1 /* 2 * Pressure stall information for CPU, memory and IO 3 * 4 * Copyright (c) 2018 Facebook, Inc. 5 * Author: Johannes Weiner <hannes@cmpxchg.org> 6 * 7 * Polling support by Suren Baghdasaryan <surenb@google.com> 8 * Copyright (c) 2018 Google, Inc. 9 * 10 * When CPU, memory and IO are contended, tasks experience delays that 11 * reduce throughput and introduce latencies into the workload. Memory 12 * and IO contention, in addition, can cause a full loss of forward 13 * progress in which the CPU goes idle. 14 * 15 * This code aggregates individual task delays into resource pressure 16 * metrics that indicate problems with both workload health and 17 * resource utilization. 18 * 19 * Model 20 * 21 * The time in which a task can execute on a CPU is our baseline for 22 * productivity. Pressure expresses the amount of time in which this 23 * potential cannot be realized due to resource contention. 24 * 25 * This concept of productivity has two components: the workload and 26 * the CPU. To measure the impact of pressure on both, we define two 27 * contention states for a resource: SOME and FULL. 28 * 29 * In the SOME state of a given resource, one or more tasks are 30 * delayed on that resource. This affects the workload's ability to 31 * perform work, but the CPU may still be executing other tasks. 32 * 33 * In the FULL state of a given resource, all non-idle tasks are 34 * delayed on that resource such that nobody is advancing and the CPU 35 * goes idle. This leaves both workload and CPU unproductive. 36 * 37 * Naturally, the FULL state doesn't exist for the CPU resource at the 38 * system level, but exist at the cgroup level, means all non-idle tasks 39 * in a cgroup are delayed on the CPU resource which used by others outside 40 * of the cgroup or throttled by the cgroup cpu.max configuration. 41 * 42 * SOME = nr_delayed_tasks != 0 43 * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0 44 * 45 * The percentage of wallclock time spent in those compound stall 46 * states gives pressure numbers between 0 and 100 for each resource, 47 * where the SOME percentage indicates workload slowdowns and the FULL 48 * percentage indicates reduced CPU utilization: 49 * 50 * %SOME = time(SOME) / period 51 * %FULL = time(FULL) / period 52 * 53 * Multiple CPUs 54 * 55 * The more tasks and available CPUs there are, the more work can be 56 * performed concurrently. This means that the potential that can go 57 * unrealized due to resource contention *also* scales with non-idle 58 * tasks and CPUs. 59 * 60 * Consider a scenario where 257 number crunching tasks are trying to 61 * run concurrently on 256 CPUs. If we simply aggregated the task 62 * states, we would have to conclude a CPU SOME pressure number of 63 * 100%, since *somebody* is waiting on a runqueue at all 64 * times. However, that is clearly not the amount of contention the 65 * workload is experiencing: only one out of 256 possible execution 66 * threads will be contended at any given time, or about 0.4%. 67 * 68 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any 69 * given time *one* of the tasks is delayed due to a lack of memory. 70 * Again, looking purely at the task state would yield a memory FULL 71 * pressure number of 0%, since *somebody* is always making forward 72 * progress. But again this wouldn't capture the amount of execution 73 * potential lost, which is 1 out of 4 CPUs, or 25%. 74 * 75 * To calculate wasted potential (pressure) with multiple processors, 76 * we have to base our calculation on the number of non-idle tasks in 77 * conjunction with the number of available CPUs, which is the number 78 * of potential execution threads. SOME becomes then the proportion of 79 * delayed tasks to possible threads, and FULL is the share of possible 80 * threads that are unproductive due to delays: 81 * 82 * threads = min(nr_nonidle_tasks, nr_cpus) 83 * SOME = min(nr_delayed_tasks / threads, 1) 84 * FULL = (threads - min(nr_running_tasks, threads)) / threads 85 * 86 * For the 257 number crunchers on 256 CPUs, this yields: 87 * 88 * threads = min(257, 256) 89 * SOME = min(1 / 256, 1) = 0.4% 90 * FULL = (256 - min(257, 256)) / 256 = 0% 91 * 92 * For the 1 out of 4 memory-delayed tasks, this yields: 93 * 94 * threads = min(4, 4) 95 * SOME = min(1 / 4, 1) = 25% 96 * FULL = (4 - min(3, 4)) / 4 = 25% 97 * 98 * [ Substitute nr_cpus with 1, and you can see that it's a natural 99 * extension of the single-CPU model. ] 100 * 101 * Implementation 102 * 103 * To assess the precise time spent in each such state, we would have 104 * to freeze the system on task changes and start/stop the state 105 * clocks accordingly. Obviously that doesn't scale in practice. 106 * 107 * Because the scheduler aims to distribute the compute load evenly 108 * among the available CPUs, we can track task state locally to each 109 * CPU and, at much lower frequency, extrapolate the global state for 110 * the cumulative stall times and the running averages. 111 * 112 * For each runqueue, we track: 113 * 114 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0) 115 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu]) 116 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0) 117 * 118 * and then periodically aggregate: 119 * 120 * tNONIDLE = sum(tNONIDLE[i]) 121 * 122 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE 123 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE 124 * 125 * %SOME = tSOME / period 126 * %FULL = tFULL / period 127 * 128 * This gives us an approximation of pressure that is practical 129 * cost-wise, yet way more sensitive and accurate than periodic 130 * sampling of the aggregate task states would be. 131 */ 132 133 #include "../workqueue_internal.h" 134 #include <linux/sched/loadavg.h> 135 #include <linux/seq_file.h> 136 #include <linux/proc_fs.h> 137 #include <linux/seqlock.h> 138 #include <linux/uaccess.h> 139 #include <linux/cgroup.h> 140 #include <linux/module.h> 141 #include <linux/sched.h> 142 #include <linux/ctype.h> 143 #include <linux/file.h> 144 #include <linux/poll.h> 145 #include <linux/psi.h> 146 #include "sched.h" 147 148 static int psi_bug __read_mostly; 149 150 DEFINE_STATIC_KEY_FALSE(psi_disabled); 151 152 #ifdef CONFIG_PSI_DEFAULT_DISABLED 153 static bool psi_enable; 154 #else 155 static bool psi_enable = true; 156 #endif 157 static int __init setup_psi(char *str) 158 { 159 return kstrtobool(str, &psi_enable) == 0; 160 } 161 __setup("psi=", setup_psi); 162 163 /* Running averages - we need to be higher-res than loadavg */ 164 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */ 165 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */ 166 #define EXP_60s 1981 /* 1/exp(2s/60s) */ 167 #define EXP_300s 2034 /* 1/exp(2s/300s) */ 168 169 /* PSI trigger definitions */ 170 #define WINDOW_MIN_US 500000 /* Min window size is 500ms */ 171 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */ 172 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */ 173 174 /* Sampling frequency in nanoseconds */ 175 static u64 psi_period __read_mostly; 176 177 /* System-level pressure and stall tracking */ 178 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu); 179 struct psi_group psi_system = { 180 .pcpu = &system_group_pcpu, 181 }; 182 183 static void psi_avgs_work(struct work_struct *work); 184 185 static void group_init(struct psi_group *group) 186 { 187 int cpu; 188 189 for_each_possible_cpu(cpu) 190 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq); 191 group->avg_last_update = sched_clock(); 192 group->avg_next_update = group->avg_last_update + psi_period; 193 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work); 194 mutex_init(&group->avgs_lock); 195 /* Init trigger-related members */ 196 mutex_init(&group->trigger_lock); 197 INIT_LIST_HEAD(&group->triggers); 198 memset(group->nr_triggers, 0, sizeof(group->nr_triggers)); 199 group->poll_states = 0; 200 group->poll_min_period = U32_MAX; 201 memset(group->polling_total, 0, sizeof(group->polling_total)); 202 group->polling_next_update = ULLONG_MAX; 203 group->polling_until = 0; 204 rcu_assign_pointer(group->poll_task, NULL); 205 } 206 207 void __init psi_init(void) 208 { 209 if (!psi_enable) { 210 static_branch_enable(&psi_disabled); 211 return; 212 } 213 214 psi_period = jiffies_to_nsecs(PSI_FREQ); 215 group_init(&psi_system); 216 } 217 218 static bool test_state(unsigned int *tasks, enum psi_states state) 219 { 220 switch (state) { 221 case PSI_IO_SOME: 222 return unlikely(tasks[NR_IOWAIT]); 223 case PSI_IO_FULL: 224 return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]); 225 case PSI_MEM_SOME: 226 return unlikely(tasks[NR_MEMSTALL]); 227 case PSI_MEM_FULL: 228 return unlikely(tasks[NR_MEMSTALL] && !tasks[NR_RUNNING]); 229 case PSI_CPU_SOME: 230 return unlikely(tasks[NR_RUNNING] > tasks[NR_ONCPU]); 231 case PSI_CPU_FULL: 232 return unlikely(tasks[NR_RUNNING] && !tasks[NR_ONCPU]); 233 case PSI_NONIDLE: 234 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || 235 tasks[NR_RUNNING]; 236 default: 237 return false; 238 } 239 } 240 241 static void get_recent_times(struct psi_group *group, int cpu, 242 enum psi_aggregators aggregator, u32 *times, 243 u32 *pchanged_states) 244 { 245 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu); 246 u64 now, state_start; 247 enum psi_states s; 248 unsigned int seq; 249 u32 state_mask; 250 251 *pchanged_states = 0; 252 253 /* Snapshot a coherent view of the CPU state */ 254 do { 255 seq = read_seqcount_begin(&groupc->seq); 256 now = cpu_clock(cpu); 257 memcpy(times, groupc->times, sizeof(groupc->times)); 258 state_mask = groupc->state_mask; 259 state_start = groupc->state_start; 260 } while (read_seqcount_retry(&groupc->seq, seq)); 261 262 /* Calculate state time deltas against the previous snapshot */ 263 for (s = 0; s < NR_PSI_STATES; s++) { 264 u32 delta; 265 /* 266 * In addition to already concluded states, we also 267 * incorporate currently active states on the CPU, 268 * since states may last for many sampling periods. 269 * 270 * This way we keep our delta sampling buckets small 271 * (u32) and our reported pressure close to what's 272 * actually happening. 273 */ 274 if (state_mask & (1 << s)) 275 times[s] += now - state_start; 276 277 delta = times[s] - groupc->times_prev[aggregator][s]; 278 groupc->times_prev[aggregator][s] = times[s]; 279 280 times[s] = delta; 281 if (delta) 282 *pchanged_states |= (1 << s); 283 } 284 } 285 286 static void calc_avgs(unsigned long avg[3], int missed_periods, 287 u64 time, u64 period) 288 { 289 unsigned long pct; 290 291 /* Fill in zeroes for periods of no activity */ 292 if (missed_periods) { 293 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods); 294 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods); 295 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods); 296 } 297 298 /* Sample the most recent active period */ 299 pct = div_u64(time * 100, period); 300 pct *= FIXED_1; 301 avg[0] = calc_load(avg[0], EXP_10s, pct); 302 avg[1] = calc_load(avg[1], EXP_60s, pct); 303 avg[2] = calc_load(avg[2], EXP_300s, pct); 304 } 305 306 static void collect_percpu_times(struct psi_group *group, 307 enum psi_aggregators aggregator, 308 u32 *pchanged_states) 309 { 310 u64 deltas[NR_PSI_STATES - 1] = { 0, }; 311 unsigned long nonidle_total = 0; 312 u32 changed_states = 0; 313 int cpu; 314 int s; 315 316 /* 317 * Collect the per-cpu time buckets and average them into a 318 * single time sample that is normalized to wallclock time. 319 * 320 * For averaging, each CPU is weighted by its non-idle time in 321 * the sampling period. This eliminates artifacts from uneven 322 * loading, or even entirely idle CPUs. 323 */ 324 for_each_possible_cpu(cpu) { 325 u32 times[NR_PSI_STATES]; 326 u32 nonidle; 327 u32 cpu_changed_states; 328 329 get_recent_times(group, cpu, aggregator, times, 330 &cpu_changed_states); 331 changed_states |= cpu_changed_states; 332 333 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]); 334 nonidle_total += nonidle; 335 336 for (s = 0; s < PSI_NONIDLE; s++) 337 deltas[s] += (u64)times[s] * nonidle; 338 } 339 340 /* 341 * Integrate the sample into the running statistics that are 342 * reported to userspace: the cumulative stall times and the 343 * decaying averages. 344 * 345 * Pressure percentages are sampled at PSI_FREQ. We might be 346 * called more often when the user polls more frequently than 347 * that; we might be called less often when there is no task 348 * activity, thus no data, and clock ticks are sporadic. The 349 * below handles both. 350 */ 351 352 /* total= */ 353 for (s = 0; s < NR_PSI_STATES - 1; s++) 354 group->total[aggregator][s] += 355 div_u64(deltas[s], max(nonidle_total, 1UL)); 356 357 if (pchanged_states) 358 *pchanged_states = changed_states; 359 } 360 361 static u64 update_averages(struct psi_group *group, u64 now) 362 { 363 unsigned long missed_periods = 0; 364 u64 expires, period; 365 u64 avg_next_update; 366 int s; 367 368 /* avgX= */ 369 expires = group->avg_next_update; 370 if (now - expires >= psi_period) 371 missed_periods = div_u64(now - expires, psi_period); 372 373 /* 374 * The periodic clock tick can get delayed for various 375 * reasons, especially on loaded systems. To avoid clock 376 * drift, we schedule the clock in fixed psi_period intervals. 377 * But the deltas we sample out of the per-cpu buckets above 378 * are based on the actual time elapsing between clock ticks. 379 */ 380 avg_next_update = expires + ((1 + missed_periods) * psi_period); 381 period = now - (group->avg_last_update + (missed_periods * psi_period)); 382 group->avg_last_update = now; 383 384 for (s = 0; s < NR_PSI_STATES - 1; s++) { 385 u32 sample; 386 387 sample = group->total[PSI_AVGS][s] - group->avg_total[s]; 388 /* 389 * Due to the lockless sampling of the time buckets, 390 * recorded time deltas can slip into the next period, 391 * which under full pressure can result in samples in 392 * excess of the period length. 393 * 394 * We don't want to report non-sensical pressures in 395 * excess of 100%, nor do we want to drop such events 396 * on the floor. Instead we punt any overage into the 397 * future until pressure subsides. By doing this we 398 * don't underreport the occurring pressure curve, we 399 * just report it delayed by one period length. 400 * 401 * The error isn't cumulative. As soon as another 402 * delta slips from a period P to P+1, by definition 403 * it frees up its time T in P. 404 */ 405 if (sample > period) 406 sample = period; 407 group->avg_total[s] += sample; 408 calc_avgs(group->avg[s], missed_periods, sample, period); 409 } 410 411 return avg_next_update; 412 } 413 414 static void psi_avgs_work(struct work_struct *work) 415 { 416 struct delayed_work *dwork; 417 struct psi_group *group; 418 u32 changed_states; 419 bool nonidle; 420 u64 now; 421 422 dwork = to_delayed_work(work); 423 group = container_of(dwork, struct psi_group, avgs_work); 424 425 mutex_lock(&group->avgs_lock); 426 427 now = sched_clock(); 428 429 collect_percpu_times(group, PSI_AVGS, &changed_states); 430 nonidle = changed_states & (1 << PSI_NONIDLE); 431 /* 432 * If there is task activity, periodically fold the per-cpu 433 * times and feed samples into the running averages. If things 434 * are idle and there is no data to process, stop the clock. 435 * Once restarted, we'll catch up the running averages in one 436 * go - see calc_avgs() and missed_periods. 437 */ 438 if (now >= group->avg_next_update) 439 group->avg_next_update = update_averages(group, now); 440 441 if (nonidle) { 442 schedule_delayed_work(dwork, nsecs_to_jiffies( 443 group->avg_next_update - now) + 1); 444 } 445 446 mutex_unlock(&group->avgs_lock); 447 } 448 449 /* Trigger tracking window manipulations */ 450 static void window_reset(struct psi_window *win, u64 now, u64 value, 451 u64 prev_growth) 452 { 453 win->start_time = now; 454 win->start_value = value; 455 win->prev_growth = prev_growth; 456 } 457 458 /* 459 * PSI growth tracking window update and growth calculation routine. 460 * 461 * This approximates a sliding tracking window by interpolating 462 * partially elapsed windows using historical growth data from the 463 * previous intervals. This minimizes memory requirements (by not storing 464 * all the intermediate values in the previous window) and simplifies 465 * the calculations. It works well because PSI signal changes only in 466 * positive direction and over relatively small window sizes the growth 467 * is close to linear. 468 */ 469 static u64 window_update(struct psi_window *win, u64 now, u64 value) 470 { 471 u64 elapsed; 472 u64 growth; 473 474 elapsed = now - win->start_time; 475 growth = value - win->start_value; 476 /* 477 * After each tracking window passes win->start_value and 478 * win->start_time get reset and win->prev_growth stores 479 * the average per-window growth of the previous window. 480 * win->prev_growth is then used to interpolate additional 481 * growth from the previous window assuming it was linear. 482 */ 483 if (elapsed > win->size) 484 window_reset(win, now, value, growth); 485 else { 486 u32 remaining; 487 488 remaining = win->size - elapsed; 489 growth += div64_u64(win->prev_growth * remaining, win->size); 490 } 491 492 return growth; 493 } 494 495 static void init_triggers(struct psi_group *group, u64 now) 496 { 497 struct psi_trigger *t; 498 499 list_for_each_entry(t, &group->triggers, node) 500 window_reset(&t->win, now, 501 group->total[PSI_POLL][t->state], 0); 502 memcpy(group->polling_total, group->total[PSI_POLL], 503 sizeof(group->polling_total)); 504 group->polling_next_update = now + group->poll_min_period; 505 } 506 507 static u64 update_triggers(struct psi_group *group, u64 now) 508 { 509 struct psi_trigger *t; 510 bool new_stall = false; 511 u64 *total = group->total[PSI_POLL]; 512 513 /* 514 * On subsequent updates, calculate growth deltas and let 515 * watchers know when their specified thresholds are exceeded. 516 */ 517 list_for_each_entry(t, &group->triggers, node) { 518 u64 growth; 519 520 /* Check for stall activity */ 521 if (group->polling_total[t->state] == total[t->state]) 522 continue; 523 524 /* 525 * Multiple triggers might be looking at the same state, 526 * remember to update group->polling_total[] once we've 527 * been through all of them. Also remember to extend the 528 * polling time if we see new stall activity. 529 */ 530 new_stall = true; 531 532 /* Calculate growth since last update */ 533 growth = window_update(&t->win, now, total[t->state]); 534 if (growth < t->threshold) 535 continue; 536 537 /* Limit event signaling to once per window */ 538 if (now < t->last_event_time + t->win.size) 539 continue; 540 541 /* Generate an event */ 542 if (cmpxchg(&t->event, 0, 1) == 0) 543 wake_up_interruptible(&t->event_wait); 544 t->last_event_time = now; 545 } 546 547 if (new_stall) 548 memcpy(group->polling_total, total, 549 sizeof(group->polling_total)); 550 551 return now + group->poll_min_period; 552 } 553 554 /* Schedule polling if it's not already scheduled. */ 555 static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay) 556 { 557 struct task_struct *task; 558 559 /* 560 * Do not reschedule if already scheduled. 561 * Possible race with a timer scheduled after this check but before 562 * mod_timer below can be tolerated because group->polling_next_update 563 * will keep updates on schedule. 564 */ 565 if (timer_pending(&group->poll_timer)) 566 return; 567 568 rcu_read_lock(); 569 570 task = rcu_dereference(group->poll_task); 571 /* 572 * kworker might be NULL in case psi_trigger_destroy races with 573 * psi_task_change (hotpath) which can't use locks 574 */ 575 if (likely(task)) 576 mod_timer(&group->poll_timer, jiffies + delay); 577 578 rcu_read_unlock(); 579 } 580 581 static void psi_poll_work(struct psi_group *group) 582 { 583 u32 changed_states; 584 u64 now; 585 586 mutex_lock(&group->trigger_lock); 587 588 now = sched_clock(); 589 590 collect_percpu_times(group, PSI_POLL, &changed_states); 591 592 if (changed_states & group->poll_states) { 593 /* Initialize trigger windows when entering polling mode */ 594 if (now > group->polling_until) 595 init_triggers(group, now); 596 597 /* 598 * Keep the monitor active for at least the duration of the 599 * minimum tracking window as long as monitor states are 600 * changing. 601 */ 602 group->polling_until = now + 603 group->poll_min_period * UPDATES_PER_WINDOW; 604 } 605 606 if (now > group->polling_until) { 607 group->polling_next_update = ULLONG_MAX; 608 goto out; 609 } 610 611 if (now >= group->polling_next_update) 612 group->polling_next_update = update_triggers(group, now); 613 614 psi_schedule_poll_work(group, 615 nsecs_to_jiffies(group->polling_next_update - now) + 1); 616 617 out: 618 mutex_unlock(&group->trigger_lock); 619 } 620 621 static int psi_poll_worker(void *data) 622 { 623 struct psi_group *group = (struct psi_group *)data; 624 625 sched_set_fifo_low(current); 626 627 while (true) { 628 wait_event_interruptible(group->poll_wait, 629 atomic_cmpxchg(&group->poll_wakeup, 1, 0) || 630 kthread_should_stop()); 631 if (kthread_should_stop()) 632 break; 633 634 psi_poll_work(group); 635 } 636 return 0; 637 } 638 639 static void poll_timer_fn(struct timer_list *t) 640 { 641 struct psi_group *group = from_timer(group, t, poll_timer); 642 643 atomic_set(&group->poll_wakeup, 1); 644 wake_up_interruptible(&group->poll_wait); 645 } 646 647 static void record_times(struct psi_group_cpu *groupc, u64 now) 648 { 649 u32 delta; 650 651 delta = now - groupc->state_start; 652 groupc->state_start = now; 653 654 if (groupc->state_mask & (1 << PSI_IO_SOME)) { 655 groupc->times[PSI_IO_SOME] += delta; 656 if (groupc->state_mask & (1 << PSI_IO_FULL)) 657 groupc->times[PSI_IO_FULL] += delta; 658 } 659 660 if (groupc->state_mask & (1 << PSI_MEM_SOME)) { 661 groupc->times[PSI_MEM_SOME] += delta; 662 if (groupc->state_mask & (1 << PSI_MEM_FULL)) 663 groupc->times[PSI_MEM_FULL] += delta; 664 } 665 666 if (groupc->state_mask & (1 << PSI_CPU_SOME)) { 667 groupc->times[PSI_CPU_SOME] += delta; 668 if (groupc->state_mask & (1 << PSI_CPU_FULL)) 669 groupc->times[PSI_CPU_FULL] += delta; 670 } 671 672 if (groupc->state_mask & (1 << PSI_NONIDLE)) 673 groupc->times[PSI_NONIDLE] += delta; 674 } 675 676 static void psi_group_change(struct psi_group *group, int cpu, 677 unsigned int clear, unsigned int set, u64 now, 678 bool wake_clock) 679 { 680 struct psi_group_cpu *groupc; 681 u32 state_mask = 0; 682 unsigned int t, m; 683 enum psi_states s; 684 685 groupc = per_cpu_ptr(group->pcpu, cpu); 686 687 /* 688 * First we assess the aggregate resource states this CPU's 689 * tasks have been in since the last change, and account any 690 * SOME and FULL time these may have resulted in. 691 * 692 * Then we update the task counts according to the state 693 * change requested through the @clear and @set bits. 694 */ 695 write_seqcount_begin(&groupc->seq); 696 697 record_times(groupc, now); 698 699 for (t = 0, m = clear; m; m &= ~(1 << t), t++) { 700 if (!(m & (1 << t))) 701 continue; 702 if (groupc->tasks[t]) { 703 groupc->tasks[t]--; 704 } else if (!psi_bug) { 705 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n", 706 cpu, t, groupc->tasks[0], 707 groupc->tasks[1], groupc->tasks[2], 708 groupc->tasks[3], clear, set); 709 psi_bug = 1; 710 } 711 } 712 713 for (t = 0; set; set &= ~(1 << t), t++) 714 if (set & (1 << t)) 715 groupc->tasks[t]++; 716 717 /* Calculate state mask representing active states */ 718 for (s = 0; s < NR_PSI_STATES; s++) { 719 if (test_state(groupc->tasks, s)) 720 state_mask |= (1 << s); 721 } 722 723 /* 724 * Since we care about lost potential, a memstall is FULL 725 * when there are no other working tasks, but also when 726 * the CPU is actively reclaiming and nothing productive 727 * could run even if it were runnable. So when the current 728 * task in a cgroup is in_memstall, the corresponding groupc 729 * on that cpu is in PSI_MEM_FULL state. 730 */ 731 if (unlikely(groupc->tasks[NR_ONCPU] && cpu_curr(cpu)->in_memstall)) 732 state_mask |= (1 << PSI_MEM_FULL); 733 734 groupc->state_mask = state_mask; 735 736 write_seqcount_end(&groupc->seq); 737 738 if (state_mask & group->poll_states) 739 psi_schedule_poll_work(group, 1); 740 741 if (wake_clock && !delayed_work_pending(&group->avgs_work)) 742 schedule_delayed_work(&group->avgs_work, PSI_FREQ); 743 } 744 745 static struct psi_group *iterate_groups(struct task_struct *task, void **iter) 746 { 747 #ifdef CONFIG_CGROUPS 748 struct cgroup *cgroup = NULL; 749 750 if (!*iter) 751 cgroup = task->cgroups->dfl_cgrp; 752 else if (*iter == &psi_system) 753 return NULL; 754 else 755 cgroup = cgroup_parent(*iter); 756 757 if (cgroup && cgroup_parent(cgroup)) { 758 *iter = cgroup; 759 return cgroup_psi(cgroup); 760 } 761 #else 762 if (*iter) 763 return NULL; 764 #endif 765 *iter = &psi_system; 766 return &psi_system; 767 } 768 769 static void psi_flags_change(struct task_struct *task, int clear, int set) 770 { 771 if (((task->psi_flags & set) || 772 (task->psi_flags & clear) != clear) && 773 !psi_bug) { 774 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n", 775 task->pid, task->comm, task_cpu(task), 776 task->psi_flags, clear, set); 777 psi_bug = 1; 778 } 779 780 task->psi_flags &= ~clear; 781 task->psi_flags |= set; 782 } 783 784 void psi_task_change(struct task_struct *task, int clear, int set) 785 { 786 int cpu = task_cpu(task); 787 struct psi_group *group; 788 bool wake_clock = true; 789 void *iter = NULL; 790 u64 now; 791 792 if (!task->pid) 793 return; 794 795 psi_flags_change(task, clear, set); 796 797 now = cpu_clock(cpu); 798 /* 799 * Periodic aggregation shuts off if there is a period of no 800 * task changes, so we wake it back up if necessary. However, 801 * don't do this if the task change is the aggregation worker 802 * itself going to sleep, or we'll ping-pong forever. 803 */ 804 if (unlikely((clear & TSK_RUNNING) && 805 (task->flags & PF_WQ_WORKER) && 806 wq_worker_last_func(task) == psi_avgs_work)) 807 wake_clock = false; 808 809 while ((group = iterate_groups(task, &iter))) 810 psi_group_change(group, cpu, clear, set, now, wake_clock); 811 } 812 813 void psi_task_switch(struct task_struct *prev, struct task_struct *next, 814 bool sleep) 815 { 816 struct psi_group *group, *common = NULL; 817 int cpu = task_cpu(prev); 818 void *iter; 819 u64 now = cpu_clock(cpu); 820 821 if (next->pid) { 822 bool identical_state; 823 824 psi_flags_change(next, 0, TSK_ONCPU); 825 /* 826 * When switching between tasks that have an identical 827 * runtime state, the cgroup that contains both tasks 828 * runtime state, the cgroup that contains both tasks 829 * we reach the first common ancestor. Iterate @next's 830 * ancestors only until we encounter @prev's ONCPU. 831 */ 832 identical_state = prev->psi_flags == next->psi_flags; 833 iter = NULL; 834 while ((group = iterate_groups(next, &iter))) { 835 if (identical_state && 836 per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) { 837 common = group; 838 break; 839 } 840 841 psi_group_change(group, cpu, 0, TSK_ONCPU, now, true); 842 } 843 } 844 845 if (prev->pid) { 846 int clear = TSK_ONCPU, set = 0; 847 848 /* 849 * When we're going to sleep, psi_dequeue() lets us handle 850 * TSK_RUNNING and TSK_IOWAIT here, where we can combine it 851 * with TSK_ONCPU and save walking common ancestors twice. 852 */ 853 if (sleep) { 854 clear |= TSK_RUNNING; 855 if (prev->in_iowait) 856 set |= TSK_IOWAIT; 857 } 858 859 psi_flags_change(prev, clear, set); 860 861 iter = NULL; 862 while ((group = iterate_groups(prev, &iter)) && group != common) 863 psi_group_change(group, cpu, clear, set, now, true); 864 865 /* 866 * TSK_ONCPU is handled up to the common ancestor. If we're tasked 867 * with dequeuing too, finish that for the rest of the hierarchy. 868 */ 869 if (sleep) { 870 clear &= ~TSK_ONCPU; 871 for (; group; group = iterate_groups(prev, &iter)) 872 psi_group_change(group, cpu, clear, set, now, true); 873 } 874 } 875 } 876 877 /** 878 * psi_memstall_enter - mark the beginning of a memory stall section 879 * @flags: flags to handle nested sections 880 * 881 * Marks the calling task as being stalled due to a lack of memory, 882 * such as waiting for a refault or performing reclaim. 883 */ 884 void psi_memstall_enter(unsigned long *flags) 885 { 886 struct rq_flags rf; 887 struct rq *rq; 888 889 if (static_branch_likely(&psi_disabled)) 890 return; 891 892 *flags = current->in_memstall; 893 if (*flags) 894 return; 895 /* 896 * in_memstall setting & accounting needs to be atomic wrt 897 * changes to the task's scheduling state, otherwise we can 898 * race with CPU migration. 899 */ 900 rq = this_rq_lock_irq(&rf); 901 902 current->in_memstall = 1; 903 psi_task_change(current, 0, TSK_MEMSTALL); 904 905 rq_unlock_irq(rq, &rf); 906 } 907 908 /** 909 * psi_memstall_leave - mark the end of an memory stall section 910 * @flags: flags to handle nested memdelay sections 911 * 912 * Marks the calling task as no longer stalled due to lack of memory. 913 */ 914 void psi_memstall_leave(unsigned long *flags) 915 { 916 struct rq_flags rf; 917 struct rq *rq; 918 919 if (static_branch_likely(&psi_disabled)) 920 return; 921 922 if (*flags) 923 return; 924 /* 925 * in_memstall clearing & accounting needs to be atomic wrt 926 * changes to the task's scheduling state, otherwise we could 927 * race with CPU migration. 928 */ 929 rq = this_rq_lock_irq(&rf); 930 931 current->in_memstall = 0; 932 psi_task_change(current, TSK_MEMSTALL, 0); 933 934 rq_unlock_irq(rq, &rf); 935 } 936 937 #ifdef CONFIG_CGROUPS 938 int psi_cgroup_alloc(struct cgroup *cgroup) 939 { 940 if (static_branch_likely(&psi_disabled)) 941 return 0; 942 943 cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu); 944 if (!cgroup->psi.pcpu) 945 return -ENOMEM; 946 group_init(&cgroup->psi); 947 return 0; 948 } 949 950 void psi_cgroup_free(struct cgroup *cgroup) 951 { 952 if (static_branch_likely(&psi_disabled)) 953 return; 954 955 cancel_delayed_work_sync(&cgroup->psi.avgs_work); 956 free_percpu(cgroup->psi.pcpu); 957 /* All triggers must be removed by now */ 958 WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n"); 959 } 960 961 /** 962 * cgroup_move_task - move task to a different cgroup 963 * @task: the task 964 * @to: the target css_set 965 * 966 * Move task to a new cgroup and safely migrate its associated stall 967 * state between the different groups. 968 * 969 * This function acquires the task's rq lock to lock out concurrent 970 * changes to the task's scheduling state and - in case the task is 971 * running - concurrent changes to its stall state. 972 */ 973 void cgroup_move_task(struct task_struct *task, struct css_set *to) 974 { 975 unsigned int task_flags; 976 struct rq_flags rf; 977 struct rq *rq; 978 979 if (static_branch_likely(&psi_disabled)) { 980 /* 981 * Lame to do this here, but the scheduler cannot be locked 982 * from the outside, so we move cgroups from inside sched/. 983 */ 984 rcu_assign_pointer(task->cgroups, to); 985 return; 986 } 987 988 rq = task_rq_lock(task, &rf); 989 990 /* 991 * We may race with schedule() dropping the rq lock between 992 * deactivating prev and switching to next. Because the psi 993 * updates from the deactivation are deferred to the switch 994 * callback to save cgroup tree updates, the task's scheduling 995 * state here is not coherent with its psi state: 996 * 997 * schedule() cgroup_move_task() 998 * rq_lock() 999 * deactivate_task() 1000 * p->on_rq = 0 1001 * psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates 1002 * pick_next_task() 1003 * rq_unlock() 1004 * rq_lock() 1005 * psi_task_change() // old cgroup 1006 * task->cgroups = to 1007 * psi_task_change() // new cgroup 1008 * rq_unlock() 1009 * rq_lock() 1010 * psi_sched_switch() // does deferred updates in new cgroup 1011 * 1012 * Don't rely on the scheduling state. Use psi_flags instead. 1013 */ 1014 task_flags = task->psi_flags; 1015 1016 if (task_flags) 1017 psi_task_change(task, task_flags, 0); 1018 1019 /* See comment above */ 1020 rcu_assign_pointer(task->cgroups, to); 1021 1022 if (task_flags) 1023 psi_task_change(task, 0, task_flags); 1024 1025 task_rq_unlock(rq, task, &rf); 1026 } 1027 #endif /* CONFIG_CGROUPS */ 1028 1029 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res) 1030 { 1031 int full; 1032 u64 now; 1033 1034 if (static_branch_likely(&psi_disabled)) 1035 return -EOPNOTSUPP; 1036 1037 /* Update averages before reporting them */ 1038 mutex_lock(&group->avgs_lock); 1039 now = sched_clock(); 1040 collect_percpu_times(group, PSI_AVGS, NULL); 1041 if (now >= group->avg_next_update) 1042 group->avg_next_update = update_averages(group, now); 1043 mutex_unlock(&group->avgs_lock); 1044 1045 for (full = 0; full < 2; full++) { 1046 unsigned long avg[3]; 1047 u64 total; 1048 int w; 1049 1050 for (w = 0; w < 3; w++) 1051 avg[w] = group->avg[res * 2 + full][w]; 1052 total = div_u64(group->total[PSI_AVGS][res * 2 + full], 1053 NSEC_PER_USEC); 1054 1055 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n", 1056 full ? "full" : "some", 1057 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]), 1058 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]), 1059 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]), 1060 total); 1061 } 1062 1063 return 0; 1064 } 1065 1066 static int psi_io_show(struct seq_file *m, void *v) 1067 { 1068 return psi_show(m, &psi_system, PSI_IO); 1069 } 1070 1071 static int psi_memory_show(struct seq_file *m, void *v) 1072 { 1073 return psi_show(m, &psi_system, PSI_MEM); 1074 } 1075 1076 static int psi_cpu_show(struct seq_file *m, void *v) 1077 { 1078 return psi_show(m, &psi_system, PSI_CPU); 1079 } 1080 1081 static int psi_open(struct file *file, int (*psi_show)(struct seq_file *, void *)) 1082 { 1083 if (file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE)) 1084 return -EPERM; 1085 1086 return single_open(file, psi_show, NULL); 1087 } 1088 1089 static int psi_io_open(struct inode *inode, struct file *file) 1090 { 1091 return psi_open(file, psi_io_show); 1092 } 1093 1094 static int psi_memory_open(struct inode *inode, struct file *file) 1095 { 1096 return psi_open(file, psi_memory_show); 1097 } 1098 1099 static int psi_cpu_open(struct inode *inode, struct file *file) 1100 { 1101 return psi_open(file, psi_cpu_show); 1102 } 1103 1104 struct psi_trigger *psi_trigger_create(struct psi_group *group, 1105 char *buf, size_t nbytes, enum psi_res res) 1106 { 1107 struct psi_trigger *t; 1108 enum psi_states state; 1109 u32 threshold_us; 1110 u32 window_us; 1111 1112 if (static_branch_likely(&psi_disabled)) 1113 return ERR_PTR(-EOPNOTSUPP); 1114 1115 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2) 1116 state = PSI_IO_SOME + res * 2; 1117 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2) 1118 state = PSI_IO_FULL + res * 2; 1119 else 1120 return ERR_PTR(-EINVAL); 1121 1122 if (state >= PSI_NONIDLE) 1123 return ERR_PTR(-EINVAL); 1124 1125 if (window_us < WINDOW_MIN_US || 1126 window_us > WINDOW_MAX_US) 1127 return ERR_PTR(-EINVAL); 1128 1129 /* Check threshold */ 1130 if (threshold_us == 0 || threshold_us > window_us) 1131 return ERR_PTR(-EINVAL); 1132 1133 t = kmalloc(sizeof(*t), GFP_KERNEL); 1134 if (!t) 1135 return ERR_PTR(-ENOMEM); 1136 1137 t->group = group; 1138 t->state = state; 1139 t->threshold = threshold_us * NSEC_PER_USEC; 1140 t->win.size = window_us * NSEC_PER_USEC; 1141 window_reset(&t->win, 0, 0, 0); 1142 1143 t->event = 0; 1144 t->last_event_time = 0; 1145 init_waitqueue_head(&t->event_wait); 1146 kref_init(&t->refcount); 1147 1148 mutex_lock(&group->trigger_lock); 1149 1150 if (!rcu_access_pointer(group->poll_task)) { 1151 struct task_struct *task; 1152 1153 task = kthread_create(psi_poll_worker, group, "psimon"); 1154 if (IS_ERR(task)) { 1155 kfree(t); 1156 mutex_unlock(&group->trigger_lock); 1157 return ERR_CAST(task); 1158 } 1159 atomic_set(&group->poll_wakeup, 0); 1160 init_waitqueue_head(&group->poll_wait); 1161 wake_up_process(task); 1162 timer_setup(&group->poll_timer, poll_timer_fn, 0); 1163 rcu_assign_pointer(group->poll_task, task); 1164 } 1165 1166 list_add(&t->node, &group->triggers); 1167 group->poll_min_period = min(group->poll_min_period, 1168 div_u64(t->win.size, UPDATES_PER_WINDOW)); 1169 group->nr_triggers[t->state]++; 1170 group->poll_states |= (1 << t->state); 1171 1172 mutex_unlock(&group->trigger_lock); 1173 1174 return t; 1175 } 1176 1177 static void psi_trigger_destroy(struct kref *ref) 1178 { 1179 struct psi_trigger *t = container_of(ref, struct psi_trigger, refcount); 1180 struct psi_group *group = t->group; 1181 struct task_struct *task_to_destroy = NULL; 1182 1183 if (static_branch_likely(&psi_disabled)) 1184 return; 1185 1186 /* 1187 * Wakeup waiters to stop polling. Can happen if cgroup is deleted 1188 * from under a polling process. 1189 */ 1190 wake_up_interruptible(&t->event_wait); 1191 1192 mutex_lock(&group->trigger_lock); 1193 1194 if (!list_empty(&t->node)) { 1195 struct psi_trigger *tmp; 1196 u64 period = ULLONG_MAX; 1197 1198 list_del(&t->node); 1199 group->nr_triggers[t->state]--; 1200 if (!group->nr_triggers[t->state]) 1201 group->poll_states &= ~(1 << t->state); 1202 /* reset min update period for the remaining triggers */ 1203 list_for_each_entry(tmp, &group->triggers, node) 1204 period = min(period, div_u64(tmp->win.size, 1205 UPDATES_PER_WINDOW)); 1206 group->poll_min_period = period; 1207 /* Destroy poll_task when the last trigger is destroyed */ 1208 if (group->poll_states == 0) { 1209 group->polling_until = 0; 1210 task_to_destroy = rcu_dereference_protected( 1211 group->poll_task, 1212 lockdep_is_held(&group->trigger_lock)); 1213 rcu_assign_pointer(group->poll_task, NULL); 1214 } 1215 } 1216 1217 mutex_unlock(&group->trigger_lock); 1218 1219 /* 1220 * Wait for both *trigger_ptr from psi_trigger_replace and 1221 * poll_task RCUs to complete their read-side critical sections 1222 * before destroying the trigger and optionally the poll_task 1223 */ 1224 synchronize_rcu(); 1225 /* 1226 * Destroy the kworker after releasing trigger_lock to prevent a 1227 * deadlock while waiting for psi_poll_work to acquire trigger_lock 1228 */ 1229 if (task_to_destroy) { 1230 /* 1231 * After the RCU grace period has expired, the worker 1232 * can no longer be found through group->poll_task. 1233 * But it might have been already scheduled before 1234 * that - deschedule it cleanly before destroying it. 1235 */ 1236 del_timer_sync(&group->poll_timer); 1237 kthread_stop(task_to_destroy); 1238 } 1239 kfree(t); 1240 } 1241 1242 void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *new) 1243 { 1244 struct psi_trigger *old = *trigger_ptr; 1245 1246 if (static_branch_likely(&psi_disabled)) 1247 return; 1248 1249 rcu_assign_pointer(*trigger_ptr, new); 1250 if (old) 1251 kref_put(&old->refcount, psi_trigger_destroy); 1252 } 1253 1254 __poll_t psi_trigger_poll(void **trigger_ptr, 1255 struct file *file, poll_table *wait) 1256 { 1257 __poll_t ret = DEFAULT_POLLMASK; 1258 struct psi_trigger *t; 1259 1260 if (static_branch_likely(&psi_disabled)) 1261 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; 1262 1263 rcu_read_lock(); 1264 1265 t = rcu_dereference(*(void __rcu __force **)trigger_ptr); 1266 if (!t) { 1267 rcu_read_unlock(); 1268 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; 1269 } 1270 kref_get(&t->refcount); 1271 1272 rcu_read_unlock(); 1273 1274 poll_wait(file, &t->event_wait, wait); 1275 1276 if (cmpxchg(&t->event, 1, 0) == 1) 1277 ret |= EPOLLPRI; 1278 1279 kref_put(&t->refcount, psi_trigger_destroy); 1280 1281 return ret; 1282 } 1283 1284 static ssize_t psi_write(struct file *file, const char __user *user_buf, 1285 size_t nbytes, enum psi_res res) 1286 { 1287 char buf[32]; 1288 size_t buf_size; 1289 struct seq_file *seq; 1290 struct psi_trigger *new; 1291 1292 if (static_branch_likely(&psi_disabled)) 1293 return -EOPNOTSUPP; 1294 1295 if (!nbytes) 1296 return -EINVAL; 1297 1298 buf_size = min(nbytes, sizeof(buf)); 1299 if (copy_from_user(buf, user_buf, buf_size)) 1300 return -EFAULT; 1301 1302 buf[buf_size - 1] = '\0'; 1303 1304 new = psi_trigger_create(&psi_system, buf, nbytes, res); 1305 if (IS_ERR(new)) 1306 return PTR_ERR(new); 1307 1308 seq = file->private_data; 1309 /* Take seq->lock to protect seq->private from concurrent writes */ 1310 mutex_lock(&seq->lock); 1311 psi_trigger_replace(&seq->private, new); 1312 mutex_unlock(&seq->lock); 1313 1314 return nbytes; 1315 } 1316 1317 static ssize_t psi_io_write(struct file *file, const char __user *user_buf, 1318 size_t nbytes, loff_t *ppos) 1319 { 1320 return psi_write(file, user_buf, nbytes, PSI_IO); 1321 } 1322 1323 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf, 1324 size_t nbytes, loff_t *ppos) 1325 { 1326 return psi_write(file, user_buf, nbytes, PSI_MEM); 1327 } 1328 1329 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf, 1330 size_t nbytes, loff_t *ppos) 1331 { 1332 return psi_write(file, user_buf, nbytes, PSI_CPU); 1333 } 1334 1335 static __poll_t psi_fop_poll(struct file *file, poll_table *wait) 1336 { 1337 struct seq_file *seq = file->private_data; 1338 1339 return psi_trigger_poll(&seq->private, file, wait); 1340 } 1341 1342 static int psi_fop_release(struct inode *inode, struct file *file) 1343 { 1344 struct seq_file *seq = file->private_data; 1345 1346 psi_trigger_replace(&seq->private, NULL); 1347 return single_release(inode, file); 1348 } 1349 1350 static const struct proc_ops psi_io_proc_ops = { 1351 .proc_open = psi_io_open, 1352 .proc_read = seq_read, 1353 .proc_lseek = seq_lseek, 1354 .proc_write = psi_io_write, 1355 .proc_poll = psi_fop_poll, 1356 .proc_release = psi_fop_release, 1357 }; 1358 1359 static const struct proc_ops psi_memory_proc_ops = { 1360 .proc_open = psi_memory_open, 1361 .proc_read = seq_read, 1362 .proc_lseek = seq_lseek, 1363 .proc_write = psi_memory_write, 1364 .proc_poll = psi_fop_poll, 1365 .proc_release = psi_fop_release, 1366 }; 1367 1368 static const struct proc_ops psi_cpu_proc_ops = { 1369 .proc_open = psi_cpu_open, 1370 .proc_read = seq_read, 1371 .proc_lseek = seq_lseek, 1372 .proc_write = psi_cpu_write, 1373 .proc_poll = psi_fop_poll, 1374 .proc_release = psi_fop_release, 1375 }; 1376 1377 static int __init psi_proc_init(void) 1378 { 1379 if (psi_enable) { 1380 proc_mkdir("pressure", NULL); 1381 proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops); 1382 proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops); 1383 proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops); 1384 } 1385 return 0; 1386 } 1387 module_init(psi_proc_init); 1388