1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Per Entity Load Tracking 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 * 23 * Move PELT related code from fair.c into this pelt.c file 24 * Author: Vincent Guittot <vincent.guittot@linaro.org> 25 */ 26 27 #include <linux/sched.h> 28 #include "sched.h" 29 #include "pelt.h" 30 31 /* 32 * Approximate: 33 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 34 */ 35 static u64 decay_load(u64 val, u64 n) 36 { 37 unsigned int local_n; 38 39 if (unlikely(n > LOAD_AVG_PERIOD * 63)) 40 return 0; 41 42 /* after bounds checking we can collapse to 32-bit */ 43 local_n = n; 44 45 /* 46 * As y^PERIOD = 1/2, we can combine 47 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 48 * With a look-up table which covers y^n (n<PERIOD) 49 * 50 * To achieve constant time decay_load. 51 */ 52 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 53 val >>= local_n / LOAD_AVG_PERIOD; 54 local_n %= LOAD_AVG_PERIOD; 55 } 56 57 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 58 return val; 59 } 60 61 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) 62 { 63 u32 c1, c2, c3 = d3; /* y^0 == 1 */ 64 65 /* 66 * c1 = d1 y^p 67 */ 68 c1 = decay_load((u64)d1, periods); 69 70 /* 71 * p-1 72 * c2 = 1024 \Sum y^n 73 * n=1 74 * 75 * inf inf 76 * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) 77 * n=0 n=p 78 */ 79 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; 80 81 return c1 + c2 + c3; 82 } 83 84 /* 85 * Accumulate the three separate parts of the sum; d1 the remainder 86 * of the last (incomplete) period, d2 the span of full periods and d3 87 * the remainder of the (incomplete) current period. 88 * 89 * d1 d2 d3 90 * ^ ^ ^ 91 * | | | 92 * |<->|<----------------->|<--->| 93 * ... |---x---|------| ... |------|-----x (now) 94 * 95 * p-1 96 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 97 * n=1 98 * 99 * = u y^p + (Step 1) 100 * 101 * p-1 102 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) 103 * n=1 104 */ 105 static __always_inline u32 106 accumulate_sum(u64 delta, struct sched_avg *sa, 107 unsigned long load, unsigned long runnable, int running) 108 { 109 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ 110 u64 periods; 111 112 delta += sa->period_contrib; 113 periods = delta / 1024; /* A period is 1024us (~1ms) */ 114 115 /* 116 * Step 1: decay old *_sum if we crossed period boundaries. 117 */ 118 if (periods) { 119 sa->load_sum = decay_load(sa->load_sum, periods); 120 sa->runnable_sum = 121 decay_load(sa->runnable_sum, periods); 122 sa->util_sum = decay_load((u64)(sa->util_sum), periods); 123 124 /* 125 * Step 2 126 */ 127 delta %= 1024; 128 if (load) { 129 /* 130 * This relies on the: 131 * 132 * if (!load) 133 * runnable = running = 0; 134 * 135 * clause from ___update_load_sum(); this results in 136 * the below usage of @contrib to disappear entirely, 137 * so no point in calculating it. 138 */ 139 contrib = __accumulate_pelt_segments(periods, 140 1024 - sa->period_contrib, delta); 141 } 142 } 143 sa->period_contrib = delta; 144 145 if (load) 146 sa->load_sum += load * contrib; 147 if (runnable) 148 sa->runnable_sum += runnable * contrib << SCHED_CAPACITY_SHIFT; 149 if (running) 150 sa->util_sum += contrib << SCHED_CAPACITY_SHIFT; 151 152 return periods; 153 } 154 155 /* 156 * We can represent the historical contribution to runnable average as the 157 * coefficients of a geometric series. To do this we sub-divide our runnable 158 * history into segments of approximately 1ms (1024us); label the segment that 159 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 160 * 161 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 162 * p0 p1 p2 163 * (now) (~1ms ago) (~2ms ago) 164 * 165 * Let u_i denote the fraction of p_i that the entity was runnable. 166 * 167 * We then designate the fractions u_i as our co-efficients, yielding the 168 * following representation of historical load: 169 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 170 * 171 * We choose y based on the with of a reasonably scheduling period, fixing: 172 * y^32 = 0.5 173 * 174 * This means that the contribution to load ~32ms ago (u_32) will be weighted 175 * approximately half as much as the contribution to load within the last ms 176 * (u_0). 177 * 178 * When a period "rolls over" and we have new u_0`, multiplying the previous 179 * sum again by y is sufficient to update: 180 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 181 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 182 */ 183 static __always_inline int 184 ___update_load_sum(u64 now, struct sched_avg *sa, 185 unsigned long load, unsigned long runnable, int running) 186 { 187 u64 delta; 188 189 delta = now - sa->last_update_time; 190 /* 191 * This should only happen when time goes backwards, which it 192 * unfortunately does during sched clock init when we swap over to TSC. 193 */ 194 if ((s64)delta < 0) { 195 sa->last_update_time = now; 196 return 0; 197 } 198 199 /* 200 * Use 1024ns as the unit of measurement since it's a reasonable 201 * approximation of 1us and fast to compute. 202 */ 203 delta >>= 10; 204 if (!delta) 205 return 0; 206 207 sa->last_update_time += delta << 10; 208 209 /* 210 * running is a subset of runnable (weight) so running can't be set if 211 * runnable is clear. But there are some corner cases where the current 212 * se has been already dequeued but cfs_rq->curr still points to it. 213 * This means that weight will be 0 but not running for a sched_entity 214 * but also for a cfs_rq if the latter becomes idle. As an example, 215 * this happens during idle_balance() which calls 216 * update_blocked_averages(). 217 * 218 * Also see the comment in accumulate_sum(). 219 */ 220 if (!load) 221 runnable = running = 0; 222 223 /* 224 * Now we know we crossed measurement unit boundaries. The *_avg 225 * accrues by two steps: 226 * 227 * Step 1: accumulate *_sum since last_update_time. If we haven't 228 * crossed period boundaries, finish. 229 */ 230 if (!accumulate_sum(delta, sa, load, runnable, running)) 231 return 0; 232 233 return 1; 234 } 235 236 /* 237 * When syncing *_avg with *_sum, we must take into account the current 238 * position in the PELT segment otherwise the remaining part of the segment 239 * will be considered as idle time whereas it's not yet elapsed and this will 240 * generate unwanted oscillation in the range [1002..1024[. 241 * 242 * The max value of *_sum varies with the position in the time segment and is 243 * equals to : 244 * 245 * LOAD_AVG_MAX*y + sa->period_contrib 246 * 247 * which can be simplified into: 248 * 249 * LOAD_AVG_MAX - 1024 + sa->period_contrib 250 * 251 * because LOAD_AVG_MAX*y == LOAD_AVG_MAX-1024 252 * 253 * The same care must be taken when a sched entity is added, updated or 254 * removed from a cfs_rq and we need to update sched_avg. Scheduler entities 255 * and the cfs rq, to which they are attached, have the same position in the 256 * time segment because they use the same clock. This means that we can use 257 * the period_contrib of cfs_rq when updating the sched_avg of a sched_entity 258 * if it's more convenient. 259 */ 260 static __always_inline void 261 ___update_load_avg(struct sched_avg *sa, unsigned long load) 262 { 263 u32 divider = get_pelt_divider(sa); 264 265 /* 266 * Step 2: update *_avg. 267 */ 268 sa->load_avg = div_u64(load * sa->load_sum, divider); 269 sa->runnable_avg = div_u64(sa->runnable_sum, divider); 270 WRITE_ONCE(sa->util_avg, sa->util_sum / divider); 271 } 272 273 /* 274 * sched_entity: 275 * 276 * task: 277 * se_weight() = se->load.weight 278 * se_runnable() = !!on_rq 279 * 280 * group: [ see update_cfs_group() ] 281 * se_weight() = tg->weight * grq->load_avg / tg->load_avg 282 * se_runnable() = grq->h_nr_running 283 * 284 * runnable_sum = se_runnable() * runnable = grq->runnable_sum 285 * runnable_avg = runnable_sum 286 * 287 * load_sum := runnable 288 * load_avg = se_weight(se) * load_sum 289 * 290 * cfq_rq: 291 * 292 * runnable_sum = \Sum se->avg.runnable_sum 293 * runnable_avg = \Sum se->avg.runnable_avg 294 * 295 * load_sum = \Sum se_weight(se) * se->avg.load_sum 296 * load_avg = \Sum se->avg.load_avg 297 */ 298 299 int __update_load_avg_blocked_se(u64 now, struct sched_entity *se) 300 { 301 if (___update_load_sum(now, &se->avg, 0, 0, 0)) { 302 ___update_load_avg(&se->avg, se_weight(se)); 303 trace_pelt_se_tp(se); 304 return 1; 305 } 306 307 return 0; 308 } 309 310 int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se) 311 { 312 if (___update_load_sum(now, &se->avg, !!se->on_rq, se_runnable(se), 313 cfs_rq->curr == se)) { 314 315 ___update_load_avg(&se->avg, se_weight(se)); 316 cfs_se_util_change(&se->avg); 317 trace_pelt_se_tp(se); 318 return 1; 319 } 320 321 return 0; 322 } 323 324 int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq) 325 { 326 if (___update_load_sum(now, &cfs_rq->avg, 327 scale_load_down(cfs_rq->load.weight), 328 cfs_rq->h_nr_running, 329 cfs_rq->curr != NULL)) { 330 331 ___update_load_avg(&cfs_rq->avg, 1); 332 trace_pelt_cfs_tp(cfs_rq); 333 return 1; 334 } 335 336 return 0; 337 } 338 339 /* 340 * rt_rq: 341 * 342 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked 343 * util_sum = cpu_scale * load_sum 344 * runnable_sum = util_sum 345 * 346 * load_avg and runnable_avg are not supported and meaningless. 347 * 348 */ 349 350 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running) 351 { 352 if (___update_load_sum(now, &rq->avg_rt, 353 running, 354 running, 355 running)) { 356 357 ___update_load_avg(&rq->avg_rt, 1); 358 trace_pelt_rt_tp(rq); 359 return 1; 360 } 361 362 return 0; 363 } 364 365 /* 366 * dl_rq: 367 * 368 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked 369 * util_sum = cpu_scale * load_sum 370 * runnable_sum = util_sum 371 * 372 * load_avg and runnable_avg are not supported and meaningless. 373 * 374 */ 375 376 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running) 377 { 378 if (___update_load_sum(now, &rq->avg_dl, 379 running, 380 running, 381 running)) { 382 383 ___update_load_avg(&rq->avg_dl, 1); 384 trace_pelt_dl_tp(rq); 385 return 1; 386 } 387 388 return 0; 389 } 390 391 #ifdef CONFIG_SCHED_THERMAL_PRESSURE 392 /* 393 * thermal: 394 * 395 * load_sum = \Sum se->avg.load_sum but se->avg.load_sum is not tracked 396 * 397 * util_avg and runnable_load_avg are not supported and meaningless. 398 * 399 * Unlike rt/dl utilization tracking that track time spent by a cpu 400 * running a rt/dl task through util_avg, the average thermal pressure is 401 * tracked through load_avg. This is because thermal pressure signal is 402 * time weighted "delta" capacity unlike util_avg which is binary. 403 * "delta capacity" = actual capacity - 404 * capped capacity a cpu due to a thermal event. 405 */ 406 407 int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity) 408 { 409 if (___update_load_sum(now, &rq->avg_thermal, 410 capacity, 411 capacity, 412 capacity)) { 413 ___update_load_avg(&rq->avg_thermal, 1); 414 trace_pelt_thermal_tp(rq); 415 return 1; 416 } 417 418 return 0; 419 } 420 #endif 421 422 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 423 /* 424 * irq: 425 * 426 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked 427 * util_sum = cpu_scale * load_sum 428 * runnable_sum = util_sum 429 * 430 * load_avg and runnable_avg are not supported and meaningless. 431 * 432 */ 433 434 int update_irq_load_avg(struct rq *rq, u64 running) 435 { 436 int ret = 0; 437 438 /* 439 * We can't use clock_pelt because irq time is not accounted in 440 * clock_task. Instead we directly scale the running time to 441 * reflect the real amount of computation 442 */ 443 running = cap_scale(running, arch_scale_freq_capacity(cpu_of(rq))); 444 running = cap_scale(running, arch_scale_cpu_capacity(cpu_of(rq))); 445 446 /* 447 * We know the time that has been used by interrupt since last update 448 * but we don't when. Let be pessimistic and assume that interrupt has 449 * happened just before the update. This is not so far from reality 450 * because interrupt will most probably wake up task and trig an update 451 * of rq clock during which the metric is updated. 452 * We start to decay with normal context time and then we add the 453 * interrupt context time. 454 * We can safely remove running from rq->clock because 455 * rq->clock += delta with delta >= running 456 */ 457 ret = ___update_load_sum(rq->clock - running, &rq->avg_irq, 458 0, 459 0, 460 0); 461 ret += ___update_load_sum(rq->clock, &rq->avg_irq, 462 1, 463 1, 464 1); 465 466 if (ret) { 467 ___update_load_avg(&rq->avg_irq, 1); 468 trace_pelt_irq_tp(rq); 469 } 470 471 return ret; 472 } 473 #endif 474