1 /* 2 * Pressure stall information for CPU, memory and IO 3 * 4 * Copyright (c) 2018 Facebook, Inc. 5 * Author: Johannes Weiner <hannes@cmpxchg.org> 6 * 7 * When CPU, memory and IO are contended, tasks experience delays that 8 * reduce throughput and introduce latencies into the workload. Memory 9 * and IO contention, in addition, can cause a full loss of forward 10 * progress in which the CPU goes idle. 11 * 12 * This code aggregates individual task delays into resource pressure 13 * metrics that indicate problems with both workload health and 14 * resource utilization. 15 * 16 * Model 17 * 18 * The time in which a task can execute on a CPU is our baseline for 19 * productivity. Pressure expresses the amount of time in which this 20 * potential cannot be realized due to resource contention. 21 * 22 * This concept of productivity has two components: the workload and 23 * the CPU. To measure the impact of pressure on both, we define two 24 * contention states for a resource: SOME and FULL. 25 * 26 * In the SOME state of a given resource, one or more tasks are 27 * delayed on that resource. This affects the workload's ability to 28 * perform work, but the CPU may still be executing other tasks. 29 * 30 * In the FULL state of a given resource, all non-idle tasks are 31 * delayed on that resource such that nobody is advancing and the CPU 32 * goes idle. This leaves both workload and CPU unproductive. 33 * 34 * (Naturally, the FULL state doesn't exist for the CPU resource.) 35 * 36 * SOME = nr_delayed_tasks != 0 37 * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0 38 * 39 * The percentage of wallclock time spent in those compound stall 40 * states gives pressure numbers between 0 and 100 for each resource, 41 * where the SOME percentage indicates workload slowdowns and the FULL 42 * percentage indicates reduced CPU utilization: 43 * 44 * %SOME = time(SOME) / period 45 * %FULL = time(FULL) / period 46 * 47 * Multiple CPUs 48 * 49 * The more tasks and available CPUs there are, the more work can be 50 * performed concurrently. This means that the potential that can go 51 * unrealized due to resource contention *also* scales with non-idle 52 * tasks and CPUs. 53 * 54 * Consider a scenario where 257 number crunching tasks are trying to 55 * run concurrently on 256 CPUs. If we simply aggregated the task 56 * states, we would have to conclude a CPU SOME pressure number of 57 * 100%, since *somebody* is waiting on a runqueue at all 58 * times. However, that is clearly not the amount of contention the 59 * workload is experiencing: only one out of 256 possible exceution 60 * threads will be contended at any given time, or about 0.4%. 61 * 62 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any 63 * given time *one* of the tasks is delayed due to a lack of memory. 64 * Again, looking purely at the task state would yield a memory FULL 65 * pressure number of 0%, since *somebody* is always making forward 66 * progress. But again this wouldn't capture the amount of execution 67 * potential lost, which is 1 out of 4 CPUs, or 25%. 68 * 69 * To calculate wasted potential (pressure) with multiple processors, 70 * we have to base our calculation on the number of non-idle tasks in 71 * conjunction with the number of available CPUs, which is the number 72 * of potential execution threads. SOME becomes then the proportion of 73 * delayed tasks to possibe threads, and FULL is the share of possible 74 * threads that are unproductive due to delays: 75 * 76 * threads = min(nr_nonidle_tasks, nr_cpus) 77 * SOME = min(nr_delayed_tasks / threads, 1) 78 * FULL = (threads - min(nr_running_tasks, threads)) / threads 79 * 80 * For the 257 number crunchers on 256 CPUs, this yields: 81 * 82 * threads = min(257, 256) 83 * SOME = min(1 / 256, 1) = 0.4% 84 * FULL = (256 - min(257, 256)) / 256 = 0% 85 * 86 * For the 1 out of 4 memory-delayed tasks, this yields: 87 * 88 * threads = min(4, 4) 89 * SOME = min(1 / 4, 1) = 25% 90 * FULL = (4 - min(3, 4)) / 4 = 25% 91 * 92 * [ Substitute nr_cpus with 1, and you can see that it's a natural 93 * extension of the single-CPU model. ] 94 * 95 * Implementation 96 * 97 * To assess the precise time spent in each such state, we would have 98 * to freeze the system on task changes and start/stop the state 99 * clocks accordingly. Obviously that doesn't scale in practice. 100 * 101 * Because the scheduler aims to distribute the compute load evenly 102 * among the available CPUs, we can track task state locally to each 103 * CPU and, at much lower frequency, extrapolate the global state for 104 * the cumulative stall times and the running averages. 105 * 106 * For each runqueue, we track: 107 * 108 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0) 109 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu]) 110 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0) 111 * 112 * and then periodically aggregate: 113 * 114 * tNONIDLE = sum(tNONIDLE[i]) 115 * 116 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE 117 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE 118 * 119 * %SOME = tSOME / period 120 * %FULL = tFULL / period 121 * 122 * This gives us an approximation of pressure that is practical 123 * cost-wise, yet way more sensitive and accurate than periodic 124 * sampling of the aggregate task states would be. 125 */ 126 127 #include "../workqueue_internal.h" 128 #include <linux/sched/loadavg.h> 129 #include <linux/seq_file.h> 130 #include <linux/proc_fs.h> 131 #include <linux/seqlock.h> 132 #include <linux/cgroup.h> 133 #include <linux/module.h> 134 #include <linux/sched.h> 135 #include <linux/psi.h> 136 #include "sched.h" 137 138 static int psi_bug __read_mostly; 139 140 DEFINE_STATIC_KEY_FALSE(psi_disabled); 141 142 #ifdef CONFIG_PSI_DEFAULT_DISABLED 143 bool psi_enable; 144 #else 145 bool psi_enable = true; 146 #endif 147 static int __init setup_psi(char *str) 148 { 149 return kstrtobool(str, &psi_enable) == 0; 150 } 151 __setup("psi=", setup_psi); 152 153 /* Running averages - we need to be higher-res than loadavg */ 154 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */ 155 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */ 156 #define EXP_60s 1981 /* 1/exp(2s/60s) */ 157 #define EXP_300s 2034 /* 1/exp(2s/300s) */ 158 159 /* Sampling frequency in nanoseconds */ 160 static u64 psi_period __read_mostly; 161 162 /* System-level pressure and stall tracking */ 163 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu); 164 static struct psi_group psi_system = { 165 .pcpu = &system_group_pcpu, 166 }; 167 168 static void psi_update_work(struct work_struct *work); 169 170 static void group_init(struct psi_group *group) 171 { 172 int cpu; 173 174 for_each_possible_cpu(cpu) 175 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq); 176 group->next_update = sched_clock() + psi_period; 177 INIT_DELAYED_WORK(&group->clock_work, psi_update_work); 178 mutex_init(&group->stat_lock); 179 } 180 181 void __init psi_init(void) 182 { 183 if (!psi_enable) { 184 static_branch_enable(&psi_disabled); 185 return; 186 } 187 188 psi_period = jiffies_to_nsecs(PSI_FREQ); 189 group_init(&psi_system); 190 } 191 192 static bool test_state(unsigned int *tasks, enum psi_states state) 193 { 194 switch (state) { 195 case PSI_IO_SOME: 196 return tasks[NR_IOWAIT]; 197 case PSI_IO_FULL: 198 return tasks[NR_IOWAIT] && !tasks[NR_RUNNING]; 199 case PSI_MEM_SOME: 200 return tasks[NR_MEMSTALL]; 201 case PSI_MEM_FULL: 202 return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING]; 203 case PSI_CPU_SOME: 204 return tasks[NR_RUNNING] > 1; 205 case PSI_NONIDLE: 206 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || 207 tasks[NR_RUNNING]; 208 default: 209 return false; 210 } 211 } 212 213 static void get_recent_times(struct psi_group *group, int cpu, u32 *times) 214 { 215 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu); 216 unsigned int tasks[NR_PSI_TASK_COUNTS]; 217 u64 now, state_start; 218 unsigned int seq; 219 int s; 220 221 /* Snapshot a coherent view of the CPU state */ 222 do { 223 seq = read_seqcount_begin(&groupc->seq); 224 now = cpu_clock(cpu); 225 memcpy(times, groupc->times, sizeof(groupc->times)); 226 memcpy(tasks, groupc->tasks, sizeof(groupc->tasks)); 227 state_start = groupc->state_start; 228 } while (read_seqcount_retry(&groupc->seq, seq)); 229 230 /* Calculate state time deltas against the previous snapshot */ 231 for (s = 0; s < NR_PSI_STATES; s++) { 232 u32 delta; 233 /* 234 * In addition to already concluded states, we also 235 * incorporate currently active states on the CPU, 236 * since states may last for many sampling periods. 237 * 238 * This way we keep our delta sampling buckets small 239 * (u32) and our reported pressure close to what's 240 * actually happening. 241 */ 242 if (test_state(tasks, s)) 243 times[s] += now - state_start; 244 245 delta = times[s] - groupc->times_prev[s]; 246 groupc->times_prev[s] = times[s]; 247 248 times[s] = delta; 249 } 250 } 251 252 static void calc_avgs(unsigned long avg[3], int missed_periods, 253 u64 time, u64 period) 254 { 255 unsigned long pct; 256 257 /* Fill in zeroes for periods of no activity */ 258 if (missed_periods) { 259 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods); 260 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods); 261 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods); 262 } 263 264 /* Sample the most recent active period */ 265 pct = div_u64(time * 100, period); 266 pct *= FIXED_1; 267 avg[0] = calc_load(avg[0], EXP_10s, pct); 268 avg[1] = calc_load(avg[1], EXP_60s, pct); 269 avg[2] = calc_load(avg[2], EXP_300s, pct); 270 } 271 272 static bool update_stats(struct psi_group *group) 273 { 274 u64 deltas[NR_PSI_STATES - 1] = { 0, }; 275 unsigned long missed_periods = 0; 276 unsigned long nonidle_total = 0; 277 u64 now, expires, period; 278 int cpu; 279 int s; 280 281 mutex_lock(&group->stat_lock); 282 283 /* 284 * Collect the per-cpu time buckets and average them into a 285 * single time sample that is normalized to wallclock time. 286 * 287 * For averaging, each CPU is weighted by its non-idle time in 288 * the sampling period. This eliminates artifacts from uneven 289 * loading, or even entirely idle CPUs. 290 */ 291 for_each_possible_cpu(cpu) { 292 u32 times[NR_PSI_STATES]; 293 u32 nonidle; 294 295 get_recent_times(group, cpu, times); 296 297 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]); 298 nonidle_total += nonidle; 299 300 for (s = 0; s < PSI_NONIDLE; s++) 301 deltas[s] += (u64)times[s] * nonidle; 302 } 303 304 /* 305 * Integrate the sample into the running statistics that are 306 * reported to userspace: the cumulative stall times and the 307 * decaying averages. 308 * 309 * Pressure percentages are sampled at PSI_FREQ. We might be 310 * called more often when the user polls more frequently than 311 * that; we might be called less often when there is no task 312 * activity, thus no data, and clock ticks are sporadic. The 313 * below handles both. 314 */ 315 316 /* total= */ 317 for (s = 0; s < NR_PSI_STATES - 1; s++) 318 group->total[s] += div_u64(deltas[s], max(nonidle_total, 1UL)); 319 320 /* avgX= */ 321 now = sched_clock(); 322 expires = group->next_update; 323 if (now < expires) 324 goto out; 325 if (now - expires >= psi_period) 326 missed_periods = div_u64(now - expires, psi_period); 327 328 /* 329 * The periodic clock tick can get delayed for various 330 * reasons, especially on loaded systems. To avoid clock 331 * drift, we schedule the clock in fixed psi_period intervals. 332 * But the deltas we sample out of the per-cpu buckets above 333 * are based on the actual time elapsing between clock ticks. 334 */ 335 group->next_update = expires + ((1 + missed_periods) * psi_period); 336 period = now - (group->last_update + (missed_periods * psi_period)); 337 group->last_update = now; 338 339 for (s = 0; s < NR_PSI_STATES - 1; s++) { 340 u32 sample; 341 342 sample = group->total[s] - group->total_prev[s]; 343 /* 344 * Due to the lockless sampling of the time buckets, 345 * recorded time deltas can slip into the next period, 346 * which under full pressure can result in samples in 347 * excess of the period length. 348 * 349 * We don't want to report non-sensical pressures in 350 * excess of 100%, nor do we want to drop such events 351 * on the floor. Instead we punt any overage into the 352 * future until pressure subsides. By doing this we 353 * don't underreport the occurring pressure curve, we 354 * just report it delayed by one period length. 355 * 356 * The error isn't cumulative. As soon as another 357 * delta slips from a period P to P+1, by definition 358 * it frees up its time T in P. 359 */ 360 if (sample > period) 361 sample = period; 362 group->total_prev[s] += sample; 363 calc_avgs(group->avg[s], missed_periods, sample, period); 364 } 365 out: 366 mutex_unlock(&group->stat_lock); 367 return nonidle_total; 368 } 369 370 static void psi_update_work(struct work_struct *work) 371 { 372 struct delayed_work *dwork; 373 struct psi_group *group; 374 bool nonidle; 375 376 dwork = to_delayed_work(work); 377 group = container_of(dwork, struct psi_group, clock_work); 378 379 /* 380 * If there is task activity, periodically fold the per-cpu 381 * times and feed samples into the running averages. If things 382 * are idle and there is no data to process, stop the clock. 383 * Once restarted, we'll catch up the running averages in one 384 * go - see calc_avgs() and missed_periods. 385 */ 386 387 nonidle = update_stats(group); 388 389 if (nonidle) { 390 unsigned long delay = 0; 391 u64 now; 392 393 now = sched_clock(); 394 if (group->next_update > now) 395 delay = nsecs_to_jiffies(group->next_update - now) + 1; 396 schedule_delayed_work(dwork, delay); 397 } 398 } 399 400 static void record_times(struct psi_group_cpu *groupc, int cpu, 401 bool memstall_tick) 402 { 403 u32 delta; 404 u64 now; 405 406 now = cpu_clock(cpu); 407 delta = now - groupc->state_start; 408 groupc->state_start = now; 409 410 if (test_state(groupc->tasks, PSI_IO_SOME)) { 411 groupc->times[PSI_IO_SOME] += delta; 412 if (test_state(groupc->tasks, PSI_IO_FULL)) 413 groupc->times[PSI_IO_FULL] += delta; 414 } 415 416 if (test_state(groupc->tasks, PSI_MEM_SOME)) { 417 groupc->times[PSI_MEM_SOME] += delta; 418 if (test_state(groupc->tasks, PSI_MEM_FULL)) 419 groupc->times[PSI_MEM_FULL] += delta; 420 else if (memstall_tick) { 421 u32 sample; 422 /* 423 * Since we care about lost potential, a 424 * memstall is FULL when there are no other 425 * working tasks, but also when the CPU is 426 * actively reclaiming and nothing productive 427 * could run even if it were runnable. 428 * 429 * When the timer tick sees a reclaiming CPU, 430 * regardless of runnable tasks, sample a FULL 431 * tick (or less if it hasn't been a full tick 432 * since the last state change). 433 */ 434 sample = min(delta, (u32)jiffies_to_nsecs(1)); 435 groupc->times[PSI_MEM_FULL] += sample; 436 } 437 } 438 439 if (test_state(groupc->tasks, PSI_CPU_SOME)) 440 groupc->times[PSI_CPU_SOME] += delta; 441 442 if (test_state(groupc->tasks, PSI_NONIDLE)) 443 groupc->times[PSI_NONIDLE] += delta; 444 } 445 446 static void psi_group_change(struct psi_group *group, int cpu, 447 unsigned int clear, unsigned int set) 448 { 449 struct psi_group_cpu *groupc; 450 unsigned int t, m; 451 452 groupc = per_cpu_ptr(group->pcpu, cpu); 453 454 /* 455 * First we assess the aggregate resource states this CPU's 456 * tasks have been in since the last change, and account any 457 * SOME and FULL time these may have resulted in. 458 * 459 * Then we update the task counts according to the state 460 * change requested through the @clear and @set bits. 461 */ 462 write_seqcount_begin(&groupc->seq); 463 464 record_times(groupc, cpu, false); 465 466 for (t = 0, m = clear; m; m &= ~(1 << t), t++) { 467 if (!(m & (1 << t))) 468 continue; 469 if (groupc->tasks[t] == 0 && !psi_bug) { 470 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n", 471 cpu, t, groupc->tasks[0], 472 groupc->tasks[1], groupc->tasks[2], 473 clear, set); 474 psi_bug = 1; 475 } 476 groupc->tasks[t]--; 477 } 478 479 for (t = 0; set; set &= ~(1 << t), t++) 480 if (set & (1 << t)) 481 groupc->tasks[t]++; 482 483 write_seqcount_end(&groupc->seq); 484 } 485 486 static struct psi_group *iterate_groups(struct task_struct *task, void **iter) 487 { 488 #ifdef CONFIG_CGROUPS 489 struct cgroup *cgroup = NULL; 490 491 if (!*iter) 492 cgroup = task->cgroups->dfl_cgrp; 493 else if (*iter == &psi_system) 494 return NULL; 495 else 496 cgroup = cgroup_parent(*iter); 497 498 if (cgroup && cgroup_parent(cgroup)) { 499 *iter = cgroup; 500 return cgroup_psi(cgroup); 501 } 502 #else 503 if (*iter) 504 return NULL; 505 #endif 506 *iter = &psi_system; 507 return &psi_system; 508 } 509 510 void psi_task_change(struct task_struct *task, int clear, int set) 511 { 512 int cpu = task_cpu(task); 513 struct psi_group *group; 514 bool wake_clock = true; 515 void *iter = NULL; 516 517 if (!task->pid) 518 return; 519 520 if (((task->psi_flags & set) || 521 (task->psi_flags & clear) != clear) && 522 !psi_bug) { 523 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n", 524 task->pid, task->comm, cpu, 525 task->psi_flags, clear, set); 526 psi_bug = 1; 527 } 528 529 task->psi_flags &= ~clear; 530 task->psi_flags |= set; 531 532 /* 533 * Periodic aggregation shuts off if there is a period of no 534 * task changes, so we wake it back up if necessary. However, 535 * don't do this if the task change is the aggregation worker 536 * itself going to sleep, or we'll ping-pong forever. 537 */ 538 if (unlikely((clear & TSK_RUNNING) && 539 (task->flags & PF_WQ_WORKER) && 540 wq_worker_last_func(task) == psi_update_work)) 541 wake_clock = false; 542 543 while ((group = iterate_groups(task, &iter))) { 544 psi_group_change(group, cpu, clear, set); 545 if (wake_clock && !delayed_work_pending(&group->clock_work)) 546 schedule_delayed_work(&group->clock_work, PSI_FREQ); 547 } 548 } 549 550 void psi_memstall_tick(struct task_struct *task, int cpu) 551 { 552 struct psi_group *group; 553 void *iter = NULL; 554 555 while ((group = iterate_groups(task, &iter))) { 556 struct psi_group_cpu *groupc; 557 558 groupc = per_cpu_ptr(group->pcpu, cpu); 559 write_seqcount_begin(&groupc->seq); 560 record_times(groupc, cpu, true); 561 write_seqcount_end(&groupc->seq); 562 } 563 } 564 565 /** 566 * psi_memstall_enter - mark the beginning of a memory stall section 567 * @flags: flags to handle nested sections 568 * 569 * Marks the calling task as being stalled due to a lack of memory, 570 * such as waiting for a refault or performing reclaim. 571 */ 572 void psi_memstall_enter(unsigned long *flags) 573 { 574 struct rq_flags rf; 575 struct rq *rq; 576 577 if (static_branch_likely(&psi_disabled)) 578 return; 579 580 *flags = current->flags & PF_MEMSTALL; 581 if (*flags) 582 return; 583 /* 584 * PF_MEMSTALL setting & accounting needs to be atomic wrt 585 * changes to the task's scheduling state, otherwise we can 586 * race with CPU migration. 587 */ 588 rq = this_rq_lock_irq(&rf); 589 590 current->flags |= PF_MEMSTALL; 591 psi_task_change(current, 0, TSK_MEMSTALL); 592 593 rq_unlock_irq(rq, &rf); 594 } 595 596 /** 597 * psi_memstall_leave - mark the end of an memory stall section 598 * @flags: flags to handle nested memdelay sections 599 * 600 * Marks the calling task as no longer stalled due to lack of memory. 601 */ 602 void psi_memstall_leave(unsigned long *flags) 603 { 604 struct rq_flags rf; 605 struct rq *rq; 606 607 if (static_branch_likely(&psi_disabled)) 608 return; 609 610 if (*flags) 611 return; 612 /* 613 * PF_MEMSTALL clearing & accounting needs to be atomic wrt 614 * changes to the task's scheduling state, otherwise we could 615 * race with CPU migration. 616 */ 617 rq = this_rq_lock_irq(&rf); 618 619 current->flags &= ~PF_MEMSTALL; 620 psi_task_change(current, TSK_MEMSTALL, 0); 621 622 rq_unlock_irq(rq, &rf); 623 } 624 625 #ifdef CONFIG_CGROUPS 626 int psi_cgroup_alloc(struct cgroup *cgroup) 627 { 628 if (static_branch_likely(&psi_disabled)) 629 return 0; 630 631 cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu); 632 if (!cgroup->psi.pcpu) 633 return -ENOMEM; 634 group_init(&cgroup->psi); 635 return 0; 636 } 637 638 void psi_cgroup_free(struct cgroup *cgroup) 639 { 640 if (static_branch_likely(&psi_disabled)) 641 return; 642 643 cancel_delayed_work_sync(&cgroup->psi.clock_work); 644 free_percpu(cgroup->psi.pcpu); 645 } 646 647 /** 648 * cgroup_move_task - move task to a different cgroup 649 * @task: the task 650 * @to: the target css_set 651 * 652 * Move task to a new cgroup and safely migrate its associated stall 653 * state between the different groups. 654 * 655 * This function acquires the task's rq lock to lock out concurrent 656 * changes to the task's scheduling state and - in case the task is 657 * running - concurrent changes to its stall state. 658 */ 659 void cgroup_move_task(struct task_struct *task, struct css_set *to) 660 { 661 unsigned int task_flags = 0; 662 struct rq_flags rf; 663 struct rq *rq; 664 665 if (static_branch_likely(&psi_disabled)) { 666 /* 667 * Lame to do this here, but the scheduler cannot be locked 668 * from the outside, so we move cgroups from inside sched/. 669 */ 670 rcu_assign_pointer(task->cgroups, to); 671 return; 672 } 673 674 rq = task_rq_lock(task, &rf); 675 676 if (task_on_rq_queued(task)) 677 task_flags = TSK_RUNNING; 678 else if (task->in_iowait) 679 task_flags = TSK_IOWAIT; 680 681 if (task->flags & PF_MEMSTALL) 682 task_flags |= TSK_MEMSTALL; 683 684 if (task_flags) 685 psi_task_change(task, task_flags, 0); 686 687 /* See comment above */ 688 rcu_assign_pointer(task->cgroups, to); 689 690 if (task_flags) 691 psi_task_change(task, 0, task_flags); 692 693 task_rq_unlock(rq, task, &rf); 694 } 695 #endif /* CONFIG_CGROUPS */ 696 697 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res) 698 { 699 int full; 700 701 if (static_branch_likely(&psi_disabled)) 702 return -EOPNOTSUPP; 703 704 update_stats(group); 705 706 for (full = 0; full < 2 - (res == PSI_CPU); full++) { 707 unsigned long avg[3]; 708 u64 total; 709 int w; 710 711 for (w = 0; w < 3; w++) 712 avg[w] = group->avg[res * 2 + full][w]; 713 total = div_u64(group->total[res * 2 + full], NSEC_PER_USEC); 714 715 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n", 716 full ? "full" : "some", 717 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]), 718 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]), 719 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]), 720 total); 721 } 722 723 return 0; 724 } 725 726 static int psi_io_show(struct seq_file *m, void *v) 727 { 728 return psi_show(m, &psi_system, PSI_IO); 729 } 730 731 static int psi_memory_show(struct seq_file *m, void *v) 732 { 733 return psi_show(m, &psi_system, PSI_MEM); 734 } 735 736 static int psi_cpu_show(struct seq_file *m, void *v) 737 { 738 return psi_show(m, &psi_system, PSI_CPU); 739 } 740 741 static int psi_io_open(struct inode *inode, struct file *file) 742 { 743 return single_open(file, psi_io_show, NULL); 744 } 745 746 static int psi_memory_open(struct inode *inode, struct file *file) 747 { 748 return single_open(file, psi_memory_show, NULL); 749 } 750 751 static int psi_cpu_open(struct inode *inode, struct file *file) 752 { 753 return single_open(file, psi_cpu_show, NULL); 754 } 755 756 static const struct file_operations psi_io_fops = { 757 .open = psi_io_open, 758 .read = seq_read, 759 .llseek = seq_lseek, 760 .release = single_release, 761 }; 762 763 static const struct file_operations psi_memory_fops = { 764 .open = psi_memory_open, 765 .read = seq_read, 766 .llseek = seq_lseek, 767 .release = single_release, 768 }; 769 770 static const struct file_operations psi_cpu_fops = { 771 .open = psi_cpu_open, 772 .read = seq_read, 773 .llseek = seq_lseek, 774 .release = single_release, 775 }; 776 777 static int __init psi_proc_init(void) 778 { 779 proc_mkdir("pressure", NULL); 780 proc_create("pressure/io", 0, NULL, &psi_io_fops); 781 proc_create("pressure/memory", 0, NULL, &psi_memory_fops); 782 proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops); 783 return 0; 784 } 785 module_init(psi_proc_init); 786