xref: /openbmc/linux/kernel/sched/psi.c (revision 3a448205)
1 /*
2  * Pressure stall information for CPU, memory and IO
3  *
4  * Copyright (c) 2018 Facebook, Inc.
5  * Author: Johannes Weiner <hannes@cmpxchg.org>
6  *
7  * When CPU, memory and IO are contended, tasks experience delays that
8  * reduce throughput and introduce latencies into the workload. Memory
9  * and IO contention, in addition, can cause a full loss of forward
10  * progress in which the CPU goes idle.
11  *
12  * This code aggregates individual task delays into resource pressure
13  * metrics that indicate problems with both workload health and
14  * resource utilization.
15  *
16  *			Model
17  *
18  * The time in which a task can execute on a CPU is our baseline for
19  * productivity. Pressure expresses the amount of time in which this
20  * potential cannot be realized due to resource contention.
21  *
22  * This concept of productivity has two components: the workload and
23  * the CPU. To measure the impact of pressure on both, we define two
24  * contention states for a resource: SOME and FULL.
25  *
26  * In the SOME state of a given resource, one or more tasks are
27  * delayed on that resource. This affects the workload's ability to
28  * perform work, but the CPU may still be executing other tasks.
29  *
30  * In the FULL state of a given resource, all non-idle tasks are
31  * delayed on that resource such that nobody is advancing and the CPU
32  * goes idle. This leaves both workload and CPU unproductive.
33  *
34  * (Naturally, the FULL state doesn't exist for the CPU resource.)
35  *
36  *	SOME = nr_delayed_tasks != 0
37  *	FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
38  *
39  * The percentage of wallclock time spent in those compound stall
40  * states gives pressure numbers between 0 and 100 for each resource,
41  * where the SOME percentage indicates workload slowdowns and the FULL
42  * percentage indicates reduced CPU utilization:
43  *
44  *	%SOME = time(SOME) / period
45  *	%FULL = time(FULL) / period
46  *
47  *			Multiple CPUs
48  *
49  * The more tasks and available CPUs there are, the more work can be
50  * performed concurrently. This means that the potential that can go
51  * unrealized due to resource contention *also* scales with non-idle
52  * tasks and CPUs.
53  *
54  * Consider a scenario where 257 number crunching tasks are trying to
55  * run concurrently on 256 CPUs. If we simply aggregated the task
56  * states, we would have to conclude a CPU SOME pressure number of
57  * 100%, since *somebody* is waiting on a runqueue at all
58  * times. However, that is clearly not the amount of contention the
59  * workload is experiencing: only one out of 256 possible exceution
60  * threads will be contended at any given time, or about 0.4%.
61  *
62  * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
63  * given time *one* of the tasks is delayed due to a lack of memory.
64  * Again, looking purely at the task state would yield a memory FULL
65  * pressure number of 0%, since *somebody* is always making forward
66  * progress. But again this wouldn't capture the amount of execution
67  * potential lost, which is 1 out of 4 CPUs, or 25%.
68  *
69  * To calculate wasted potential (pressure) with multiple processors,
70  * we have to base our calculation on the number of non-idle tasks in
71  * conjunction with the number of available CPUs, which is the number
72  * of potential execution threads. SOME becomes then the proportion of
73  * delayed tasks to possibe threads, and FULL is the share of possible
74  * threads that are unproductive due to delays:
75  *
76  *	threads = min(nr_nonidle_tasks, nr_cpus)
77  *	   SOME = min(nr_delayed_tasks / threads, 1)
78  *	   FULL = (threads - min(nr_running_tasks, threads)) / threads
79  *
80  * For the 257 number crunchers on 256 CPUs, this yields:
81  *
82  *	threads = min(257, 256)
83  *	   SOME = min(1 / 256, 1)             = 0.4%
84  *	   FULL = (256 - min(257, 256)) / 256 = 0%
85  *
86  * For the 1 out of 4 memory-delayed tasks, this yields:
87  *
88  *	threads = min(4, 4)
89  *	   SOME = min(1 / 4, 1)               = 25%
90  *	   FULL = (4 - min(3, 4)) / 4         = 25%
91  *
92  * [ Substitute nr_cpus with 1, and you can see that it's a natural
93  *   extension of the single-CPU model. ]
94  *
95  *			Implementation
96  *
97  * To assess the precise time spent in each such state, we would have
98  * to freeze the system on task changes and start/stop the state
99  * clocks accordingly. Obviously that doesn't scale in practice.
100  *
101  * Because the scheduler aims to distribute the compute load evenly
102  * among the available CPUs, we can track task state locally to each
103  * CPU and, at much lower frequency, extrapolate the global state for
104  * the cumulative stall times and the running averages.
105  *
106  * For each runqueue, we track:
107  *
108  *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
109  *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
110  *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
111  *
112  * and then periodically aggregate:
113  *
114  *	tNONIDLE = sum(tNONIDLE[i])
115  *
116  *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
117  *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
118  *
119  *	   %SOME = tSOME / period
120  *	   %FULL = tFULL / period
121  *
122  * This gives us an approximation of pressure that is practical
123  * cost-wise, yet way more sensitive and accurate than periodic
124  * sampling of the aggregate task states would be.
125  */
126 
127 #include <linux/sched/loadavg.h>
128 #include <linux/seq_file.h>
129 #include <linux/proc_fs.h>
130 #include <linux/seqlock.h>
131 #include <linux/cgroup.h>
132 #include <linux/module.h>
133 #include <linux/sched.h>
134 #include <linux/psi.h>
135 #include "sched.h"
136 
137 static int psi_bug __read_mostly;
138 
139 bool psi_disabled __read_mostly;
140 core_param(psi_disabled, psi_disabled, bool, 0644);
141 
142 /* Running averages - we need to be higher-res than loadavg */
143 #define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
144 #define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
145 #define EXP_60s		1981		/* 1/exp(2s/60s) */
146 #define EXP_300s	2034		/* 1/exp(2s/300s) */
147 
148 /* Sampling frequency in nanoseconds */
149 static u64 psi_period __read_mostly;
150 
151 /* System-level pressure and stall tracking */
152 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
153 static struct psi_group psi_system = {
154 	.pcpu = &system_group_pcpu,
155 };
156 
157 static void psi_update_work(struct work_struct *work);
158 
159 static void group_init(struct psi_group *group)
160 {
161 	int cpu;
162 
163 	for_each_possible_cpu(cpu)
164 		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
165 	group->next_update = sched_clock() + psi_period;
166 	INIT_DELAYED_WORK(&group->clock_work, psi_update_work);
167 	mutex_init(&group->stat_lock);
168 }
169 
170 void __init psi_init(void)
171 {
172 	if (psi_disabled)
173 		return;
174 
175 	psi_period = jiffies_to_nsecs(PSI_FREQ);
176 	group_init(&psi_system);
177 }
178 
179 static bool test_state(unsigned int *tasks, enum psi_states state)
180 {
181 	switch (state) {
182 	case PSI_IO_SOME:
183 		return tasks[NR_IOWAIT];
184 	case PSI_IO_FULL:
185 		return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
186 	case PSI_MEM_SOME:
187 		return tasks[NR_MEMSTALL];
188 	case PSI_MEM_FULL:
189 		return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
190 	case PSI_CPU_SOME:
191 		return tasks[NR_RUNNING] > 1;
192 	case PSI_NONIDLE:
193 		return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
194 			tasks[NR_RUNNING];
195 	default:
196 		return false;
197 	}
198 }
199 
200 static void get_recent_times(struct psi_group *group, int cpu, u32 *times)
201 {
202 	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
203 	unsigned int tasks[NR_PSI_TASK_COUNTS];
204 	u64 now, state_start;
205 	unsigned int seq;
206 	int s;
207 
208 	/* Snapshot a coherent view of the CPU state */
209 	do {
210 		seq = read_seqcount_begin(&groupc->seq);
211 		now = cpu_clock(cpu);
212 		memcpy(times, groupc->times, sizeof(groupc->times));
213 		memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
214 		state_start = groupc->state_start;
215 	} while (read_seqcount_retry(&groupc->seq, seq));
216 
217 	/* Calculate state time deltas against the previous snapshot */
218 	for (s = 0; s < NR_PSI_STATES; s++) {
219 		u32 delta;
220 		/*
221 		 * In addition to already concluded states, we also
222 		 * incorporate currently active states on the CPU,
223 		 * since states may last for many sampling periods.
224 		 *
225 		 * This way we keep our delta sampling buckets small
226 		 * (u32) and our reported pressure close to what's
227 		 * actually happening.
228 		 */
229 		if (test_state(tasks, s))
230 			times[s] += now - state_start;
231 
232 		delta = times[s] - groupc->times_prev[s];
233 		groupc->times_prev[s] = times[s];
234 
235 		times[s] = delta;
236 	}
237 }
238 
239 static void calc_avgs(unsigned long avg[3], int missed_periods,
240 		      u64 time, u64 period)
241 {
242 	unsigned long pct;
243 
244 	/* Fill in zeroes for periods of no activity */
245 	if (missed_periods) {
246 		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
247 		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
248 		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
249 	}
250 
251 	/* Sample the most recent active period */
252 	pct = div_u64(time * 100, period);
253 	pct *= FIXED_1;
254 	avg[0] = calc_load(avg[0], EXP_10s, pct);
255 	avg[1] = calc_load(avg[1], EXP_60s, pct);
256 	avg[2] = calc_load(avg[2], EXP_300s, pct);
257 }
258 
259 static bool update_stats(struct psi_group *group)
260 {
261 	u64 deltas[NR_PSI_STATES - 1] = { 0, };
262 	unsigned long missed_periods = 0;
263 	unsigned long nonidle_total = 0;
264 	u64 now, expires, period;
265 	int cpu;
266 	int s;
267 
268 	mutex_lock(&group->stat_lock);
269 
270 	/*
271 	 * Collect the per-cpu time buckets and average them into a
272 	 * single time sample that is normalized to wallclock time.
273 	 *
274 	 * For averaging, each CPU is weighted by its non-idle time in
275 	 * the sampling period. This eliminates artifacts from uneven
276 	 * loading, or even entirely idle CPUs.
277 	 */
278 	for_each_possible_cpu(cpu) {
279 		u32 times[NR_PSI_STATES];
280 		u32 nonidle;
281 
282 		get_recent_times(group, cpu, times);
283 
284 		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
285 		nonidle_total += nonidle;
286 
287 		for (s = 0; s < PSI_NONIDLE; s++)
288 			deltas[s] += (u64)times[s] * nonidle;
289 	}
290 
291 	/*
292 	 * Integrate the sample into the running statistics that are
293 	 * reported to userspace: the cumulative stall times and the
294 	 * decaying averages.
295 	 *
296 	 * Pressure percentages are sampled at PSI_FREQ. We might be
297 	 * called more often when the user polls more frequently than
298 	 * that; we might be called less often when there is no task
299 	 * activity, thus no data, and clock ticks are sporadic. The
300 	 * below handles both.
301 	 */
302 
303 	/* total= */
304 	for (s = 0; s < NR_PSI_STATES - 1; s++)
305 		group->total[s] += div_u64(deltas[s], max(nonidle_total, 1UL));
306 
307 	/* avgX= */
308 	now = sched_clock();
309 	expires = group->next_update;
310 	if (now < expires)
311 		goto out;
312 	if (now - expires > psi_period)
313 		missed_periods = div_u64(now - expires, psi_period);
314 
315 	/*
316 	 * The periodic clock tick can get delayed for various
317 	 * reasons, especially on loaded systems. To avoid clock
318 	 * drift, we schedule the clock in fixed psi_period intervals.
319 	 * But the deltas we sample out of the per-cpu buckets above
320 	 * are based on the actual time elapsing between clock ticks.
321 	 */
322 	group->next_update = expires + ((1 + missed_periods) * psi_period);
323 	period = now - (group->last_update + (missed_periods * psi_period));
324 	group->last_update = now;
325 
326 	for (s = 0; s < NR_PSI_STATES - 1; s++) {
327 		u32 sample;
328 
329 		sample = group->total[s] - group->total_prev[s];
330 		/*
331 		 * Due to the lockless sampling of the time buckets,
332 		 * recorded time deltas can slip into the next period,
333 		 * which under full pressure can result in samples in
334 		 * excess of the period length.
335 		 *
336 		 * We don't want to report non-sensical pressures in
337 		 * excess of 100%, nor do we want to drop such events
338 		 * on the floor. Instead we punt any overage into the
339 		 * future until pressure subsides. By doing this we
340 		 * don't underreport the occurring pressure curve, we
341 		 * just report it delayed by one period length.
342 		 *
343 		 * The error isn't cumulative. As soon as another
344 		 * delta slips from a period P to P+1, by definition
345 		 * it frees up its time T in P.
346 		 */
347 		if (sample > period)
348 			sample = period;
349 		group->total_prev[s] += sample;
350 		calc_avgs(group->avg[s], missed_periods, sample, period);
351 	}
352 out:
353 	mutex_unlock(&group->stat_lock);
354 	return nonidle_total;
355 }
356 
357 static void psi_update_work(struct work_struct *work)
358 {
359 	struct delayed_work *dwork;
360 	struct psi_group *group;
361 	bool nonidle;
362 
363 	dwork = to_delayed_work(work);
364 	group = container_of(dwork, struct psi_group, clock_work);
365 
366 	/*
367 	 * If there is task activity, periodically fold the per-cpu
368 	 * times and feed samples into the running averages. If things
369 	 * are idle and there is no data to process, stop the clock.
370 	 * Once restarted, we'll catch up the running averages in one
371 	 * go - see calc_avgs() and missed_periods.
372 	 */
373 
374 	nonidle = update_stats(group);
375 
376 	if (nonidle) {
377 		unsigned long delay = 0;
378 		u64 now;
379 
380 		now = sched_clock();
381 		if (group->next_update > now)
382 			delay = nsecs_to_jiffies(group->next_update - now) + 1;
383 		schedule_delayed_work(dwork, delay);
384 	}
385 }
386 
387 static void record_times(struct psi_group_cpu *groupc, int cpu,
388 			 bool memstall_tick)
389 {
390 	u32 delta;
391 	u64 now;
392 
393 	now = cpu_clock(cpu);
394 	delta = now - groupc->state_start;
395 	groupc->state_start = now;
396 
397 	if (test_state(groupc->tasks, PSI_IO_SOME)) {
398 		groupc->times[PSI_IO_SOME] += delta;
399 		if (test_state(groupc->tasks, PSI_IO_FULL))
400 			groupc->times[PSI_IO_FULL] += delta;
401 	}
402 
403 	if (test_state(groupc->tasks, PSI_MEM_SOME)) {
404 		groupc->times[PSI_MEM_SOME] += delta;
405 		if (test_state(groupc->tasks, PSI_MEM_FULL))
406 			groupc->times[PSI_MEM_FULL] += delta;
407 		else if (memstall_tick) {
408 			u32 sample;
409 			/*
410 			 * Since we care about lost potential, a
411 			 * memstall is FULL when there are no other
412 			 * working tasks, but also when the CPU is
413 			 * actively reclaiming and nothing productive
414 			 * could run even if it were runnable.
415 			 *
416 			 * When the timer tick sees a reclaiming CPU,
417 			 * regardless of runnable tasks, sample a FULL
418 			 * tick (or less if it hasn't been a full tick
419 			 * since the last state change).
420 			 */
421 			sample = min(delta, (u32)jiffies_to_nsecs(1));
422 			groupc->times[PSI_MEM_FULL] += sample;
423 		}
424 	}
425 
426 	if (test_state(groupc->tasks, PSI_CPU_SOME))
427 		groupc->times[PSI_CPU_SOME] += delta;
428 
429 	if (test_state(groupc->tasks, PSI_NONIDLE))
430 		groupc->times[PSI_NONIDLE] += delta;
431 }
432 
433 static void psi_group_change(struct psi_group *group, int cpu,
434 			     unsigned int clear, unsigned int set)
435 {
436 	struct psi_group_cpu *groupc;
437 	unsigned int t, m;
438 
439 	groupc = per_cpu_ptr(group->pcpu, cpu);
440 
441 	/*
442 	 * First we assess the aggregate resource states this CPU's
443 	 * tasks have been in since the last change, and account any
444 	 * SOME and FULL time these may have resulted in.
445 	 *
446 	 * Then we update the task counts according to the state
447 	 * change requested through the @clear and @set bits.
448 	 */
449 	write_seqcount_begin(&groupc->seq);
450 
451 	record_times(groupc, cpu, false);
452 
453 	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
454 		if (!(m & (1 << t)))
455 			continue;
456 		if (groupc->tasks[t] == 0 && !psi_bug) {
457 			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n",
458 					cpu, t, groupc->tasks[0],
459 					groupc->tasks[1], groupc->tasks[2],
460 					clear, set);
461 			psi_bug = 1;
462 		}
463 		groupc->tasks[t]--;
464 	}
465 
466 	for (t = 0; set; set &= ~(1 << t), t++)
467 		if (set & (1 << t))
468 			groupc->tasks[t]++;
469 
470 	write_seqcount_end(&groupc->seq);
471 
472 	if (!delayed_work_pending(&group->clock_work))
473 		schedule_delayed_work(&group->clock_work, PSI_FREQ);
474 }
475 
476 static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
477 {
478 #ifdef CONFIG_CGROUPS
479 	struct cgroup *cgroup = NULL;
480 
481 	if (!*iter)
482 		cgroup = task->cgroups->dfl_cgrp;
483 	else if (*iter == &psi_system)
484 		return NULL;
485 	else
486 		cgroup = cgroup_parent(*iter);
487 
488 	if (cgroup && cgroup_parent(cgroup)) {
489 		*iter = cgroup;
490 		return cgroup_psi(cgroup);
491 	}
492 #else
493 	if (*iter)
494 		return NULL;
495 #endif
496 	*iter = &psi_system;
497 	return &psi_system;
498 }
499 
500 void psi_task_change(struct task_struct *task, int clear, int set)
501 {
502 	int cpu = task_cpu(task);
503 	struct psi_group *group;
504 	void *iter = NULL;
505 
506 	if (!task->pid)
507 		return;
508 
509 	if (((task->psi_flags & set) ||
510 	     (task->psi_flags & clear) != clear) &&
511 	    !psi_bug) {
512 		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
513 				task->pid, task->comm, cpu,
514 				task->psi_flags, clear, set);
515 		psi_bug = 1;
516 	}
517 
518 	task->psi_flags &= ~clear;
519 	task->psi_flags |= set;
520 
521 	while ((group = iterate_groups(task, &iter)))
522 		psi_group_change(group, cpu, clear, set);
523 }
524 
525 void psi_memstall_tick(struct task_struct *task, int cpu)
526 {
527 	struct psi_group *group;
528 	void *iter = NULL;
529 
530 	while ((group = iterate_groups(task, &iter))) {
531 		struct psi_group_cpu *groupc;
532 
533 		groupc = per_cpu_ptr(group->pcpu, cpu);
534 		write_seqcount_begin(&groupc->seq);
535 		record_times(groupc, cpu, true);
536 		write_seqcount_end(&groupc->seq);
537 	}
538 }
539 
540 /**
541  * psi_memstall_enter - mark the beginning of a memory stall section
542  * @flags: flags to handle nested sections
543  *
544  * Marks the calling task as being stalled due to a lack of memory,
545  * such as waiting for a refault or performing reclaim.
546  */
547 void psi_memstall_enter(unsigned long *flags)
548 {
549 	struct rq_flags rf;
550 	struct rq *rq;
551 
552 	if (psi_disabled)
553 		return;
554 
555 	*flags = current->flags & PF_MEMSTALL;
556 	if (*flags)
557 		return;
558 	/*
559 	 * PF_MEMSTALL setting & accounting needs to be atomic wrt
560 	 * changes to the task's scheduling state, otherwise we can
561 	 * race with CPU migration.
562 	 */
563 	rq = this_rq_lock_irq(&rf);
564 
565 	current->flags |= PF_MEMSTALL;
566 	psi_task_change(current, 0, TSK_MEMSTALL);
567 
568 	rq_unlock_irq(rq, &rf);
569 }
570 
571 /**
572  * psi_memstall_leave - mark the end of an memory stall section
573  * @flags: flags to handle nested memdelay sections
574  *
575  * Marks the calling task as no longer stalled due to lack of memory.
576  */
577 void psi_memstall_leave(unsigned long *flags)
578 {
579 	struct rq_flags rf;
580 	struct rq *rq;
581 
582 	if (psi_disabled)
583 		return;
584 
585 	if (*flags)
586 		return;
587 	/*
588 	 * PF_MEMSTALL clearing & accounting needs to be atomic wrt
589 	 * changes to the task's scheduling state, otherwise we could
590 	 * race with CPU migration.
591 	 */
592 	rq = this_rq_lock_irq(&rf);
593 
594 	current->flags &= ~PF_MEMSTALL;
595 	psi_task_change(current, TSK_MEMSTALL, 0);
596 
597 	rq_unlock_irq(rq, &rf);
598 }
599 
600 #ifdef CONFIG_CGROUPS
601 int psi_cgroup_alloc(struct cgroup *cgroup)
602 {
603 	if (psi_disabled)
604 		return 0;
605 
606 	cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
607 	if (!cgroup->psi.pcpu)
608 		return -ENOMEM;
609 	group_init(&cgroup->psi);
610 	return 0;
611 }
612 
613 void psi_cgroup_free(struct cgroup *cgroup)
614 {
615 	if (psi_disabled)
616 		return;
617 
618 	cancel_delayed_work_sync(&cgroup->psi.clock_work);
619 	free_percpu(cgroup->psi.pcpu);
620 }
621 
622 /**
623  * cgroup_move_task - move task to a different cgroup
624  * @task: the task
625  * @to: the target css_set
626  *
627  * Move task to a new cgroup and safely migrate its associated stall
628  * state between the different groups.
629  *
630  * This function acquires the task's rq lock to lock out concurrent
631  * changes to the task's scheduling state and - in case the task is
632  * running - concurrent changes to its stall state.
633  */
634 void cgroup_move_task(struct task_struct *task, struct css_set *to)
635 {
636 	unsigned int task_flags = 0;
637 	struct rq_flags rf;
638 	struct rq *rq;
639 
640 	if (psi_disabled) {
641 		/*
642 		 * Lame to do this here, but the scheduler cannot be locked
643 		 * from the outside, so we move cgroups from inside sched/.
644 		 */
645 		rcu_assign_pointer(task->cgroups, to);
646 		return;
647 	}
648 
649 	rq = task_rq_lock(task, &rf);
650 
651 	if (task_on_rq_queued(task))
652 		task_flags = TSK_RUNNING;
653 	else if (task->in_iowait)
654 		task_flags = TSK_IOWAIT;
655 
656 	if (task->flags & PF_MEMSTALL)
657 		task_flags |= TSK_MEMSTALL;
658 
659 	if (task_flags)
660 		psi_task_change(task, task_flags, 0);
661 
662 	/* See comment above */
663 	rcu_assign_pointer(task->cgroups, to);
664 
665 	if (task_flags)
666 		psi_task_change(task, 0, task_flags);
667 
668 	task_rq_unlock(rq, task, &rf);
669 }
670 #endif /* CONFIG_CGROUPS */
671 
672 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
673 {
674 	int full;
675 
676 	if (psi_disabled)
677 		return -EOPNOTSUPP;
678 
679 	update_stats(group);
680 
681 	for (full = 0; full < 2 - (res == PSI_CPU); full++) {
682 		unsigned long avg[3];
683 		u64 total;
684 		int w;
685 
686 		for (w = 0; w < 3; w++)
687 			avg[w] = group->avg[res * 2 + full][w];
688 		total = div_u64(group->total[res * 2 + full], NSEC_PER_USEC);
689 
690 		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
691 			   full ? "full" : "some",
692 			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
693 			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
694 			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
695 			   total);
696 	}
697 
698 	return 0;
699 }
700 
701 static int psi_io_show(struct seq_file *m, void *v)
702 {
703 	return psi_show(m, &psi_system, PSI_IO);
704 }
705 
706 static int psi_memory_show(struct seq_file *m, void *v)
707 {
708 	return psi_show(m, &psi_system, PSI_MEM);
709 }
710 
711 static int psi_cpu_show(struct seq_file *m, void *v)
712 {
713 	return psi_show(m, &psi_system, PSI_CPU);
714 }
715 
716 static int psi_io_open(struct inode *inode, struct file *file)
717 {
718 	return single_open(file, psi_io_show, NULL);
719 }
720 
721 static int psi_memory_open(struct inode *inode, struct file *file)
722 {
723 	return single_open(file, psi_memory_show, NULL);
724 }
725 
726 static int psi_cpu_open(struct inode *inode, struct file *file)
727 {
728 	return single_open(file, psi_cpu_show, NULL);
729 }
730 
731 static const struct file_operations psi_io_fops = {
732 	.open           = psi_io_open,
733 	.read           = seq_read,
734 	.llseek         = seq_lseek,
735 	.release        = single_release,
736 };
737 
738 static const struct file_operations psi_memory_fops = {
739 	.open           = psi_memory_open,
740 	.read           = seq_read,
741 	.llseek         = seq_lseek,
742 	.release        = single_release,
743 };
744 
745 static const struct file_operations psi_cpu_fops = {
746 	.open           = psi_cpu_open,
747 	.read           = seq_read,
748 	.llseek         = seq_lseek,
749 	.release        = single_release,
750 };
751 
752 static int __init psi_proc_init(void)
753 {
754 	proc_mkdir("pressure", NULL);
755 	proc_create("pressure/io", 0, NULL, &psi_io_fops);
756 	proc_create("pressure/memory", 0, NULL, &psi_memory_fops);
757 	proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops);
758 	return 0;
759 }
760 module_init(psi_proc_init);
761