1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * kernel/sched/loadavg.c 4 * 5 * This file contains the magic bits required to compute the global loadavg 6 * figure. Its a silly number but people think its important. We go through 7 * great pains to make it work on big machines and tickless kernels. 8 */ 9 10 #include <linux/export.h> 11 #include <linux/sched/loadavg.h> 12 13 #include "sched.h" 14 15 /* 16 * Global load-average calculations 17 * 18 * We take a distributed and async approach to calculating the global load-avg 19 * in order to minimize overhead. 20 * 21 * The global load average is an exponentially decaying average of nr_running + 22 * nr_uninterruptible. 23 * 24 * Once every LOAD_FREQ: 25 * 26 * nr_active = 0; 27 * for_each_possible_cpu(cpu) 28 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; 29 * 30 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) 31 * 32 * Due to a number of reasons the above turns in the mess below: 33 * 34 * - for_each_possible_cpu() is prohibitively expensive on machines with 35 * serious number of cpus, therefore we need to take a distributed approach 36 * to calculating nr_active. 37 * 38 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 39 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } 40 * 41 * So assuming nr_active := 0 when we start out -- true per definition, we 42 * can simply take per-cpu deltas and fold those into a global accumulate 43 * to obtain the same result. See calc_load_fold_active(). 44 * 45 * Furthermore, in order to avoid synchronizing all per-cpu delta folding 46 * across the machine, we assume 10 ticks is sufficient time for every 47 * cpu to have completed this task. 48 * 49 * This places an upper-bound on the IRQ-off latency of the machine. Then 50 * again, being late doesn't loose the delta, just wrecks the sample. 51 * 52 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because 53 * this would add another cross-cpu cacheline miss and atomic operation 54 * to the wakeup path. Instead we increment on whatever cpu the task ran 55 * when it went into uninterruptible state and decrement on whatever cpu 56 * did the wakeup. This means that only the sum of nr_uninterruptible over 57 * all cpus yields the correct result. 58 * 59 * This covers the NO_HZ=n code, for extra head-aches, see the comment below. 60 */ 61 62 /* Variables and functions for calc_load */ 63 atomic_long_t calc_load_tasks; 64 unsigned long calc_load_update; 65 unsigned long avenrun[3]; 66 EXPORT_SYMBOL(avenrun); /* should be removed */ 67 68 /** 69 * get_avenrun - get the load average array 70 * @loads: pointer to dest load array 71 * @offset: offset to add 72 * @shift: shift count to shift the result left 73 * 74 * These values are estimates at best, so no need for locking. 75 */ 76 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 77 { 78 loads[0] = (avenrun[0] + offset) << shift; 79 loads[1] = (avenrun[1] + offset) << shift; 80 loads[2] = (avenrun[2] + offset) << shift; 81 } 82 83 long calc_load_fold_active(struct rq *this_rq, long adjust) 84 { 85 long nr_active, delta = 0; 86 87 nr_active = this_rq->nr_running - adjust; 88 nr_active += (long)this_rq->nr_uninterruptible; 89 90 if (nr_active != this_rq->calc_load_active) { 91 delta = nr_active - this_rq->calc_load_active; 92 this_rq->calc_load_active = nr_active; 93 } 94 95 return delta; 96 } 97 98 /* 99 * a1 = a0 * e + a * (1 - e) 100 */ 101 static unsigned long 102 calc_load(unsigned long load, unsigned long exp, unsigned long active) 103 { 104 unsigned long newload; 105 106 newload = load * exp + active * (FIXED_1 - exp); 107 if (active >= load) 108 newload += FIXED_1-1; 109 110 return newload / FIXED_1; 111 } 112 113 #ifdef CONFIG_NO_HZ_COMMON 114 /* 115 * Handle NO_HZ for the global load-average. 116 * 117 * Since the above described distributed algorithm to compute the global 118 * load-average relies on per-cpu sampling from the tick, it is affected by 119 * NO_HZ. 120 * 121 * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon 122 * entering NO_HZ state such that we can include this as an 'extra' cpu delta 123 * when we read the global state. 124 * 125 * Obviously reality has to ruin such a delightfully simple scheme: 126 * 127 * - When we go NO_HZ idle during the window, we can negate our sample 128 * contribution, causing under-accounting. 129 * 130 * We avoid this by keeping two NO_HZ-delta counters and flipping them 131 * when the window starts, thus separating old and new NO_HZ load. 132 * 133 * The only trick is the slight shift in index flip for read vs write. 134 * 135 * 0s 5s 10s 15s 136 * +10 +10 +10 +10 137 * |-|-----------|-|-----------|-|-----------|-| 138 * r:0 0 1 1 0 0 1 1 0 139 * w:0 1 1 0 0 1 1 0 0 140 * 141 * This ensures we'll fold the old NO_HZ contribution in this window while 142 * accumlating the new one. 143 * 144 * - When we wake up from NO_HZ during the window, we push up our 145 * contribution, since we effectively move our sample point to a known 146 * busy state. 147 * 148 * This is solved by pushing the window forward, and thus skipping the 149 * sample, for this cpu (effectively using the NO_HZ-delta for this cpu which 150 * was in effect at the time the window opened). This also solves the issue 151 * of having to deal with a cpu having been in NO_HZ for multiple LOAD_FREQ 152 * intervals. 153 * 154 * When making the ILB scale, we should try to pull this in as well. 155 */ 156 static atomic_long_t calc_load_nohz[2]; 157 static int calc_load_idx; 158 159 static inline int calc_load_write_idx(void) 160 { 161 int idx = calc_load_idx; 162 163 /* 164 * See calc_global_nohz(), if we observe the new index, we also 165 * need to observe the new update time. 166 */ 167 smp_rmb(); 168 169 /* 170 * If the folding window started, make sure we start writing in the 171 * next NO_HZ-delta. 172 */ 173 if (!time_before(jiffies, READ_ONCE(calc_load_update))) 174 idx++; 175 176 return idx & 1; 177 } 178 179 static inline int calc_load_read_idx(void) 180 { 181 return calc_load_idx & 1; 182 } 183 184 void calc_load_nohz_start(void) 185 { 186 struct rq *this_rq = this_rq(); 187 long delta; 188 189 /* 190 * We're going into NO_HZ mode, if there's any pending delta, fold it 191 * into the pending NO_HZ delta. 192 */ 193 delta = calc_load_fold_active(this_rq, 0); 194 if (delta) { 195 int idx = calc_load_write_idx(); 196 197 atomic_long_add(delta, &calc_load_nohz[idx]); 198 } 199 } 200 201 void calc_load_nohz_stop(void) 202 { 203 struct rq *this_rq = this_rq(); 204 205 /* 206 * If we're still before the pending sample window, we're done. 207 */ 208 this_rq->calc_load_update = READ_ONCE(calc_load_update); 209 if (time_before(jiffies, this_rq->calc_load_update)) 210 return; 211 212 /* 213 * We woke inside or after the sample window, this means we're already 214 * accounted through the nohz accounting, so skip the entire deal and 215 * sync up for the next window. 216 */ 217 if (time_before(jiffies, this_rq->calc_load_update + 10)) 218 this_rq->calc_load_update += LOAD_FREQ; 219 } 220 221 static long calc_load_nohz_fold(void) 222 { 223 int idx = calc_load_read_idx(); 224 long delta = 0; 225 226 if (atomic_long_read(&calc_load_nohz[idx])) 227 delta = atomic_long_xchg(&calc_load_nohz[idx], 0); 228 229 return delta; 230 } 231 232 /** 233 * fixed_power_int - compute: x^n, in O(log n) time 234 * 235 * @x: base of the power 236 * @frac_bits: fractional bits of @x 237 * @n: power to raise @x to. 238 * 239 * By exploiting the relation between the definition of the natural power 240 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 241 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 242 * (where: n_i \elem {0, 1}, the binary vector representing n), 243 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 244 * of course trivially computable in O(log_2 n), the length of our binary 245 * vector. 246 */ 247 static unsigned long 248 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 249 { 250 unsigned long result = 1UL << frac_bits; 251 252 if (n) { 253 for (;;) { 254 if (n & 1) { 255 result *= x; 256 result += 1UL << (frac_bits - 1); 257 result >>= frac_bits; 258 } 259 n >>= 1; 260 if (!n) 261 break; 262 x *= x; 263 x += 1UL << (frac_bits - 1); 264 x >>= frac_bits; 265 } 266 } 267 268 return result; 269 } 270 271 /* 272 * a1 = a0 * e + a * (1 - e) 273 * 274 * a2 = a1 * e + a * (1 - e) 275 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 276 * = a0 * e^2 + a * (1 - e) * (1 + e) 277 * 278 * a3 = a2 * e + a * (1 - e) 279 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 280 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 281 * 282 * ... 283 * 284 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 285 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 286 * = a0 * e^n + a * (1 - e^n) 287 * 288 * [1] application of the geometric series: 289 * 290 * n 1 - x^(n+1) 291 * S_n := \Sum x^i = ------------- 292 * i=0 1 - x 293 */ 294 static unsigned long 295 calc_load_n(unsigned long load, unsigned long exp, 296 unsigned long active, unsigned int n) 297 { 298 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 299 } 300 301 /* 302 * NO_HZ can leave us missing all per-cpu ticks calling 303 * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into 304 * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold 305 * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary. 306 * 307 * Once we've updated the global active value, we need to apply the exponential 308 * weights adjusted to the number of cycles missed. 309 */ 310 static void calc_global_nohz(void) 311 { 312 unsigned long sample_window; 313 long delta, active, n; 314 315 sample_window = READ_ONCE(calc_load_update); 316 if (!time_before(jiffies, sample_window + 10)) { 317 /* 318 * Catch-up, fold however many we are behind still 319 */ 320 delta = jiffies - sample_window - 10; 321 n = 1 + (delta / LOAD_FREQ); 322 323 active = atomic_long_read(&calc_load_tasks); 324 active = active > 0 ? active * FIXED_1 : 0; 325 326 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 327 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 328 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 329 330 WRITE_ONCE(calc_load_update, sample_window + n * LOAD_FREQ); 331 } 332 333 /* 334 * Flip the NO_HZ index... 335 * 336 * Make sure we first write the new time then flip the index, so that 337 * calc_load_write_idx() will see the new time when it reads the new 338 * index, this avoids a double flip messing things up. 339 */ 340 smp_wmb(); 341 calc_load_idx++; 342 } 343 #else /* !CONFIG_NO_HZ_COMMON */ 344 345 static inline long calc_load_nohz_fold(void) { return 0; } 346 static inline void calc_global_nohz(void) { } 347 348 #endif /* CONFIG_NO_HZ_COMMON */ 349 350 /* 351 * calc_load - update the avenrun load estimates 10 ticks after the 352 * CPUs have updated calc_load_tasks. 353 * 354 * Called from the global timer code. 355 */ 356 void calc_global_load(unsigned long ticks) 357 { 358 unsigned long sample_window; 359 long active, delta; 360 361 sample_window = READ_ONCE(calc_load_update); 362 if (time_before(jiffies, sample_window + 10)) 363 return; 364 365 /* 366 * Fold the 'old' NO_HZ-delta to include all NO_HZ cpus. 367 */ 368 delta = calc_load_nohz_fold(); 369 if (delta) 370 atomic_long_add(delta, &calc_load_tasks); 371 372 active = atomic_long_read(&calc_load_tasks); 373 active = active > 0 ? active * FIXED_1 : 0; 374 375 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 376 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 377 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 378 379 WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ); 380 381 /* 382 * In case we went to NO_HZ for multiple LOAD_FREQ intervals 383 * catch up in bulk. 384 */ 385 calc_global_nohz(); 386 } 387 388 /* 389 * Called from scheduler_tick() to periodically update this CPU's 390 * active count. 391 */ 392 void calc_global_load_tick(struct rq *this_rq) 393 { 394 long delta; 395 396 if (time_before(jiffies, this_rq->calc_load_update)) 397 return; 398 399 delta = calc_load_fold_active(this_rq, 0); 400 if (delta) 401 atomic_long_add(delta, &calc_load_tasks); 402 403 this_rq->calc_load_update += LOAD_FREQ; 404 } 405