1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Pressure stall information for CPU, memory and IO 4 * 5 * Copyright (c) 2018 Facebook, Inc. 6 * Author: Johannes Weiner <hannes@cmpxchg.org> 7 * 8 * Polling support by Suren Baghdasaryan <surenb@google.com> 9 * Copyright (c) 2018 Google, Inc. 10 * 11 * When CPU, memory and IO are contended, tasks experience delays that 12 * reduce throughput and introduce latencies into the workload. Memory 13 * and IO contention, in addition, can cause a full loss of forward 14 * progress in which the CPU goes idle. 15 * 16 * This code aggregates individual task delays into resource pressure 17 * metrics that indicate problems with both workload health and 18 * resource utilization. 19 * 20 * Model 21 * 22 * The time in which a task can execute on a CPU is our baseline for 23 * productivity. Pressure expresses the amount of time in which this 24 * potential cannot be realized due to resource contention. 25 * 26 * This concept of productivity has two components: the workload and 27 * the CPU. To measure the impact of pressure on both, we define two 28 * contention states for a resource: SOME and FULL. 29 * 30 * In the SOME state of a given resource, one or more tasks are 31 * delayed on that resource. This affects the workload's ability to 32 * perform work, but the CPU may still be executing other tasks. 33 * 34 * In the FULL state of a given resource, all non-idle tasks are 35 * delayed on that resource such that nobody is advancing and the CPU 36 * goes idle. This leaves both workload and CPU unproductive. 37 * 38 * SOME = nr_delayed_tasks != 0 39 * FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0 40 * 41 * What it means for a task to be productive is defined differently 42 * for each resource. For IO, productive means a running task. For 43 * memory, productive means a running task that isn't a reclaimer. For 44 * CPU, productive means an oncpu task. 45 * 46 * Naturally, the FULL state doesn't exist for the CPU resource at the 47 * system level, but exist at the cgroup level. At the cgroup level, 48 * FULL means all non-idle tasks in the cgroup are delayed on the CPU 49 * resource which is being used by others outside of the cgroup or 50 * throttled by the cgroup cpu.max configuration. 51 * 52 * The percentage of wallclock time spent in those compound stall 53 * states gives pressure numbers between 0 and 100 for each resource, 54 * where the SOME percentage indicates workload slowdowns and the FULL 55 * percentage indicates reduced CPU utilization: 56 * 57 * %SOME = time(SOME) / period 58 * %FULL = time(FULL) / period 59 * 60 * Multiple CPUs 61 * 62 * The more tasks and available CPUs there are, the more work can be 63 * performed concurrently. This means that the potential that can go 64 * unrealized due to resource contention *also* scales with non-idle 65 * tasks and CPUs. 66 * 67 * Consider a scenario where 257 number crunching tasks are trying to 68 * run concurrently on 256 CPUs. If we simply aggregated the task 69 * states, we would have to conclude a CPU SOME pressure number of 70 * 100%, since *somebody* is waiting on a runqueue at all 71 * times. However, that is clearly not the amount of contention the 72 * workload is experiencing: only one out of 256 possible execution 73 * threads will be contended at any given time, or about 0.4%. 74 * 75 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any 76 * given time *one* of the tasks is delayed due to a lack of memory. 77 * Again, looking purely at the task state would yield a memory FULL 78 * pressure number of 0%, since *somebody* is always making forward 79 * progress. But again this wouldn't capture the amount of execution 80 * potential lost, which is 1 out of 4 CPUs, or 25%. 81 * 82 * To calculate wasted potential (pressure) with multiple processors, 83 * we have to base our calculation on the number of non-idle tasks in 84 * conjunction with the number of available CPUs, which is the number 85 * of potential execution threads. SOME becomes then the proportion of 86 * delayed tasks to possible threads, and FULL is the share of possible 87 * threads that are unproductive due to delays: 88 * 89 * threads = min(nr_nonidle_tasks, nr_cpus) 90 * SOME = min(nr_delayed_tasks / threads, 1) 91 * FULL = (threads - min(nr_productive_tasks, threads)) / threads 92 * 93 * For the 257 number crunchers on 256 CPUs, this yields: 94 * 95 * threads = min(257, 256) 96 * SOME = min(1 / 256, 1) = 0.4% 97 * FULL = (256 - min(256, 256)) / 256 = 0% 98 * 99 * For the 1 out of 4 memory-delayed tasks, this yields: 100 * 101 * threads = min(4, 4) 102 * SOME = min(1 / 4, 1) = 25% 103 * FULL = (4 - min(3, 4)) / 4 = 25% 104 * 105 * [ Substitute nr_cpus with 1, and you can see that it's a natural 106 * extension of the single-CPU model. ] 107 * 108 * Implementation 109 * 110 * To assess the precise time spent in each such state, we would have 111 * to freeze the system on task changes and start/stop the state 112 * clocks accordingly. Obviously that doesn't scale in practice. 113 * 114 * Because the scheduler aims to distribute the compute load evenly 115 * among the available CPUs, we can track task state locally to each 116 * CPU and, at much lower frequency, extrapolate the global state for 117 * the cumulative stall times and the running averages. 118 * 119 * For each runqueue, we track: 120 * 121 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0) 122 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu]) 123 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0) 124 * 125 * and then periodically aggregate: 126 * 127 * tNONIDLE = sum(tNONIDLE[i]) 128 * 129 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE 130 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE 131 * 132 * %SOME = tSOME / period 133 * %FULL = tFULL / period 134 * 135 * This gives us an approximation of pressure that is practical 136 * cost-wise, yet way more sensitive and accurate than periodic 137 * sampling of the aggregate task states would be. 138 */ 139 140 static int psi_bug __read_mostly; 141 142 DEFINE_STATIC_KEY_FALSE(psi_disabled); 143 DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled); 144 145 #ifdef CONFIG_PSI_DEFAULT_DISABLED 146 static bool psi_enable; 147 #else 148 static bool psi_enable = true; 149 #endif 150 static int __init setup_psi(char *str) 151 { 152 return kstrtobool(str, &psi_enable) == 0; 153 } 154 __setup("psi=", setup_psi); 155 156 /* Running averages - we need to be higher-res than loadavg */ 157 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */ 158 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */ 159 #define EXP_60s 1981 /* 1/exp(2s/60s) */ 160 #define EXP_300s 2034 /* 1/exp(2s/300s) */ 161 162 /* PSI trigger definitions */ 163 #define WINDOW_MIN_US 500000 /* Min window size is 500ms */ 164 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */ 165 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */ 166 167 /* Sampling frequency in nanoseconds */ 168 static u64 psi_period __read_mostly; 169 170 /* System-level pressure and stall tracking */ 171 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu); 172 struct psi_group psi_system = { 173 .pcpu = &system_group_pcpu, 174 }; 175 176 static void psi_avgs_work(struct work_struct *work); 177 178 static void poll_timer_fn(struct timer_list *t); 179 180 static void group_init(struct psi_group *group) 181 { 182 int cpu; 183 184 group->enabled = true; 185 for_each_possible_cpu(cpu) 186 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq); 187 group->avg_last_update = sched_clock(); 188 group->avg_next_update = group->avg_last_update + psi_period; 189 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work); 190 mutex_init(&group->avgs_lock); 191 /* Init trigger-related members */ 192 atomic_set(&group->poll_scheduled, 0); 193 mutex_init(&group->trigger_lock); 194 INIT_LIST_HEAD(&group->triggers); 195 group->poll_min_period = U32_MAX; 196 group->polling_next_update = ULLONG_MAX; 197 init_waitqueue_head(&group->poll_wait); 198 timer_setup(&group->poll_timer, poll_timer_fn, 0); 199 rcu_assign_pointer(group->poll_task, NULL); 200 } 201 202 void __init psi_init(void) 203 { 204 if (!psi_enable) { 205 static_branch_enable(&psi_disabled); 206 static_branch_disable(&psi_cgroups_enabled); 207 return; 208 } 209 210 if (!cgroup_psi_enabled()) 211 static_branch_disable(&psi_cgroups_enabled); 212 213 psi_period = jiffies_to_nsecs(PSI_FREQ); 214 group_init(&psi_system); 215 } 216 217 static bool test_state(unsigned int *tasks, enum psi_states state, bool oncpu) 218 { 219 switch (state) { 220 case PSI_IO_SOME: 221 return unlikely(tasks[NR_IOWAIT]); 222 case PSI_IO_FULL: 223 return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]); 224 case PSI_MEM_SOME: 225 return unlikely(tasks[NR_MEMSTALL]); 226 case PSI_MEM_FULL: 227 return unlikely(tasks[NR_MEMSTALL] && 228 tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]); 229 case PSI_CPU_SOME: 230 return unlikely(tasks[NR_RUNNING] > oncpu); 231 case PSI_CPU_FULL: 232 return unlikely(tasks[NR_RUNNING] && !oncpu); 233 case PSI_NONIDLE: 234 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || 235 tasks[NR_RUNNING]; 236 default: 237 return false; 238 } 239 } 240 241 static void get_recent_times(struct psi_group *group, int cpu, 242 enum psi_aggregators aggregator, u32 *times, 243 u32 *pchanged_states) 244 { 245 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu); 246 int current_cpu = raw_smp_processor_id(); 247 unsigned int tasks[NR_PSI_TASK_COUNTS]; 248 u64 now, state_start; 249 enum psi_states s; 250 unsigned int seq; 251 u32 state_mask; 252 253 *pchanged_states = 0; 254 255 /* Snapshot a coherent view of the CPU state */ 256 do { 257 seq = read_seqcount_begin(&groupc->seq); 258 now = cpu_clock(cpu); 259 memcpy(times, groupc->times, sizeof(groupc->times)); 260 state_mask = groupc->state_mask; 261 state_start = groupc->state_start; 262 if (cpu == current_cpu) 263 memcpy(tasks, groupc->tasks, sizeof(groupc->tasks)); 264 } while (read_seqcount_retry(&groupc->seq, seq)); 265 266 /* Calculate state time deltas against the previous snapshot */ 267 for (s = 0; s < NR_PSI_STATES; s++) { 268 u32 delta; 269 /* 270 * In addition to already concluded states, we also 271 * incorporate currently active states on the CPU, 272 * since states may last for many sampling periods. 273 * 274 * This way we keep our delta sampling buckets small 275 * (u32) and our reported pressure close to what's 276 * actually happening. 277 */ 278 if (state_mask & (1 << s)) 279 times[s] += now - state_start; 280 281 delta = times[s] - groupc->times_prev[aggregator][s]; 282 groupc->times_prev[aggregator][s] = times[s]; 283 284 times[s] = delta; 285 if (delta) 286 *pchanged_states |= (1 << s); 287 } 288 289 /* 290 * When collect_percpu_times() from the avgs_work, we don't want to 291 * re-arm avgs_work when all CPUs are IDLE. But the current CPU running 292 * this avgs_work is never IDLE, cause avgs_work can't be shut off. 293 * So for the current CPU, we need to re-arm avgs_work only when 294 * (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs 295 * we can just check PSI_NONIDLE delta. 296 */ 297 if (current_work() == &group->avgs_work.work) { 298 bool reschedule; 299 300 if (cpu == current_cpu) 301 reschedule = tasks[NR_RUNNING] + 302 tasks[NR_IOWAIT] + 303 tasks[NR_MEMSTALL] > 1; 304 else 305 reschedule = *pchanged_states & (1 << PSI_NONIDLE); 306 307 if (reschedule) 308 *pchanged_states |= PSI_STATE_RESCHEDULE; 309 } 310 } 311 312 static void calc_avgs(unsigned long avg[3], int missed_periods, 313 u64 time, u64 period) 314 { 315 unsigned long pct; 316 317 /* Fill in zeroes for periods of no activity */ 318 if (missed_periods) { 319 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods); 320 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods); 321 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods); 322 } 323 324 /* Sample the most recent active period */ 325 pct = div_u64(time * 100, period); 326 pct *= FIXED_1; 327 avg[0] = calc_load(avg[0], EXP_10s, pct); 328 avg[1] = calc_load(avg[1], EXP_60s, pct); 329 avg[2] = calc_load(avg[2], EXP_300s, pct); 330 } 331 332 static void collect_percpu_times(struct psi_group *group, 333 enum psi_aggregators aggregator, 334 u32 *pchanged_states) 335 { 336 u64 deltas[NR_PSI_STATES - 1] = { 0, }; 337 unsigned long nonidle_total = 0; 338 u32 changed_states = 0; 339 int cpu; 340 int s; 341 342 /* 343 * Collect the per-cpu time buckets and average them into a 344 * single time sample that is normalized to wallclock time. 345 * 346 * For averaging, each CPU is weighted by its non-idle time in 347 * the sampling period. This eliminates artifacts from uneven 348 * loading, or even entirely idle CPUs. 349 */ 350 for_each_possible_cpu(cpu) { 351 u32 times[NR_PSI_STATES]; 352 u32 nonidle; 353 u32 cpu_changed_states; 354 355 get_recent_times(group, cpu, aggregator, times, 356 &cpu_changed_states); 357 changed_states |= cpu_changed_states; 358 359 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]); 360 nonidle_total += nonidle; 361 362 for (s = 0; s < PSI_NONIDLE; s++) 363 deltas[s] += (u64)times[s] * nonidle; 364 } 365 366 /* 367 * Integrate the sample into the running statistics that are 368 * reported to userspace: the cumulative stall times and the 369 * decaying averages. 370 * 371 * Pressure percentages are sampled at PSI_FREQ. We might be 372 * called more often when the user polls more frequently than 373 * that; we might be called less often when there is no task 374 * activity, thus no data, and clock ticks are sporadic. The 375 * below handles both. 376 */ 377 378 /* total= */ 379 for (s = 0; s < NR_PSI_STATES - 1; s++) 380 group->total[aggregator][s] += 381 div_u64(deltas[s], max(nonidle_total, 1UL)); 382 383 if (pchanged_states) 384 *pchanged_states = changed_states; 385 } 386 387 static u64 update_averages(struct psi_group *group, u64 now) 388 { 389 unsigned long missed_periods = 0; 390 u64 expires, period; 391 u64 avg_next_update; 392 int s; 393 394 /* avgX= */ 395 expires = group->avg_next_update; 396 if (now - expires >= psi_period) 397 missed_periods = div_u64(now - expires, psi_period); 398 399 /* 400 * The periodic clock tick can get delayed for various 401 * reasons, especially on loaded systems. To avoid clock 402 * drift, we schedule the clock in fixed psi_period intervals. 403 * But the deltas we sample out of the per-cpu buckets above 404 * are based on the actual time elapsing between clock ticks. 405 */ 406 avg_next_update = expires + ((1 + missed_periods) * psi_period); 407 period = now - (group->avg_last_update + (missed_periods * psi_period)); 408 group->avg_last_update = now; 409 410 for (s = 0; s < NR_PSI_STATES - 1; s++) { 411 u32 sample; 412 413 sample = group->total[PSI_AVGS][s] - group->avg_total[s]; 414 /* 415 * Due to the lockless sampling of the time buckets, 416 * recorded time deltas can slip into the next period, 417 * which under full pressure can result in samples in 418 * excess of the period length. 419 * 420 * We don't want to report non-sensical pressures in 421 * excess of 100%, nor do we want to drop such events 422 * on the floor. Instead we punt any overage into the 423 * future until pressure subsides. By doing this we 424 * don't underreport the occurring pressure curve, we 425 * just report it delayed by one period length. 426 * 427 * The error isn't cumulative. As soon as another 428 * delta slips from a period P to P+1, by definition 429 * it frees up its time T in P. 430 */ 431 if (sample > period) 432 sample = period; 433 group->avg_total[s] += sample; 434 calc_avgs(group->avg[s], missed_periods, sample, period); 435 } 436 437 return avg_next_update; 438 } 439 440 static void psi_avgs_work(struct work_struct *work) 441 { 442 struct delayed_work *dwork; 443 struct psi_group *group; 444 u32 changed_states; 445 u64 now; 446 447 dwork = to_delayed_work(work); 448 group = container_of(dwork, struct psi_group, avgs_work); 449 450 mutex_lock(&group->avgs_lock); 451 452 now = sched_clock(); 453 454 collect_percpu_times(group, PSI_AVGS, &changed_states); 455 /* 456 * If there is task activity, periodically fold the per-cpu 457 * times and feed samples into the running averages. If things 458 * are idle and there is no data to process, stop the clock. 459 * Once restarted, we'll catch up the running averages in one 460 * go - see calc_avgs() and missed_periods. 461 */ 462 if (now >= group->avg_next_update) 463 group->avg_next_update = update_averages(group, now); 464 465 if (changed_states & PSI_STATE_RESCHEDULE) { 466 schedule_delayed_work(dwork, nsecs_to_jiffies( 467 group->avg_next_update - now) + 1); 468 } 469 470 mutex_unlock(&group->avgs_lock); 471 } 472 473 /* Trigger tracking window manipulations */ 474 static void window_reset(struct psi_window *win, u64 now, u64 value, 475 u64 prev_growth) 476 { 477 win->start_time = now; 478 win->start_value = value; 479 win->prev_growth = prev_growth; 480 } 481 482 /* 483 * PSI growth tracking window update and growth calculation routine. 484 * 485 * This approximates a sliding tracking window by interpolating 486 * partially elapsed windows using historical growth data from the 487 * previous intervals. This minimizes memory requirements (by not storing 488 * all the intermediate values in the previous window) and simplifies 489 * the calculations. It works well because PSI signal changes only in 490 * positive direction and over relatively small window sizes the growth 491 * is close to linear. 492 */ 493 static u64 window_update(struct psi_window *win, u64 now, u64 value) 494 { 495 u64 elapsed; 496 u64 growth; 497 498 elapsed = now - win->start_time; 499 growth = value - win->start_value; 500 /* 501 * After each tracking window passes win->start_value and 502 * win->start_time get reset and win->prev_growth stores 503 * the average per-window growth of the previous window. 504 * win->prev_growth is then used to interpolate additional 505 * growth from the previous window assuming it was linear. 506 */ 507 if (elapsed > win->size) 508 window_reset(win, now, value, growth); 509 else { 510 u32 remaining; 511 512 remaining = win->size - elapsed; 513 growth += div64_u64(win->prev_growth * remaining, win->size); 514 } 515 516 return growth; 517 } 518 519 static void init_triggers(struct psi_group *group, u64 now) 520 { 521 struct psi_trigger *t; 522 523 list_for_each_entry(t, &group->triggers, node) 524 window_reset(&t->win, now, 525 group->total[PSI_POLL][t->state], 0); 526 memcpy(group->polling_total, group->total[PSI_POLL], 527 sizeof(group->polling_total)); 528 group->polling_next_update = now + group->poll_min_period; 529 } 530 531 static u64 update_triggers(struct psi_group *group, u64 now) 532 { 533 struct psi_trigger *t; 534 bool update_total = false; 535 u64 *total = group->total[PSI_POLL]; 536 537 /* 538 * On subsequent updates, calculate growth deltas and let 539 * watchers know when their specified thresholds are exceeded. 540 */ 541 list_for_each_entry(t, &group->triggers, node) { 542 u64 growth; 543 bool new_stall; 544 545 new_stall = group->polling_total[t->state] != total[t->state]; 546 547 /* Check for stall activity or a previous threshold breach */ 548 if (!new_stall && !t->pending_event) 549 continue; 550 /* 551 * Check for new stall activity, as well as deferred 552 * events that occurred in the last window after the 553 * trigger had already fired (we want to ratelimit 554 * events without dropping any). 555 */ 556 if (new_stall) { 557 /* 558 * Multiple triggers might be looking at the same state, 559 * remember to update group->polling_total[] once we've 560 * been through all of them. Also remember to extend the 561 * polling time if we see new stall activity. 562 */ 563 update_total = true; 564 565 /* Calculate growth since last update */ 566 growth = window_update(&t->win, now, total[t->state]); 567 if (!t->pending_event) { 568 if (growth < t->threshold) 569 continue; 570 571 t->pending_event = true; 572 } 573 } 574 /* Limit event signaling to once per window */ 575 if (now < t->last_event_time + t->win.size) 576 continue; 577 578 /* Generate an event */ 579 if (cmpxchg(&t->event, 0, 1) == 0) 580 wake_up_interruptible(&t->event_wait); 581 t->last_event_time = now; 582 /* Reset threshold breach flag once event got generated */ 583 t->pending_event = false; 584 } 585 586 if (update_total) 587 memcpy(group->polling_total, total, 588 sizeof(group->polling_total)); 589 590 return now + group->poll_min_period; 591 } 592 593 /* Schedule polling if it's not already scheduled or forced. */ 594 static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay, 595 bool force) 596 { 597 struct task_struct *task; 598 599 /* 600 * atomic_xchg should be called even when !force to provide a 601 * full memory barrier (see the comment inside psi_poll_work). 602 */ 603 if (atomic_xchg(&group->poll_scheduled, 1) && !force) 604 return; 605 606 rcu_read_lock(); 607 608 task = rcu_dereference(group->poll_task); 609 /* 610 * kworker might be NULL in case psi_trigger_destroy races with 611 * psi_task_change (hotpath) which can't use locks 612 */ 613 if (likely(task)) 614 mod_timer(&group->poll_timer, jiffies + delay); 615 else 616 atomic_set(&group->poll_scheduled, 0); 617 618 rcu_read_unlock(); 619 } 620 621 static void psi_poll_work(struct psi_group *group) 622 { 623 bool force_reschedule = false; 624 u32 changed_states; 625 u64 now; 626 627 mutex_lock(&group->trigger_lock); 628 629 now = sched_clock(); 630 631 if (now > group->polling_until) { 632 /* 633 * We are either about to start or might stop polling if no 634 * state change was recorded. Resetting poll_scheduled leaves 635 * a small window for psi_group_change to sneak in and schedule 636 * an immediate poll_work before we get to rescheduling. One 637 * potential extra wakeup at the end of the polling window 638 * should be negligible and polling_next_update still keeps 639 * updates correctly on schedule. 640 */ 641 atomic_set(&group->poll_scheduled, 0); 642 /* 643 * A task change can race with the poll worker that is supposed to 644 * report on it. To avoid missing events, ensure ordering between 645 * poll_scheduled and the task state accesses, such that if the poll 646 * worker misses the state update, the task change is guaranteed to 647 * reschedule the poll worker: 648 * 649 * poll worker: 650 * atomic_set(poll_scheduled, 0) 651 * smp_mb() 652 * LOAD states 653 * 654 * task change: 655 * STORE states 656 * if atomic_xchg(poll_scheduled, 1) == 0: 657 * schedule poll worker 658 * 659 * The atomic_xchg() implies a full barrier. 660 */ 661 smp_mb(); 662 } else { 663 /* Polling window is not over, keep rescheduling */ 664 force_reschedule = true; 665 } 666 667 668 collect_percpu_times(group, PSI_POLL, &changed_states); 669 670 if (changed_states & group->poll_states) { 671 /* Initialize trigger windows when entering polling mode */ 672 if (now > group->polling_until) 673 init_triggers(group, now); 674 675 /* 676 * Keep the monitor active for at least the duration of the 677 * minimum tracking window as long as monitor states are 678 * changing. 679 */ 680 group->polling_until = now + 681 group->poll_min_period * UPDATES_PER_WINDOW; 682 } 683 684 if (now > group->polling_until) { 685 group->polling_next_update = ULLONG_MAX; 686 goto out; 687 } 688 689 if (now >= group->polling_next_update) 690 group->polling_next_update = update_triggers(group, now); 691 692 psi_schedule_poll_work(group, 693 nsecs_to_jiffies(group->polling_next_update - now) + 1, 694 force_reschedule); 695 696 out: 697 mutex_unlock(&group->trigger_lock); 698 } 699 700 static int psi_poll_worker(void *data) 701 { 702 struct psi_group *group = (struct psi_group *)data; 703 704 sched_set_fifo_low(current); 705 706 while (true) { 707 wait_event_interruptible(group->poll_wait, 708 atomic_cmpxchg(&group->poll_wakeup, 1, 0) || 709 kthread_should_stop()); 710 if (kthread_should_stop()) 711 break; 712 713 psi_poll_work(group); 714 } 715 return 0; 716 } 717 718 static void poll_timer_fn(struct timer_list *t) 719 { 720 struct psi_group *group = from_timer(group, t, poll_timer); 721 722 atomic_set(&group->poll_wakeup, 1); 723 wake_up_interruptible(&group->poll_wait); 724 } 725 726 static void record_times(struct psi_group_cpu *groupc, u64 now) 727 { 728 u32 delta; 729 730 delta = now - groupc->state_start; 731 groupc->state_start = now; 732 733 if (groupc->state_mask & (1 << PSI_IO_SOME)) { 734 groupc->times[PSI_IO_SOME] += delta; 735 if (groupc->state_mask & (1 << PSI_IO_FULL)) 736 groupc->times[PSI_IO_FULL] += delta; 737 } 738 739 if (groupc->state_mask & (1 << PSI_MEM_SOME)) { 740 groupc->times[PSI_MEM_SOME] += delta; 741 if (groupc->state_mask & (1 << PSI_MEM_FULL)) 742 groupc->times[PSI_MEM_FULL] += delta; 743 } 744 745 if (groupc->state_mask & (1 << PSI_CPU_SOME)) { 746 groupc->times[PSI_CPU_SOME] += delta; 747 if (groupc->state_mask & (1 << PSI_CPU_FULL)) 748 groupc->times[PSI_CPU_FULL] += delta; 749 } 750 751 if (groupc->state_mask & (1 << PSI_NONIDLE)) 752 groupc->times[PSI_NONIDLE] += delta; 753 } 754 755 static void psi_group_change(struct psi_group *group, int cpu, 756 unsigned int clear, unsigned int set, u64 now, 757 bool wake_clock) 758 { 759 struct psi_group_cpu *groupc; 760 unsigned int t, m; 761 enum psi_states s; 762 u32 state_mask; 763 764 groupc = per_cpu_ptr(group->pcpu, cpu); 765 766 /* 767 * First we update the task counts according to the state 768 * change requested through the @clear and @set bits. 769 * 770 * Then if the cgroup PSI stats accounting enabled, we 771 * assess the aggregate resource states this CPU's tasks 772 * have been in since the last change, and account any 773 * SOME and FULL time these may have resulted in. 774 */ 775 write_seqcount_begin(&groupc->seq); 776 777 /* 778 * Start with TSK_ONCPU, which doesn't have a corresponding 779 * task count - it's just a boolean flag directly encoded in 780 * the state mask. Clear, set, or carry the current state if 781 * no changes are requested. 782 */ 783 if (unlikely(clear & TSK_ONCPU)) { 784 state_mask = 0; 785 clear &= ~TSK_ONCPU; 786 } else if (unlikely(set & TSK_ONCPU)) { 787 state_mask = PSI_ONCPU; 788 set &= ~TSK_ONCPU; 789 } else { 790 state_mask = groupc->state_mask & PSI_ONCPU; 791 } 792 793 /* 794 * The rest of the state mask is calculated based on the task 795 * counts. Update those first, then construct the mask. 796 */ 797 for (t = 0, m = clear; m; m &= ~(1 << t), t++) { 798 if (!(m & (1 << t))) 799 continue; 800 if (groupc->tasks[t]) { 801 groupc->tasks[t]--; 802 } else if (!psi_bug) { 803 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n", 804 cpu, t, groupc->tasks[0], 805 groupc->tasks[1], groupc->tasks[2], 806 groupc->tasks[3], clear, set); 807 psi_bug = 1; 808 } 809 } 810 811 for (t = 0; set; set &= ~(1 << t), t++) 812 if (set & (1 << t)) 813 groupc->tasks[t]++; 814 815 if (!group->enabled) { 816 /* 817 * On the first group change after disabling PSI, conclude 818 * the current state and flush its time. This is unlikely 819 * to matter to the user, but aggregation (get_recent_times) 820 * may have already incorporated the live state into times_prev; 821 * avoid a delta sample underflow when PSI is later re-enabled. 822 */ 823 if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE))) 824 record_times(groupc, now); 825 826 groupc->state_mask = state_mask; 827 828 write_seqcount_end(&groupc->seq); 829 return; 830 } 831 832 for (s = 0; s < NR_PSI_STATES; s++) { 833 if (test_state(groupc->tasks, s, state_mask & PSI_ONCPU)) 834 state_mask |= (1 << s); 835 } 836 837 /* 838 * Since we care about lost potential, a memstall is FULL 839 * when there are no other working tasks, but also when 840 * the CPU is actively reclaiming and nothing productive 841 * could run even if it were runnable. So when the current 842 * task in a cgroup is in_memstall, the corresponding groupc 843 * on that cpu is in PSI_MEM_FULL state. 844 */ 845 if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall)) 846 state_mask |= (1 << PSI_MEM_FULL); 847 848 record_times(groupc, now); 849 850 groupc->state_mask = state_mask; 851 852 write_seqcount_end(&groupc->seq); 853 854 if (state_mask & group->poll_states) 855 psi_schedule_poll_work(group, 1, false); 856 857 if (wake_clock && !delayed_work_pending(&group->avgs_work)) 858 schedule_delayed_work(&group->avgs_work, PSI_FREQ); 859 } 860 861 static inline struct psi_group *task_psi_group(struct task_struct *task) 862 { 863 #ifdef CONFIG_CGROUPS 864 if (static_branch_likely(&psi_cgroups_enabled)) 865 return cgroup_psi(task_dfl_cgroup(task)); 866 #endif 867 return &psi_system; 868 } 869 870 static void psi_flags_change(struct task_struct *task, int clear, int set) 871 { 872 if (((task->psi_flags & set) || 873 (task->psi_flags & clear) != clear) && 874 !psi_bug) { 875 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n", 876 task->pid, task->comm, task_cpu(task), 877 task->psi_flags, clear, set); 878 psi_bug = 1; 879 } 880 881 task->psi_flags &= ~clear; 882 task->psi_flags |= set; 883 } 884 885 void psi_task_change(struct task_struct *task, int clear, int set) 886 { 887 int cpu = task_cpu(task); 888 struct psi_group *group; 889 u64 now; 890 891 if (!task->pid) 892 return; 893 894 psi_flags_change(task, clear, set); 895 896 now = cpu_clock(cpu); 897 898 group = task_psi_group(task); 899 do { 900 psi_group_change(group, cpu, clear, set, now, true); 901 } while ((group = group->parent)); 902 } 903 904 void psi_task_switch(struct task_struct *prev, struct task_struct *next, 905 bool sleep) 906 { 907 struct psi_group *group, *common = NULL; 908 int cpu = task_cpu(prev); 909 u64 now = cpu_clock(cpu); 910 911 if (next->pid) { 912 psi_flags_change(next, 0, TSK_ONCPU); 913 /* 914 * Set TSK_ONCPU on @next's cgroups. If @next shares any 915 * ancestors with @prev, those will already have @prev's 916 * TSK_ONCPU bit set, and we can stop the iteration there. 917 */ 918 group = task_psi_group(next); 919 do { 920 if (per_cpu_ptr(group->pcpu, cpu)->state_mask & 921 PSI_ONCPU) { 922 common = group; 923 break; 924 } 925 926 psi_group_change(group, cpu, 0, TSK_ONCPU, now, true); 927 } while ((group = group->parent)); 928 } 929 930 if (prev->pid) { 931 int clear = TSK_ONCPU, set = 0; 932 bool wake_clock = true; 933 934 /* 935 * When we're going to sleep, psi_dequeue() lets us 936 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and 937 * TSK_IOWAIT here, where we can combine it with 938 * TSK_ONCPU and save walking common ancestors twice. 939 */ 940 if (sleep) { 941 clear |= TSK_RUNNING; 942 if (prev->in_memstall) 943 clear |= TSK_MEMSTALL_RUNNING; 944 if (prev->in_iowait) 945 set |= TSK_IOWAIT; 946 947 /* 948 * Periodic aggregation shuts off if there is a period of no 949 * task changes, so we wake it back up if necessary. However, 950 * don't do this if the task change is the aggregation worker 951 * itself going to sleep, or we'll ping-pong forever. 952 */ 953 if (unlikely((prev->flags & PF_WQ_WORKER) && 954 wq_worker_last_func(prev) == psi_avgs_work)) 955 wake_clock = false; 956 } 957 958 psi_flags_change(prev, clear, set); 959 960 group = task_psi_group(prev); 961 do { 962 if (group == common) 963 break; 964 psi_group_change(group, cpu, clear, set, now, wake_clock); 965 } while ((group = group->parent)); 966 967 /* 968 * TSK_ONCPU is handled up to the common ancestor. If there are 969 * any other differences between the two tasks (e.g. prev goes 970 * to sleep, or only one task is memstall), finish propagating 971 * those differences all the way up to the root. 972 */ 973 if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) { 974 clear &= ~TSK_ONCPU; 975 for (; group; group = group->parent) 976 psi_group_change(group, cpu, clear, set, now, wake_clock); 977 } 978 } 979 } 980 981 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 982 void psi_account_irqtime(struct task_struct *task, u32 delta) 983 { 984 int cpu = task_cpu(task); 985 struct psi_group *group; 986 struct psi_group_cpu *groupc; 987 u64 now; 988 989 if (!task->pid) 990 return; 991 992 now = cpu_clock(cpu); 993 994 group = task_psi_group(task); 995 do { 996 if (!group->enabled) 997 continue; 998 999 groupc = per_cpu_ptr(group->pcpu, cpu); 1000 1001 write_seqcount_begin(&groupc->seq); 1002 1003 record_times(groupc, now); 1004 groupc->times[PSI_IRQ_FULL] += delta; 1005 1006 write_seqcount_end(&groupc->seq); 1007 1008 if (group->poll_states & (1 << PSI_IRQ_FULL)) 1009 psi_schedule_poll_work(group, 1, false); 1010 } while ((group = group->parent)); 1011 } 1012 #endif 1013 1014 /** 1015 * psi_memstall_enter - mark the beginning of a memory stall section 1016 * @flags: flags to handle nested sections 1017 * 1018 * Marks the calling task as being stalled due to a lack of memory, 1019 * such as waiting for a refault or performing reclaim. 1020 */ 1021 void psi_memstall_enter(unsigned long *flags) 1022 { 1023 struct rq_flags rf; 1024 struct rq *rq; 1025 1026 if (static_branch_likely(&psi_disabled)) 1027 return; 1028 1029 *flags = current->in_memstall; 1030 if (*flags) 1031 return; 1032 /* 1033 * in_memstall setting & accounting needs to be atomic wrt 1034 * changes to the task's scheduling state, otherwise we can 1035 * race with CPU migration. 1036 */ 1037 rq = this_rq_lock_irq(&rf); 1038 1039 current->in_memstall = 1; 1040 psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING); 1041 1042 rq_unlock_irq(rq, &rf); 1043 } 1044 EXPORT_SYMBOL_GPL(psi_memstall_enter); 1045 1046 /** 1047 * psi_memstall_leave - mark the end of an memory stall section 1048 * @flags: flags to handle nested memdelay sections 1049 * 1050 * Marks the calling task as no longer stalled due to lack of memory. 1051 */ 1052 void psi_memstall_leave(unsigned long *flags) 1053 { 1054 struct rq_flags rf; 1055 struct rq *rq; 1056 1057 if (static_branch_likely(&psi_disabled)) 1058 return; 1059 1060 if (*flags) 1061 return; 1062 /* 1063 * in_memstall clearing & accounting needs to be atomic wrt 1064 * changes to the task's scheduling state, otherwise we could 1065 * race with CPU migration. 1066 */ 1067 rq = this_rq_lock_irq(&rf); 1068 1069 current->in_memstall = 0; 1070 psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0); 1071 1072 rq_unlock_irq(rq, &rf); 1073 } 1074 EXPORT_SYMBOL_GPL(psi_memstall_leave); 1075 1076 #ifdef CONFIG_CGROUPS 1077 int psi_cgroup_alloc(struct cgroup *cgroup) 1078 { 1079 if (!static_branch_likely(&psi_cgroups_enabled)) 1080 return 0; 1081 1082 cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL); 1083 if (!cgroup->psi) 1084 return -ENOMEM; 1085 1086 cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu); 1087 if (!cgroup->psi->pcpu) { 1088 kfree(cgroup->psi); 1089 return -ENOMEM; 1090 } 1091 group_init(cgroup->psi); 1092 cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup)); 1093 return 0; 1094 } 1095 1096 void psi_cgroup_free(struct cgroup *cgroup) 1097 { 1098 if (!static_branch_likely(&psi_cgroups_enabled)) 1099 return; 1100 1101 cancel_delayed_work_sync(&cgroup->psi->avgs_work); 1102 free_percpu(cgroup->psi->pcpu); 1103 /* All triggers must be removed by now */ 1104 WARN_ONCE(cgroup->psi->poll_states, "psi: trigger leak\n"); 1105 kfree(cgroup->psi); 1106 } 1107 1108 /** 1109 * cgroup_move_task - move task to a different cgroup 1110 * @task: the task 1111 * @to: the target css_set 1112 * 1113 * Move task to a new cgroup and safely migrate its associated stall 1114 * state between the different groups. 1115 * 1116 * This function acquires the task's rq lock to lock out concurrent 1117 * changes to the task's scheduling state and - in case the task is 1118 * running - concurrent changes to its stall state. 1119 */ 1120 void cgroup_move_task(struct task_struct *task, struct css_set *to) 1121 { 1122 unsigned int task_flags; 1123 struct rq_flags rf; 1124 struct rq *rq; 1125 1126 if (!static_branch_likely(&psi_cgroups_enabled)) { 1127 /* 1128 * Lame to do this here, but the scheduler cannot be locked 1129 * from the outside, so we move cgroups from inside sched/. 1130 */ 1131 rcu_assign_pointer(task->cgroups, to); 1132 return; 1133 } 1134 1135 rq = task_rq_lock(task, &rf); 1136 1137 /* 1138 * We may race with schedule() dropping the rq lock between 1139 * deactivating prev and switching to next. Because the psi 1140 * updates from the deactivation are deferred to the switch 1141 * callback to save cgroup tree updates, the task's scheduling 1142 * state here is not coherent with its psi state: 1143 * 1144 * schedule() cgroup_move_task() 1145 * rq_lock() 1146 * deactivate_task() 1147 * p->on_rq = 0 1148 * psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates 1149 * pick_next_task() 1150 * rq_unlock() 1151 * rq_lock() 1152 * psi_task_change() // old cgroup 1153 * task->cgroups = to 1154 * psi_task_change() // new cgroup 1155 * rq_unlock() 1156 * rq_lock() 1157 * psi_sched_switch() // does deferred updates in new cgroup 1158 * 1159 * Don't rely on the scheduling state. Use psi_flags instead. 1160 */ 1161 task_flags = task->psi_flags; 1162 1163 if (task_flags) 1164 psi_task_change(task, task_flags, 0); 1165 1166 /* See comment above */ 1167 rcu_assign_pointer(task->cgroups, to); 1168 1169 if (task_flags) 1170 psi_task_change(task, 0, task_flags); 1171 1172 task_rq_unlock(rq, task, &rf); 1173 } 1174 1175 void psi_cgroup_restart(struct psi_group *group) 1176 { 1177 int cpu; 1178 1179 /* 1180 * After we disable psi_group->enabled, we don't actually 1181 * stop percpu tasks accounting in each psi_group_cpu, 1182 * instead only stop test_state() loop, record_times() 1183 * and averaging worker, see psi_group_change() for details. 1184 * 1185 * When disable cgroup PSI, this function has nothing to sync 1186 * since cgroup pressure files are hidden and percpu psi_group_cpu 1187 * would see !psi_group->enabled and only do task accounting. 1188 * 1189 * When re-enable cgroup PSI, this function use psi_group_change() 1190 * to get correct state mask from test_state() loop on tasks[], 1191 * and restart groupc->state_start from now, use .clear = .set = 0 1192 * here since no task status really changed. 1193 */ 1194 if (!group->enabled) 1195 return; 1196 1197 for_each_possible_cpu(cpu) { 1198 struct rq *rq = cpu_rq(cpu); 1199 struct rq_flags rf; 1200 u64 now; 1201 1202 rq_lock_irq(rq, &rf); 1203 now = cpu_clock(cpu); 1204 psi_group_change(group, cpu, 0, 0, now, true); 1205 rq_unlock_irq(rq, &rf); 1206 } 1207 } 1208 #endif /* CONFIG_CGROUPS */ 1209 1210 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res) 1211 { 1212 bool only_full = false; 1213 int full; 1214 u64 now; 1215 1216 if (static_branch_likely(&psi_disabled)) 1217 return -EOPNOTSUPP; 1218 1219 /* Update averages before reporting them */ 1220 mutex_lock(&group->avgs_lock); 1221 now = sched_clock(); 1222 collect_percpu_times(group, PSI_AVGS, NULL); 1223 if (now >= group->avg_next_update) 1224 group->avg_next_update = update_averages(group, now); 1225 mutex_unlock(&group->avgs_lock); 1226 1227 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1228 only_full = res == PSI_IRQ; 1229 #endif 1230 1231 for (full = 0; full < 2 - only_full; full++) { 1232 unsigned long avg[3] = { 0, }; 1233 u64 total = 0; 1234 int w; 1235 1236 /* CPU FULL is undefined at the system level */ 1237 if (!(group == &psi_system && res == PSI_CPU && full)) { 1238 for (w = 0; w < 3; w++) 1239 avg[w] = group->avg[res * 2 + full][w]; 1240 total = div_u64(group->total[PSI_AVGS][res * 2 + full], 1241 NSEC_PER_USEC); 1242 } 1243 1244 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n", 1245 full || only_full ? "full" : "some", 1246 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]), 1247 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]), 1248 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]), 1249 total); 1250 } 1251 1252 return 0; 1253 } 1254 1255 struct psi_trigger *psi_trigger_create(struct psi_group *group, 1256 char *buf, enum psi_res res) 1257 { 1258 struct psi_trigger *t; 1259 enum psi_states state; 1260 u32 threshold_us; 1261 u32 window_us; 1262 1263 if (static_branch_likely(&psi_disabled)) 1264 return ERR_PTR(-EOPNOTSUPP); 1265 1266 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2) 1267 state = PSI_IO_SOME + res * 2; 1268 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2) 1269 state = PSI_IO_FULL + res * 2; 1270 else 1271 return ERR_PTR(-EINVAL); 1272 1273 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1274 if (res == PSI_IRQ && --state != PSI_IRQ_FULL) 1275 return ERR_PTR(-EINVAL); 1276 #endif 1277 1278 if (state >= PSI_NONIDLE) 1279 return ERR_PTR(-EINVAL); 1280 1281 if (window_us < WINDOW_MIN_US || 1282 window_us > WINDOW_MAX_US) 1283 return ERR_PTR(-EINVAL); 1284 1285 /* Check threshold */ 1286 if (threshold_us == 0 || threshold_us > window_us) 1287 return ERR_PTR(-EINVAL); 1288 1289 t = kmalloc(sizeof(*t), GFP_KERNEL); 1290 if (!t) 1291 return ERR_PTR(-ENOMEM); 1292 1293 t->group = group; 1294 t->state = state; 1295 t->threshold = threshold_us * NSEC_PER_USEC; 1296 t->win.size = window_us * NSEC_PER_USEC; 1297 window_reset(&t->win, sched_clock(), 1298 group->total[PSI_POLL][t->state], 0); 1299 1300 t->event = 0; 1301 t->last_event_time = 0; 1302 init_waitqueue_head(&t->event_wait); 1303 t->pending_event = false; 1304 1305 mutex_lock(&group->trigger_lock); 1306 1307 if (!rcu_access_pointer(group->poll_task)) { 1308 struct task_struct *task; 1309 1310 task = kthread_create(psi_poll_worker, group, "psimon"); 1311 if (IS_ERR(task)) { 1312 kfree(t); 1313 mutex_unlock(&group->trigger_lock); 1314 return ERR_CAST(task); 1315 } 1316 atomic_set(&group->poll_wakeup, 0); 1317 wake_up_process(task); 1318 rcu_assign_pointer(group->poll_task, task); 1319 } 1320 1321 list_add(&t->node, &group->triggers); 1322 group->poll_min_period = min(group->poll_min_period, 1323 div_u64(t->win.size, UPDATES_PER_WINDOW)); 1324 group->nr_triggers[t->state]++; 1325 group->poll_states |= (1 << t->state); 1326 1327 mutex_unlock(&group->trigger_lock); 1328 1329 return t; 1330 } 1331 1332 void psi_trigger_destroy(struct psi_trigger *t) 1333 { 1334 struct psi_group *group; 1335 struct task_struct *task_to_destroy = NULL; 1336 1337 /* 1338 * We do not check psi_disabled since it might have been disabled after 1339 * the trigger got created. 1340 */ 1341 if (!t) 1342 return; 1343 1344 group = t->group; 1345 /* 1346 * Wakeup waiters to stop polling and clear the queue to prevent it from 1347 * being accessed later. Can happen if cgroup is deleted from under a 1348 * polling process. 1349 */ 1350 wake_up_pollfree(&t->event_wait); 1351 1352 mutex_lock(&group->trigger_lock); 1353 1354 if (!list_empty(&t->node)) { 1355 struct psi_trigger *tmp; 1356 u64 period = ULLONG_MAX; 1357 1358 list_del(&t->node); 1359 group->nr_triggers[t->state]--; 1360 if (!group->nr_triggers[t->state]) 1361 group->poll_states &= ~(1 << t->state); 1362 /* reset min update period for the remaining triggers */ 1363 list_for_each_entry(tmp, &group->triggers, node) 1364 period = min(period, div_u64(tmp->win.size, 1365 UPDATES_PER_WINDOW)); 1366 group->poll_min_period = period; 1367 /* Destroy poll_task when the last trigger is destroyed */ 1368 if (group->poll_states == 0) { 1369 group->polling_until = 0; 1370 task_to_destroy = rcu_dereference_protected( 1371 group->poll_task, 1372 lockdep_is_held(&group->trigger_lock)); 1373 rcu_assign_pointer(group->poll_task, NULL); 1374 del_timer(&group->poll_timer); 1375 } 1376 } 1377 1378 mutex_unlock(&group->trigger_lock); 1379 1380 /* 1381 * Wait for psi_schedule_poll_work RCU to complete its read-side 1382 * critical section before destroying the trigger and optionally the 1383 * poll_task. 1384 */ 1385 synchronize_rcu(); 1386 /* 1387 * Stop kthread 'psimon' after releasing trigger_lock to prevent a 1388 * deadlock while waiting for psi_poll_work to acquire trigger_lock 1389 */ 1390 if (task_to_destroy) { 1391 /* 1392 * After the RCU grace period has expired, the worker 1393 * can no longer be found through group->poll_task. 1394 */ 1395 kthread_stop(task_to_destroy); 1396 atomic_set(&group->poll_scheduled, 0); 1397 } 1398 kfree(t); 1399 } 1400 1401 __poll_t psi_trigger_poll(void **trigger_ptr, 1402 struct file *file, poll_table *wait) 1403 { 1404 __poll_t ret = DEFAULT_POLLMASK; 1405 struct psi_trigger *t; 1406 1407 if (static_branch_likely(&psi_disabled)) 1408 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; 1409 1410 t = smp_load_acquire(trigger_ptr); 1411 if (!t) 1412 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; 1413 1414 poll_wait(file, &t->event_wait, wait); 1415 1416 if (cmpxchg(&t->event, 1, 0) == 1) 1417 ret |= EPOLLPRI; 1418 1419 return ret; 1420 } 1421 1422 #ifdef CONFIG_PROC_FS 1423 static int psi_io_show(struct seq_file *m, void *v) 1424 { 1425 return psi_show(m, &psi_system, PSI_IO); 1426 } 1427 1428 static int psi_memory_show(struct seq_file *m, void *v) 1429 { 1430 return psi_show(m, &psi_system, PSI_MEM); 1431 } 1432 1433 static int psi_cpu_show(struct seq_file *m, void *v) 1434 { 1435 return psi_show(m, &psi_system, PSI_CPU); 1436 } 1437 1438 static int psi_open(struct file *file, int (*psi_show)(struct seq_file *, void *)) 1439 { 1440 if (file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE)) 1441 return -EPERM; 1442 1443 return single_open(file, psi_show, NULL); 1444 } 1445 1446 static int psi_io_open(struct inode *inode, struct file *file) 1447 { 1448 return psi_open(file, psi_io_show); 1449 } 1450 1451 static int psi_memory_open(struct inode *inode, struct file *file) 1452 { 1453 return psi_open(file, psi_memory_show); 1454 } 1455 1456 static int psi_cpu_open(struct inode *inode, struct file *file) 1457 { 1458 return psi_open(file, psi_cpu_show); 1459 } 1460 1461 static ssize_t psi_write(struct file *file, const char __user *user_buf, 1462 size_t nbytes, enum psi_res res) 1463 { 1464 char buf[32]; 1465 size_t buf_size; 1466 struct seq_file *seq; 1467 struct psi_trigger *new; 1468 1469 if (static_branch_likely(&psi_disabled)) 1470 return -EOPNOTSUPP; 1471 1472 if (!nbytes) 1473 return -EINVAL; 1474 1475 buf_size = min(nbytes, sizeof(buf)); 1476 if (copy_from_user(buf, user_buf, buf_size)) 1477 return -EFAULT; 1478 1479 buf[buf_size - 1] = '\0'; 1480 1481 seq = file->private_data; 1482 1483 /* Take seq->lock to protect seq->private from concurrent writes */ 1484 mutex_lock(&seq->lock); 1485 1486 /* Allow only one trigger per file descriptor */ 1487 if (seq->private) { 1488 mutex_unlock(&seq->lock); 1489 return -EBUSY; 1490 } 1491 1492 new = psi_trigger_create(&psi_system, buf, res); 1493 if (IS_ERR(new)) { 1494 mutex_unlock(&seq->lock); 1495 return PTR_ERR(new); 1496 } 1497 1498 smp_store_release(&seq->private, new); 1499 mutex_unlock(&seq->lock); 1500 1501 return nbytes; 1502 } 1503 1504 static ssize_t psi_io_write(struct file *file, const char __user *user_buf, 1505 size_t nbytes, loff_t *ppos) 1506 { 1507 return psi_write(file, user_buf, nbytes, PSI_IO); 1508 } 1509 1510 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf, 1511 size_t nbytes, loff_t *ppos) 1512 { 1513 return psi_write(file, user_buf, nbytes, PSI_MEM); 1514 } 1515 1516 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf, 1517 size_t nbytes, loff_t *ppos) 1518 { 1519 return psi_write(file, user_buf, nbytes, PSI_CPU); 1520 } 1521 1522 static __poll_t psi_fop_poll(struct file *file, poll_table *wait) 1523 { 1524 struct seq_file *seq = file->private_data; 1525 1526 return psi_trigger_poll(&seq->private, file, wait); 1527 } 1528 1529 static int psi_fop_release(struct inode *inode, struct file *file) 1530 { 1531 struct seq_file *seq = file->private_data; 1532 1533 psi_trigger_destroy(seq->private); 1534 return single_release(inode, file); 1535 } 1536 1537 static const struct proc_ops psi_io_proc_ops = { 1538 .proc_open = psi_io_open, 1539 .proc_read = seq_read, 1540 .proc_lseek = seq_lseek, 1541 .proc_write = psi_io_write, 1542 .proc_poll = psi_fop_poll, 1543 .proc_release = psi_fop_release, 1544 }; 1545 1546 static const struct proc_ops psi_memory_proc_ops = { 1547 .proc_open = psi_memory_open, 1548 .proc_read = seq_read, 1549 .proc_lseek = seq_lseek, 1550 .proc_write = psi_memory_write, 1551 .proc_poll = psi_fop_poll, 1552 .proc_release = psi_fop_release, 1553 }; 1554 1555 static const struct proc_ops psi_cpu_proc_ops = { 1556 .proc_open = psi_cpu_open, 1557 .proc_read = seq_read, 1558 .proc_lseek = seq_lseek, 1559 .proc_write = psi_cpu_write, 1560 .proc_poll = psi_fop_poll, 1561 .proc_release = psi_fop_release, 1562 }; 1563 1564 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1565 static int psi_irq_show(struct seq_file *m, void *v) 1566 { 1567 return psi_show(m, &psi_system, PSI_IRQ); 1568 } 1569 1570 static int psi_irq_open(struct inode *inode, struct file *file) 1571 { 1572 return psi_open(file, psi_irq_show); 1573 } 1574 1575 static ssize_t psi_irq_write(struct file *file, const char __user *user_buf, 1576 size_t nbytes, loff_t *ppos) 1577 { 1578 return psi_write(file, user_buf, nbytes, PSI_IRQ); 1579 } 1580 1581 static const struct proc_ops psi_irq_proc_ops = { 1582 .proc_open = psi_irq_open, 1583 .proc_read = seq_read, 1584 .proc_lseek = seq_lseek, 1585 .proc_write = psi_irq_write, 1586 .proc_poll = psi_fop_poll, 1587 .proc_release = psi_fop_release, 1588 }; 1589 #endif 1590 1591 static int __init psi_proc_init(void) 1592 { 1593 if (psi_enable) { 1594 proc_mkdir("pressure", NULL); 1595 proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops); 1596 proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops); 1597 proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops); 1598 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1599 proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops); 1600 #endif 1601 } 1602 return 0; 1603 } 1604 module_init(psi_proc_init); 1605 1606 #endif /* CONFIG_PROC_FS */ 1607