {
1218 		struct rq *rq = cpu_rq(cpu);
1219 		struct rq_flags rf;
1220 		u64 now;
1221 
1222 		rq_lock_irq(rq, &rf);
1223 		now = cpu_clock(cpu);
1224 		psi_group_change(group, cpu, 0, 0, now, true);
1225 		rq_unlock_irq(rq, &rf);
1226 	}
1227 }
1228 #endif /* CONFIG_CGROUPS */
1229 
1230 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1231 {
1232 	bool only_full = false;
1233 	int full;
1234 	u64 now;
1235 
1236 	if (static_branch_likely(&psi_disabled))
1237 		return -EOPNOTSUPP;
1238 
1239 	/* Update averages before reporting them */
1240 	mutex_lock(&group->avgs_lock);
1241 	now = sched_clock();
1242 	collect_percpu_times(group, PSI_AVGS, NULL);
1243 	if (now >= group->avg_next_update)
1244 		group->avg_next_update = update_averages(group, now);
1245 	mutex_unlock(&group->avgs_lock);
1246 
1247 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1248 	only_full = res == PSI_IRQ;
1249 #endif
1250 
1251 	for (full = 0; full < 2 - only_full; full++) {
1252 		unsigned long avg[3] = { 0, };
1253 		u64 total = 0;
1254 		int w;
1255 
1256 		/* CPU FULL is undefined at the system level */
1257 		if (!(group == &psi_system && res == PSI_CPU && full)) {
1258 			for (w = 0; w < 3; w++)
1259 				avg[w] = group->avg[res * 2 + full][w];
1260 			total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1261 					NSEC_PER_USEC);
1262 		}
1263 
1264 		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1265 			   full || only_full ? "full" : "some",
1266 			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1267 			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1268 			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1269 			   total);
1270 	}
1271 
1272 	return 0;
1273 }
1274 
1275 struct psi_trigger *psi_trigger_create(struct psi_group *group,
1276 			char *buf, enum psi_res res, struct file *file)
1277 {
1278 	struct psi_trigger *t;
1279 	enum psi_states state;
1280 	u32 threshold_us;
1281 	bool privileged;
1282 	u32 window_us;
1283 
1284 	if (static_branch_likely(&psi_disabled))
1285 		return ERR_PTR(-EOPNOTSUPP);
1286 
1287 	/*
1288 	 * Checking the privilege here on file->f_cred implies that a privileged user
1289 	 * could open the file and delegate the write to an unprivileged one.
1290 	 */
1291 	privileged = cap_raised(file->f_cred->cap_effective, CAP_SYS_RESOURCE);
1292 
1293 	if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1294 		state = PSI_IO_SOME + res * 2;
1295 	else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1296 		state = PSI_IO_FULL + res * 2;
1297 	else
1298 		return ERR_PTR(-EINVAL);
1299 
1300 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1301 	if (res == PSI_IRQ && --state != PSI_IRQ_FULL)
1302 		return ERR_PTR(-EINVAL);
1303 #endif
1304 
1305 	if (state >= PSI_NONIDLE)
1306 		return ERR_PTR(-EINVAL);
1307 
1308 	if (window_us < WINDOW_MIN_US ||
1309 		window_us > WINDOW_MAX_US)
1310 		return ERR_PTR(-EINVAL);
1311 
1312 	/*
1313 	 * Unprivileged users can only use 2s windows so that averages aggregation
1314 	 * work is used, and no RT threads need to be spawned.
1315 	 */
1316 	if (!privileged && window_us % 2000000)
1317 		return ERR_PTR(-EINVAL);
1318 
1319 	/* Check threshold */
1320 	if (threshold_us == 0 || threshold_us > window_us)
1321 		return ERR_PTR(-EINVAL);
1322 
1323 	t = kmalloc(sizeof(*t), GFP_KERNEL);
1324 	if (!t)
1325 		return ERR_PTR(-ENOMEM);
1326 
1327 	t->group = group;
1328 	t->state = state;
1329 	t->threshold = threshold_us * NSEC_PER_USEC;
1330 	t->win.size = window_us * NSEC_PER_USEC;
1331 	window_reset(&t->win, sched_clock(),
1332 			group->total[PSI_POLL][t->state], 0);
1333 
1334 	t->event = 0;
1335 	t->last_event_time = 0;
1336 	init_waitqueue_head(&t->event_wait);
1337 	t->pending_event = false;
1338 	t->aggregator = privileged ? PSI_POLL : PSI_AVGS;
1339 
1340 	if (privileged) {
1341 		mutex_lock(&group->rtpoll_trigger_lock);
1342 
1343 		if (!rcu_access_pointer(group->rtpoll_task)) {
1344 			struct task_struct *task;
1345 
1346 			task = kthread_create(psi_rtpoll_worker, group, "psimon");
1347 			if (IS_ERR(task)) {
1348 				kfree(t);
1349 				mutex_unlock(&group->rtpoll_trigger_lock);
1350 				return ERR_CAST(task);
1351 			}
1352 			atomic_set(&group->rtpoll_wakeup, 0);
1353 			wake_up_process(task);
1354 			rcu_assign_pointer(group->rtpoll_task, task);
1355 		}
1356 
1357 		list_add(&t->node, &group->rtpoll_triggers);
1358 		group->rtpoll_min_period = min(group->rtpoll_min_period,
1359 			div_u64(t->win.size, UPDATES_PER_WINDOW));
1360 		group->rtpoll_nr_triggers[t->state]++;
1361 		group->rtpoll_states |= (1 << t->state);
1362 
1363 		mutex_unlock(&group->rtpoll_trigger_lock);
1364 	} else {
1365 		mutex_lock(&group->avgs_lock);
1366 
1367 		list_add(&t->node, &group->avg_triggers);
1368 		group->avg_nr_triggers[t->state]++;
1369 
1370 		mutex_unlock(&group->avgs_lock);
1371 	}
1372 	return t;
1373 }
1374 
1375 void psi_trigger_destroy(struct psi_trigger *t)
1376 {
1377 	struct psi_group *group;
1378 	struct task_struct *task_to_destroy = NULL;
1379 
1380 	/*
1381 	 * We do not check psi_disabled since it might have been disabled after
1382 	 * the trigger got created.
1383 	 */
1384 	if (!t)
1385 		return;
1386 
1387 	group = t->group;
1388 	/*
1389 	 * Wakeup waiters to stop polling and clear the queue to prevent it from
1390 	 * being accessed later. Can happen if cgroup is deleted from under a
1391 	 * polling process.
1392 	 */
1393 	wake_up_pollfree(&t->event_wait);
1394 
1395 	if (t->aggregator == PSI_AVGS) {
1396 		mutex_lock(&group->avgs_lock);
1397 		if (!list_empty(&t->node)) {
1398 			list_del(&t->node);
1399 			group->avg_nr_triggers[t->state]--;
1400 		}
1401 		mutex_unlock(&group->avgs_lock);
1402 	} else {
1403 		mutex_lock(&group->rtpoll_trigger_lock);
1404 		if (!list_empty(&t->node)) {
1405 			struct psi_trigger *tmp;
1406 			u64 period = ULLONG_MAX;
1407 
1408 			list_del(&t->node);
1409 			group->rtpoll_nr_triggers[t->state]--;
1410 			if (!group->rtpoll_nr_triggers[t->state])
1411 				group->rtpoll_states &= ~(1 << t->state);
1412 			/* reset min update period for the remaining triggers */
1413 			list_for_each_entry(tmp, &group->rtpoll_triggers, node)
1414 				period = min(period, div_u64(tmp->win.size,
1415 						UPDATES_PER_WINDOW));
1416 			group->rtpoll_min_period = period;
1417 			/* Destroy rtpoll_task when the last trigger is destroyed */
1418 			if (group->rtpoll_states == 0) {
1419 				group->rtpoll_until = 0;
1420 				task_to_destroy = rcu_dereference_protected(
1421 						group->rtpoll_task,
1422 						lockdep_is_held(&group->rtpoll_trigger_lock));
1423 				rcu_assign_pointer(group->rtpoll_task, NULL);
1424 				del_timer(&group->rtpoll_timer);
1425 			}
1426 		}
1427 		mutex_unlock(&group->rtpoll_trigger_lock);
1428 	}
1429 
1430 	/*
1431 	 * Wait for psi_schedule_rtpoll_work RCU to complete its read-side
1432 	 * critical section before destroying the trigger and optionally the
1433 	 * rtpoll_task.
1434 	 */
1435 	synchronize_rcu();
1436 	/*
1437 	 * Stop kthread 'psimon' after releasing rtpoll_trigger_lock to prevent
1438 	 * a deadlock while waiting for psi_rtpoll_work to acquire
1439 	 * rtpoll_trigger_lock
1440 	 */
1441 	if (task_to_destroy) {
1442 		/*
1443 		 * After the RCU grace period has expired, the worker
1444 		 * can no longer be found through group->rtpoll_task.
1445 		 */
1446 		kthread_stop(task_to_destroy);
1447 		atomic_set(&group->rtpoll_scheduled, 0);
1448 	}
1449 	kfree(t);
1450 }
1451 
1452 __poll_t psi_trigger_poll(void **trigger_ptr,
1453 				struct file *file, poll_table *wait)
1454 {
1455 	__poll_t ret = DEFAULT_POLLMASK;
1456 	struct psi_trigger *t;
1457 
1458 	if (static_branch_likely(&psi_disabled))
1459 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1460 
1461 	t = smp_load_acquire(trigger_ptr);
1462 	if (!t)
1463 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1464 
1465 	poll_wait(file, &t->event_wait, wait);
1466 
1467 	if (cmpxchg(&t->event, 1, 0) == 1)
1468 		ret |= EPOLLPRI;
1469 
1470 	return ret;
1471 }
1472 
1473 #ifdef CONFIG_PROC_FS
1474 static int psi_io_show(struct seq_file *m, void *v)
1475 {
1476 	return psi_show(m, &psi_system, PSI_IO);
1477 }
1478 
1479 static int psi_memory_show(struct seq_file *m, void *v)
1480 {
1481 	return psi_show(m, &psi_system, PSI_MEM);
1482 }
1483 
1484 static int psi_cpu_show(struct seq_file *m, void *v)
1485 {
1486 	return psi_show(m, &psi_system, PSI_CPU);
1487 }
1488 
1489 static int psi_io_open(struct inode *inode, struct file *file)
1490 {
1491 	return single_open(file, psi_io_show, NULL);
1492 }
1493 
1494 static int psi_memory_open(struct inode *inode, struct file *file)
1495 {
1496 	return single_open(file, psi_memory_show, NULL);
1497 }
1498 
1499 static int psi_cpu_open(struct inode *inode, struct file *file)
1500 {
1501 	return single_open(file, psi_cpu_show, NULL);
1502 }
1503 
1504 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1505 			 size_t nbytes, enum psi_res res)
1506 {
1507 	char buf[32];
1508 	size_t buf_size;
1509 	struct seq_file *seq;
1510 	struct psi_trigger *new;
1511 
1512 	if (static_branch_likely(&psi_disabled))
1513 		return -EOPNOTSUPP;
1514 
1515 	if (!nbytes)
1516 		return -EINVAL;
1517 
1518 	buf_size = min(nbytes, sizeof(buf));
1519 	if (copy_from_user(buf, user_buf, buf_size))
1520 		return -EFAULT;
1521 
1522 	buf[buf_size - 1] = '\0';
1523 
1524 	seq = file->private_data;
1525 
1526 	/* Take seq->lock to protect seq->private from concurrent writes */
1527 	mutex_lock(&seq->lock);
1528 
1529 	/* Allow only one trigger per file descriptor */
1530 	if (seq->private) {
1531 		mutex_unlock(&seq->lock);
1532 		return -EBUSY;
1533 	}
1534 
1535 	new = psi_trigger_create(&psi_system, buf, res, file);
1536 	if (IS_ERR(new)) {
1537 		mutex_unlock(&seq->lock);
1538 		return PTR_ERR(new);
1539 	}
1540 
1541 	smp_store_release(&seq->private, new);
1542 	mutex_unlock(&seq->lock);
1543 
1544 	return nbytes;
1545 }
1546 
1547 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1548 			    size_t nbytes, loff_t *ppos)
1549 {
1550 	return psi_write(file, user_buf, nbytes, PSI_IO);
1551 }
1552 
1553 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1554 				size_t nbytes, loff_t *ppos)
1555 {
1556 	return psi_write(file, user_buf, nbytes, PSI_MEM);
1557 }
1558 
1559 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1560 			     size_t nbytes, loff_t *ppos)
1561 {
1562 	return psi_write(file, user_buf, nbytes, PSI_CPU);
1563 }
1564 
1565 static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1566 {
1567 	struct seq_file *seq = file->private_data;
1568 
1569 	return psi_trigger_poll(&seq->private, file, wait);
1570 }
1571 
1572 static int psi_fop_release(struct inode *inode, struct file *file)
1573 {
1574 	struct seq_file *seq = file->private_data;
1575 
1576 	psi_trigger_destroy(seq->private);
1577 	return single_release(inode, file);
1578 }
1579 
1580 static const struct proc_ops psi_io_proc_ops = {
1581 	.proc_open	= psi_io_open,
1582 	.proc_read	= seq_read,
1583 	.proc_lseek	= seq_lseek,
1584 	.proc_write	= psi_io_write,
1585 	.proc_poll	= psi_fop_poll,
1586 	.proc_release	= psi_fop_release,
1587 };
1588 
1589 static const struct proc_ops psi_memory_proc_ops = {
1590 	.proc_open	= psi_memory_open,
1591 	.proc_read	= seq_read,
1592 	.proc_lseek	= seq_lseek,
1593 	.proc_write	= psi_memory_write,
1594 	.proc_poll	= psi_fop_poll,
1595 	.proc_release	= psi_fop_release,
1596 };
1597 
1598 static const struct proc_ops psi_cpu_proc_ops = {
1599 	.proc_open	= psi_cpu_open,
1600 	.proc_read	= seq_read,
1601 	.proc_lseek	= seq_lseek,
1602 	.proc_write	= psi_cpu_write,
1603 	.proc_poll	= psi_fop_poll,
1604 	.proc_release	= psi_fop_release,
1605 };
1606 
1607 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1608 static int psi_irq_show(struct seq_file *m, void *v)
1609 {
1610 	return psi_show(m, &psi_system, PSI_IRQ);
1611 }
1612 
1613 static int psi_irq_open(struct inode *inode, struct file *file)
1614 {
1615 	return single_open(file, psi_irq_show, NULL);
1616 }
1617 
1618 static ssize_t psi_irq_write(struct file *file, const char __user *user_buf,
1619 			     size_t nbytes, loff_t *ppos)
1620 {
1621 	return psi_write(file, user_buf, nbytes, PSI_IRQ);
1622 }
1623 
1624 static const struct proc_ops psi_irq_proc_ops = {
1625 	.proc_open	= psi_irq_open,
1626 	.proc_read	= seq_read,
1627 	.proc_lseek	= seq_lseek,
1628 	.proc_write	= psi_irq_write,
1629 	.proc_poll	= psi_fop_poll,
1630 	.proc_release	= psi_fop_release,
1631 };
1632 #endif
1633 
1634 static int __init psi_proc_init(void)
1635 {
1636 	if (psi_enable) {
1637 		proc_mkdir("pressure", NULL);
1638 		proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
1639 		proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
1640 		proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
1641 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1642 		proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops);
1643 #endif
1644 	}
1645 	return 0;
1646 }
1647 module_init(psi_proc_init);
1648 
1649 #endif /* CONFIG_PROC_FS */
1650