xref: /openbmc/linux/kernel/sched/membarrier.c (revision 0a94608f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4  *
5  * membarrier system call
6  */
7 
8 /*
9  * For documentation purposes, here are some membarrier ordering
10  * scenarios to keep in mind:
11  *
12  * A) Userspace thread execution after IPI vs membarrier's memory
13  *    barrier before sending the IPI
14  *
15  * Userspace variables:
16  *
17  * int x = 0, y = 0;
18  *
19  * The memory barrier at the start of membarrier() on CPU0 is necessary in
20  * order to enforce the guarantee that any writes occurring on CPU0 before
21  * the membarrier() is executed will be visible to any code executing on
22  * CPU1 after the IPI-induced memory barrier:
23  *
24  *         CPU0                              CPU1
25  *
26  *         x = 1
27  *         membarrier():
28  *           a: smp_mb()
29  *           b: send IPI                       IPI-induced mb
30  *           c: smp_mb()
31  *         r2 = y
32  *                                           y = 1
33  *                                           barrier()
34  *                                           r1 = x
35  *
36  *                     BUG_ON(r1 == 0 && r2 == 0)
37  *
38  * The write to y and load from x by CPU1 are unordered by the hardware,
39  * so it's possible to have "r1 = x" reordered before "y = 1" at any
40  * point after (b).  If the memory barrier at (a) is omitted, then "x = 1"
41  * can be reordered after (a) (although not after (c)), so we get r1 == 0
42  * and r2 == 0.  This violates the guarantee that membarrier() is
43  * supposed by provide.
44  *
45  * The timing of the memory barrier at (a) has to ensure that it executes
46  * before the IPI-induced memory barrier on CPU1.
47  *
48  * B) Userspace thread execution before IPI vs membarrier's memory
49  *    barrier after completing the IPI
50  *
51  * Userspace variables:
52  *
53  * int x = 0, y = 0;
54  *
55  * The memory barrier at the end of membarrier() on CPU0 is necessary in
56  * order to enforce the guarantee that any writes occurring on CPU1 before
57  * the membarrier() is executed will be visible to any code executing on
58  * CPU0 after the membarrier():
59  *
60  *         CPU0                              CPU1
61  *
62  *                                           x = 1
63  *                                           barrier()
64  *                                           y = 1
65  *         r2 = y
66  *         membarrier():
67  *           a: smp_mb()
68  *           b: send IPI                       IPI-induced mb
69  *           c: smp_mb()
70  *         r1 = x
71  *         BUG_ON(r1 == 0 && r2 == 1)
72  *
73  * The writes to x and y are unordered by the hardware, so it's possible to
74  * have "r2 = 1" even though the write to x doesn't execute until (b).  If
75  * the memory barrier at (c) is omitted then "r1 = x" can be reordered
76  * before (b) (although not before (a)), so we get "r1 = 0".  This violates
77  * the guarantee that membarrier() is supposed to provide.
78  *
79  * The timing of the memory barrier at (c) has to ensure that it executes
80  * after the IPI-induced memory barrier on CPU1.
81  *
82  * C) Scheduling userspace thread -> kthread -> userspace thread vs membarrier
83  *
84  *           CPU0                            CPU1
85  *
86  *           membarrier():
87  *           a: smp_mb()
88  *                                           d: switch to kthread (includes mb)
89  *           b: read rq->curr->mm == NULL
90  *                                           e: switch to user (includes mb)
91  *           c: smp_mb()
92  *
93  * Using the scenario from (A), we can show that (a) needs to be paired
94  * with (e). Using the scenario from (B), we can show that (c) needs to
95  * be paired with (d).
96  *
97  * D) exit_mm vs membarrier
98  *
99  * Two thread groups are created, A and B.  Thread group B is created by
100  * issuing clone from group A with flag CLONE_VM set, but not CLONE_THREAD.
101  * Let's assume we have a single thread within each thread group (Thread A
102  * and Thread B).  Thread A runs on CPU0, Thread B runs on CPU1.
103  *
104  *           CPU0                            CPU1
105  *
106  *           membarrier():
107  *             a: smp_mb()
108  *                                           exit_mm():
109  *                                             d: smp_mb()
110  *                                             e: current->mm = NULL
111  *             b: read rq->curr->mm == NULL
112  *             c: smp_mb()
113  *
114  * Using scenario (B), we can show that (c) needs to be paired with (d).
115  *
116  * E) kthread_{use,unuse}_mm vs membarrier
117  *
118  *           CPU0                            CPU1
119  *
120  *           membarrier():
121  *           a: smp_mb()
122  *                                           kthread_unuse_mm()
123  *                                             d: smp_mb()
124  *                                             e: current->mm = NULL
125  *           b: read rq->curr->mm == NULL
126  *                                           kthread_use_mm()
127  *                                             f: current->mm = mm
128  *                                             g: smp_mb()
129  *           c: smp_mb()
130  *
131  * Using the scenario from (A), we can show that (a) needs to be paired
132  * with (g). Using the scenario from (B), we can show that (c) needs to
133  * be paired with (d).
134  */
135 
136 /*
137  * Bitmask made from a "or" of all commands within enum membarrier_cmd,
138  * except MEMBARRIER_CMD_QUERY.
139  */
140 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE
141 #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK			\
142 	(MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE			\
143 	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE)
144 #else
145 #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK	0
146 #endif
147 
148 #ifdef CONFIG_RSEQ
149 #define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK		\
150 	(MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ			\
151 	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ)
152 #else
153 #define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK	0
154 #endif
155 
156 #define MEMBARRIER_CMD_BITMASK						\
157 	(MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED	\
158 	| MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED			\
159 	| MEMBARRIER_CMD_PRIVATE_EXPEDITED				\
160 	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED			\
161 	| MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK		\
162 	| MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK)
163 
164 static void ipi_mb(void *info)
165 {
166 	smp_mb();	/* IPIs should be serializing but paranoid. */
167 }
168 
169 static void ipi_sync_core(void *info)
170 {
171 	/*
172 	 * The smp_mb() in membarrier after all the IPIs is supposed to
173 	 * ensure that memory on remote CPUs that occur before the IPI
174 	 * become visible to membarrier()'s caller -- see scenario B in
175 	 * the big comment at the top of this file.
176 	 *
177 	 * A sync_core() would provide this guarantee, but
178 	 * sync_core_before_usermode() might end up being deferred until
179 	 * after membarrier()'s smp_mb().
180 	 */
181 	smp_mb();	/* IPIs should be serializing but paranoid. */
182 
183 	sync_core_before_usermode();
184 }
185 
186 static void ipi_rseq(void *info)
187 {
188 	/*
189 	 * Ensure that all stores done by the calling thread are visible
190 	 * to the current task before the current task resumes.  We could
191 	 * probably optimize this away on most architectures, but by the
192 	 * time we've already sent an IPI, the cost of the extra smp_mb()
193 	 * is negligible.
194 	 */
195 	smp_mb();
196 	rseq_preempt(current);
197 }
198 
199 static void ipi_sync_rq_state(void *info)
200 {
201 	struct mm_struct *mm = (struct mm_struct *) info;
202 
203 	if (current->mm != mm)
204 		return;
205 	this_cpu_write(runqueues.membarrier_state,
206 		       atomic_read(&mm->membarrier_state));
207 	/*
208 	 * Issue a memory barrier after setting
209 	 * MEMBARRIER_STATE_GLOBAL_EXPEDITED in the current runqueue to
210 	 * guarantee that no memory access following registration is reordered
211 	 * before registration.
212 	 */
213 	smp_mb();
214 }
215 
216 void membarrier_exec_mmap(struct mm_struct *mm)
217 {
218 	/*
219 	 * Issue a memory barrier before clearing membarrier_state to
220 	 * guarantee that no memory access prior to exec is reordered after
221 	 * clearing this state.
222 	 */
223 	smp_mb();
224 	atomic_set(&mm->membarrier_state, 0);
225 	/*
226 	 * Keep the runqueue membarrier_state in sync with this mm
227 	 * membarrier_state.
228 	 */
229 	this_cpu_write(runqueues.membarrier_state, 0);
230 }
231 
232 void membarrier_update_current_mm(struct mm_struct *next_mm)
233 {
234 	struct rq *rq = this_rq();
235 	int membarrier_state = 0;
236 
237 	if (next_mm)
238 		membarrier_state = atomic_read(&next_mm->membarrier_state);
239 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
240 		return;
241 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
242 }
243 
244 static int membarrier_global_expedited(void)
245 {
246 	int cpu;
247 	cpumask_var_t tmpmask;
248 
249 	if (num_online_cpus() == 1)
250 		return 0;
251 
252 	/*
253 	 * Matches memory barriers around rq->curr modification in
254 	 * scheduler.
255 	 */
256 	smp_mb();	/* system call entry is not a mb. */
257 
258 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
259 		return -ENOMEM;
260 
261 	cpus_read_lock();
262 	rcu_read_lock();
263 	for_each_online_cpu(cpu) {
264 		struct task_struct *p;
265 
266 		/*
267 		 * Skipping the current CPU is OK even through we can be
268 		 * migrated at any point. The current CPU, at the point
269 		 * where we read raw_smp_processor_id(), is ensured to
270 		 * be in program order with respect to the caller
271 		 * thread. Therefore, we can skip this CPU from the
272 		 * iteration.
273 		 */
274 		if (cpu == raw_smp_processor_id())
275 			continue;
276 
277 		if (!(READ_ONCE(cpu_rq(cpu)->membarrier_state) &
278 		    MEMBARRIER_STATE_GLOBAL_EXPEDITED))
279 			continue;
280 
281 		/*
282 		 * Skip the CPU if it runs a kernel thread which is not using
283 		 * a task mm.
284 		 */
285 		p = rcu_dereference(cpu_rq(cpu)->curr);
286 		if (!p->mm)
287 			continue;
288 
289 		__cpumask_set_cpu(cpu, tmpmask);
290 	}
291 	rcu_read_unlock();
292 
293 	preempt_disable();
294 	smp_call_function_many(tmpmask, ipi_mb, NULL, 1);
295 	preempt_enable();
296 
297 	free_cpumask_var(tmpmask);
298 	cpus_read_unlock();
299 
300 	/*
301 	 * Memory barrier on the caller thread _after_ we finished
302 	 * waiting for the last IPI. Matches memory barriers around
303 	 * rq->curr modification in scheduler.
304 	 */
305 	smp_mb();	/* exit from system call is not a mb */
306 	return 0;
307 }
308 
309 static int membarrier_private_expedited(int flags, int cpu_id)
310 {
311 	cpumask_var_t tmpmask;
312 	struct mm_struct *mm = current->mm;
313 	smp_call_func_t ipi_func = ipi_mb;
314 
315 	if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
316 		if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
317 			return -EINVAL;
318 		if (!(atomic_read(&mm->membarrier_state) &
319 		      MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY))
320 			return -EPERM;
321 		ipi_func = ipi_sync_core;
322 	} else if (flags == MEMBARRIER_FLAG_RSEQ) {
323 		if (!IS_ENABLED(CONFIG_RSEQ))
324 			return -EINVAL;
325 		if (!(atomic_read(&mm->membarrier_state) &
326 		      MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY))
327 			return -EPERM;
328 		ipi_func = ipi_rseq;
329 	} else {
330 		WARN_ON_ONCE(flags);
331 		if (!(atomic_read(&mm->membarrier_state) &
332 		      MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY))
333 			return -EPERM;
334 	}
335 
336 	if (flags != MEMBARRIER_FLAG_SYNC_CORE &&
337 	    (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1))
338 		return 0;
339 
340 	/*
341 	 * Matches memory barriers around rq->curr modification in
342 	 * scheduler.
343 	 */
344 	smp_mb();	/* system call entry is not a mb. */
345 
346 	if (cpu_id < 0 && !zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
347 		return -ENOMEM;
348 
349 	cpus_read_lock();
350 
351 	if (cpu_id >= 0) {
352 		struct task_struct *p;
353 
354 		if (cpu_id >= nr_cpu_ids || !cpu_online(cpu_id))
355 			goto out;
356 		rcu_read_lock();
357 		p = rcu_dereference(cpu_rq(cpu_id)->curr);
358 		if (!p || p->mm != mm) {
359 			rcu_read_unlock();
360 			goto out;
361 		}
362 		rcu_read_unlock();
363 	} else {
364 		int cpu;
365 
366 		rcu_read_lock();
367 		for_each_online_cpu(cpu) {
368 			struct task_struct *p;
369 
370 			p = rcu_dereference(cpu_rq(cpu)->curr);
371 			if (p && p->mm == mm)
372 				__cpumask_set_cpu(cpu, tmpmask);
373 		}
374 		rcu_read_unlock();
375 	}
376 
377 	if (cpu_id >= 0) {
378 		/*
379 		 * smp_call_function_single() will call ipi_func() if cpu_id
380 		 * is the calling CPU.
381 		 */
382 		smp_call_function_single(cpu_id, ipi_func, NULL, 1);
383 	} else {
384 		/*
385 		 * For regular membarrier, we can save a few cycles by
386 		 * skipping the current cpu -- we're about to do smp_mb()
387 		 * below, and if we migrate to a different cpu, this cpu
388 		 * and the new cpu will execute a full barrier in the
389 		 * scheduler.
390 		 *
391 		 * For SYNC_CORE, we do need a barrier on the current cpu --
392 		 * otherwise, if we are migrated and replaced by a different
393 		 * task in the same mm just before, during, or after
394 		 * membarrier, we will end up with some thread in the mm
395 		 * running without a core sync.
396 		 *
397 		 * For RSEQ, don't rseq_preempt() the caller.  User code
398 		 * is not supposed to issue syscalls at all from inside an
399 		 * rseq critical section.
400 		 */
401 		if (flags != MEMBARRIER_FLAG_SYNC_CORE) {
402 			preempt_disable();
403 			smp_call_function_many(tmpmask, ipi_func, NULL, true);
404 			preempt_enable();
405 		} else {
406 			on_each_cpu_mask(tmpmask, ipi_func, NULL, true);
407 		}
408 	}
409 
410 out:
411 	if (cpu_id < 0)
412 		free_cpumask_var(tmpmask);
413 	cpus_read_unlock();
414 
415 	/*
416 	 * Memory barrier on the caller thread _after_ we finished
417 	 * waiting for the last IPI. Matches memory barriers around
418 	 * rq->curr modification in scheduler.
419 	 */
420 	smp_mb();	/* exit from system call is not a mb */
421 
422 	return 0;
423 }
424 
425 static int sync_runqueues_membarrier_state(struct mm_struct *mm)
426 {
427 	int membarrier_state = atomic_read(&mm->membarrier_state);
428 	cpumask_var_t tmpmask;
429 	int cpu;
430 
431 	if (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1) {
432 		this_cpu_write(runqueues.membarrier_state, membarrier_state);
433 
434 		/*
435 		 * For single mm user, we can simply issue a memory barrier
436 		 * after setting MEMBARRIER_STATE_GLOBAL_EXPEDITED in the
437 		 * mm and in the current runqueue to guarantee that no memory
438 		 * access following registration is reordered before
439 		 * registration.
440 		 */
441 		smp_mb();
442 		return 0;
443 	}
444 
445 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
446 		return -ENOMEM;
447 
448 	/*
449 	 * For mm with multiple users, we need to ensure all future
450 	 * scheduler executions will observe @mm's new membarrier
451 	 * state.
452 	 */
453 	synchronize_rcu();
454 
455 	/*
456 	 * For each cpu runqueue, if the task's mm match @mm, ensure that all
457 	 * @mm's membarrier state set bits are also set in the runqueue's
458 	 * membarrier state. This ensures that a runqueue scheduling
459 	 * between threads which are users of @mm has its membarrier state
460 	 * updated.
461 	 */
462 	cpus_read_lock();
463 	rcu_read_lock();
464 	for_each_online_cpu(cpu) {
465 		struct rq *rq = cpu_rq(cpu);
466 		struct task_struct *p;
467 
468 		p = rcu_dereference(rq->curr);
469 		if (p && p->mm == mm)
470 			__cpumask_set_cpu(cpu, tmpmask);
471 	}
472 	rcu_read_unlock();
473 
474 	on_each_cpu_mask(tmpmask, ipi_sync_rq_state, mm, true);
475 
476 	free_cpumask_var(tmpmask);
477 	cpus_read_unlock();
478 
479 	return 0;
480 }
481 
482 static int membarrier_register_global_expedited(void)
483 {
484 	struct task_struct *p = current;
485 	struct mm_struct *mm = p->mm;
486 	int ret;
487 
488 	if (atomic_read(&mm->membarrier_state) &
489 	    MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY)
490 		return 0;
491 	atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED, &mm->membarrier_state);
492 	ret = sync_runqueues_membarrier_state(mm);
493 	if (ret)
494 		return ret;
495 	atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY,
496 		  &mm->membarrier_state);
497 
498 	return 0;
499 }
500 
501 static int membarrier_register_private_expedited(int flags)
502 {
503 	struct task_struct *p = current;
504 	struct mm_struct *mm = p->mm;
505 	int ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY,
506 	    set_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED,
507 	    ret;
508 
509 	if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
510 		if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
511 			return -EINVAL;
512 		ready_state =
513 			MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY;
514 	} else if (flags == MEMBARRIER_FLAG_RSEQ) {
515 		if (!IS_ENABLED(CONFIG_RSEQ))
516 			return -EINVAL;
517 		ready_state =
518 			MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY;
519 	} else {
520 		WARN_ON_ONCE(flags);
521 	}
522 
523 	/*
524 	 * We need to consider threads belonging to different thread
525 	 * groups, which use the same mm. (CLONE_VM but not
526 	 * CLONE_THREAD).
527 	 */
528 	if ((atomic_read(&mm->membarrier_state) & ready_state) == ready_state)
529 		return 0;
530 	if (flags & MEMBARRIER_FLAG_SYNC_CORE)
531 		set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE;
532 	if (flags & MEMBARRIER_FLAG_RSEQ)
533 		set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ;
534 	atomic_or(set_state, &mm->membarrier_state);
535 	ret = sync_runqueues_membarrier_state(mm);
536 	if (ret)
537 		return ret;
538 	atomic_or(ready_state, &mm->membarrier_state);
539 
540 	return 0;
541 }
542 
543 /**
544  * sys_membarrier - issue memory barriers on a set of threads
545  * @cmd:    Takes command values defined in enum membarrier_cmd.
546  * @flags:  Currently needs to be 0 for all commands other than
547  *          MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: in the latter
548  *          case it can be MEMBARRIER_CMD_FLAG_CPU, indicating that @cpu_id
549  *          contains the CPU on which to interrupt (= restart)
550  *          the RSEQ critical section.
551  * @cpu_id: if @flags == MEMBARRIER_CMD_FLAG_CPU, indicates the cpu on which
552  *          RSEQ CS should be interrupted (@cmd must be
553  *          MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ).
554  *
555  * If this system call is not implemented, -ENOSYS is returned. If the
556  * command specified does not exist, not available on the running
557  * kernel, or if the command argument is invalid, this system call
558  * returns -EINVAL. For a given command, with flags argument set to 0,
559  * if this system call returns -ENOSYS or -EINVAL, it is guaranteed to
560  * always return the same value until reboot. In addition, it can return
561  * -ENOMEM if there is not enough memory available to perform the system
562  * call.
563  *
564  * All memory accesses performed in program order from each targeted thread
565  * is guaranteed to be ordered with respect to sys_membarrier(). If we use
566  * the semantic "barrier()" to represent a compiler barrier forcing memory
567  * accesses to be performed in program order across the barrier, and
568  * smp_mb() to represent explicit memory barriers forcing full memory
569  * ordering across the barrier, we have the following ordering table for
570  * each pair of barrier(), sys_membarrier() and smp_mb():
571  *
572  * The pair ordering is detailed as (O: ordered, X: not ordered):
573  *
574  *                        barrier()   smp_mb() sys_membarrier()
575  *        barrier()          X           X            O
576  *        smp_mb()           X           O            O
577  *        sys_membarrier()   O           O            O
578  */
579 SYSCALL_DEFINE3(membarrier, int, cmd, unsigned int, flags, int, cpu_id)
580 {
581 	switch (cmd) {
582 	case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
583 		if (unlikely(flags && flags != MEMBARRIER_CMD_FLAG_CPU))
584 			return -EINVAL;
585 		break;
586 	default:
587 		if (unlikely(flags))
588 			return -EINVAL;
589 	}
590 
591 	if (!(flags & MEMBARRIER_CMD_FLAG_CPU))
592 		cpu_id = -1;
593 
594 	switch (cmd) {
595 	case MEMBARRIER_CMD_QUERY:
596 	{
597 		int cmd_mask = MEMBARRIER_CMD_BITMASK;
598 
599 		if (tick_nohz_full_enabled())
600 			cmd_mask &= ~MEMBARRIER_CMD_GLOBAL;
601 		return cmd_mask;
602 	}
603 	case MEMBARRIER_CMD_GLOBAL:
604 		/* MEMBARRIER_CMD_GLOBAL is not compatible with nohz_full. */
605 		if (tick_nohz_full_enabled())
606 			return -EINVAL;
607 		if (num_online_cpus() > 1)
608 			synchronize_rcu();
609 		return 0;
610 	case MEMBARRIER_CMD_GLOBAL_EXPEDITED:
611 		return membarrier_global_expedited();
612 	case MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED:
613 		return membarrier_register_global_expedited();
614 	case MEMBARRIER_CMD_PRIVATE_EXPEDITED:
615 		return membarrier_private_expedited(0, cpu_id);
616 	case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED:
617 		return membarrier_register_private_expedited(0);
618 	case MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE:
619 		return membarrier_private_expedited(MEMBARRIER_FLAG_SYNC_CORE, cpu_id);
620 	case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE:
621 		return membarrier_register_private_expedited(MEMBARRIER_FLAG_SYNC_CORE);
622 	case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
623 		return membarrier_private_expedited(MEMBARRIER_FLAG_RSEQ, cpu_id);
624 	case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ:
625 		return membarrier_register_private_expedited(MEMBARRIER_FLAG_RSEQ);
626 	default:
627 		return -EINVAL;
628 	}
629 }
630