1 /* 2 * Pressure stall information for CPU, memory and IO 3 * 4 * Copyright (c) 2018 Facebook, Inc. 5 * Author: Johannes Weiner <hannes@cmpxchg.org> 6 * 7 * Polling support by Suren Baghdasaryan <surenb@google.com> 8 * Copyright (c) 2018 Google, Inc. 9 * 10 * When CPU, memory and IO are contended, tasks experience delays that 11 * reduce throughput and introduce latencies into the workload. Memory 12 * and IO contention, in addition, can cause a full loss of forward 13 * progress in which the CPU goes idle. 14 * 15 * This code aggregates individual task delays into resource pressure 16 * metrics that indicate problems with both workload health and 17 * resource utilization. 18 * 19 * Model 20 * 21 * The time in which a task can execute on a CPU is our baseline for 22 * productivity. Pressure expresses the amount of time in which this 23 * potential cannot be realized due to resource contention. 24 * 25 * This concept of productivity has two components: the workload and 26 * the CPU. To measure the impact of pressure on both, we define two 27 * contention states for a resource: SOME and FULL. 28 * 29 * In the SOME state of a given resource, one or more tasks are 30 * delayed on that resource. This affects the workload's ability to 31 * perform work, but the CPU may still be executing other tasks. 32 * 33 * In the FULL state of a given resource, all non-idle tasks are 34 * delayed on that resource such that nobody is advancing and the CPU 35 * goes idle. This leaves both workload and CPU unproductive. 36 * 37 * (Naturally, the FULL state doesn't exist for the CPU resource.) 38 * 39 * SOME = nr_delayed_tasks != 0 40 * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0 41 * 42 * The percentage of wallclock time spent in those compound stall 43 * states gives pressure numbers between 0 and 100 for each resource, 44 * where the SOME percentage indicates workload slowdowns and the FULL 45 * percentage indicates reduced CPU utilization: 46 * 47 * %SOME = time(SOME) / period 48 * %FULL = time(FULL) / period 49 * 50 * Multiple CPUs 51 * 52 * The more tasks and available CPUs there are, the more work can be 53 * performed concurrently. This means that the potential that can go 54 * unrealized due to resource contention *also* scales with non-idle 55 * tasks and CPUs. 56 * 57 * Consider a scenario where 257 number crunching tasks are trying to 58 * run concurrently on 256 CPUs. If we simply aggregated the task 59 * states, we would have to conclude a CPU SOME pressure number of 60 * 100%, since *somebody* is waiting on a runqueue at all 61 * times. However, that is clearly not the amount of contention the 62 * workload is experiencing: only one out of 256 possible exceution 63 * threads will be contended at any given time, or about 0.4%. 64 * 65 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any 66 * given time *one* of the tasks is delayed due to a lack of memory. 67 * Again, looking purely at the task state would yield a memory FULL 68 * pressure number of 0%, since *somebody* is always making forward 69 * progress. But again this wouldn't capture the amount of execution 70 * potential lost, which is 1 out of 4 CPUs, or 25%. 71 * 72 * To calculate wasted potential (pressure) with multiple processors, 73 * we have to base our calculation on the number of non-idle tasks in 74 * conjunction with the number of available CPUs, which is the number 75 * of potential execution threads. SOME becomes then the proportion of 76 * delayed tasks to possibe threads, and FULL is the share of possible 77 * threads that are unproductive due to delays: 78 * 79 * threads = min(nr_nonidle_tasks, nr_cpus) 80 * SOME = min(nr_delayed_tasks / threads, 1) 81 * FULL = (threads - min(nr_running_tasks, threads)) / threads 82 * 83 * For the 257 number crunchers on 256 CPUs, this yields: 84 * 85 * threads = min(257, 256) 86 * SOME = min(1 / 256, 1) = 0.4% 87 * FULL = (256 - min(257, 256)) / 256 = 0% 88 * 89 * For the 1 out of 4 memory-delayed tasks, this yields: 90 * 91 * threads = min(4, 4) 92 * SOME = min(1 / 4, 1) = 25% 93 * FULL = (4 - min(3, 4)) / 4 = 25% 94 * 95 * [ Substitute nr_cpus with 1, and you can see that it's a natural 96 * extension of the single-CPU model. ] 97 * 98 * Implementation 99 * 100 * To assess the precise time spent in each such state, we would have 101 * to freeze the system on task changes and start/stop the state 102 * clocks accordingly. Obviously that doesn't scale in practice. 103 * 104 * Because the scheduler aims to distribute the compute load evenly 105 * among the available CPUs, we can track task state locally to each 106 * CPU and, at much lower frequency, extrapolate the global state for 107 * the cumulative stall times and the running averages. 108 * 109 * For each runqueue, we track: 110 * 111 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0) 112 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu]) 113 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0) 114 * 115 * and then periodically aggregate: 116 * 117 * tNONIDLE = sum(tNONIDLE[i]) 118 * 119 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE 120 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE 121 * 122 * %SOME = tSOME / period 123 * %FULL = tFULL / period 124 * 125 * This gives us an approximation of pressure that is practical 126 * cost-wise, yet way more sensitive and accurate than periodic 127 * sampling of the aggregate task states would be. 128 */ 129 130 #include "../workqueue_internal.h" 131 #include <linux/sched/loadavg.h> 132 #include <linux/seq_file.h> 133 #include <linux/proc_fs.h> 134 #include <linux/seqlock.h> 135 #include <linux/uaccess.h> 136 #include <linux/cgroup.h> 137 #include <linux/module.h> 138 #include <linux/sched.h> 139 #include <linux/ctype.h> 140 #include <linux/file.h> 141 #include <linux/poll.h> 142 #include <linux/psi.h> 143 #include "sched.h" 144 145 static int psi_bug __read_mostly; 146 147 DEFINE_STATIC_KEY_FALSE(psi_disabled); 148 149 #ifdef CONFIG_PSI_DEFAULT_DISABLED 150 static bool psi_enable; 151 #else 152 static bool psi_enable = true; 153 #endif 154 static int __init setup_psi(char *str) 155 { 156 return kstrtobool(str, &psi_enable) == 0; 157 } 158 __setup("psi=", setup_psi); 159 160 /* Running averages - we need to be higher-res than loadavg */ 161 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */ 162 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */ 163 #define EXP_60s 1981 /* 1/exp(2s/60s) */ 164 #define EXP_300s 2034 /* 1/exp(2s/300s) */ 165 166 /* PSI trigger definitions */ 167 #define WINDOW_MIN_US 500000 /* Min window size is 500ms */ 168 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */ 169 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */ 170 171 /* Sampling frequency in nanoseconds */ 172 static u64 psi_period __read_mostly; 173 174 /* System-level pressure and stall tracking */ 175 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu); 176 struct psi_group psi_system = { 177 .pcpu = &system_group_pcpu, 178 }; 179 180 static void psi_avgs_work(struct work_struct *work); 181 182 static void group_init(struct psi_group *group) 183 { 184 int cpu; 185 186 for_each_possible_cpu(cpu) 187 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq); 188 group->avg_last_update = sched_clock(); 189 group->avg_next_update = group->avg_last_update + psi_period; 190 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work); 191 mutex_init(&group->avgs_lock); 192 /* Init trigger-related members */ 193 mutex_init(&group->trigger_lock); 194 INIT_LIST_HEAD(&group->triggers); 195 memset(group->nr_triggers, 0, sizeof(group->nr_triggers)); 196 group->poll_states = 0; 197 group->poll_min_period = U32_MAX; 198 memset(group->polling_total, 0, sizeof(group->polling_total)); 199 group->polling_next_update = ULLONG_MAX; 200 group->polling_until = 0; 201 rcu_assign_pointer(group->poll_task, NULL); 202 } 203 204 void __init psi_init(void) 205 { 206 if (!psi_enable) { 207 static_branch_enable(&psi_disabled); 208 return; 209 } 210 211 psi_period = jiffies_to_nsecs(PSI_FREQ); 212 group_init(&psi_system); 213 } 214 215 static bool test_state(unsigned int *tasks, enum psi_states state) 216 { 217 switch (state) { 218 case PSI_IO_SOME: 219 return tasks[NR_IOWAIT]; 220 case PSI_IO_FULL: 221 return tasks[NR_IOWAIT] && !tasks[NR_RUNNING]; 222 case PSI_MEM_SOME: 223 return tasks[NR_MEMSTALL]; 224 case PSI_MEM_FULL: 225 return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING]; 226 case PSI_CPU_SOME: 227 return tasks[NR_RUNNING] > tasks[NR_ONCPU]; 228 case PSI_NONIDLE: 229 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || 230 tasks[NR_RUNNING]; 231 default: 232 return false; 233 } 234 } 235 236 static void get_recent_times(struct psi_group *group, int cpu, 237 enum psi_aggregators aggregator, u32 *times, 238 u32 *pchanged_states) 239 { 240 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu); 241 u64 now, state_start; 242 enum psi_states s; 243 unsigned int seq; 244 u32 state_mask; 245 246 *pchanged_states = 0; 247 248 /* Snapshot a coherent view of the CPU state */ 249 do { 250 seq = read_seqcount_begin(&groupc->seq); 251 now = cpu_clock(cpu); 252 memcpy(times, groupc->times, sizeof(groupc->times)); 253 state_mask = groupc->state_mask; 254 state_start = groupc->state_start; 255 } while (read_seqcount_retry(&groupc->seq, seq)); 256 257 /* Calculate state time deltas against the previous snapshot */ 258 for (s = 0; s < NR_PSI_STATES; s++) { 259 u32 delta; 260 /* 261 * In addition to already concluded states, we also 262 * incorporate currently active states on the CPU, 263 * since states may last for many sampling periods. 264 * 265 * This way we keep our delta sampling buckets small 266 * (u32) and our reported pressure close to what's 267 * actually happening. 268 */ 269 if (state_mask & (1 << s)) 270 times[s] += now - state_start; 271 272 delta = times[s] - groupc->times_prev[aggregator][s]; 273 groupc->times_prev[aggregator][s] = times[s]; 274 275 times[s] = delta; 276 if (delta) 277 *pchanged_states |= (1 << s); 278 } 279 } 280 281 static void calc_avgs(unsigned long avg[3], int missed_periods, 282 u64 time, u64 period) 283 { 284 unsigned long pct; 285 286 /* Fill in zeroes for periods of no activity */ 287 if (missed_periods) { 288 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods); 289 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods); 290 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods); 291 } 292 293 /* Sample the most recent active period */ 294 pct = div_u64(time * 100, period); 295 pct *= FIXED_1; 296 avg[0] = calc_load(avg[0], EXP_10s, pct); 297 avg[1] = calc_load(avg[1], EXP_60s, pct); 298 avg[2] = calc_load(avg[2], EXP_300s, pct); 299 } 300 301 static void collect_percpu_times(struct psi_group *group, 302 enum psi_aggregators aggregator, 303 u32 *pchanged_states) 304 { 305 u64 deltas[NR_PSI_STATES - 1] = { 0, }; 306 unsigned long nonidle_total = 0; 307 u32 changed_states = 0; 308 int cpu; 309 int s; 310 311 /* 312 * Collect the per-cpu time buckets and average them into a 313 * single time sample that is normalized to wallclock time. 314 * 315 * For averaging, each CPU is weighted by its non-idle time in 316 * the sampling period. This eliminates artifacts from uneven 317 * loading, or even entirely idle CPUs. 318 */ 319 for_each_possible_cpu(cpu) { 320 u32 times[NR_PSI_STATES]; 321 u32 nonidle; 322 u32 cpu_changed_states; 323 324 get_recent_times(group, cpu, aggregator, times, 325 &cpu_changed_states); 326 changed_states |= cpu_changed_states; 327 328 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]); 329 nonidle_total += nonidle; 330 331 for (s = 0; s < PSI_NONIDLE; s++) 332 deltas[s] += (u64)times[s] * nonidle; 333 } 334 335 /* 336 * Integrate the sample into the running statistics that are 337 * reported to userspace: the cumulative stall times and the 338 * decaying averages. 339 * 340 * Pressure percentages are sampled at PSI_FREQ. We might be 341 * called more often when the user polls more frequently than 342 * that; we might be called less often when there is no task 343 * activity, thus no data, and clock ticks are sporadic. The 344 * below handles both. 345 */ 346 347 /* total= */ 348 for (s = 0; s < NR_PSI_STATES - 1; s++) 349 group->total[aggregator][s] += 350 div_u64(deltas[s], max(nonidle_total, 1UL)); 351 352 if (pchanged_states) 353 *pchanged_states = changed_states; 354 } 355 356 static u64 update_averages(struct psi_group *group, u64 now) 357 { 358 unsigned long missed_periods = 0; 359 u64 expires, period; 360 u64 avg_next_update; 361 int s; 362 363 /* avgX= */ 364 expires = group->avg_next_update; 365 if (now - expires >= psi_period) 366 missed_periods = div_u64(now - expires, psi_period); 367 368 /* 369 * The periodic clock tick can get delayed for various 370 * reasons, especially on loaded systems. To avoid clock 371 * drift, we schedule the clock in fixed psi_period intervals. 372 * But the deltas we sample out of the per-cpu buckets above 373 * are based on the actual time elapsing between clock ticks. 374 */ 375 avg_next_update = expires + ((1 + missed_periods) * psi_period); 376 period = now - (group->avg_last_update + (missed_periods * psi_period)); 377 group->avg_last_update = now; 378 379 for (s = 0; s < NR_PSI_STATES - 1; s++) { 380 u32 sample; 381 382 sample = group->total[PSI_AVGS][s] - group->avg_total[s]; 383 /* 384 * Due to the lockless sampling of the time buckets, 385 * recorded time deltas can slip into the next period, 386 * which under full pressure can result in samples in 387 * excess of the period length. 388 * 389 * We don't want to report non-sensical pressures in 390 * excess of 100%, nor do we want to drop such events 391 * on the floor. Instead we punt any overage into the 392 * future until pressure subsides. By doing this we 393 * don't underreport the occurring pressure curve, we 394 * just report it delayed by one period length. 395 * 396 * The error isn't cumulative. As soon as another 397 * delta slips from a period P to P+1, by definition 398 * it frees up its time T in P. 399 */ 400 if (sample > period) 401 sample = period; 402 group->avg_total[s] += sample; 403 calc_avgs(group->avg[s], missed_periods, sample, period); 404 } 405 406 return avg_next_update; 407 } 408 409 static void psi_avgs_work(struct work_struct *work) 410 { 411 struct delayed_work *dwork; 412 struct psi_group *group; 413 u32 changed_states; 414 bool nonidle; 415 u64 now; 416 417 dwork = to_delayed_work(work); 418 group = container_of(dwork, struct psi_group, avgs_work); 419 420 mutex_lock(&group->avgs_lock); 421 422 now = sched_clock(); 423 424 collect_percpu_times(group, PSI_AVGS, &changed_states); 425 nonidle = changed_states & (1 << PSI_NONIDLE); 426 /* 427 * If there is task activity, periodically fold the per-cpu 428 * times and feed samples into the running averages. If things 429 * are idle and there is no data to process, stop the clock. 430 * Once restarted, we'll catch up the running averages in one 431 * go - see calc_avgs() and missed_periods. 432 */ 433 if (now >= group->avg_next_update) 434 group->avg_next_update = update_averages(group, now); 435 436 if (nonidle) { 437 schedule_delayed_work(dwork, nsecs_to_jiffies( 438 group->avg_next_update - now) + 1); 439 } 440 441 mutex_unlock(&group->avgs_lock); 442 } 443 444 /* Trigger tracking window manupulations */ 445 static void window_reset(struct psi_window *win, u64 now, u64 value, 446 u64 prev_growth) 447 { 448 win->start_time = now; 449 win->start_value = value; 450 win->prev_growth = prev_growth; 451 } 452 453 /* 454 * PSI growth tracking window update and growth calculation routine. 455 * 456 * This approximates a sliding tracking window by interpolating 457 * partially elapsed windows using historical growth data from the 458 * previous intervals. This minimizes memory requirements (by not storing 459 * all the intermediate values in the previous window) and simplifies 460 * the calculations. It works well because PSI signal changes only in 461 * positive direction and over relatively small window sizes the growth 462 * is close to linear. 463 */ 464 static u64 window_update(struct psi_window *win, u64 now, u64 value) 465 { 466 u64 elapsed; 467 u64 growth; 468 469 elapsed = now - win->start_time; 470 growth = value - win->start_value; 471 /* 472 * After each tracking window passes win->start_value and 473 * win->start_time get reset and win->prev_growth stores 474 * the average per-window growth of the previous window. 475 * win->prev_growth is then used to interpolate additional 476 * growth from the previous window assuming it was linear. 477 */ 478 if (elapsed > win->size) 479 window_reset(win, now, value, growth); 480 else { 481 u32 remaining; 482 483 remaining = win->size - elapsed; 484 growth += div64_u64(win->prev_growth * remaining, win->size); 485 } 486 487 return growth; 488 } 489 490 static void init_triggers(struct psi_group *group, u64 now) 491 { 492 struct psi_trigger *t; 493 494 list_for_each_entry(t, &group->triggers, node) 495 window_reset(&t->win, now, 496 group->total[PSI_POLL][t->state], 0); 497 memcpy(group->polling_total, group->total[PSI_POLL], 498 sizeof(group->polling_total)); 499 group->polling_next_update = now + group->poll_min_period; 500 } 501 502 static u64 update_triggers(struct psi_group *group, u64 now) 503 { 504 struct psi_trigger *t; 505 bool new_stall = false; 506 u64 *total = group->total[PSI_POLL]; 507 508 /* 509 * On subsequent updates, calculate growth deltas and let 510 * watchers know when their specified thresholds are exceeded. 511 */ 512 list_for_each_entry(t, &group->triggers, node) { 513 u64 growth; 514 515 /* Check for stall activity */ 516 if (group->polling_total[t->state] == total[t->state]) 517 continue; 518 519 /* 520 * Multiple triggers might be looking at the same state, 521 * remember to update group->polling_total[] once we've 522 * been through all of them. Also remember to extend the 523 * polling time if we see new stall activity. 524 */ 525 new_stall = true; 526 527 /* Calculate growth since last update */ 528 growth = window_update(&t->win, now, total[t->state]); 529 if (growth < t->threshold) 530 continue; 531 532 /* Limit event signaling to once per window */ 533 if (now < t->last_event_time + t->win.size) 534 continue; 535 536 /* Generate an event */ 537 if (cmpxchg(&t->event, 0, 1) == 0) 538 wake_up_interruptible(&t->event_wait); 539 t->last_event_time = now; 540 } 541 542 if (new_stall) 543 memcpy(group->polling_total, total, 544 sizeof(group->polling_total)); 545 546 return now + group->poll_min_period; 547 } 548 549 /* Schedule polling if it's not already scheduled. */ 550 static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay) 551 { 552 struct task_struct *task; 553 554 /* 555 * Do not reschedule if already scheduled. 556 * Possible race with a timer scheduled after this check but before 557 * mod_timer below can be tolerated because group->polling_next_update 558 * will keep updates on schedule. 559 */ 560 if (timer_pending(&group->poll_timer)) 561 return; 562 563 rcu_read_lock(); 564 565 task = rcu_dereference(group->poll_task); 566 /* 567 * kworker might be NULL in case psi_trigger_destroy races with 568 * psi_task_change (hotpath) which can't use locks 569 */ 570 if (likely(task)) 571 mod_timer(&group->poll_timer, jiffies + delay); 572 573 rcu_read_unlock(); 574 } 575 576 static void psi_poll_work(struct psi_group *group) 577 { 578 u32 changed_states; 579 u64 now; 580 581 mutex_lock(&group->trigger_lock); 582 583 now = sched_clock(); 584 585 collect_percpu_times(group, PSI_POLL, &changed_states); 586 587 if (changed_states & group->poll_states) { 588 /* Initialize trigger windows when entering polling mode */ 589 if (now > group->polling_until) 590 init_triggers(group, now); 591 592 /* 593 * Keep the monitor active for at least the duration of the 594 * minimum tracking window as long as monitor states are 595 * changing. 596 */ 597 group->polling_until = now + 598 group->poll_min_period * UPDATES_PER_WINDOW; 599 } 600 601 if (now > group->polling_until) { 602 group->polling_next_update = ULLONG_MAX; 603 goto out; 604 } 605 606 if (now >= group->polling_next_update) 607 group->polling_next_update = update_triggers(group, now); 608 609 psi_schedule_poll_work(group, 610 nsecs_to_jiffies(group->polling_next_update - now) + 1); 611 612 out: 613 mutex_unlock(&group->trigger_lock); 614 } 615 616 static int psi_poll_worker(void *data) 617 { 618 struct psi_group *group = (struct psi_group *)data; 619 struct sched_param param = { 620 .sched_priority = 1, 621 }; 622 623 sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m); 624 625 while (true) { 626 wait_event_interruptible(group->poll_wait, 627 atomic_cmpxchg(&group->poll_wakeup, 1, 0) || 628 kthread_should_stop()); 629 if (kthread_should_stop()) 630 break; 631 632 psi_poll_work(group); 633 } 634 return 0; 635 } 636 637 static void poll_timer_fn(struct timer_list *t) 638 { 639 struct psi_group *group = from_timer(group, t, poll_timer); 640 641 atomic_set(&group->poll_wakeup, 1); 642 wake_up_interruptible(&group->poll_wait); 643 } 644 645 static void record_times(struct psi_group_cpu *groupc, int cpu, 646 bool memstall_tick) 647 { 648 u32 delta; 649 u64 now; 650 651 now = cpu_clock(cpu); 652 delta = now - groupc->state_start; 653 groupc->state_start = now; 654 655 if (groupc->state_mask & (1 << PSI_IO_SOME)) { 656 groupc->times[PSI_IO_SOME] += delta; 657 if (groupc->state_mask & (1 << PSI_IO_FULL)) 658 groupc->times[PSI_IO_FULL] += delta; 659 } 660 661 if (groupc->state_mask & (1 << PSI_MEM_SOME)) { 662 groupc->times[PSI_MEM_SOME] += delta; 663 if (groupc->state_mask & (1 << PSI_MEM_FULL)) 664 groupc->times[PSI_MEM_FULL] += delta; 665 else if (memstall_tick) { 666 u32 sample; 667 /* 668 * Since we care about lost potential, a 669 * memstall is FULL when there are no other 670 * working tasks, but also when the CPU is 671 * actively reclaiming and nothing productive 672 * could run even if it were runnable. 673 * 674 * When the timer tick sees a reclaiming CPU, 675 * regardless of runnable tasks, sample a FULL 676 * tick (or less if it hasn't been a full tick 677 * since the last state change). 678 */ 679 sample = min(delta, (u32)jiffies_to_nsecs(1)); 680 groupc->times[PSI_MEM_FULL] += sample; 681 } 682 } 683 684 if (groupc->state_mask & (1 << PSI_CPU_SOME)) 685 groupc->times[PSI_CPU_SOME] += delta; 686 687 if (groupc->state_mask & (1 << PSI_NONIDLE)) 688 groupc->times[PSI_NONIDLE] += delta; 689 } 690 691 static void psi_group_change(struct psi_group *group, int cpu, 692 unsigned int clear, unsigned int set, 693 bool wake_clock) 694 { 695 struct psi_group_cpu *groupc; 696 u32 state_mask = 0; 697 unsigned int t, m; 698 enum psi_states s; 699 700 groupc = per_cpu_ptr(group->pcpu, cpu); 701 702 /* 703 * First we assess the aggregate resource states this CPU's 704 * tasks have been in since the last change, and account any 705 * SOME and FULL time these may have resulted in. 706 * 707 * Then we update the task counts according to the state 708 * change requested through the @clear and @set bits. 709 */ 710 write_seqcount_begin(&groupc->seq); 711 712 record_times(groupc, cpu, false); 713 714 for (t = 0, m = clear; m; m &= ~(1 << t), t++) { 715 if (!(m & (1 << t))) 716 continue; 717 if (groupc->tasks[t] == 0 && !psi_bug) { 718 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n", 719 cpu, t, groupc->tasks[0], 720 groupc->tasks[1], groupc->tasks[2], 721 groupc->tasks[3], clear, set); 722 psi_bug = 1; 723 } 724 groupc->tasks[t]--; 725 } 726 727 for (t = 0; set; set &= ~(1 << t), t++) 728 if (set & (1 << t)) 729 groupc->tasks[t]++; 730 731 /* Calculate state mask representing active states */ 732 for (s = 0; s < NR_PSI_STATES; s++) { 733 if (test_state(groupc->tasks, s)) 734 state_mask |= (1 << s); 735 } 736 groupc->state_mask = state_mask; 737 738 write_seqcount_end(&groupc->seq); 739 740 if (state_mask & group->poll_states) 741 psi_schedule_poll_work(group, 1); 742 743 if (wake_clock && !delayed_work_pending(&group->avgs_work)) 744 schedule_delayed_work(&group->avgs_work, PSI_FREQ); 745 } 746 747 static struct psi_group *iterate_groups(struct task_struct *task, void **iter) 748 { 749 #ifdef CONFIG_CGROUPS 750 struct cgroup *cgroup = NULL; 751 752 if (!*iter) 753 cgroup = task->cgroups->dfl_cgrp; 754 else if (*iter == &psi_system) 755 return NULL; 756 else 757 cgroup = cgroup_parent(*iter); 758 759 if (cgroup && cgroup_parent(cgroup)) { 760 *iter = cgroup; 761 return cgroup_psi(cgroup); 762 } 763 #else 764 if (*iter) 765 return NULL; 766 #endif 767 *iter = &psi_system; 768 return &psi_system; 769 } 770 771 static void psi_flags_change(struct task_struct *task, int clear, int set) 772 { 773 if (((task->psi_flags & set) || 774 (task->psi_flags & clear) != clear) && 775 !psi_bug) { 776 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n", 777 task->pid, task->comm, task_cpu(task), 778 task->psi_flags, clear, set); 779 psi_bug = 1; 780 } 781 782 task->psi_flags &= ~clear; 783 task->psi_flags |= set; 784 } 785 786 void psi_task_change(struct task_struct *task, int clear, int set) 787 { 788 int cpu = task_cpu(task); 789 struct psi_group *group; 790 bool wake_clock = true; 791 void *iter = NULL; 792 793 if (!task->pid) 794 return; 795 796 psi_flags_change(task, clear, set); 797 798 /* 799 * Periodic aggregation shuts off if there is a period of no 800 * task changes, so we wake it back up if necessary. However, 801 * don't do this if the task change is the aggregation worker 802 * itself going to sleep, or we'll ping-pong forever. 803 */ 804 if (unlikely((clear & TSK_RUNNING) && 805 (task->flags & PF_WQ_WORKER) && 806 wq_worker_last_func(task) == psi_avgs_work)) 807 wake_clock = false; 808 809 while ((group = iterate_groups(task, &iter))) 810 psi_group_change(group, cpu, clear, set, wake_clock); 811 } 812 813 void psi_task_switch(struct task_struct *prev, struct task_struct *next, 814 bool sleep) 815 { 816 struct psi_group *group, *common = NULL; 817 int cpu = task_cpu(prev); 818 void *iter; 819 820 if (next->pid) { 821 psi_flags_change(next, 0, TSK_ONCPU); 822 /* 823 * When moving state between tasks, the group that 824 * contains them both does not change: we can stop 825 * updating the tree once we reach the first common 826 * ancestor. Iterate @next's ancestors until we 827 * encounter @prev's state. 828 */ 829 iter = NULL; 830 while ((group = iterate_groups(next, &iter))) { 831 if (per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) { 832 common = group; 833 break; 834 } 835 836 psi_group_change(group, cpu, 0, TSK_ONCPU, true); 837 } 838 } 839 840 /* 841 * If this is a voluntary sleep, dequeue will have taken care 842 * of the outgoing TSK_ONCPU alongside TSK_RUNNING already. We 843 * only need to deal with it during preemption. 844 */ 845 if (sleep) 846 return; 847 848 if (prev->pid) { 849 psi_flags_change(prev, TSK_ONCPU, 0); 850 851 iter = NULL; 852 while ((group = iterate_groups(prev, &iter)) && group != common) 853 psi_group_change(group, cpu, TSK_ONCPU, 0, true); 854 } 855 } 856 857 void psi_memstall_tick(struct task_struct *task, int cpu) 858 { 859 struct psi_group *group; 860 void *iter = NULL; 861 862 while ((group = iterate_groups(task, &iter))) { 863 struct psi_group_cpu *groupc; 864 865 groupc = per_cpu_ptr(group->pcpu, cpu); 866 write_seqcount_begin(&groupc->seq); 867 record_times(groupc, cpu, true); 868 write_seqcount_end(&groupc->seq); 869 } 870 } 871 872 /** 873 * psi_memstall_enter - mark the beginning of a memory stall section 874 * @flags: flags to handle nested sections 875 * 876 * Marks the calling task as being stalled due to a lack of memory, 877 * such as waiting for a refault or performing reclaim. 878 */ 879 void psi_memstall_enter(unsigned long *flags) 880 { 881 struct rq_flags rf; 882 struct rq *rq; 883 884 if (static_branch_likely(&psi_disabled)) 885 return; 886 887 *flags = current->in_memstall; 888 if (*flags) 889 return; 890 /* 891 * in_memstall setting & accounting needs to be atomic wrt 892 * changes to the task's scheduling state, otherwise we can 893 * race with CPU migration. 894 */ 895 rq = this_rq_lock_irq(&rf); 896 897 current->in_memstall = 1; 898 psi_task_change(current, 0, TSK_MEMSTALL); 899 900 rq_unlock_irq(rq, &rf); 901 } 902 903 /** 904 * psi_memstall_leave - mark the end of an memory stall section 905 * @flags: flags to handle nested memdelay sections 906 * 907 * Marks the calling task as no longer stalled due to lack of memory. 908 */ 909 void psi_memstall_leave(unsigned long *flags) 910 { 911 struct rq_flags rf; 912 struct rq *rq; 913 914 if (static_branch_likely(&psi_disabled)) 915 return; 916 917 if (*flags) 918 return; 919 /* 920 * in_memstall clearing & accounting needs to be atomic wrt 921 * changes to the task's scheduling state, otherwise we could 922 * race with CPU migration. 923 */ 924 rq = this_rq_lock_irq(&rf); 925 926 current->in_memstall = 0; 927 psi_task_change(current, TSK_MEMSTALL, 0); 928 929 rq_unlock_irq(rq, &rf); 930 } 931 932 #ifdef CONFIG_CGROUPS 933 int psi_cgroup_alloc(struct cgroup *cgroup) 934 { 935 if (static_branch_likely(&psi_disabled)) 936 return 0; 937 938 cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu); 939 if (!cgroup->psi.pcpu) 940 return -ENOMEM; 941 group_init(&cgroup->psi); 942 return 0; 943 } 944 945 void psi_cgroup_free(struct cgroup *cgroup) 946 { 947 if (static_branch_likely(&psi_disabled)) 948 return; 949 950 cancel_delayed_work_sync(&cgroup->psi.avgs_work); 951 free_percpu(cgroup->psi.pcpu); 952 /* All triggers must be removed by now */ 953 WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n"); 954 } 955 956 /** 957 * cgroup_move_task - move task to a different cgroup 958 * @task: the task 959 * @to: the target css_set 960 * 961 * Move task to a new cgroup and safely migrate its associated stall 962 * state between the different groups. 963 * 964 * This function acquires the task's rq lock to lock out concurrent 965 * changes to the task's scheduling state and - in case the task is 966 * running - concurrent changes to its stall state. 967 */ 968 void cgroup_move_task(struct task_struct *task, struct css_set *to) 969 { 970 unsigned int task_flags = 0; 971 struct rq_flags rf; 972 struct rq *rq; 973 974 if (static_branch_likely(&psi_disabled)) { 975 /* 976 * Lame to do this here, but the scheduler cannot be locked 977 * from the outside, so we move cgroups from inside sched/. 978 */ 979 rcu_assign_pointer(task->cgroups, to); 980 return; 981 } 982 983 rq = task_rq_lock(task, &rf); 984 985 if (task_on_rq_queued(task)) { 986 task_flags = TSK_RUNNING; 987 if (task_current(rq, task)) 988 task_flags |= TSK_ONCPU; 989 } else if (task->in_iowait) 990 task_flags = TSK_IOWAIT; 991 992 if (task->in_memstall) 993 task_flags |= TSK_MEMSTALL; 994 995 if (task_flags) 996 psi_task_change(task, task_flags, 0); 997 998 /* See comment above */ 999 rcu_assign_pointer(task->cgroups, to); 1000 1001 if (task_flags) 1002 psi_task_change(task, 0, task_flags); 1003 1004 task_rq_unlock(rq, task, &rf); 1005 } 1006 #endif /* CONFIG_CGROUPS */ 1007 1008 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res) 1009 { 1010 int full; 1011 u64 now; 1012 1013 if (static_branch_likely(&psi_disabled)) 1014 return -EOPNOTSUPP; 1015 1016 /* Update averages before reporting them */ 1017 mutex_lock(&group->avgs_lock); 1018 now = sched_clock(); 1019 collect_percpu_times(group, PSI_AVGS, NULL); 1020 if (now >= group->avg_next_update) 1021 group->avg_next_update = update_averages(group, now); 1022 mutex_unlock(&group->avgs_lock); 1023 1024 for (full = 0; full < 2 - (res == PSI_CPU); full++) { 1025 unsigned long avg[3]; 1026 u64 total; 1027 int w; 1028 1029 for (w = 0; w < 3; w++) 1030 avg[w] = group->avg[res * 2 + full][w]; 1031 total = div_u64(group->total[PSI_AVGS][res * 2 + full], 1032 NSEC_PER_USEC); 1033 1034 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n", 1035 full ? "full" : "some", 1036 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]), 1037 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]), 1038 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]), 1039 total); 1040 } 1041 1042 return 0; 1043 } 1044 1045 static int psi_io_show(struct seq_file *m, void *v) 1046 { 1047 return psi_show(m, &psi_system, PSI_IO); 1048 } 1049 1050 static int psi_memory_show(struct seq_file *m, void *v) 1051 { 1052 return psi_show(m, &psi_system, PSI_MEM); 1053 } 1054 1055 static int psi_cpu_show(struct seq_file *m, void *v) 1056 { 1057 return psi_show(m, &psi_system, PSI_CPU); 1058 } 1059 1060 static int psi_io_open(struct inode *inode, struct file *file) 1061 { 1062 return single_open(file, psi_io_show, NULL); 1063 } 1064 1065 static int psi_memory_open(struct inode *inode, struct file *file) 1066 { 1067 return single_open(file, psi_memory_show, NULL); 1068 } 1069 1070 static int psi_cpu_open(struct inode *inode, struct file *file) 1071 { 1072 return single_open(file, psi_cpu_show, NULL); 1073 } 1074 1075 struct psi_trigger *psi_trigger_create(struct psi_group *group, 1076 char *buf, size_t nbytes, enum psi_res res) 1077 { 1078 struct psi_trigger *t; 1079 enum psi_states state; 1080 u32 threshold_us; 1081 u32 window_us; 1082 1083 if (static_branch_likely(&psi_disabled)) 1084 return ERR_PTR(-EOPNOTSUPP); 1085 1086 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2) 1087 state = PSI_IO_SOME + res * 2; 1088 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2) 1089 state = PSI_IO_FULL + res * 2; 1090 else 1091 return ERR_PTR(-EINVAL); 1092 1093 if (state >= PSI_NONIDLE) 1094 return ERR_PTR(-EINVAL); 1095 1096 if (window_us < WINDOW_MIN_US || 1097 window_us > WINDOW_MAX_US) 1098 return ERR_PTR(-EINVAL); 1099 1100 /* Check threshold */ 1101 if (threshold_us == 0 || threshold_us > window_us) 1102 return ERR_PTR(-EINVAL); 1103 1104 t = kmalloc(sizeof(*t), GFP_KERNEL); 1105 if (!t) 1106 return ERR_PTR(-ENOMEM); 1107 1108 t->group = group; 1109 t->state = state; 1110 t->threshold = threshold_us * NSEC_PER_USEC; 1111 t->win.size = window_us * NSEC_PER_USEC; 1112 window_reset(&t->win, 0, 0, 0); 1113 1114 t->event = 0; 1115 t->last_event_time = 0; 1116 init_waitqueue_head(&t->event_wait); 1117 kref_init(&t->refcount); 1118 1119 mutex_lock(&group->trigger_lock); 1120 1121 if (!rcu_access_pointer(group->poll_task)) { 1122 struct task_struct *task; 1123 1124 task = kthread_create(psi_poll_worker, group, "psimon"); 1125 if (IS_ERR(task)) { 1126 kfree(t); 1127 mutex_unlock(&group->trigger_lock); 1128 return ERR_CAST(task); 1129 } 1130 atomic_set(&group->poll_wakeup, 0); 1131 init_waitqueue_head(&group->poll_wait); 1132 wake_up_process(task); 1133 timer_setup(&group->poll_timer, poll_timer_fn, 0); 1134 rcu_assign_pointer(group->poll_task, task); 1135 } 1136 1137 list_add(&t->node, &group->triggers); 1138 group->poll_min_period = min(group->poll_min_period, 1139 div_u64(t->win.size, UPDATES_PER_WINDOW)); 1140 group->nr_triggers[t->state]++; 1141 group->poll_states |= (1 << t->state); 1142 1143 mutex_unlock(&group->trigger_lock); 1144 1145 return t; 1146 } 1147 1148 static void psi_trigger_destroy(struct kref *ref) 1149 { 1150 struct psi_trigger *t = container_of(ref, struct psi_trigger, refcount); 1151 struct psi_group *group = t->group; 1152 struct task_struct *task_to_destroy = NULL; 1153 1154 if (static_branch_likely(&psi_disabled)) 1155 return; 1156 1157 /* 1158 * Wakeup waiters to stop polling. Can happen if cgroup is deleted 1159 * from under a polling process. 1160 */ 1161 wake_up_interruptible(&t->event_wait); 1162 1163 mutex_lock(&group->trigger_lock); 1164 1165 if (!list_empty(&t->node)) { 1166 struct psi_trigger *tmp; 1167 u64 period = ULLONG_MAX; 1168 1169 list_del(&t->node); 1170 group->nr_triggers[t->state]--; 1171 if (!group->nr_triggers[t->state]) 1172 group->poll_states &= ~(1 << t->state); 1173 /* reset min update period for the remaining triggers */ 1174 list_for_each_entry(tmp, &group->triggers, node) 1175 period = min(period, div_u64(tmp->win.size, 1176 UPDATES_PER_WINDOW)); 1177 group->poll_min_period = period; 1178 /* Destroy poll_task when the last trigger is destroyed */ 1179 if (group->poll_states == 0) { 1180 group->polling_until = 0; 1181 task_to_destroy = rcu_dereference_protected( 1182 group->poll_task, 1183 lockdep_is_held(&group->trigger_lock)); 1184 rcu_assign_pointer(group->poll_task, NULL); 1185 } 1186 } 1187 1188 mutex_unlock(&group->trigger_lock); 1189 1190 /* 1191 * Wait for both *trigger_ptr from psi_trigger_replace and 1192 * poll_task RCUs to complete their read-side critical sections 1193 * before destroying the trigger and optionally the poll_task 1194 */ 1195 synchronize_rcu(); 1196 /* 1197 * Destroy the kworker after releasing trigger_lock to prevent a 1198 * deadlock while waiting for psi_poll_work to acquire trigger_lock 1199 */ 1200 if (task_to_destroy) { 1201 /* 1202 * After the RCU grace period has expired, the worker 1203 * can no longer be found through group->poll_task. 1204 * But it might have been already scheduled before 1205 * that - deschedule it cleanly before destroying it. 1206 */ 1207 del_timer_sync(&group->poll_timer); 1208 kthread_stop(task_to_destroy); 1209 } 1210 kfree(t); 1211 } 1212 1213 void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *new) 1214 { 1215 struct psi_trigger *old = *trigger_ptr; 1216 1217 if (static_branch_likely(&psi_disabled)) 1218 return; 1219 1220 rcu_assign_pointer(*trigger_ptr, new); 1221 if (old) 1222 kref_put(&old->refcount, psi_trigger_destroy); 1223 } 1224 1225 __poll_t psi_trigger_poll(void **trigger_ptr, 1226 struct file *file, poll_table *wait) 1227 { 1228 __poll_t ret = DEFAULT_POLLMASK; 1229 struct psi_trigger *t; 1230 1231 if (static_branch_likely(&psi_disabled)) 1232 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; 1233 1234 rcu_read_lock(); 1235 1236 t = rcu_dereference(*(void __rcu __force **)trigger_ptr); 1237 if (!t) { 1238 rcu_read_unlock(); 1239 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; 1240 } 1241 kref_get(&t->refcount); 1242 1243 rcu_read_unlock(); 1244 1245 poll_wait(file, &t->event_wait, wait); 1246 1247 if (cmpxchg(&t->event, 1, 0) == 1) 1248 ret |= EPOLLPRI; 1249 1250 kref_put(&t->refcount, psi_trigger_destroy); 1251 1252 return ret; 1253 } 1254 1255 static ssize_t psi_write(struct file *file, const char __user *user_buf, 1256 size_t nbytes, enum psi_res res) 1257 { 1258 char buf[32]; 1259 size_t buf_size; 1260 struct seq_file *seq; 1261 struct psi_trigger *new; 1262 1263 if (static_branch_likely(&psi_disabled)) 1264 return -EOPNOTSUPP; 1265 1266 if (!nbytes) 1267 return -EINVAL; 1268 1269 buf_size = min(nbytes, sizeof(buf)); 1270 if (copy_from_user(buf, user_buf, buf_size)) 1271 return -EFAULT; 1272 1273 buf[buf_size - 1] = '\0'; 1274 1275 new = psi_trigger_create(&psi_system, buf, nbytes, res); 1276 if (IS_ERR(new)) 1277 return PTR_ERR(new); 1278 1279 seq = file->private_data; 1280 /* Take seq->lock to protect seq->private from concurrent writes */ 1281 mutex_lock(&seq->lock); 1282 psi_trigger_replace(&seq->private, new); 1283 mutex_unlock(&seq->lock); 1284 1285 return nbytes; 1286 } 1287 1288 static ssize_t psi_io_write(struct file *file, const char __user *user_buf, 1289 size_t nbytes, loff_t *ppos) 1290 { 1291 return psi_write(file, user_buf, nbytes, PSI_IO); 1292 } 1293 1294 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf, 1295 size_t nbytes, loff_t *ppos) 1296 { 1297 return psi_write(file, user_buf, nbytes, PSI_MEM); 1298 } 1299 1300 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf, 1301 size_t nbytes, loff_t *ppos) 1302 { 1303 return psi_write(file, user_buf, nbytes, PSI_CPU); 1304 } 1305 1306 static __poll_t psi_fop_poll(struct file *file, poll_table *wait) 1307 { 1308 struct seq_file *seq = file->private_data; 1309 1310 return psi_trigger_poll(&seq->private, file, wait); 1311 } 1312 1313 static int psi_fop_release(struct inode *inode, struct file *file) 1314 { 1315 struct seq_file *seq = file->private_data; 1316 1317 psi_trigger_replace(&seq->private, NULL); 1318 return single_release(inode, file); 1319 } 1320 1321 static const struct proc_ops psi_io_proc_ops = { 1322 .proc_open = psi_io_open, 1323 .proc_read = seq_read, 1324 .proc_lseek = seq_lseek, 1325 .proc_write = psi_io_write, 1326 .proc_poll = psi_fop_poll, 1327 .proc_release = psi_fop_release, 1328 }; 1329 1330 static const struct proc_ops psi_memory_proc_ops = { 1331 .proc_open = psi_memory_open, 1332 .proc_read = seq_read, 1333 .proc_lseek = seq_lseek, 1334 .proc_write = psi_memory_write, 1335 .proc_poll = psi_fop_poll, 1336 .proc_release = psi_fop_release, 1337 }; 1338 1339 static const struct proc_ops psi_cpu_proc_ops = { 1340 .proc_open = psi_cpu_open, 1341 .proc_read = seq_read, 1342 .proc_lseek = seq_lseek, 1343 .proc_write = psi_cpu_write, 1344 .proc_poll = psi_fop_poll, 1345 .proc_release = psi_fop_release, 1346 }; 1347 1348 static int __init psi_proc_init(void) 1349 { 1350 if (psi_enable) { 1351 proc_mkdir("pressure", NULL); 1352 proc_create("pressure/io", 0, NULL, &psi_io_proc_ops); 1353 proc_create("pressure/memory", 0, NULL, &psi_memory_proc_ops); 1354 proc_create("pressure/cpu", 0, NULL, &psi_cpu_proc_ops); 1355 } 1356 return 0; 1357 } 1358 module_init(psi_proc_init); 1359