1 /* 2 * Pressure stall information for CPU, memory and IO 3 * 4 * Copyright (c) 2018 Facebook, Inc. 5 * Author: Johannes Weiner <hannes@cmpxchg.org> 6 * 7 * When CPU, memory and IO are contended, tasks experience delays that 8 * reduce throughput and introduce latencies into the workload. Memory 9 * and IO contention, in addition, can cause a full loss of forward 10 * progress in which the CPU goes idle. 11 * 12 * This code aggregates individual task delays into resource pressure 13 * metrics that indicate problems with both workload health and 14 * resource utilization. 15 * 16 * Model 17 * 18 * The time in which a task can execute on a CPU is our baseline for 19 * productivity. Pressure expresses the amount of time in which this 20 * potential cannot be realized due to resource contention. 21 * 22 * This concept of productivity has two components: the workload and 23 * the CPU. To measure the impact of pressure on both, we define two 24 * contention states for a resource: SOME and FULL. 25 * 26 * In the SOME state of a given resource, one or more tasks are 27 * delayed on that resource. This affects the workload's ability to 28 * perform work, but the CPU may still be executing other tasks. 29 * 30 * In the FULL state of a given resource, all non-idle tasks are 31 * delayed on that resource such that nobody is advancing and the CPU 32 * goes idle. This leaves both workload and CPU unproductive. 33 * 34 * (Naturally, the FULL state doesn't exist for the CPU resource.) 35 * 36 * SOME = nr_delayed_tasks != 0 37 * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0 38 * 39 * The percentage of wallclock time spent in those compound stall 40 * states gives pressure numbers between 0 and 100 for each resource, 41 * where the SOME percentage indicates workload slowdowns and the FULL 42 * percentage indicates reduced CPU utilization: 43 * 44 * %SOME = time(SOME) / period 45 * %FULL = time(FULL) / period 46 * 47 * Multiple CPUs 48 * 49 * The more tasks and available CPUs there are, the more work can be 50 * performed concurrently. This means that the potential that can go 51 * unrealized due to resource contention *also* scales with non-idle 52 * tasks and CPUs. 53 * 54 * Consider a scenario where 257 number crunching tasks are trying to 55 * run concurrently on 256 CPUs. If we simply aggregated the task 56 * states, we would have to conclude a CPU SOME pressure number of 57 * 100%, since *somebody* is waiting on a runqueue at all 58 * times. However, that is clearly not the amount of contention the 59 * workload is experiencing: only one out of 256 possible exceution 60 * threads will be contended at any given time, or about 0.4%. 61 * 62 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any 63 * given time *one* of the tasks is delayed due to a lack of memory. 64 * Again, looking purely at the task state would yield a memory FULL 65 * pressure number of 0%, since *somebody* is always making forward 66 * progress. But again this wouldn't capture the amount of execution 67 * potential lost, which is 1 out of 4 CPUs, or 25%. 68 * 69 * To calculate wasted potential (pressure) with multiple processors, 70 * we have to base our calculation on the number of non-idle tasks in 71 * conjunction with the number of available CPUs, which is the number 72 * of potential execution threads. SOME becomes then the proportion of 73 * delayed tasks to possibe threads, and FULL is the share of possible 74 * threads that are unproductive due to delays: 75 * 76 * threads = min(nr_nonidle_tasks, nr_cpus) 77 * SOME = min(nr_delayed_tasks / threads, 1) 78 * FULL = (threads - min(nr_running_tasks, threads)) / threads 79 * 80 * For the 257 number crunchers on 256 CPUs, this yields: 81 * 82 * threads = min(257, 256) 83 * SOME = min(1 / 256, 1) = 0.4% 84 * FULL = (256 - min(257, 256)) / 256 = 0% 85 * 86 * For the 1 out of 4 memory-delayed tasks, this yields: 87 * 88 * threads = min(4, 4) 89 * SOME = min(1 / 4, 1) = 25% 90 * FULL = (4 - min(3, 4)) / 4 = 25% 91 * 92 * [ Substitute nr_cpus with 1, and you can see that it's a natural 93 * extension of the single-CPU model. ] 94 * 95 * Implementation 96 * 97 * To assess the precise time spent in each such state, we would have 98 * to freeze the system on task changes and start/stop the state 99 * clocks accordingly. Obviously that doesn't scale in practice. 100 * 101 * Because the scheduler aims to distribute the compute load evenly 102 * among the available CPUs, we can track task state locally to each 103 * CPU and, at much lower frequency, extrapolate the global state for 104 * the cumulative stall times and the running averages. 105 * 106 * For each runqueue, we track: 107 * 108 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0) 109 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu]) 110 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0) 111 * 112 * and then periodically aggregate: 113 * 114 * tNONIDLE = sum(tNONIDLE[i]) 115 * 116 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE 117 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE 118 * 119 * %SOME = tSOME / period 120 * %FULL = tFULL / period 121 * 122 * This gives us an approximation of pressure that is practical 123 * cost-wise, yet way more sensitive and accurate than periodic 124 * sampling of the aggregate task states would be. 125 */ 126 127 #include <linux/sched/loadavg.h> 128 #include <linux/seq_file.h> 129 #include <linux/proc_fs.h> 130 #include <linux/seqlock.h> 131 #include <linux/cgroup.h> 132 #include <linux/module.h> 133 #include <linux/sched.h> 134 #include <linux/psi.h> 135 #include "sched.h" 136 137 static int psi_bug __read_mostly; 138 139 bool psi_disabled __read_mostly; 140 core_param(psi_disabled, psi_disabled, bool, 0644); 141 142 /* Running averages - we need to be higher-res than loadavg */ 143 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */ 144 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */ 145 #define EXP_60s 1981 /* 1/exp(2s/60s) */ 146 #define EXP_300s 2034 /* 1/exp(2s/300s) */ 147 148 /* Sampling frequency in nanoseconds */ 149 static u64 psi_period __read_mostly; 150 151 /* System-level pressure and stall tracking */ 152 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu); 153 static struct psi_group psi_system = { 154 .pcpu = &system_group_pcpu, 155 }; 156 157 static void psi_update_work(struct work_struct *work); 158 159 static void group_init(struct psi_group *group) 160 { 161 int cpu; 162 163 for_each_possible_cpu(cpu) 164 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq); 165 group->next_update = sched_clock() + psi_period; 166 INIT_DELAYED_WORK(&group->clock_work, psi_update_work); 167 mutex_init(&group->stat_lock); 168 } 169 170 void __init psi_init(void) 171 { 172 if (psi_disabled) 173 return; 174 175 psi_period = jiffies_to_nsecs(PSI_FREQ); 176 group_init(&psi_system); 177 } 178 179 static bool test_state(unsigned int *tasks, enum psi_states state) 180 { 181 switch (state) { 182 case PSI_IO_SOME: 183 return tasks[NR_IOWAIT]; 184 case PSI_IO_FULL: 185 return tasks[NR_IOWAIT] && !tasks[NR_RUNNING]; 186 case PSI_MEM_SOME: 187 return tasks[NR_MEMSTALL]; 188 case PSI_MEM_FULL: 189 return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING]; 190 case PSI_CPU_SOME: 191 return tasks[NR_RUNNING] > 1; 192 case PSI_NONIDLE: 193 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || 194 tasks[NR_RUNNING]; 195 default: 196 return false; 197 } 198 } 199 200 static void get_recent_times(struct psi_group *group, int cpu, u32 *times) 201 { 202 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu); 203 unsigned int tasks[NR_PSI_TASK_COUNTS]; 204 u64 now, state_start; 205 unsigned int seq; 206 int s; 207 208 /* Snapshot a coherent view of the CPU state */ 209 do { 210 seq = read_seqcount_begin(&groupc->seq); 211 now = cpu_clock(cpu); 212 memcpy(times, groupc->times, sizeof(groupc->times)); 213 memcpy(tasks, groupc->tasks, sizeof(groupc->tasks)); 214 state_start = groupc->state_start; 215 } while (read_seqcount_retry(&groupc->seq, seq)); 216 217 /* Calculate state time deltas against the previous snapshot */ 218 for (s = 0; s < NR_PSI_STATES; s++) { 219 u32 delta; 220 /* 221 * In addition to already concluded states, we also 222 * incorporate currently active states on the CPU, 223 * since states may last for many sampling periods. 224 * 225 * This way we keep our delta sampling buckets small 226 * (u32) and our reported pressure close to what's 227 * actually happening. 228 */ 229 if (test_state(tasks, s)) 230 times[s] += now - state_start; 231 232 delta = times[s] - groupc->times_prev[s]; 233 groupc->times_prev[s] = times[s]; 234 235 times[s] = delta; 236 } 237 } 238 239 static void calc_avgs(unsigned long avg[3], int missed_periods, 240 u64 time, u64 period) 241 { 242 unsigned long pct; 243 244 /* Fill in zeroes for periods of no activity */ 245 if (missed_periods) { 246 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods); 247 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods); 248 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods); 249 } 250 251 /* Sample the most recent active period */ 252 pct = div_u64(time * 100, period); 253 pct *= FIXED_1; 254 avg[0] = calc_load(avg[0], EXP_10s, pct); 255 avg[1] = calc_load(avg[1], EXP_60s, pct); 256 avg[2] = calc_load(avg[2], EXP_300s, pct); 257 } 258 259 static bool update_stats(struct psi_group *group) 260 { 261 u64 deltas[NR_PSI_STATES - 1] = { 0, }; 262 unsigned long missed_periods = 0; 263 unsigned long nonidle_total = 0; 264 u64 now, expires, period; 265 int cpu; 266 int s; 267 268 mutex_lock(&group->stat_lock); 269 270 /* 271 * Collect the per-cpu time buckets and average them into a 272 * single time sample that is normalized to wallclock time. 273 * 274 * For averaging, each CPU is weighted by its non-idle time in 275 * the sampling period. This eliminates artifacts from uneven 276 * loading, or even entirely idle CPUs. 277 */ 278 for_each_possible_cpu(cpu) { 279 u32 times[NR_PSI_STATES]; 280 u32 nonidle; 281 282 get_recent_times(group, cpu, times); 283 284 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]); 285 nonidle_total += nonidle; 286 287 for (s = 0; s < PSI_NONIDLE; s++) 288 deltas[s] += (u64)times[s] * nonidle; 289 } 290 291 /* 292 * Integrate the sample into the running statistics that are 293 * reported to userspace: the cumulative stall times and the 294 * decaying averages. 295 * 296 * Pressure percentages are sampled at PSI_FREQ. We might be 297 * called more often when the user polls more frequently than 298 * that; we might be called less often when there is no task 299 * activity, thus no data, and clock ticks are sporadic. The 300 * below handles both. 301 */ 302 303 /* total= */ 304 for (s = 0; s < NR_PSI_STATES - 1; s++) 305 group->total[s] += div_u64(deltas[s], max(nonidle_total, 1UL)); 306 307 /* avgX= */ 308 now = sched_clock(); 309 expires = group->next_update; 310 if (now < expires) 311 goto out; 312 if (now - expires > psi_period) 313 missed_periods = div_u64(now - expires, psi_period); 314 315 /* 316 * The periodic clock tick can get delayed for various 317 * reasons, especially on loaded systems. To avoid clock 318 * drift, we schedule the clock in fixed psi_period intervals. 319 * But the deltas we sample out of the per-cpu buckets above 320 * are based on the actual time elapsing between clock ticks. 321 */ 322 group->next_update = expires + ((1 + missed_periods) * psi_period); 323 period = now - (group->last_update + (missed_periods * psi_period)); 324 group->last_update = now; 325 326 for (s = 0; s < NR_PSI_STATES - 1; s++) { 327 u32 sample; 328 329 sample = group->total[s] - group->total_prev[s]; 330 /* 331 * Due to the lockless sampling of the time buckets, 332 * recorded time deltas can slip into the next period, 333 * which under full pressure can result in samples in 334 * excess of the period length. 335 * 336 * We don't want to report non-sensical pressures in 337 * excess of 100%, nor do we want to drop such events 338 * on the floor. Instead we punt any overage into the 339 * future until pressure subsides. By doing this we 340 * don't underreport the occurring pressure curve, we 341 * just report it delayed by one period length. 342 * 343 * The error isn't cumulative. As soon as another 344 * delta slips from a period P to P+1, by definition 345 * it frees up its time T in P. 346 */ 347 if (sample > period) 348 sample = period; 349 group->total_prev[s] += sample; 350 calc_avgs(group->avg[s], missed_periods, sample, period); 351 } 352 out: 353 mutex_unlock(&group->stat_lock); 354 return nonidle_total; 355 } 356 357 static void psi_update_work(struct work_struct *work) 358 { 359 struct delayed_work *dwork; 360 struct psi_group *group; 361 bool nonidle; 362 363 dwork = to_delayed_work(work); 364 group = container_of(dwork, struct psi_group, clock_work); 365 366 /* 367 * If there is task activity, periodically fold the per-cpu 368 * times and feed samples into the running averages. If things 369 * are idle and there is no data to process, stop the clock. 370 * Once restarted, we'll catch up the running averages in one 371 * go - see calc_avgs() and missed_periods. 372 */ 373 374 nonidle = update_stats(group); 375 376 if (nonidle) { 377 unsigned long delay = 0; 378 u64 now; 379 380 now = sched_clock(); 381 if (group->next_update > now) 382 delay = nsecs_to_jiffies(group->next_update - now) + 1; 383 schedule_delayed_work(dwork, delay); 384 } 385 } 386 387 static void record_times(struct psi_group_cpu *groupc, int cpu, 388 bool memstall_tick) 389 { 390 u32 delta; 391 u64 now; 392 393 now = cpu_clock(cpu); 394 delta = now - groupc->state_start; 395 groupc->state_start = now; 396 397 if (test_state(groupc->tasks, PSI_IO_SOME)) { 398 groupc->times[PSI_IO_SOME] += delta; 399 if (test_state(groupc->tasks, PSI_IO_FULL)) 400 groupc->times[PSI_IO_FULL] += delta; 401 } 402 403 if (test_state(groupc->tasks, PSI_MEM_SOME)) { 404 groupc->times[PSI_MEM_SOME] += delta; 405 if (test_state(groupc->tasks, PSI_MEM_FULL)) 406 groupc->times[PSI_MEM_FULL] += delta; 407 else if (memstall_tick) { 408 u32 sample; 409 /* 410 * Since we care about lost potential, a 411 * memstall is FULL when there are no other 412 * working tasks, but also when the CPU is 413 * actively reclaiming and nothing productive 414 * could run even if it were runnable. 415 * 416 * When the timer tick sees a reclaiming CPU, 417 * regardless of runnable tasks, sample a FULL 418 * tick (or less if it hasn't been a full tick 419 * since the last state change). 420 */ 421 sample = min(delta, (u32)jiffies_to_nsecs(1)); 422 groupc->times[PSI_MEM_FULL] += sample; 423 } 424 } 425 426 if (test_state(groupc->tasks, PSI_CPU_SOME)) 427 groupc->times[PSI_CPU_SOME] += delta; 428 429 if (test_state(groupc->tasks, PSI_NONIDLE)) 430 groupc->times[PSI_NONIDLE] += delta; 431 } 432 433 static void psi_group_change(struct psi_group *group, int cpu, 434 unsigned int clear, unsigned int set) 435 { 436 struct psi_group_cpu *groupc; 437 unsigned int t, m; 438 439 groupc = per_cpu_ptr(group->pcpu, cpu); 440 441 /* 442 * First we assess the aggregate resource states this CPU's 443 * tasks have been in since the last change, and account any 444 * SOME and FULL time these may have resulted in. 445 * 446 * Then we update the task counts according to the state 447 * change requested through the @clear and @set bits. 448 */ 449 write_seqcount_begin(&groupc->seq); 450 451 record_times(groupc, cpu, false); 452 453 for (t = 0, m = clear; m; m &= ~(1 << t), t++) { 454 if (!(m & (1 << t))) 455 continue; 456 if (groupc->tasks[t] == 0 && !psi_bug) { 457 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n", 458 cpu, t, groupc->tasks[0], 459 groupc->tasks[1], groupc->tasks[2], 460 clear, set); 461 psi_bug = 1; 462 } 463 groupc->tasks[t]--; 464 } 465 466 for (t = 0; set; set &= ~(1 << t), t++) 467 if (set & (1 << t)) 468 groupc->tasks[t]++; 469 470 write_seqcount_end(&groupc->seq); 471 472 if (!delayed_work_pending(&group->clock_work)) 473 schedule_delayed_work(&group->clock_work, PSI_FREQ); 474 } 475 476 static struct psi_group *iterate_groups(struct task_struct *task, void **iter) 477 { 478 #ifdef CONFIG_CGROUPS 479 struct cgroup *cgroup = NULL; 480 481 if (!*iter) 482 cgroup = task->cgroups->dfl_cgrp; 483 else if (*iter == &psi_system) 484 return NULL; 485 else 486 cgroup = cgroup_parent(*iter); 487 488 if (cgroup && cgroup_parent(cgroup)) { 489 *iter = cgroup; 490 return cgroup_psi(cgroup); 491 } 492 #else 493 if (*iter) 494 return NULL; 495 #endif 496 *iter = &psi_system; 497 return &psi_system; 498 } 499 500 void psi_task_change(struct task_struct *task, int clear, int set) 501 { 502 int cpu = task_cpu(task); 503 struct psi_group *group; 504 void *iter = NULL; 505 506 if (!task->pid) 507 return; 508 509 if (((task->psi_flags & set) || 510 (task->psi_flags & clear) != clear) && 511 !psi_bug) { 512 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n", 513 task->pid, task->comm, cpu, 514 task->psi_flags, clear, set); 515 psi_bug = 1; 516 } 517 518 task->psi_flags &= ~clear; 519 task->psi_flags |= set; 520 521 while ((group = iterate_groups(task, &iter))) 522 psi_group_change(group, cpu, clear, set); 523 } 524 525 void psi_memstall_tick(struct task_struct *task, int cpu) 526 { 527 struct psi_group *group; 528 void *iter = NULL; 529 530 while ((group = iterate_groups(task, &iter))) { 531 struct psi_group_cpu *groupc; 532 533 groupc = per_cpu_ptr(group->pcpu, cpu); 534 write_seqcount_begin(&groupc->seq); 535 record_times(groupc, cpu, true); 536 write_seqcount_end(&groupc->seq); 537 } 538 } 539 540 /** 541 * psi_memstall_enter - mark the beginning of a memory stall section 542 * @flags: flags to handle nested sections 543 * 544 * Marks the calling task as being stalled due to a lack of memory, 545 * such as waiting for a refault or performing reclaim. 546 */ 547 void psi_memstall_enter(unsigned long *flags) 548 { 549 struct rq_flags rf; 550 struct rq *rq; 551 552 if (psi_disabled) 553 return; 554 555 *flags = current->flags & PF_MEMSTALL; 556 if (*flags) 557 return; 558 /* 559 * PF_MEMSTALL setting & accounting needs to be atomic wrt 560 * changes to the task's scheduling state, otherwise we can 561 * race with CPU migration. 562 */ 563 rq = this_rq_lock_irq(&rf); 564 565 current->flags |= PF_MEMSTALL; 566 psi_task_change(current, 0, TSK_MEMSTALL); 567 568 rq_unlock_irq(rq, &rf); 569 } 570 571 /** 572 * psi_memstall_leave - mark the end of an memory stall section 573 * @flags: flags to handle nested memdelay sections 574 * 575 * Marks the calling task as no longer stalled due to lack of memory. 576 */ 577 void psi_memstall_leave(unsigned long *flags) 578 { 579 struct rq_flags rf; 580 struct rq *rq; 581 582 if (psi_disabled) 583 return; 584 585 if (*flags) 586 return; 587 /* 588 * PF_MEMSTALL clearing & accounting needs to be atomic wrt 589 * changes to the task's scheduling state, otherwise we could 590 * race with CPU migration. 591 */ 592 rq = this_rq_lock_irq(&rf); 593 594 current->flags &= ~PF_MEMSTALL; 595 psi_task_change(current, TSK_MEMSTALL, 0); 596 597 rq_unlock_irq(rq, &rf); 598 } 599 600 #ifdef CONFIG_CGROUPS 601 int psi_cgroup_alloc(struct cgroup *cgroup) 602 { 603 if (psi_disabled) 604 return 0; 605 606 cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu); 607 if (!cgroup->psi.pcpu) 608 return -ENOMEM; 609 group_init(&cgroup->psi); 610 return 0; 611 } 612 613 void psi_cgroup_free(struct cgroup *cgroup) 614 { 615 if (psi_disabled) 616 return; 617 618 cancel_delayed_work_sync(&cgroup->psi.clock_work); 619 free_percpu(cgroup->psi.pcpu); 620 } 621 622 /** 623 * cgroup_move_task - move task to a different cgroup 624 * @task: the task 625 * @to: the target css_set 626 * 627 * Move task to a new cgroup and safely migrate its associated stall 628 * state between the different groups. 629 * 630 * This function acquires the task's rq lock to lock out concurrent 631 * changes to the task's scheduling state and - in case the task is 632 * running - concurrent changes to its stall state. 633 */ 634 void cgroup_move_task(struct task_struct *task, struct css_set *to) 635 { 636 unsigned int task_flags = 0; 637 struct rq_flags rf; 638 struct rq *rq; 639 640 if (psi_disabled) { 641 /* 642 * Lame to do this here, but the scheduler cannot be locked 643 * from the outside, so we move cgroups from inside sched/. 644 */ 645 rcu_assign_pointer(task->cgroups, to); 646 return; 647 } 648 649 rq = task_rq_lock(task, &rf); 650 651 if (task_on_rq_queued(task)) 652 task_flags = TSK_RUNNING; 653 else if (task->in_iowait) 654 task_flags = TSK_IOWAIT; 655 656 if (task->flags & PF_MEMSTALL) 657 task_flags |= TSK_MEMSTALL; 658 659 if (task_flags) 660 psi_task_change(task, task_flags, 0); 661 662 /* See comment above */ 663 rcu_assign_pointer(task->cgroups, to); 664 665 if (task_flags) 666 psi_task_change(task, 0, task_flags); 667 668 task_rq_unlock(rq, task, &rf); 669 } 670 #endif /* CONFIG_CGROUPS */ 671 672 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res) 673 { 674 int full; 675 676 if (psi_disabled) 677 return -EOPNOTSUPP; 678 679 update_stats(group); 680 681 for (full = 0; full < 2 - (res == PSI_CPU); full++) { 682 unsigned long avg[3]; 683 u64 total; 684 int w; 685 686 for (w = 0; w < 3; w++) 687 avg[w] = group->avg[res * 2 + full][w]; 688 total = div_u64(group->total[res * 2 + full], NSEC_PER_USEC); 689 690 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n", 691 full ? "full" : "some", 692 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]), 693 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]), 694 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]), 695 total); 696 } 697 698 return 0; 699 } 700 701 static int psi_io_show(struct seq_file *m, void *v) 702 { 703 return psi_show(m, &psi_system, PSI_IO); 704 } 705 706 static int psi_memory_show(struct seq_file *m, void *v) 707 { 708 return psi_show(m, &psi_system, PSI_MEM); 709 } 710 711 static int psi_cpu_show(struct seq_file *m, void *v) 712 { 713 return psi_show(m, &psi_system, PSI_CPU); 714 } 715 716 static int psi_io_open(struct inode *inode, struct file *file) 717 { 718 return single_open(file, psi_io_show, NULL); 719 } 720 721 static int psi_memory_open(struct inode *inode, struct file *file) 722 { 723 return single_open(file, psi_memory_show, NULL); 724 } 725 726 static int psi_cpu_open(struct inode *inode, struct file *file) 727 { 728 return single_open(file, psi_cpu_show, NULL); 729 } 730 731 static const struct file_operations psi_io_fops = { 732 .open = psi_io_open, 733 .read = seq_read, 734 .llseek = seq_lseek, 735 .release = single_release, 736 }; 737 738 static const struct file_operations psi_memory_fops = { 739 .open = psi_memory_open, 740 .read = seq_read, 741 .llseek = seq_lseek, 742 .release = single_release, 743 }; 744 745 static const struct file_operations psi_cpu_fops = { 746 .open = psi_cpu_open, 747 .read = seq_read, 748 .llseek = seq_lseek, 749 .release = single_release, 750 }; 751 752 static int __init psi_proc_init(void) 753 { 754 proc_mkdir("pressure", NULL); 755 proc_create("pressure/io", 0, NULL, &psi_io_fops); 756 proc_create("pressure/memory", 0, NULL, &psi_memory_fops); 757 proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops); 758 return 0; 759 } 760 module_init(psi_proc_init); 761