1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Per Entity Load Tracking 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 * 23 * Move PELT related code from fair.c into this pelt.c file 24 * Author: Vincent Guittot <vincent.guittot@linaro.org> 25 */ 26 27 #include <linux/sched.h> 28 #include "sched.h" 29 #include "sched-pelt.h" 30 #include "pelt.h" 31 32 /* 33 * Approximate: 34 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 35 */ 36 static u64 decay_load(u64 val, u64 n) 37 { 38 unsigned int local_n; 39 40 if (unlikely(n > LOAD_AVG_PERIOD * 63)) 41 return 0; 42 43 /* after bounds checking we can collapse to 32-bit */ 44 local_n = n; 45 46 /* 47 * As y^PERIOD = 1/2, we can combine 48 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 49 * With a look-up table which covers y^n (n<PERIOD) 50 * 51 * To achieve constant time decay_load. 52 */ 53 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 54 val >>= local_n / LOAD_AVG_PERIOD; 55 local_n %= LOAD_AVG_PERIOD; 56 } 57 58 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 59 return val; 60 } 61 62 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) 63 { 64 u32 c1, c2, c3 = d3; /* y^0 == 1 */ 65 66 /* 67 * c1 = d1 y^p 68 */ 69 c1 = decay_load((u64)d1, periods); 70 71 /* 72 * p-1 73 * c2 = 1024 \Sum y^n 74 * n=1 75 * 76 * inf inf 77 * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) 78 * n=0 n=p 79 */ 80 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; 81 82 return c1 + c2 + c3; 83 } 84 85 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 86 87 /* 88 * Accumulate the three separate parts of the sum; d1 the remainder 89 * of the last (incomplete) period, d2 the span of full periods and d3 90 * the remainder of the (incomplete) current period. 91 * 92 * d1 d2 d3 93 * ^ ^ ^ 94 * | | | 95 * |<->|<----------------->|<--->| 96 * ... |---x---|------| ... |------|-----x (now) 97 * 98 * p-1 99 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 100 * n=1 101 * 102 * = u y^p + (Step 1) 103 * 104 * p-1 105 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) 106 * n=1 107 */ 108 static __always_inline u32 109 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa, 110 unsigned long load, unsigned long runnable, int running) 111 { 112 unsigned long scale_freq, scale_cpu; 113 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ 114 u64 periods; 115 116 scale_freq = arch_scale_freq_capacity(cpu); 117 scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 118 119 delta += sa->period_contrib; 120 periods = delta / 1024; /* A period is 1024us (~1ms) */ 121 122 /* 123 * Step 1: decay old *_sum if we crossed period boundaries. 124 */ 125 if (periods) { 126 sa->load_sum = decay_load(sa->load_sum, periods); 127 sa->runnable_load_sum = 128 decay_load(sa->runnable_load_sum, periods); 129 sa->util_sum = decay_load((u64)(sa->util_sum), periods); 130 131 /* 132 * Step 2 133 */ 134 delta %= 1024; 135 contrib = __accumulate_pelt_segments(periods, 136 1024 - sa->period_contrib, delta); 137 } 138 sa->period_contrib = delta; 139 140 contrib = cap_scale(contrib, scale_freq); 141 if (load) 142 sa->load_sum += load * contrib; 143 if (runnable) 144 sa->runnable_load_sum += runnable * contrib; 145 if (running) 146 sa->util_sum += contrib * scale_cpu; 147 148 return periods; 149 } 150 151 /* 152 * We can represent the historical contribution to runnable average as the 153 * coefficients of a geometric series. To do this we sub-divide our runnable 154 * history into segments of approximately 1ms (1024us); label the segment that 155 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 156 * 157 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 158 * p0 p1 p2 159 * (now) (~1ms ago) (~2ms ago) 160 * 161 * Let u_i denote the fraction of p_i that the entity was runnable. 162 * 163 * We then designate the fractions u_i as our co-efficients, yielding the 164 * following representation of historical load: 165 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 166 * 167 * We choose y based on the with of a reasonably scheduling period, fixing: 168 * y^32 = 0.5 169 * 170 * This means that the contribution to load ~32ms ago (u_32) will be weighted 171 * approximately half as much as the contribution to load within the last ms 172 * (u_0). 173 * 174 * When a period "rolls over" and we have new u_0`, multiplying the previous 175 * sum again by y is sufficient to update: 176 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 177 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 178 */ 179 static __always_inline int 180 ___update_load_sum(u64 now, int cpu, struct sched_avg *sa, 181 unsigned long load, unsigned long runnable, int running) 182 { 183 u64 delta; 184 185 delta = now - sa->last_update_time; 186 /* 187 * This should only happen when time goes backwards, which it 188 * unfortunately does during sched clock init when we swap over to TSC. 189 */ 190 if ((s64)delta < 0) { 191 sa->last_update_time = now; 192 return 0; 193 } 194 195 /* 196 * Use 1024ns as the unit of measurement since it's a reasonable 197 * approximation of 1us and fast to compute. 198 */ 199 delta >>= 10; 200 if (!delta) 201 return 0; 202 203 sa->last_update_time += delta << 10; 204 205 /* 206 * running is a subset of runnable (weight) so running can't be set if 207 * runnable is clear. But there are some corner cases where the current 208 * se has been already dequeued but cfs_rq->curr still points to it. 209 * This means that weight will be 0 but not running for a sched_entity 210 * but also for a cfs_rq if the latter becomes idle. As an example, 211 * this happens during idle_balance() which calls 212 * update_blocked_averages() 213 */ 214 if (!load) 215 runnable = running = 0; 216 217 /* 218 * Now we know we crossed measurement unit boundaries. The *_avg 219 * accrues by two steps: 220 * 221 * Step 1: accumulate *_sum since last_update_time. If we haven't 222 * crossed period boundaries, finish. 223 */ 224 if (!accumulate_sum(delta, cpu, sa, load, runnable, running)) 225 return 0; 226 227 return 1; 228 } 229 230 static __always_inline void 231 ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable) 232 { 233 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 234 235 /* 236 * Step 2: update *_avg. 237 */ 238 sa->load_avg = div_u64(load * sa->load_sum, divider); 239 sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider); 240 WRITE_ONCE(sa->util_avg, sa->util_sum / divider); 241 } 242 243 /* 244 * sched_entity: 245 * 246 * task: 247 * se_runnable() == se_weight() 248 * 249 * group: [ see update_cfs_group() ] 250 * se_weight() = tg->weight * grq->load_avg / tg->load_avg 251 * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg 252 * 253 * load_sum := runnable_sum 254 * load_avg = se_weight(se) * runnable_avg 255 * 256 * runnable_load_sum := runnable_sum 257 * runnable_load_avg = se_runnable(se) * runnable_avg 258 * 259 * XXX collapse load_sum and runnable_load_sum 260 * 261 * cfq_rq: 262 * 263 * load_sum = \Sum se_weight(se) * se->avg.load_sum 264 * load_avg = \Sum se->avg.load_avg 265 * 266 * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum 267 * runnable_load_avg = \Sum se->avg.runable_load_avg 268 */ 269 270 int __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se) 271 { 272 if (entity_is_task(se)) 273 se->runnable_weight = se->load.weight; 274 275 if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) { 276 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); 277 return 1; 278 } 279 280 return 0; 281 } 282 283 int __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se) 284 { 285 if (entity_is_task(se)) 286 se->runnable_weight = se->load.weight; 287 288 if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq, 289 cfs_rq->curr == se)) { 290 291 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); 292 cfs_se_util_change(&se->avg); 293 return 1; 294 } 295 296 return 0; 297 } 298 299 int __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq) 300 { 301 if (___update_load_sum(now, cpu, &cfs_rq->avg, 302 scale_load_down(cfs_rq->load.weight), 303 scale_load_down(cfs_rq->runnable_weight), 304 cfs_rq->curr != NULL)) { 305 306 ___update_load_avg(&cfs_rq->avg, 1, 1); 307 return 1; 308 } 309 310 return 0; 311 } 312 313 /* 314 * rt_rq: 315 * 316 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked 317 * util_sum = cpu_scale * load_sum 318 * runnable_load_sum = load_sum 319 * 320 * load_avg and runnable_load_avg are not supported and meaningless. 321 * 322 */ 323 324 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running) 325 { 326 if (___update_load_sum(now, rq->cpu, &rq->avg_rt, 327 running, 328 running, 329 running)) { 330 331 ___update_load_avg(&rq->avg_rt, 1, 1); 332 return 1; 333 } 334 335 return 0; 336 } 337 338 /* 339 * dl_rq: 340 * 341 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked 342 * util_sum = cpu_scale * load_sum 343 * runnable_load_sum = load_sum 344 * 345 */ 346 347 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running) 348 { 349 if (___update_load_sum(now, rq->cpu, &rq->avg_dl, 350 running, 351 running, 352 running)) { 353 354 ___update_load_avg(&rq->avg_dl, 1, 1); 355 return 1; 356 } 357 358 return 0; 359 } 360 361 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 362 /* 363 * irq: 364 * 365 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked 366 * util_sum = cpu_scale * load_sum 367 * runnable_load_sum = load_sum 368 * 369 */ 370 371 int update_irq_load_avg(struct rq *rq, u64 running) 372 { 373 int ret = 0; 374 /* 375 * We know the time that has been used by interrupt since last update 376 * but we don't when. Let be pessimistic and assume that interrupt has 377 * happened just before the update. This is not so far from reality 378 * because interrupt will most probably wake up task and trig an update 379 * of rq clock during which the metric si updated. 380 * We start to decay with normal context time and then we add the 381 * interrupt context time. 382 * We can safely remove running from rq->clock because 383 * rq->clock += delta with delta >= running 384 */ 385 ret = ___update_load_sum(rq->clock - running, rq->cpu, &rq->avg_irq, 386 0, 387 0, 388 0); 389 ret += ___update_load_sum(rq->clock, rq->cpu, &rq->avg_irq, 390 1, 391 1, 392 1); 393 394 if (ret) 395 ___update_load_avg(&rq->avg_irq, 1, 1); 396 397 return ret; 398 } 399 #endif 400