xref: /openbmc/linux/kernel/sched/loadavg.c (revision e3b9f1e8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * kernel/sched/loadavg.c
4  *
5  * This file contains the magic bits required to compute the global loadavg
6  * figure. Its a silly number but people think its important. We go through
7  * great pains to make it work on big machines and tickless kernels.
8  */
9 
10 #include <linux/export.h>
11 #include <linux/sched/loadavg.h>
12 
13 #include "sched.h"
14 
15 /*
16  * Global load-average calculations
17  *
18  * We take a distributed and async approach to calculating the global load-avg
19  * in order to minimize overhead.
20  *
21  * The global load average is an exponentially decaying average of nr_running +
22  * nr_uninterruptible.
23  *
24  * Once every LOAD_FREQ:
25  *
26  *   nr_active = 0;
27  *   for_each_possible_cpu(cpu)
28  *	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
29  *
30  *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
31  *
32  * Due to a number of reasons the above turns in the mess below:
33  *
34  *  - for_each_possible_cpu() is prohibitively expensive on machines with
35  *    serious number of cpus, therefore we need to take a distributed approach
36  *    to calculating nr_active.
37  *
38  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
39  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
40  *
41  *    So assuming nr_active := 0 when we start out -- true per definition, we
42  *    can simply take per-cpu deltas and fold those into a global accumulate
43  *    to obtain the same result. See calc_load_fold_active().
44  *
45  *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
46  *    across the machine, we assume 10 ticks is sufficient time for every
47  *    cpu to have completed this task.
48  *
49  *    This places an upper-bound on the IRQ-off latency of the machine. Then
50  *    again, being late doesn't loose the delta, just wrecks the sample.
51  *
52  *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
53  *    this would add another cross-cpu cacheline miss and atomic operation
54  *    to the wakeup path. Instead we increment on whatever cpu the task ran
55  *    when it went into uninterruptible state and decrement on whatever cpu
56  *    did the wakeup. This means that only the sum of nr_uninterruptible over
57  *    all cpus yields the correct result.
58  *
59  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
60  */
61 
62 /* Variables and functions for calc_load */
63 atomic_long_t calc_load_tasks;
64 unsigned long calc_load_update;
65 unsigned long avenrun[3];
66 EXPORT_SYMBOL(avenrun); /* should be removed */
67 
68 /**
69  * get_avenrun - get the load average array
70  * @loads:	pointer to dest load array
71  * @offset:	offset to add
72  * @shift:	shift count to shift the result left
73  *
74  * These values are estimates at best, so no need for locking.
75  */
76 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
77 {
78 	loads[0] = (avenrun[0] + offset) << shift;
79 	loads[1] = (avenrun[1] + offset) << shift;
80 	loads[2] = (avenrun[2] + offset) << shift;
81 }
82 
83 long calc_load_fold_active(struct rq *this_rq, long adjust)
84 {
85 	long nr_active, delta = 0;
86 
87 	nr_active = this_rq->nr_running - adjust;
88 	nr_active += (long)this_rq->nr_uninterruptible;
89 
90 	if (nr_active != this_rq->calc_load_active) {
91 		delta = nr_active - this_rq->calc_load_active;
92 		this_rq->calc_load_active = nr_active;
93 	}
94 
95 	return delta;
96 }
97 
98 /*
99  * a1 = a0 * e + a * (1 - e)
100  */
101 static unsigned long
102 calc_load(unsigned long load, unsigned long exp, unsigned long active)
103 {
104 	unsigned long newload;
105 
106 	newload = load * exp + active * (FIXED_1 - exp);
107 	if (active >= load)
108 		newload += FIXED_1-1;
109 
110 	return newload / FIXED_1;
111 }
112 
113 #ifdef CONFIG_NO_HZ_COMMON
114 /*
115  * Handle NO_HZ for the global load-average.
116  *
117  * Since the above described distributed algorithm to compute the global
118  * load-average relies on per-cpu sampling from the tick, it is affected by
119  * NO_HZ.
120  *
121  * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon
122  * entering NO_HZ state such that we can include this as an 'extra' cpu delta
123  * when we read the global state.
124  *
125  * Obviously reality has to ruin such a delightfully simple scheme:
126  *
127  *  - When we go NO_HZ idle during the window, we can negate our sample
128  *    contribution, causing under-accounting.
129  *
130  *    We avoid this by keeping two NO_HZ-delta counters and flipping them
131  *    when the window starts, thus separating old and new NO_HZ load.
132  *
133  *    The only trick is the slight shift in index flip for read vs write.
134  *
135  *        0s            5s            10s           15s
136  *          +10           +10           +10           +10
137  *        |-|-----------|-|-----------|-|-----------|-|
138  *    r:0 0 1           1 0           0 1           1 0
139  *    w:0 1 1           0 0           1 1           0 0
140  *
141  *    This ensures we'll fold the old NO_HZ contribution in this window while
142  *    accumlating the new one.
143  *
144  *  - When we wake up from NO_HZ during the window, we push up our
145  *    contribution, since we effectively move our sample point to a known
146  *    busy state.
147  *
148  *    This is solved by pushing the window forward, and thus skipping the
149  *    sample, for this cpu (effectively using the NO_HZ-delta for this cpu which
150  *    was in effect at the time the window opened). This also solves the issue
151  *    of having to deal with a cpu having been in NO_HZ for multiple LOAD_FREQ
152  *    intervals.
153  *
154  * When making the ILB scale, we should try to pull this in as well.
155  */
156 static atomic_long_t calc_load_nohz[2];
157 static int calc_load_idx;
158 
159 static inline int calc_load_write_idx(void)
160 {
161 	int idx = calc_load_idx;
162 
163 	/*
164 	 * See calc_global_nohz(), if we observe the new index, we also
165 	 * need to observe the new update time.
166 	 */
167 	smp_rmb();
168 
169 	/*
170 	 * If the folding window started, make sure we start writing in the
171 	 * next NO_HZ-delta.
172 	 */
173 	if (!time_before(jiffies, READ_ONCE(calc_load_update)))
174 		idx++;
175 
176 	return idx & 1;
177 }
178 
179 static inline int calc_load_read_idx(void)
180 {
181 	return calc_load_idx & 1;
182 }
183 
184 void calc_load_nohz_start(void)
185 {
186 	struct rq *this_rq = this_rq();
187 	long delta;
188 
189 	/*
190 	 * We're going into NO_HZ mode, if there's any pending delta, fold it
191 	 * into the pending NO_HZ delta.
192 	 */
193 	delta = calc_load_fold_active(this_rq, 0);
194 	if (delta) {
195 		int idx = calc_load_write_idx();
196 
197 		atomic_long_add(delta, &calc_load_nohz[idx]);
198 	}
199 }
200 
201 void calc_load_nohz_stop(void)
202 {
203 	struct rq *this_rq = this_rq();
204 
205 	/*
206 	 * If we're still before the pending sample window, we're done.
207 	 */
208 	this_rq->calc_load_update = READ_ONCE(calc_load_update);
209 	if (time_before(jiffies, this_rq->calc_load_update))
210 		return;
211 
212 	/*
213 	 * We woke inside or after the sample window, this means we're already
214 	 * accounted through the nohz accounting, so skip the entire deal and
215 	 * sync up for the next window.
216 	 */
217 	if (time_before(jiffies, this_rq->calc_load_update + 10))
218 		this_rq->calc_load_update += LOAD_FREQ;
219 }
220 
221 static long calc_load_nohz_fold(void)
222 {
223 	int idx = calc_load_read_idx();
224 	long delta = 0;
225 
226 	if (atomic_long_read(&calc_load_nohz[idx]))
227 		delta = atomic_long_xchg(&calc_load_nohz[idx], 0);
228 
229 	return delta;
230 }
231 
232 /**
233  * fixed_power_int - compute: x^n, in O(log n) time
234  *
235  * @x:         base of the power
236  * @frac_bits: fractional bits of @x
237  * @n:         power to raise @x to.
238  *
239  * By exploiting the relation between the definition of the natural power
240  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
241  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
242  * (where: n_i \elem {0, 1}, the binary vector representing n),
243  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
244  * of course trivially computable in O(log_2 n), the length of our binary
245  * vector.
246  */
247 static unsigned long
248 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
249 {
250 	unsigned long result = 1UL << frac_bits;
251 
252 	if (n) {
253 		for (;;) {
254 			if (n & 1) {
255 				result *= x;
256 				result += 1UL << (frac_bits - 1);
257 				result >>= frac_bits;
258 			}
259 			n >>= 1;
260 			if (!n)
261 				break;
262 			x *= x;
263 			x += 1UL << (frac_bits - 1);
264 			x >>= frac_bits;
265 		}
266 	}
267 
268 	return result;
269 }
270 
271 /*
272  * a1 = a0 * e + a * (1 - e)
273  *
274  * a2 = a1 * e + a * (1 - e)
275  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
276  *    = a0 * e^2 + a * (1 - e) * (1 + e)
277  *
278  * a3 = a2 * e + a * (1 - e)
279  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
280  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
281  *
282  *  ...
283  *
284  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
285  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
286  *    = a0 * e^n + a * (1 - e^n)
287  *
288  * [1] application of the geometric series:
289  *
290  *              n         1 - x^(n+1)
291  *     S_n := \Sum x^i = -------------
292  *             i=0          1 - x
293  */
294 static unsigned long
295 calc_load_n(unsigned long load, unsigned long exp,
296 	    unsigned long active, unsigned int n)
297 {
298 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
299 }
300 
301 /*
302  * NO_HZ can leave us missing all per-cpu ticks calling
303  * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into
304  * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold
305  * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary.
306  *
307  * Once we've updated the global active value, we need to apply the exponential
308  * weights adjusted to the number of cycles missed.
309  */
310 static void calc_global_nohz(void)
311 {
312 	unsigned long sample_window;
313 	long delta, active, n;
314 
315 	sample_window = READ_ONCE(calc_load_update);
316 	if (!time_before(jiffies, sample_window + 10)) {
317 		/*
318 		 * Catch-up, fold however many we are behind still
319 		 */
320 		delta = jiffies - sample_window - 10;
321 		n = 1 + (delta / LOAD_FREQ);
322 
323 		active = atomic_long_read(&calc_load_tasks);
324 		active = active > 0 ? active * FIXED_1 : 0;
325 
326 		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
327 		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
328 		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
329 
330 		WRITE_ONCE(calc_load_update, sample_window + n * LOAD_FREQ);
331 	}
332 
333 	/*
334 	 * Flip the NO_HZ index...
335 	 *
336 	 * Make sure we first write the new time then flip the index, so that
337 	 * calc_load_write_idx() will see the new time when it reads the new
338 	 * index, this avoids a double flip messing things up.
339 	 */
340 	smp_wmb();
341 	calc_load_idx++;
342 }
343 #else /* !CONFIG_NO_HZ_COMMON */
344 
345 static inline long calc_load_nohz_fold(void) { return 0; }
346 static inline void calc_global_nohz(void) { }
347 
348 #endif /* CONFIG_NO_HZ_COMMON */
349 
350 /*
351  * calc_load - update the avenrun load estimates 10 ticks after the
352  * CPUs have updated calc_load_tasks.
353  *
354  * Called from the global timer code.
355  */
356 void calc_global_load(unsigned long ticks)
357 {
358 	unsigned long sample_window;
359 	long active, delta;
360 
361 	sample_window = READ_ONCE(calc_load_update);
362 	if (time_before(jiffies, sample_window + 10))
363 		return;
364 
365 	/*
366 	 * Fold the 'old' NO_HZ-delta to include all NO_HZ cpus.
367 	 */
368 	delta = calc_load_nohz_fold();
369 	if (delta)
370 		atomic_long_add(delta, &calc_load_tasks);
371 
372 	active = atomic_long_read(&calc_load_tasks);
373 	active = active > 0 ? active * FIXED_1 : 0;
374 
375 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
376 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
377 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
378 
379 	WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ);
380 
381 	/*
382 	 * In case we went to NO_HZ for multiple LOAD_FREQ intervals
383 	 * catch up in bulk.
384 	 */
385 	calc_global_nohz();
386 }
387 
388 /*
389  * Called from scheduler_tick() to periodically update this CPU's
390  * active count.
391  */
392 void calc_global_load_tick(struct rq *this_rq)
393 {
394 	long delta;
395 
396 	if (time_before(jiffies, this_rq->calc_load_update))
397 		return;
398 
399 	delta  = calc_load_fold_active(this_rq, 0);
400 	if (delta)
401 		atomic_long_add(delta, &calc_load_tasks);
402 
403 	this_rq->calc_load_update += LOAD_FREQ;
404 }
405