xref: /openbmc/linux/kernel/sched/psi.c (revision 0c7beb2d)
1 /*
2  * Pressure stall information for CPU, memory and IO
3  *
4  * Copyright (c) 2018 Facebook, Inc.
5  * Author: Johannes Weiner <hannes@cmpxchg.org>
6  *
7  * When CPU, memory and IO are contended, tasks experience delays that
8  * reduce throughput and introduce latencies into the workload. Memory
9  * and IO contention, in addition, can cause a full loss of forward
10  * progress in which the CPU goes idle.
11  *
12  * This code aggregates individual task delays into resource pressure
13  * metrics that indicate problems with both workload health and
14  * resource utilization.
15  *
16  *			Model
17  *
18  * The time in which a task can execute on a CPU is our baseline for
19  * productivity. Pressure expresses the amount of time in which this
20  * potential cannot be realized due to resource contention.
21  *
22  * This concept of productivity has two components: the workload and
23  * the CPU. To measure the impact of pressure on both, we define two
24  * contention states for a resource: SOME and FULL.
25  *
26  * In the SOME state of a given resource, one or more tasks are
27  * delayed on that resource. This affects the workload's ability to
28  * perform work, but the CPU may still be executing other tasks.
29  *
30  * In the FULL state of a given resource, all non-idle tasks are
31  * delayed on that resource such that nobody is advancing and the CPU
32  * goes idle. This leaves both workload and CPU unproductive.
33  *
34  * (Naturally, the FULL state doesn't exist for the CPU resource.)
35  *
36  *	SOME = nr_delayed_tasks != 0
37  *	FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
38  *
39  * The percentage of wallclock time spent in those compound stall
40  * states gives pressure numbers between 0 and 100 for each resource,
41  * where the SOME percentage indicates workload slowdowns and the FULL
42  * percentage indicates reduced CPU utilization:
43  *
44  *	%SOME = time(SOME) / period
45  *	%FULL = time(FULL) / period
46  *
47  *			Multiple CPUs
48  *
49  * The more tasks and available CPUs there are, the more work can be
50  * performed concurrently. This means that the potential that can go
51  * unrealized due to resource contention *also* scales with non-idle
52  * tasks and CPUs.
53  *
54  * Consider a scenario where 257 number crunching tasks are trying to
55  * run concurrently on 256 CPUs. If we simply aggregated the task
56  * states, we would have to conclude a CPU SOME pressure number of
57  * 100%, since *somebody* is waiting on a runqueue at all
58  * times. However, that is clearly not the amount of contention the
59  * workload is experiencing: only one out of 256 possible exceution
60  * threads will be contended at any given time, or about 0.4%.
61  *
62  * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
63  * given time *one* of the tasks is delayed due to a lack of memory.
64  * Again, looking purely at the task state would yield a memory FULL
65  * pressure number of 0%, since *somebody* is always making forward
66  * progress. But again this wouldn't capture the amount of execution
67  * potential lost, which is 1 out of 4 CPUs, or 25%.
68  *
69  * To calculate wasted potential (pressure) with multiple processors,
70  * we have to base our calculation on the number of non-idle tasks in
71  * conjunction with the number of available CPUs, which is the number
72  * of potential execution threads. SOME becomes then the proportion of
73  * delayed tasks to possibe threads, and FULL is the share of possible
74  * threads that are unproductive due to delays:
75  *
76  *	threads = min(nr_nonidle_tasks, nr_cpus)
77  *	   SOME = min(nr_delayed_tasks / threads, 1)
78  *	   FULL = (threads - min(nr_running_tasks, threads)) / threads
79  *
80  * For the 257 number crunchers on 256 CPUs, this yields:
81  *
82  *	threads = min(257, 256)
83  *	   SOME = min(1 / 256, 1)             = 0.4%
84  *	   FULL = (256 - min(257, 256)) / 256 = 0%
85  *
86  * For the 1 out of 4 memory-delayed tasks, this yields:
87  *
88  *	threads = min(4, 4)
89  *	   SOME = min(1 / 4, 1)               = 25%
90  *	   FULL = (4 - min(3, 4)) / 4         = 25%
91  *
92  * [ Substitute nr_cpus with 1, and you can see that it's a natural
93  *   extension of the single-CPU model. ]
94  *
95  *			Implementation
96  *
97  * To assess the precise time spent in each such state, we would have
98  * to freeze the system on task changes and start/stop the state
99  * clocks accordingly. Obviously that doesn't scale in practice.
100  *
101  * Because the scheduler aims to distribute the compute load evenly
102  * among the available CPUs, we can track task state locally to each
103  * CPU and, at much lower frequency, extrapolate the global state for
104  * the cumulative stall times and the running averages.
105  *
106  * For each runqueue, we track:
107  *
108  *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
109  *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
110  *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
111  *
112  * and then periodically aggregate:
113  *
114  *	tNONIDLE = sum(tNONIDLE[i])
115  *
116  *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
117  *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
118  *
119  *	   %SOME = tSOME / period
120  *	   %FULL = tFULL / period
121  *
122  * This gives us an approximation of pressure that is practical
123  * cost-wise, yet way more sensitive and accurate than periodic
124  * sampling of the aggregate task states would be.
125  */
126 
127 #include "../workqueue_internal.h"
128 #include <linux/sched/loadavg.h>
129 #include <linux/seq_file.h>
130 #include <linux/proc_fs.h>
131 #include <linux/seqlock.h>
132 #include <linux/cgroup.h>
133 #include <linux/module.h>
134 #include <linux/sched.h>
135 #include <linux/psi.h>
136 #include "sched.h"
137 
138 static int psi_bug __read_mostly;
139 
140 DEFINE_STATIC_KEY_FALSE(psi_disabled);
141 
142 #ifdef CONFIG_PSI_DEFAULT_DISABLED
143 bool psi_enable;
144 #else
145 bool psi_enable = true;
146 #endif
147 static int __init setup_psi(char *str)
148 {
149 	return kstrtobool(str, &psi_enable) == 0;
150 }
151 __setup("psi=", setup_psi);
152 
153 /* Running averages - we need to be higher-res than loadavg */
154 #define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
155 #define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
156 #define EXP_60s		1981		/* 1/exp(2s/60s) */
157 #define EXP_300s	2034		/* 1/exp(2s/300s) */
158 
159 /* Sampling frequency in nanoseconds */
160 static u64 psi_period __read_mostly;
161 
162 /* System-level pressure and stall tracking */
163 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
164 static struct psi_group psi_system = {
165 	.pcpu = &system_group_pcpu,
166 };
167 
168 static void psi_update_work(struct work_struct *work);
169 
170 static void group_init(struct psi_group *group)
171 {
172 	int cpu;
173 
174 	for_each_possible_cpu(cpu)
175 		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
176 	group->next_update = sched_clock() + psi_period;
177 	INIT_DELAYED_WORK(&group->clock_work, psi_update_work);
178 	mutex_init(&group->stat_lock);
179 }
180 
181 void __init psi_init(void)
182 {
183 	if (!psi_enable) {
184 		static_branch_enable(&psi_disabled);
185 		return;
186 	}
187 
188 	psi_period = jiffies_to_nsecs(PSI_FREQ);
189 	group_init(&psi_system);
190 }
191 
192 static bool test_state(unsigned int *tasks, enum psi_states state)
193 {
194 	switch (state) {
195 	case PSI_IO_SOME:
196 		return tasks[NR_IOWAIT];
197 	case PSI_IO_FULL:
198 		return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
199 	case PSI_MEM_SOME:
200 		return tasks[NR_MEMSTALL];
201 	case PSI_MEM_FULL:
202 		return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
203 	case PSI_CPU_SOME:
204 		return tasks[NR_RUNNING] > 1;
205 	case PSI_NONIDLE:
206 		return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
207 			tasks[NR_RUNNING];
208 	default:
209 		return false;
210 	}
211 }
212 
213 static void get_recent_times(struct psi_group *group, int cpu, u32 *times)
214 {
215 	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
216 	unsigned int tasks[NR_PSI_TASK_COUNTS];
217 	u64 now, state_start;
218 	unsigned int seq;
219 	int s;
220 
221 	/* Snapshot a coherent view of the CPU state */
222 	do {
223 		seq = read_seqcount_begin(&groupc->seq);
224 		now = cpu_clock(cpu);
225 		memcpy(times, groupc->times, sizeof(groupc->times));
226 		memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
227 		state_start = groupc->state_start;
228 	} while (read_seqcount_retry(&groupc->seq, seq));
229 
230 	/* Calculate state time deltas against the previous snapshot */
231 	for (s = 0; s < NR_PSI_STATES; s++) {
232 		u32 delta;
233 		/*
234 		 * In addition to already concluded states, we also
235 		 * incorporate currently active states on the CPU,
236 		 * since states may last for many sampling periods.
237 		 *
238 		 * This way we keep our delta sampling buckets small
239 		 * (u32) and our reported pressure close to what's
240 		 * actually happening.
241 		 */
242 		if (test_state(tasks, s))
243 			times[s] += now - state_start;
244 
245 		delta = times[s] - groupc->times_prev[s];
246 		groupc->times_prev[s] = times[s];
247 
248 		times[s] = delta;
249 	}
250 }
251 
252 static void calc_avgs(unsigned long avg[3], int missed_periods,
253 		      u64 time, u64 period)
254 {
255 	unsigned long pct;
256 
257 	/* Fill in zeroes for periods of no activity */
258 	if (missed_periods) {
259 		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
260 		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
261 		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
262 	}
263 
264 	/* Sample the most recent active period */
265 	pct = div_u64(time * 100, period);
266 	pct *= FIXED_1;
267 	avg[0] = calc_load(avg[0], EXP_10s, pct);
268 	avg[1] = calc_load(avg[1], EXP_60s, pct);
269 	avg[2] = calc_load(avg[2], EXP_300s, pct);
270 }
271 
272 static bool update_stats(struct psi_group *group)
273 {
274 	u64 deltas[NR_PSI_STATES - 1] = { 0, };
275 	unsigned long missed_periods = 0;
276 	unsigned long nonidle_total = 0;
277 	u64 now, expires, period;
278 	int cpu;
279 	int s;
280 
281 	mutex_lock(&group->stat_lock);
282 
283 	/*
284 	 * Collect the per-cpu time buckets and average them into a
285 	 * single time sample that is normalized to wallclock time.
286 	 *
287 	 * For averaging, each CPU is weighted by its non-idle time in
288 	 * the sampling period. This eliminates artifacts from uneven
289 	 * loading, or even entirely idle CPUs.
290 	 */
291 	for_each_possible_cpu(cpu) {
292 		u32 times[NR_PSI_STATES];
293 		u32 nonidle;
294 
295 		get_recent_times(group, cpu, times);
296 
297 		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
298 		nonidle_total += nonidle;
299 
300 		for (s = 0; s < PSI_NONIDLE; s++)
301 			deltas[s] += (u64)times[s] * nonidle;
302 	}
303 
304 	/*
305 	 * Integrate the sample into the running statistics that are
306 	 * reported to userspace: the cumulative stall times and the
307 	 * decaying averages.
308 	 *
309 	 * Pressure percentages are sampled at PSI_FREQ. We might be
310 	 * called more often when the user polls more frequently than
311 	 * that; we might be called less often when there is no task
312 	 * activity, thus no data, and clock ticks are sporadic. The
313 	 * below handles both.
314 	 */
315 
316 	/* total= */
317 	for (s = 0; s < NR_PSI_STATES - 1; s++)
318 		group->total[s] += div_u64(deltas[s], max(nonidle_total, 1UL));
319 
320 	/* avgX= */
321 	now = sched_clock();
322 	expires = group->next_update;
323 	if (now < expires)
324 		goto out;
325 	if (now - expires >= psi_period)
326 		missed_periods = div_u64(now - expires, psi_period);
327 
328 	/*
329 	 * The periodic clock tick can get delayed for various
330 	 * reasons, especially on loaded systems. To avoid clock
331 	 * drift, we schedule the clock in fixed psi_period intervals.
332 	 * But the deltas we sample out of the per-cpu buckets above
333 	 * are based on the actual time elapsing between clock ticks.
334 	 */
335 	group->next_update = expires + ((1 + missed_periods) * psi_period);
336 	period = now - (group->last_update + (missed_periods * psi_period));
337 	group->last_update = now;
338 
339 	for (s = 0; s < NR_PSI_STATES - 1; s++) {
340 		u32 sample;
341 
342 		sample = group->total[s] - group->total_prev[s];
343 		/*
344 		 * Due to the lockless sampling of the time buckets,
345 		 * recorded time deltas can slip into the next period,
346 		 * which under full pressure can result in samples in
347 		 * excess of the period length.
348 		 *
349 		 * We don't want to report non-sensical pressures in
350 		 * excess of 100%, nor do we want to drop such events
351 		 * on the floor. Instead we punt any overage into the
352 		 * future until pressure subsides. By doing this we
353 		 * don't underreport the occurring pressure curve, we
354 		 * just report it delayed by one period length.
355 		 *
356 		 * The error isn't cumulative. As soon as another
357 		 * delta slips from a period P to P+1, by definition
358 		 * it frees up its time T in P.
359 		 */
360 		if (sample > period)
361 			sample = period;
362 		group->total_prev[s] += sample;
363 		calc_avgs(group->avg[s], missed_periods, sample, period);
364 	}
365 out:
366 	mutex_unlock(&group->stat_lock);
367 	return nonidle_total;
368 }
369 
370 static void psi_update_work(struct work_struct *work)
371 {
372 	struct delayed_work *dwork;
373 	struct psi_group *group;
374 	bool nonidle;
375 
376 	dwork = to_delayed_work(work);
377 	group = container_of(dwork, struct psi_group, clock_work);
378 
379 	/*
380 	 * If there is task activity, periodically fold the per-cpu
381 	 * times and feed samples into the running averages. If things
382 	 * are idle and there is no data to process, stop the clock.
383 	 * Once restarted, we'll catch up the running averages in one
384 	 * go - see calc_avgs() and missed_periods.
385 	 */
386 
387 	nonidle = update_stats(group);
388 
389 	if (nonidle) {
390 		unsigned long delay = 0;
391 		u64 now;
392 
393 		now = sched_clock();
394 		if (group->next_update > now)
395 			delay = nsecs_to_jiffies(group->next_update - now) + 1;
396 		schedule_delayed_work(dwork, delay);
397 	}
398 }
399 
400 static void record_times(struct psi_group_cpu *groupc, int cpu,
401 			 bool memstall_tick)
402 {
403 	u32 delta;
404 	u64 now;
405 
406 	now = cpu_clock(cpu);
407 	delta = now - groupc->state_start;
408 	groupc->state_start = now;
409 
410 	if (test_state(groupc->tasks, PSI_IO_SOME)) {
411 		groupc->times[PSI_IO_SOME] += delta;
412 		if (test_state(groupc->tasks, PSI_IO_FULL))
413 			groupc->times[PSI_IO_FULL] += delta;
414 	}
415 
416 	if (test_state(groupc->tasks, PSI_MEM_SOME)) {
417 		groupc->times[PSI_MEM_SOME] += delta;
418 		if (test_state(groupc->tasks, PSI_MEM_FULL))
419 			groupc->times[PSI_MEM_FULL] += delta;
420 		else if (memstall_tick) {
421 			u32 sample;
422 			/*
423 			 * Since we care about lost potential, a
424 			 * memstall is FULL when there are no other
425 			 * working tasks, but also when the CPU is
426 			 * actively reclaiming and nothing productive
427 			 * could run even if it were runnable.
428 			 *
429 			 * When the timer tick sees a reclaiming CPU,
430 			 * regardless of runnable tasks, sample a FULL
431 			 * tick (or less if it hasn't been a full tick
432 			 * since the last state change).
433 			 */
434 			sample = min(delta, (u32)jiffies_to_nsecs(1));
435 			groupc->times[PSI_MEM_FULL] += sample;
436 		}
437 	}
438 
439 	if (test_state(groupc->tasks, PSI_CPU_SOME))
440 		groupc->times[PSI_CPU_SOME] += delta;
441 
442 	if (test_state(groupc->tasks, PSI_NONIDLE))
443 		groupc->times[PSI_NONIDLE] += delta;
444 }
445 
446 static void psi_group_change(struct psi_group *group, int cpu,
447 			     unsigned int clear, unsigned int set)
448 {
449 	struct psi_group_cpu *groupc;
450 	unsigned int t, m;
451 
452 	groupc = per_cpu_ptr(group->pcpu, cpu);
453 
454 	/*
455 	 * First we assess the aggregate resource states this CPU's
456 	 * tasks have been in since the last change, and account any
457 	 * SOME and FULL time these may have resulted in.
458 	 *
459 	 * Then we update the task counts according to the state
460 	 * change requested through the @clear and @set bits.
461 	 */
462 	write_seqcount_begin(&groupc->seq);
463 
464 	record_times(groupc, cpu, false);
465 
466 	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
467 		if (!(m & (1 << t)))
468 			continue;
469 		if (groupc->tasks[t] == 0 && !psi_bug) {
470 			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n",
471 					cpu, t, groupc->tasks[0],
472 					groupc->tasks[1], groupc->tasks[2],
473 					clear, set);
474 			psi_bug = 1;
475 		}
476 		groupc->tasks[t]--;
477 	}
478 
479 	for (t = 0; set; set &= ~(1 << t), t++)
480 		if (set & (1 << t))
481 			groupc->tasks[t]++;
482 
483 	write_seqcount_end(&groupc->seq);
484 }
485 
486 static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
487 {
488 #ifdef CONFIG_CGROUPS
489 	struct cgroup *cgroup = NULL;
490 
491 	if (!*iter)
492 		cgroup = task->cgroups->dfl_cgrp;
493 	else if (*iter == &psi_system)
494 		return NULL;
495 	else
496 		cgroup = cgroup_parent(*iter);
497 
498 	if (cgroup && cgroup_parent(cgroup)) {
499 		*iter = cgroup;
500 		return cgroup_psi(cgroup);
501 	}
502 #else
503 	if (*iter)
504 		return NULL;
505 #endif
506 	*iter = &psi_system;
507 	return &psi_system;
508 }
509 
510 void psi_task_change(struct task_struct *task, int clear, int set)
511 {
512 	int cpu = task_cpu(task);
513 	struct psi_group *group;
514 	bool wake_clock = true;
515 	void *iter = NULL;
516 
517 	if (!task->pid)
518 		return;
519 
520 	if (((task->psi_flags & set) ||
521 	     (task->psi_flags & clear) != clear) &&
522 	    !psi_bug) {
523 		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
524 				task->pid, task->comm, cpu,
525 				task->psi_flags, clear, set);
526 		psi_bug = 1;
527 	}
528 
529 	task->psi_flags &= ~clear;
530 	task->psi_flags |= set;
531 
532 	/*
533 	 * Periodic aggregation shuts off if there is a period of no
534 	 * task changes, so we wake it back up if necessary. However,
535 	 * don't do this if the task change is the aggregation worker
536 	 * itself going to sleep, or we'll ping-pong forever.
537 	 */
538 	if (unlikely((clear & TSK_RUNNING) &&
539 		     (task->flags & PF_WQ_WORKER) &&
540 		     wq_worker_last_func(task) == psi_update_work))
541 		wake_clock = false;
542 
543 	while ((group = iterate_groups(task, &iter))) {
544 		psi_group_change(group, cpu, clear, set);
545 		if (wake_clock && !delayed_work_pending(&group->clock_work))
546 			schedule_delayed_work(&group->clock_work, PSI_FREQ);
547 	}
548 }
549 
550 void psi_memstall_tick(struct task_struct *task, int cpu)
551 {
552 	struct psi_group *group;
553 	void *iter = NULL;
554 
555 	while ((group = iterate_groups(task, &iter))) {
556 		struct psi_group_cpu *groupc;
557 
558 		groupc = per_cpu_ptr(group->pcpu, cpu);
559 		write_seqcount_begin(&groupc->seq);
560 		record_times(groupc, cpu, true);
561 		write_seqcount_end(&groupc->seq);
562 	}
563 }
564 
565 /**
566  * psi_memstall_enter - mark the beginning of a memory stall section
567  * @flags: flags to handle nested sections
568  *
569  * Marks the calling task as being stalled due to a lack of memory,
570  * such as waiting for a refault or performing reclaim.
571  */
572 void psi_memstall_enter(unsigned long *flags)
573 {
574 	struct rq_flags rf;
575 	struct rq *rq;
576 
577 	if (static_branch_likely(&psi_disabled))
578 		return;
579 
580 	*flags = current->flags & PF_MEMSTALL;
581 	if (*flags)
582 		return;
583 	/*
584 	 * PF_MEMSTALL setting & accounting needs to be atomic wrt
585 	 * changes to the task's scheduling state, otherwise we can
586 	 * race with CPU migration.
587 	 */
588 	rq = this_rq_lock_irq(&rf);
589 
590 	current->flags |= PF_MEMSTALL;
591 	psi_task_change(current, 0, TSK_MEMSTALL);
592 
593 	rq_unlock_irq(rq, &rf);
594 }
595 
596 /**
597  * psi_memstall_leave - mark the end of an memory stall section
598  * @flags: flags to handle nested memdelay sections
599  *
600  * Marks the calling task as no longer stalled due to lack of memory.
601  */
602 void psi_memstall_leave(unsigned long *flags)
603 {
604 	struct rq_flags rf;
605 	struct rq *rq;
606 
607 	if (static_branch_likely(&psi_disabled))
608 		return;
609 
610 	if (*flags)
611 		return;
612 	/*
613 	 * PF_MEMSTALL clearing & accounting needs to be atomic wrt
614 	 * changes to the task's scheduling state, otherwise we could
615 	 * race with CPU migration.
616 	 */
617 	rq = this_rq_lock_irq(&rf);
618 
619 	current->flags &= ~PF_MEMSTALL;
620 	psi_task_change(current, TSK_MEMSTALL, 0);
621 
622 	rq_unlock_irq(rq, &rf);
623 }
624 
625 #ifdef CONFIG_CGROUPS
626 int psi_cgroup_alloc(struct cgroup *cgroup)
627 {
628 	if (static_branch_likely(&psi_disabled))
629 		return 0;
630 
631 	cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
632 	if (!cgroup->psi.pcpu)
633 		return -ENOMEM;
634 	group_init(&cgroup->psi);
635 	return 0;
636 }
637 
638 void psi_cgroup_free(struct cgroup *cgroup)
639 {
640 	if (static_branch_likely(&psi_disabled))
641 		return;
642 
643 	cancel_delayed_work_sync(&cgroup->psi.clock_work);
644 	free_percpu(cgroup->psi.pcpu);
645 }
646 
647 /**
648  * cgroup_move_task - move task to a different cgroup
649  * @task: the task
650  * @to: the target css_set
651  *
652  * Move task to a new cgroup and safely migrate its associated stall
653  * state between the different groups.
654  *
655  * This function acquires the task's rq lock to lock out concurrent
656  * changes to the task's scheduling state and - in case the task is
657  * running - concurrent changes to its stall state.
658  */
659 void cgroup_move_task(struct task_struct *task, struct css_set *to)
660 {
661 	unsigned int task_flags = 0;
662 	struct rq_flags rf;
663 	struct rq *rq;
664 
665 	if (static_branch_likely(&psi_disabled)) {
666 		/*
667 		 * Lame to do this here, but the scheduler cannot be locked
668 		 * from the outside, so we move cgroups from inside sched/.
669 		 */
670 		rcu_assign_pointer(task->cgroups, to);
671 		return;
672 	}
673 
674 	rq = task_rq_lock(task, &rf);
675 
676 	if (task_on_rq_queued(task))
677 		task_flags = TSK_RUNNING;
678 	else if (task->in_iowait)
679 		task_flags = TSK_IOWAIT;
680 
681 	if (task->flags & PF_MEMSTALL)
682 		task_flags |= TSK_MEMSTALL;
683 
684 	if (task_flags)
685 		psi_task_change(task, task_flags, 0);
686 
687 	/* See comment above */
688 	rcu_assign_pointer(task->cgroups, to);
689 
690 	if (task_flags)
691 		psi_task_change(task, 0, task_flags);
692 
693 	task_rq_unlock(rq, task, &rf);
694 }
695 #endif /* CONFIG_CGROUPS */
696 
697 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
698 {
699 	int full;
700 
701 	if (static_branch_likely(&psi_disabled))
702 		return -EOPNOTSUPP;
703 
704 	update_stats(group);
705 
706 	for (full = 0; full < 2 - (res == PSI_CPU); full++) {
707 		unsigned long avg[3];
708 		u64 total;
709 		int w;
710 
711 		for (w = 0; w < 3; w++)
712 			avg[w] = group->avg[res * 2 + full][w];
713 		total = div_u64(group->total[res * 2 + full], NSEC_PER_USEC);
714 
715 		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
716 			   full ? "full" : "some",
717 			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
718 			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
719 			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
720 			   total);
721 	}
722 
723 	return 0;
724 }
725 
726 static int psi_io_show(struct seq_file *m, void *v)
727 {
728 	return psi_show(m, &psi_system, PSI_IO);
729 }
730 
731 static int psi_memory_show(struct seq_file *m, void *v)
732 {
733 	return psi_show(m, &psi_system, PSI_MEM);
734 }
735 
736 static int psi_cpu_show(struct seq_file *m, void *v)
737 {
738 	return psi_show(m, &psi_system, PSI_CPU);
739 }
740 
741 static int psi_io_open(struct inode *inode, struct file *file)
742 {
743 	return single_open(file, psi_io_show, NULL);
744 }
745 
746 static int psi_memory_open(struct inode *inode, struct file *file)
747 {
748 	return single_open(file, psi_memory_show, NULL);
749 }
750 
751 static int psi_cpu_open(struct inode *inode, struct file *file)
752 {
753 	return single_open(file, psi_cpu_show, NULL);
754 }
755 
756 static const struct file_operations psi_io_fops = {
757 	.open           = psi_io_open,
758 	.read           = seq_read,
759 	.llseek         = seq_lseek,
760 	.release        = single_release,
761 };
762 
763 static const struct file_operations psi_memory_fops = {
764 	.open           = psi_memory_open,
765 	.read           = seq_read,
766 	.llseek         = seq_lseek,
767 	.release        = single_release,
768 };
769 
770 static const struct file_operations psi_cpu_fops = {
771 	.open           = psi_cpu_open,
772 	.read           = seq_read,
773 	.llseek         = seq_lseek,
774 	.release        = single_release,
775 };
776 
777 static int __init psi_proc_init(void)
778 {
779 	proc_mkdir("pressure", NULL);
780 	proc_create("pressure/io", 0, NULL, &psi_io_fops);
781 	proc_create("pressure/memory", 0, NULL, &psi_memory_fops);
782 	proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops);
783 	return 0;
784 }
785 module_init(psi_proc_init);
786