1 /* 2 * kernel/sched/loadavg.c 3 * 4 * This file contains the magic bits required to compute the global loadavg 5 * figure. Its a silly number but people think its important. We go through 6 * great pains to make it work on big machines and tickless kernels. 7 */ 8 9 #include <linux/export.h> 10 #include <linux/sched/loadavg.h> 11 12 #include "sched.h" 13 14 /* 15 * Global load-average calculations 16 * 17 * We take a distributed and async approach to calculating the global load-avg 18 * in order to minimize overhead. 19 * 20 * The global load average is an exponentially decaying average of nr_running + 21 * nr_uninterruptible. 22 * 23 * Once every LOAD_FREQ: 24 * 25 * nr_active = 0; 26 * for_each_possible_cpu(cpu) 27 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; 28 * 29 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) 30 * 31 * Due to a number of reasons the above turns in the mess below: 32 * 33 * - for_each_possible_cpu() is prohibitively expensive on machines with 34 * serious number of cpus, therefore we need to take a distributed approach 35 * to calculating nr_active. 36 * 37 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 38 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } 39 * 40 * So assuming nr_active := 0 when we start out -- true per definition, we 41 * can simply take per-cpu deltas and fold those into a global accumulate 42 * to obtain the same result. See calc_load_fold_active(). 43 * 44 * Furthermore, in order to avoid synchronizing all per-cpu delta folding 45 * across the machine, we assume 10 ticks is sufficient time for every 46 * cpu to have completed this task. 47 * 48 * This places an upper-bound on the IRQ-off latency of the machine. Then 49 * again, being late doesn't loose the delta, just wrecks the sample. 50 * 51 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because 52 * this would add another cross-cpu cacheline miss and atomic operation 53 * to the wakeup path. Instead we increment on whatever cpu the task ran 54 * when it went into uninterruptible state and decrement on whatever cpu 55 * did the wakeup. This means that only the sum of nr_uninterruptible over 56 * all cpus yields the correct result. 57 * 58 * This covers the NO_HZ=n code, for extra head-aches, see the comment below. 59 */ 60 61 /* Variables and functions for calc_load */ 62 atomic_long_t calc_load_tasks; 63 unsigned long calc_load_update; 64 unsigned long avenrun[3]; 65 EXPORT_SYMBOL(avenrun); /* should be removed */ 66 67 /** 68 * get_avenrun - get the load average array 69 * @loads: pointer to dest load array 70 * @offset: offset to add 71 * @shift: shift count to shift the result left 72 * 73 * These values are estimates at best, so no need for locking. 74 */ 75 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 76 { 77 loads[0] = (avenrun[0] + offset) << shift; 78 loads[1] = (avenrun[1] + offset) << shift; 79 loads[2] = (avenrun[2] + offset) << shift; 80 } 81 82 long calc_load_fold_active(struct rq *this_rq, long adjust) 83 { 84 long nr_active, delta = 0; 85 86 nr_active = this_rq->nr_running - adjust; 87 nr_active += (long)this_rq->nr_uninterruptible; 88 89 if (nr_active != this_rq->calc_load_active) { 90 delta = nr_active - this_rq->calc_load_active; 91 this_rq->calc_load_active = nr_active; 92 } 93 94 return delta; 95 } 96 97 /* 98 * a1 = a0 * e + a * (1 - e) 99 */ 100 static unsigned long 101 calc_load(unsigned long load, unsigned long exp, unsigned long active) 102 { 103 unsigned long newload; 104 105 newload = load * exp + active * (FIXED_1 - exp); 106 if (active >= load) 107 newload += FIXED_1-1; 108 109 return newload / FIXED_1; 110 } 111 112 #ifdef CONFIG_NO_HZ_COMMON 113 /* 114 * Handle NO_HZ for the global load-average. 115 * 116 * Since the above described distributed algorithm to compute the global 117 * load-average relies on per-cpu sampling from the tick, it is affected by 118 * NO_HZ. 119 * 120 * The basic idea is to fold the nr_active delta into a global idle-delta upon 121 * entering NO_HZ state such that we can include this as an 'extra' cpu delta 122 * when we read the global state. 123 * 124 * Obviously reality has to ruin such a delightfully simple scheme: 125 * 126 * - When we go NO_HZ idle during the window, we can negate our sample 127 * contribution, causing under-accounting. 128 * 129 * We avoid this by keeping two idle-delta counters and flipping them 130 * when the window starts, thus separating old and new NO_HZ load. 131 * 132 * The only trick is the slight shift in index flip for read vs write. 133 * 134 * 0s 5s 10s 15s 135 * +10 +10 +10 +10 136 * |-|-----------|-|-----------|-|-----------|-| 137 * r:0 0 1 1 0 0 1 1 0 138 * w:0 1 1 0 0 1 1 0 0 139 * 140 * This ensures we'll fold the old idle contribution in this window while 141 * accumlating the new one. 142 * 143 * - When we wake up from NO_HZ idle during the window, we push up our 144 * contribution, since we effectively move our sample point to a known 145 * busy state. 146 * 147 * This is solved by pushing the window forward, and thus skipping the 148 * sample, for this cpu (effectively using the idle-delta for this cpu which 149 * was in effect at the time the window opened). This also solves the issue 150 * of having to deal with a cpu having been in NOHZ idle for multiple 151 * LOAD_FREQ intervals. 152 * 153 * When making the ILB scale, we should try to pull this in as well. 154 */ 155 static atomic_long_t calc_load_idle[2]; 156 static int calc_load_idx; 157 158 static inline int calc_load_write_idx(void) 159 { 160 int idx = calc_load_idx; 161 162 /* 163 * See calc_global_nohz(), if we observe the new index, we also 164 * need to observe the new update time. 165 */ 166 smp_rmb(); 167 168 /* 169 * If the folding window started, make sure we start writing in the 170 * next idle-delta. 171 */ 172 if (!time_before(jiffies, calc_load_update)) 173 idx++; 174 175 return idx & 1; 176 } 177 178 static inline int calc_load_read_idx(void) 179 { 180 return calc_load_idx & 1; 181 } 182 183 void calc_load_enter_idle(void) 184 { 185 struct rq *this_rq = this_rq(); 186 long delta; 187 188 /* 189 * We're going into NOHZ mode, if there's any pending delta, fold it 190 * into the pending idle delta. 191 */ 192 delta = calc_load_fold_active(this_rq, 0); 193 if (delta) { 194 int idx = calc_load_write_idx(); 195 196 atomic_long_add(delta, &calc_load_idle[idx]); 197 } 198 } 199 200 void calc_load_exit_idle(void) 201 { 202 struct rq *this_rq = this_rq(); 203 204 /* 205 * If we're still before the sample window, we're done. 206 */ 207 if (time_before(jiffies, this_rq->calc_load_update)) 208 return; 209 210 /* 211 * We woke inside or after the sample window, this means we're already 212 * accounted through the nohz accounting, so skip the entire deal and 213 * sync up for the next window. 214 */ 215 this_rq->calc_load_update = calc_load_update; 216 if (time_before(jiffies, this_rq->calc_load_update + 10)) 217 this_rq->calc_load_update += LOAD_FREQ; 218 } 219 220 static long calc_load_fold_idle(void) 221 { 222 int idx = calc_load_read_idx(); 223 long delta = 0; 224 225 if (atomic_long_read(&calc_load_idle[idx])) 226 delta = atomic_long_xchg(&calc_load_idle[idx], 0); 227 228 return delta; 229 } 230 231 /** 232 * fixed_power_int - compute: x^n, in O(log n) time 233 * 234 * @x: base of the power 235 * @frac_bits: fractional bits of @x 236 * @n: power to raise @x to. 237 * 238 * By exploiting the relation between the definition of the natural power 239 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 240 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 241 * (where: n_i \elem {0, 1}, the binary vector representing n), 242 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 243 * of course trivially computable in O(log_2 n), the length of our binary 244 * vector. 245 */ 246 static unsigned long 247 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 248 { 249 unsigned long result = 1UL << frac_bits; 250 251 if (n) { 252 for (;;) { 253 if (n & 1) { 254 result *= x; 255 result += 1UL << (frac_bits - 1); 256 result >>= frac_bits; 257 } 258 n >>= 1; 259 if (!n) 260 break; 261 x *= x; 262 x += 1UL << (frac_bits - 1); 263 x >>= frac_bits; 264 } 265 } 266 267 return result; 268 } 269 270 /* 271 * a1 = a0 * e + a * (1 - e) 272 * 273 * a2 = a1 * e + a * (1 - e) 274 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 275 * = a0 * e^2 + a * (1 - e) * (1 + e) 276 * 277 * a3 = a2 * e + a * (1 - e) 278 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 279 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 280 * 281 * ... 282 * 283 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 284 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 285 * = a0 * e^n + a * (1 - e^n) 286 * 287 * [1] application of the geometric series: 288 * 289 * n 1 - x^(n+1) 290 * S_n := \Sum x^i = ------------- 291 * i=0 1 - x 292 */ 293 static unsigned long 294 calc_load_n(unsigned long load, unsigned long exp, 295 unsigned long active, unsigned int n) 296 { 297 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 298 } 299 300 /* 301 * NO_HZ can leave us missing all per-cpu ticks calling 302 * calc_load_account_active(), but since an idle CPU folds its delta into 303 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold 304 * in the pending idle delta if our idle period crossed a load cycle boundary. 305 * 306 * Once we've updated the global active value, we need to apply the exponential 307 * weights adjusted to the number of cycles missed. 308 */ 309 static void calc_global_nohz(void) 310 { 311 long delta, active, n; 312 313 if (!time_before(jiffies, calc_load_update + 10)) { 314 /* 315 * Catch-up, fold however many we are behind still 316 */ 317 delta = jiffies - calc_load_update - 10; 318 n = 1 + (delta / LOAD_FREQ); 319 320 active = atomic_long_read(&calc_load_tasks); 321 active = active > 0 ? active * FIXED_1 : 0; 322 323 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 324 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 325 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 326 327 calc_load_update += n * LOAD_FREQ; 328 } 329 330 /* 331 * Flip the idle index... 332 * 333 * Make sure we first write the new time then flip the index, so that 334 * calc_load_write_idx() will see the new time when it reads the new 335 * index, this avoids a double flip messing things up. 336 */ 337 smp_wmb(); 338 calc_load_idx++; 339 } 340 #else /* !CONFIG_NO_HZ_COMMON */ 341 342 static inline long calc_load_fold_idle(void) { return 0; } 343 static inline void calc_global_nohz(void) { } 344 345 #endif /* CONFIG_NO_HZ_COMMON */ 346 347 /* 348 * calc_load - update the avenrun load estimates 10 ticks after the 349 * CPUs have updated calc_load_tasks. 350 * 351 * Called from the global timer code. 352 */ 353 void calc_global_load(unsigned long ticks) 354 { 355 long active, delta; 356 357 if (time_before(jiffies, calc_load_update + 10)) 358 return; 359 360 /* 361 * Fold the 'old' idle-delta to include all NO_HZ cpus. 362 */ 363 delta = calc_load_fold_idle(); 364 if (delta) 365 atomic_long_add(delta, &calc_load_tasks); 366 367 active = atomic_long_read(&calc_load_tasks); 368 active = active > 0 ? active * FIXED_1 : 0; 369 370 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 371 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 372 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 373 374 calc_load_update += LOAD_FREQ; 375 376 /* 377 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk. 378 */ 379 calc_global_nohz(); 380 } 381 382 /* 383 * Called from scheduler_tick() to periodically update this CPU's 384 * active count. 385 */ 386 void calc_global_load_tick(struct rq *this_rq) 387 { 388 long delta; 389 390 if (time_before(jiffies, this_rq->calc_load_update)) 391 return; 392 393 delta = calc_load_fold_active(this_rq, 0); 394 if (delta) 395 atomic_long_add(delta, &calc_load_tasks); 396 397 this_rq->calc_load_update += LOAD_FREQ; 398 } 399