xref: /openbmc/linux/kernel/sched/pelt.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Per Entity Load Tracking
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  *
23  *  Move PELT related code from fair.c into this pelt.c file
24  *  Author: Vincent Guittot <vincent.guittot@linaro.org>
25  */
26 
27 #include <linux/sched.h>
28 #include "sched.h"
29 #include "sched-pelt.h"
30 #include "pelt.h"
31 
32 /*
33  * Approximate:
34  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
35  */
36 static u64 decay_load(u64 val, u64 n)
37 {
38 	unsigned int local_n;
39 
40 	if (unlikely(n > LOAD_AVG_PERIOD * 63))
41 		return 0;
42 
43 	/* after bounds checking we can collapse to 32-bit */
44 	local_n = n;
45 
46 	/*
47 	 * As y^PERIOD = 1/2, we can combine
48 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
49 	 * With a look-up table which covers y^n (n<PERIOD)
50 	 *
51 	 * To achieve constant time decay_load.
52 	 */
53 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
54 		val >>= local_n / LOAD_AVG_PERIOD;
55 		local_n %= LOAD_AVG_PERIOD;
56 	}
57 
58 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
59 	return val;
60 }
61 
62 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
63 {
64 	u32 c1, c2, c3 = d3; /* y^0 == 1 */
65 
66 	/*
67 	 * c1 = d1 y^p
68 	 */
69 	c1 = decay_load((u64)d1, periods);
70 
71 	/*
72 	 *            p-1
73 	 * c2 = 1024 \Sum y^n
74 	 *            n=1
75 	 *
76 	 *              inf        inf
77 	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
78 	 *              n=0        n=p
79 	 */
80 	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
81 
82 	return c1 + c2 + c3;
83 }
84 
85 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
86 
87 /*
88  * Accumulate the three separate parts of the sum; d1 the remainder
89  * of the last (incomplete) period, d2 the span of full periods and d3
90  * the remainder of the (incomplete) current period.
91  *
92  *           d1          d2           d3
93  *           ^           ^            ^
94  *           |           |            |
95  *         |<->|<----------------->|<--->|
96  * ... |---x---|------| ... |------|-----x (now)
97  *
98  *                           p-1
99  * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
100  *                           n=1
101  *
102  *    = u y^p +					(Step 1)
103  *
104  *                     p-1
105  *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
106  *                     n=1
107  */
108 static __always_inline u32
109 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
110 	       unsigned long load, unsigned long runnable, int running)
111 {
112 	unsigned long scale_freq, scale_cpu;
113 	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
114 	u64 periods;
115 
116 	scale_freq = arch_scale_freq_capacity(cpu);
117 	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
118 
119 	delta += sa->period_contrib;
120 	periods = delta / 1024; /* A period is 1024us (~1ms) */
121 
122 	/*
123 	 * Step 1: decay old *_sum if we crossed period boundaries.
124 	 */
125 	if (periods) {
126 		sa->load_sum = decay_load(sa->load_sum, periods);
127 		sa->runnable_load_sum =
128 			decay_load(sa->runnable_load_sum, periods);
129 		sa->util_sum = decay_load((u64)(sa->util_sum), periods);
130 
131 		/*
132 		 * Step 2
133 		 */
134 		delta %= 1024;
135 		contrib = __accumulate_pelt_segments(periods,
136 				1024 - sa->period_contrib, delta);
137 	}
138 	sa->period_contrib = delta;
139 
140 	contrib = cap_scale(contrib, scale_freq);
141 	if (load)
142 		sa->load_sum += load * contrib;
143 	if (runnable)
144 		sa->runnable_load_sum += runnable * contrib;
145 	if (running)
146 		sa->util_sum += contrib * scale_cpu;
147 
148 	return periods;
149 }
150 
151 /*
152  * We can represent the historical contribution to runnable average as the
153  * coefficients of a geometric series.  To do this we sub-divide our runnable
154  * history into segments of approximately 1ms (1024us); label the segment that
155  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
156  *
157  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
158  *      p0            p1           p2
159  *     (now)       (~1ms ago)  (~2ms ago)
160  *
161  * Let u_i denote the fraction of p_i that the entity was runnable.
162  *
163  * We then designate the fractions u_i as our co-efficients, yielding the
164  * following representation of historical load:
165  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
166  *
167  * We choose y based on the with of a reasonably scheduling period, fixing:
168  *   y^32 = 0.5
169  *
170  * This means that the contribution to load ~32ms ago (u_32) will be weighted
171  * approximately half as much as the contribution to load within the last ms
172  * (u_0).
173  *
174  * When a period "rolls over" and we have new u_0`, multiplying the previous
175  * sum again by y is sufficient to update:
176  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
177  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
178  */
179 static __always_inline int
180 ___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
181 		  unsigned long load, unsigned long runnable, int running)
182 {
183 	u64 delta;
184 
185 	delta = now - sa->last_update_time;
186 	/*
187 	 * This should only happen when time goes backwards, which it
188 	 * unfortunately does during sched clock init when we swap over to TSC.
189 	 */
190 	if ((s64)delta < 0) {
191 		sa->last_update_time = now;
192 		return 0;
193 	}
194 
195 	/*
196 	 * Use 1024ns as the unit of measurement since it's a reasonable
197 	 * approximation of 1us and fast to compute.
198 	 */
199 	delta >>= 10;
200 	if (!delta)
201 		return 0;
202 
203 	sa->last_update_time += delta << 10;
204 
205 	/*
206 	 * running is a subset of runnable (weight) so running can't be set if
207 	 * runnable is clear. But there are some corner cases where the current
208 	 * se has been already dequeued but cfs_rq->curr still points to it.
209 	 * This means that weight will be 0 but not running for a sched_entity
210 	 * but also for a cfs_rq if the latter becomes idle. As an example,
211 	 * this happens during idle_balance() which calls
212 	 * update_blocked_averages()
213 	 */
214 	if (!load)
215 		runnable = running = 0;
216 
217 	/*
218 	 * Now we know we crossed measurement unit boundaries. The *_avg
219 	 * accrues by two steps:
220 	 *
221 	 * Step 1: accumulate *_sum since last_update_time. If we haven't
222 	 * crossed period boundaries, finish.
223 	 */
224 	if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
225 		return 0;
226 
227 	return 1;
228 }
229 
230 static __always_inline void
231 ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
232 {
233 	u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
234 
235 	/*
236 	 * Step 2: update *_avg.
237 	 */
238 	sa->load_avg = div_u64(load * sa->load_sum, divider);
239 	sa->runnable_load_avg =	div_u64(runnable * sa->runnable_load_sum, divider);
240 	WRITE_ONCE(sa->util_avg, sa->util_sum / divider);
241 }
242 
243 /*
244  * sched_entity:
245  *
246  *   task:
247  *     se_runnable() == se_weight()
248  *
249  *   group: [ see update_cfs_group() ]
250  *     se_weight()   = tg->weight * grq->load_avg / tg->load_avg
251  *     se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
252  *
253  *   load_sum := runnable_sum
254  *   load_avg = se_weight(se) * runnable_avg
255  *
256  *   runnable_load_sum := runnable_sum
257  *   runnable_load_avg = se_runnable(se) * runnable_avg
258  *
259  * XXX collapse load_sum and runnable_load_sum
260  *
261  * cfq_rq:
262  *
263  *   load_sum = \Sum se_weight(se) * se->avg.load_sum
264  *   load_avg = \Sum se->avg.load_avg
265  *
266  *   runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
267  *   runnable_load_avg = \Sum se->avg.runable_load_avg
268  */
269 
270 int __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
271 {
272 	if (entity_is_task(se))
273 		se->runnable_weight = se->load.weight;
274 
275 	if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
276 		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
277 		return 1;
278 	}
279 
280 	return 0;
281 }
282 
283 int __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
284 {
285 	if (entity_is_task(se))
286 		se->runnable_weight = se->load.weight;
287 
288 	if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
289 				cfs_rq->curr == se)) {
290 
291 		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
292 		cfs_se_util_change(&se->avg);
293 		return 1;
294 	}
295 
296 	return 0;
297 }
298 
299 int __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
300 {
301 	if (___update_load_sum(now, cpu, &cfs_rq->avg,
302 				scale_load_down(cfs_rq->load.weight),
303 				scale_load_down(cfs_rq->runnable_weight),
304 				cfs_rq->curr != NULL)) {
305 
306 		___update_load_avg(&cfs_rq->avg, 1, 1);
307 		return 1;
308 	}
309 
310 	return 0;
311 }
312 
313 /*
314  * rt_rq:
315  *
316  *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
317  *   util_sum = cpu_scale * load_sum
318  *   runnable_load_sum = load_sum
319  *
320  *   load_avg and runnable_load_avg are not supported and meaningless.
321  *
322  */
323 
324 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
325 {
326 	if (___update_load_sum(now, rq->cpu, &rq->avg_rt,
327 				running,
328 				running,
329 				running)) {
330 
331 		___update_load_avg(&rq->avg_rt, 1, 1);
332 		return 1;
333 	}
334 
335 	return 0;
336 }
337 
338 /*
339  * dl_rq:
340  *
341  *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
342  *   util_sum = cpu_scale * load_sum
343  *   runnable_load_sum = load_sum
344  *
345  */
346 
347 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
348 {
349 	if (___update_load_sum(now, rq->cpu, &rq->avg_dl,
350 				running,
351 				running,
352 				running)) {
353 
354 		___update_load_avg(&rq->avg_dl, 1, 1);
355 		return 1;
356 	}
357 
358 	return 0;
359 }
360 
361 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
362 /*
363  * irq:
364  *
365  *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
366  *   util_sum = cpu_scale * load_sum
367  *   runnable_load_sum = load_sum
368  *
369  */
370 
371 int update_irq_load_avg(struct rq *rq, u64 running)
372 {
373 	int ret = 0;
374 	/*
375 	 * We know the time that has been used by interrupt since last update
376 	 * but we don't when. Let be pessimistic and assume that interrupt has
377 	 * happened just before the update. This is not so far from reality
378 	 * because interrupt will most probably wake up task and trig an update
379 	 * of rq clock during which the metric si updated.
380 	 * We start to decay with normal context time and then we add the
381 	 * interrupt context time.
382 	 * We can safely remove running from rq->clock because
383 	 * rq->clock += delta with delta >= running
384 	 */
385 	ret = ___update_load_sum(rq->clock - running, rq->cpu, &rq->avg_irq,
386 				0,
387 				0,
388 				0);
389 	ret += ___update_load_sum(rq->clock, rq->cpu, &rq->avg_irq,
390 				1,
391 				1,
392 				1);
393 
394 	if (ret)
395 		___update_load_avg(&rq->avg_irq, 1, 1);
396 
397 	return ret;
398 }
399 #endif
400