xref: /openbmc/linux/kernel/sched/membarrier.c (revision 72113d0a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4  *
5  * membarrier system call
6  */
7 #include "sched.h"
8 
9 /*
10  * For documentation purposes, here are some membarrier ordering
11  * scenarios to keep in mind:
12  *
13  * A) Userspace thread execution after IPI vs membarrier's memory
14  *    barrier before sending the IPI
15  *
16  * Userspace variables:
17  *
18  * int x = 0, y = 0;
19  *
20  * The memory barrier at the start of membarrier() on CPU0 is necessary in
21  * order to enforce the guarantee that any writes occurring on CPU0 before
22  * the membarrier() is executed will be visible to any code executing on
23  * CPU1 after the IPI-induced memory barrier:
24  *
25  *         CPU0                              CPU1
26  *
27  *         x = 1
28  *         membarrier():
29  *           a: smp_mb()
30  *           b: send IPI                       IPI-induced mb
31  *           c: smp_mb()
32  *         r2 = y
33  *                                           y = 1
34  *                                           barrier()
35  *                                           r1 = x
36  *
37  *                     BUG_ON(r1 == 0 && r2 == 0)
38  *
39  * The write to y and load from x by CPU1 are unordered by the hardware,
40  * so it's possible to have "r1 = x" reordered before "y = 1" at any
41  * point after (b).  If the memory barrier at (a) is omitted, then "x = 1"
42  * can be reordered after (a) (although not after (c)), so we get r1 == 0
43  * and r2 == 0.  This violates the guarantee that membarrier() is
44  * supposed by provide.
45  *
46  * The timing of the memory barrier at (a) has to ensure that it executes
47  * before the IPI-induced memory barrier on CPU1.
48  *
49  * B) Userspace thread execution before IPI vs membarrier's memory
50  *    barrier after completing the IPI
51  *
52  * Userspace variables:
53  *
54  * int x = 0, y = 0;
55  *
56  * The memory barrier at the end of membarrier() on CPU0 is necessary in
57  * order to enforce the guarantee that any writes occurring on CPU1 before
58  * the membarrier() is executed will be visible to any code executing on
59  * CPU0 after the membarrier():
60  *
61  *         CPU0                              CPU1
62  *
63  *                                           x = 1
64  *                                           barrier()
65  *                                           y = 1
66  *         r2 = y
67  *         membarrier():
68  *           a: smp_mb()
69  *           b: send IPI                       IPI-induced mb
70  *           c: smp_mb()
71  *         r1 = x
72  *         BUG_ON(r1 == 0 && r2 == 1)
73  *
74  * The writes to x and y are unordered by the hardware, so it's possible to
75  * have "r2 = 1" even though the write to x doesn't execute until (b).  If
76  * the memory barrier at (c) is omitted then "r1 = x" can be reordered
77  * before (b) (although not before (a)), so we get "r1 = 0".  This violates
78  * the guarantee that membarrier() is supposed to provide.
79  *
80  * The timing of the memory barrier at (c) has to ensure that it executes
81  * after the IPI-induced memory barrier on CPU1.
82  *
83  * C) Scheduling userspace thread -> kthread -> userspace thread vs membarrier
84  *
85  *           CPU0                            CPU1
86  *
87  *           membarrier():
88  *           a: smp_mb()
89  *                                           d: switch to kthread (includes mb)
90  *           b: read rq->curr->mm == NULL
91  *                                           e: switch to user (includes mb)
92  *           c: smp_mb()
93  *
94  * Using the scenario from (A), we can show that (a) needs to be paired
95  * with (e). Using the scenario from (B), we can show that (c) needs to
96  * be paired with (d).
97  *
98  * D) exit_mm vs membarrier
99  *
100  * Two thread groups are created, A and B.  Thread group B is created by
101  * issuing clone from group A with flag CLONE_VM set, but not CLONE_THREAD.
102  * Let's assume we have a single thread within each thread group (Thread A
103  * and Thread B).  Thread A runs on CPU0, Thread B runs on CPU1.
104  *
105  *           CPU0                            CPU1
106  *
107  *           membarrier():
108  *             a: smp_mb()
109  *                                           exit_mm():
110  *                                             d: smp_mb()
111  *                                             e: current->mm = NULL
112  *             b: read rq->curr->mm == NULL
113  *             c: smp_mb()
114  *
115  * Using scenario (B), we can show that (c) needs to be paired with (d).
116  *
117  * E) kthread_{use,unuse}_mm vs membarrier
118  *
119  *           CPU0                            CPU1
120  *
121  *           membarrier():
122  *           a: smp_mb()
123  *                                           kthread_unuse_mm()
124  *                                             d: smp_mb()
125  *                                             e: current->mm = NULL
126  *           b: read rq->curr->mm == NULL
127  *                                           kthread_use_mm()
128  *                                             f: current->mm = mm
129  *                                             g: smp_mb()
130  *           c: smp_mb()
131  *
132  * Using the scenario from (A), we can show that (a) needs to be paired
133  * with (g). Using the scenario from (B), we can show that (c) needs to
134  * be paired with (d).
135  */
136 
137 /*
138  * Bitmask made from a "or" of all commands within enum membarrier_cmd,
139  * except MEMBARRIER_CMD_QUERY.
140  */
141 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE
142 #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK			\
143 	(MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE			\
144 	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE)
145 #else
146 #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK	0
147 #endif
148 
149 #ifdef CONFIG_RSEQ
150 #define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK		\
151 	(MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ			\
152 	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ)
153 #else
154 #define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK	0
155 #endif
156 
157 #define MEMBARRIER_CMD_BITMASK						\
158 	(MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED	\
159 	| MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED			\
160 	| MEMBARRIER_CMD_PRIVATE_EXPEDITED				\
161 	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED			\
162 	| MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK		\
163 	| MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK)
164 
165 static void ipi_mb(void *info)
166 {
167 	smp_mb();	/* IPIs should be serializing but paranoid. */
168 }
169 
170 static void ipi_sync_core(void *info)
171 {
172 	/*
173 	 * The smp_mb() in membarrier after all the IPIs is supposed to
174 	 * ensure that memory on remote CPUs that occur before the IPI
175 	 * become visible to membarrier()'s caller -- see scenario B in
176 	 * the big comment at the top of this file.
177 	 *
178 	 * A sync_core() would provide this guarantee, but
179 	 * sync_core_before_usermode() might end up being deferred until
180 	 * after membarrier()'s smp_mb().
181 	 */
182 	smp_mb();	/* IPIs should be serializing but paranoid. */
183 
184 	sync_core_before_usermode();
185 }
186 
187 static void ipi_rseq(void *info)
188 {
189 	/*
190 	 * Ensure that all stores done by the calling thread are visible
191 	 * to the current task before the current task resumes.  We could
192 	 * probably optimize this away on most architectures, but by the
193 	 * time we've already sent an IPI, the cost of the extra smp_mb()
194 	 * is negligible.
195 	 */
196 	smp_mb();
197 	rseq_preempt(current);
198 }
199 
200 static void ipi_sync_rq_state(void *info)
201 {
202 	struct mm_struct *mm = (struct mm_struct *) info;
203 
204 	if (current->mm != mm)
205 		return;
206 	this_cpu_write(runqueues.membarrier_state,
207 		       atomic_read(&mm->membarrier_state));
208 	/*
209 	 * Issue a memory barrier after setting
210 	 * MEMBARRIER_STATE_GLOBAL_EXPEDITED in the current runqueue to
211 	 * guarantee that no memory access following registration is reordered
212 	 * before registration.
213 	 */
214 	smp_mb();
215 }
216 
217 void membarrier_exec_mmap(struct mm_struct *mm)
218 {
219 	/*
220 	 * Issue a memory barrier before clearing membarrier_state to
221 	 * guarantee that no memory access prior to exec is reordered after
222 	 * clearing this state.
223 	 */
224 	smp_mb();
225 	atomic_set(&mm->membarrier_state, 0);
226 	/*
227 	 * Keep the runqueue membarrier_state in sync with this mm
228 	 * membarrier_state.
229 	 */
230 	this_cpu_write(runqueues.membarrier_state, 0);
231 }
232 
233 void membarrier_update_current_mm(struct mm_struct *next_mm)
234 {
235 	struct rq *rq = this_rq();
236 	int membarrier_state = 0;
237 
238 	if (next_mm)
239 		membarrier_state = atomic_read(&next_mm->membarrier_state);
240 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
241 		return;
242 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
243 }
244 
245 static int membarrier_global_expedited(void)
246 {
247 	int cpu;
248 	cpumask_var_t tmpmask;
249 
250 	if (num_online_cpus() == 1)
251 		return 0;
252 
253 	/*
254 	 * Matches memory barriers around rq->curr modification in
255 	 * scheduler.
256 	 */
257 	smp_mb();	/* system call entry is not a mb. */
258 
259 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
260 		return -ENOMEM;
261 
262 	cpus_read_lock();
263 	rcu_read_lock();
264 	for_each_online_cpu(cpu) {
265 		struct task_struct *p;
266 
267 		/*
268 		 * Skipping the current CPU is OK even through we can be
269 		 * migrated at any point. The current CPU, at the point
270 		 * where we read raw_smp_processor_id(), is ensured to
271 		 * be in program order with respect to the caller
272 		 * thread. Therefore, we can skip this CPU from the
273 		 * iteration.
274 		 */
275 		if (cpu == raw_smp_processor_id())
276 			continue;
277 
278 		if (!(READ_ONCE(cpu_rq(cpu)->membarrier_state) &
279 		    MEMBARRIER_STATE_GLOBAL_EXPEDITED))
280 			continue;
281 
282 		/*
283 		 * Skip the CPU if it runs a kernel thread which is not using
284 		 * a task mm.
285 		 */
286 		p = rcu_dereference(cpu_rq(cpu)->curr);
287 		if (!p->mm)
288 			continue;
289 
290 		__cpumask_set_cpu(cpu, tmpmask);
291 	}
292 	rcu_read_unlock();
293 
294 	preempt_disable();
295 	smp_call_function_many(tmpmask, ipi_mb, NULL, 1);
296 	preempt_enable();
297 
298 	free_cpumask_var(tmpmask);
299 	cpus_read_unlock();
300 
301 	/*
302 	 * Memory barrier on the caller thread _after_ we finished
303 	 * waiting for the last IPI. Matches memory barriers around
304 	 * rq->curr modification in scheduler.
305 	 */
306 	smp_mb();	/* exit from system call is not a mb */
307 	return 0;
308 }
309 
310 static int membarrier_private_expedited(int flags, int cpu_id)
311 {
312 	cpumask_var_t tmpmask;
313 	struct mm_struct *mm = current->mm;
314 	smp_call_func_t ipi_func = ipi_mb;
315 
316 	if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
317 		if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
318 			return -EINVAL;
319 		if (!(atomic_read(&mm->membarrier_state) &
320 		      MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY))
321 			return -EPERM;
322 		ipi_func = ipi_sync_core;
323 	} else if (flags == MEMBARRIER_FLAG_RSEQ) {
324 		if (!IS_ENABLED(CONFIG_RSEQ))
325 			return -EINVAL;
326 		if (!(atomic_read(&mm->membarrier_state) &
327 		      MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY))
328 			return -EPERM;
329 		ipi_func = ipi_rseq;
330 	} else {
331 		WARN_ON_ONCE(flags);
332 		if (!(atomic_read(&mm->membarrier_state) &
333 		      MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY))
334 			return -EPERM;
335 	}
336 
337 	if (flags != MEMBARRIER_FLAG_SYNC_CORE &&
338 	    (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1))
339 		return 0;
340 
341 	/*
342 	 * Matches memory barriers around rq->curr modification in
343 	 * scheduler.
344 	 */
345 	smp_mb();	/* system call entry is not a mb. */
346 
347 	if (cpu_id < 0 && !zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
348 		return -ENOMEM;
349 
350 	cpus_read_lock();
351 
352 	if (cpu_id >= 0) {
353 		struct task_struct *p;
354 
355 		if (cpu_id >= nr_cpu_ids || !cpu_online(cpu_id))
356 			goto out;
357 		rcu_read_lock();
358 		p = rcu_dereference(cpu_rq(cpu_id)->curr);
359 		if (!p || p->mm != mm) {
360 			rcu_read_unlock();
361 			goto out;
362 		}
363 		rcu_read_unlock();
364 	} else {
365 		int cpu;
366 
367 		rcu_read_lock();
368 		for_each_online_cpu(cpu) {
369 			struct task_struct *p;
370 
371 			p = rcu_dereference(cpu_rq(cpu)->curr);
372 			if (p && p->mm == mm)
373 				__cpumask_set_cpu(cpu, tmpmask);
374 		}
375 		rcu_read_unlock();
376 	}
377 
378 	if (cpu_id >= 0) {
379 		/*
380 		 * smp_call_function_single() will call ipi_func() if cpu_id
381 		 * is the calling CPU.
382 		 */
383 		smp_call_function_single(cpu_id, ipi_func, NULL, 1);
384 	} else {
385 		/*
386 		 * For regular membarrier, we can save a few cycles by
387 		 * skipping the current cpu -- we're about to do smp_mb()
388 		 * below, and if we migrate to a different cpu, this cpu
389 		 * and the new cpu will execute a full barrier in the
390 		 * scheduler.
391 		 *
392 		 * For SYNC_CORE, we do need a barrier on the current cpu --
393 		 * otherwise, if we are migrated and replaced by a different
394 		 * task in the same mm just before, during, or after
395 		 * membarrier, we will end up with some thread in the mm
396 		 * running without a core sync.
397 		 *
398 		 * For RSEQ, don't rseq_preempt() the caller.  User code
399 		 * is not supposed to issue syscalls at all from inside an
400 		 * rseq critical section.
401 		 */
402 		if (flags != MEMBARRIER_FLAG_SYNC_CORE) {
403 			preempt_disable();
404 			smp_call_function_many(tmpmask, ipi_func, NULL, true);
405 			preempt_enable();
406 		} else {
407 			on_each_cpu_mask(tmpmask, ipi_func, NULL, true);
408 		}
409 	}
410 
411 out:
412 	if (cpu_id < 0)
413 		free_cpumask_var(tmpmask);
414 	cpus_read_unlock();
415 
416 	/*
417 	 * Memory barrier on the caller thread _after_ we finished
418 	 * waiting for the last IPI. Matches memory barriers around
419 	 * rq->curr modification in scheduler.
420 	 */
421 	smp_mb();	/* exit from system call is not a mb */
422 
423 	return 0;
424 }
425 
426 static int sync_runqueues_membarrier_state(struct mm_struct *mm)
427 {
428 	int membarrier_state = atomic_read(&mm->membarrier_state);
429 	cpumask_var_t tmpmask;
430 	int cpu;
431 
432 	if (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1) {
433 		this_cpu_write(runqueues.membarrier_state, membarrier_state);
434 
435 		/*
436 		 * For single mm user, we can simply issue a memory barrier
437 		 * after setting MEMBARRIER_STATE_GLOBAL_EXPEDITED in the
438 		 * mm and in the current runqueue to guarantee that no memory
439 		 * access following registration is reordered before
440 		 * registration.
441 		 */
442 		smp_mb();
443 		return 0;
444 	}
445 
446 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
447 		return -ENOMEM;
448 
449 	/*
450 	 * For mm with multiple users, we need to ensure all future
451 	 * scheduler executions will observe @mm's new membarrier
452 	 * state.
453 	 */
454 	synchronize_rcu();
455 
456 	/*
457 	 * For each cpu runqueue, if the task's mm match @mm, ensure that all
458 	 * @mm's membarrier state set bits are also set in the runqueue's
459 	 * membarrier state. This ensures that a runqueue scheduling
460 	 * between threads which are users of @mm has its membarrier state
461 	 * updated.
462 	 */
463 	cpus_read_lock();
464 	rcu_read_lock();
465 	for_each_online_cpu(cpu) {
466 		struct rq *rq = cpu_rq(cpu);
467 		struct task_struct *p;
468 
469 		p = rcu_dereference(rq->curr);
470 		if (p && p->mm == mm)
471 			__cpumask_set_cpu(cpu, tmpmask);
472 	}
473 	rcu_read_unlock();
474 
475 	on_each_cpu_mask(tmpmask, ipi_sync_rq_state, mm, true);
476 
477 	free_cpumask_var(tmpmask);
478 	cpus_read_unlock();
479 
480 	return 0;
481 }
482 
483 static int membarrier_register_global_expedited(void)
484 {
485 	struct task_struct *p = current;
486 	struct mm_struct *mm = p->mm;
487 	int ret;
488 
489 	if (atomic_read(&mm->membarrier_state) &
490 	    MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY)
491 		return 0;
492 	atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED, &mm->membarrier_state);
493 	ret = sync_runqueues_membarrier_state(mm);
494 	if (ret)
495 		return ret;
496 	atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY,
497 		  &mm->membarrier_state);
498 
499 	return 0;
500 }
501 
502 static int membarrier_register_private_expedited(int flags)
503 {
504 	struct task_struct *p = current;
505 	struct mm_struct *mm = p->mm;
506 	int ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY,
507 	    set_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED,
508 	    ret;
509 
510 	if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
511 		if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
512 			return -EINVAL;
513 		ready_state =
514 			MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY;
515 	} else if (flags == MEMBARRIER_FLAG_RSEQ) {
516 		if (!IS_ENABLED(CONFIG_RSEQ))
517 			return -EINVAL;
518 		ready_state =
519 			MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY;
520 	} else {
521 		WARN_ON_ONCE(flags);
522 	}
523 
524 	/*
525 	 * We need to consider threads belonging to different thread
526 	 * groups, which use the same mm. (CLONE_VM but not
527 	 * CLONE_THREAD).
528 	 */
529 	if ((atomic_read(&mm->membarrier_state) & ready_state) == ready_state)
530 		return 0;
531 	if (flags & MEMBARRIER_FLAG_SYNC_CORE)
532 		set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE;
533 	if (flags & MEMBARRIER_FLAG_RSEQ)
534 		set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ;
535 	atomic_or(set_state, &mm->membarrier_state);
536 	ret = sync_runqueues_membarrier_state(mm);
537 	if (ret)
538 		return ret;
539 	atomic_or(ready_state, &mm->membarrier_state);
540 
541 	return 0;
542 }
543 
544 /**
545  * sys_membarrier - issue memory barriers on a set of threads
546  * @cmd:    Takes command values defined in enum membarrier_cmd.
547  * @flags:  Currently needs to be 0 for all commands other than
548  *          MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: in the latter
549  *          case it can be MEMBARRIER_CMD_FLAG_CPU, indicating that @cpu_id
550  *          contains the CPU on which to interrupt (= restart)
551  *          the RSEQ critical section.
552  * @cpu_id: if @flags == MEMBARRIER_CMD_FLAG_CPU, indicates the cpu on which
553  *          RSEQ CS should be interrupted (@cmd must be
554  *          MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ).
555  *
556  * If this system call is not implemented, -ENOSYS is returned. If the
557  * command specified does not exist, not available on the running
558  * kernel, or if the command argument is invalid, this system call
559  * returns -EINVAL. For a given command, with flags argument set to 0,
560  * if this system call returns -ENOSYS or -EINVAL, it is guaranteed to
561  * always return the same value until reboot. In addition, it can return
562  * -ENOMEM if there is not enough memory available to perform the system
563  * call.
564  *
565  * All memory accesses performed in program order from each targeted thread
566  * is guaranteed to be ordered with respect to sys_membarrier(). If we use
567  * the semantic "barrier()" to represent a compiler barrier forcing memory
568  * accesses to be performed in program order across the barrier, and
569  * smp_mb() to represent explicit memory barriers forcing full memory
570  * ordering across the barrier, we have the following ordering table for
571  * each pair of barrier(), sys_membarrier() and smp_mb():
572  *
573  * The pair ordering is detailed as (O: ordered, X: not ordered):
574  *
575  *                        barrier()   smp_mb() sys_membarrier()
576  *        barrier()          X           X            O
577  *        smp_mb()           X           O            O
578  *        sys_membarrier()   O           O            O
579  */
580 SYSCALL_DEFINE3(membarrier, int, cmd, unsigned int, flags, int, cpu_id)
581 {
582 	switch (cmd) {
583 	case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
584 		if (unlikely(flags && flags != MEMBARRIER_CMD_FLAG_CPU))
585 			return -EINVAL;
586 		break;
587 	default:
588 		if (unlikely(flags))
589 			return -EINVAL;
590 	}
591 
592 	if (!(flags & MEMBARRIER_CMD_FLAG_CPU))
593 		cpu_id = -1;
594 
595 	switch (cmd) {
596 	case MEMBARRIER_CMD_QUERY:
597 	{
598 		int cmd_mask = MEMBARRIER_CMD_BITMASK;
599 
600 		if (tick_nohz_full_enabled())
601 			cmd_mask &= ~MEMBARRIER_CMD_GLOBAL;
602 		return cmd_mask;
603 	}
604 	case MEMBARRIER_CMD_GLOBAL:
605 		/* MEMBARRIER_CMD_GLOBAL is not compatible with nohz_full. */
606 		if (tick_nohz_full_enabled())
607 			return -EINVAL;
608 		if (num_online_cpus() > 1)
609 			synchronize_rcu();
610 		return 0;
611 	case MEMBARRIER_CMD_GLOBAL_EXPEDITED:
612 		return membarrier_global_expedited();
613 	case MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED:
614 		return membarrier_register_global_expedited();
615 	case MEMBARRIER_CMD_PRIVATE_EXPEDITED:
616 		return membarrier_private_expedited(0, cpu_id);
617 	case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED:
618 		return membarrier_register_private_expedited(0);
619 	case MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE:
620 		return membarrier_private_expedited(MEMBARRIER_FLAG_SYNC_CORE, cpu_id);
621 	case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE:
622 		return membarrier_register_private_expedited(MEMBARRIER_FLAG_SYNC_CORE);
623 	case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
624 		return membarrier_private_expedited(MEMBARRIER_FLAG_RSEQ, cpu_id);
625 	case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ:
626 		return membarrier_register_private_expedited(MEMBARRIER_FLAG_RSEQ);
627 	default:
628 		return -EINVAL;
629 	}
630 }
631