1 /* 2 * kernel/sched/loadavg.c 3 * 4 * This file contains the magic bits required to compute the global loadavg 5 * figure. Its a silly number but people think its important. We go through 6 * great pains to make it work on big machines and tickless kernels. 7 */ 8 9 #include <linux/export.h> 10 11 #include "sched.h" 12 13 /* 14 * Global load-average calculations 15 * 16 * We take a distributed and async approach to calculating the global load-avg 17 * in order to minimize overhead. 18 * 19 * The global load average is an exponentially decaying average of nr_running + 20 * nr_uninterruptible. 21 * 22 * Once every LOAD_FREQ: 23 * 24 * nr_active = 0; 25 * for_each_possible_cpu(cpu) 26 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; 27 * 28 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) 29 * 30 * Due to a number of reasons the above turns in the mess below: 31 * 32 * - for_each_possible_cpu() is prohibitively expensive on machines with 33 * serious number of cpus, therefore we need to take a distributed approach 34 * to calculating nr_active. 35 * 36 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 37 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } 38 * 39 * So assuming nr_active := 0 when we start out -- true per definition, we 40 * can simply take per-cpu deltas and fold those into a global accumulate 41 * to obtain the same result. See calc_load_fold_active(). 42 * 43 * Furthermore, in order to avoid synchronizing all per-cpu delta folding 44 * across the machine, we assume 10 ticks is sufficient time for every 45 * cpu to have completed this task. 46 * 47 * This places an upper-bound on the IRQ-off latency of the machine. Then 48 * again, being late doesn't loose the delta, just wrecks the sample. 49 * 50 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because 51 * this would add another cross-cpu cacheline miss and atomic operation 52 * to the wakeup path. Instead we increment on whatever cpu the task ran 53 * when it went into uninterruptible state and decrement on whatever cpu 54 * did the wakeup. This means that only the sum of nr_uninterruptible over 55 * all cpus yields the correct result. 56 * 57 * This covers the NO_HZ=n code, for extra head-aches, see the comment below. 58 */ 59 60 /* Variables and functions for calc_load */ 61 atomic_long_t calc_load_tasks; 62 unsigned long calc_load_update; 63 unsigned long avenrun[3]; 64 EXPORT_SYMBOL(avenrun); /* should be removed */ 65 66 /** 67 * get_avenrun - get the load average array 68 * @loads: pointer to dest load array 69 * @offset: offset to add 70 * @shift: shift count to shift the result left 71 * 72 * These values are estimates at best, so no need for locking. 73 */ 74 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 75 { 76 loads[0] = (avenrun[0] + offset) << shift; 77 loads[1] = (avenrun[1] + offset) << shift; 78 loads[2] = (avenrun[2] + offset) << shift; 79 } 80 81 long calc_load_fold_active(struct rq *this_rq) 82 { 83 long nr_active, delta = 0; 84 85 nr_active = this_rq->nr_running; 86 nr_active += (long)this_rq->nr_uninterruptible; 87 88 if (nr_active != this_rq->calc_load_active) { 89 delta = nr_active - this_rq->calc_load_active; 90 this_rq->calc_load_active = nr_active; 91 } 92 93 return delta; 94 } 95 96 /* 97 * a1 = a0 * e + a * (1 - e) 98 */ 99 static unsigned long 100 calc_load(unsigned long load, unsigned long exp, unsigned long active) 101 { 102 unsigned long newload; 103 104 newload = load * exp + active * (FIXED_1 - exp); 105 if (active >= load) 106 newload += FIXED_1-1; 107 108 return newload / FIXED_1; 109 } 110 111 #ifdef CONFIG_NO_HZ_COMMON 112 /* 113 * Handle NO_HZ for the global load-average. 114 * 115 * Since the above described distributed algorithm to compute the global 116 * load-average relies on per-cpu sampling from the tick, it is affected by 117 * NO_HZ. 118 * 119 * The basic idea is to fold the nr_active delta into a global idle-delta upon 120 * entering NO_HZ state such that we can include this as an 'extra' cpu delta 121 * when we read the global state. 122 * 123 * Obviously reality has to ruin such a delightfully simple scheme: 124 * 125 * - When we go NO_HZ idle during the window, we can negate our sample 126 * contribution, causing under-accounting. 127 * 128 * We avoid this by keeping two idle-delta counters and flipping them 129 * when the window starts, thus separating old and new NO_HZ load. 130 * 131 * The only trick is the slight shift in index flip for read vs write. 132 * 133 * 0s 5s 10s 15s 134 * +10 +10 +10 +10 135 * |-|-----------|-|-----------|-|-----------|-| 136 * r:0 0 1 1 0 0 1 1 0 137 * w:0 1 1 0 0 1 1 0 0 138 * 139 * This ensures we'll fold the old idle contribution in this window while 140 * accumlating the new one. 141 * 142 * - When we wake up from NO_HZ idle during the window, we push up our 143 * contribution, since we effectively move our sample point to a known 144 * busy state. 145 * 146 * This is solved by pushing the window forward, and thus skipping the 147 * sample, for this cpu (effectively using the idle-delta for this cpu which 148 * was in effect at the time the window opened). This also solves the issue 149 * of having to deal with a cpu having been in NOHZ idle for multiple 150 * LOAD_FREQ intervals. 151 * 152 * When making the ILB scale, we should try to pull this in as well. 153 */ 154 static atomic_long_t calc_load_idle[2]; 155 static int calc_load_idx; 156 157 static inline int calc_load_write_idx(void) 158 { 159 int idx = calc_load_idx; 160 161 /* 162 * See calc_global_nohz(), if we observe the new index, we also 163 * need to observe the new update time. 164 */ 165 smp_rmb(); 166 167 /* 168 * If the folding window started, make sure we start writing in the 169 * next idle-delta. 170 */ 171 if (!time_before(jiffies, calc_load_update)) 172 idx++; 173 174 return idx & 1; 175 } 176 177 static inline int calc_load_read_idx(void) 178 { 179 return calc_load_idx & 1; 180 } 181 182 void calc_load_enter_idle(void) 183 { 184 struct rq *this_rq = this_rq(); 185 long delta; 186 187 /* 188 * We're going into NOHZ mode, if there's any pending delta, fold it 189 * into the pending idle delta. 190 */ 191 delta = calc_load_fold_active(this_rq); 192 if (delta) { 193 int idx = calc_load_write_idx(); 194 195 atomic_long_add(delta, &calc_load_idle[idx]); 196 } 197 } 198 199 void calc_load_exit_idle(void) 200 { 201 struct rq *this_rq = this_rq(); 202 203 /* 204 * If we're still before the sample window, we're done. 205 */ 206 if (time_before(jiffies, this_rq->calc_load_update)) 207 return; 208 209 /* 210 * We woke inside or after the sample window, this means we're already 211 * accounted through the nohz accounting, so skip the entire deal and 212 * sync up for the next window. 213 */ 214 this_rq->calc_load_update = calc_load_update; 215 if (time_before(jiffies, this_rq->calc_load_update + 10)) 216 this_rq->calc_load_update += LOAD_FREQ; 217 } 218 219 static long calc_load_fold_idle(void) 220 { 221 int idx = calc_load_read_idx(); 222 long delta = 0; 223 224 if (atomic_long_read(&calc_load_idle[idx])) 225 delta = atomic_long_xchg(&calc_load_idle[idx], 0); 226 227 return delta; 228 } 229 230 /** 231 * fixed_power_int - compute: x^n, in O(log n) time 232 * 233 * @x: base of the power 234 * @frac_bits: fractional bits of @x 235 * @n: power to raise @x to. 236 * 237 * By exploiting the relation between the definition of the natural power 238 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 239 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 240 * (where: n_i \elem {0, 1}, the binary vector representing n), 241 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 242 * of course trivially computable in O(log_2 n), the length of our binary 243 * vector. 244 */ 245 static unsigned long 246 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 247 { 248 unsigned long result = 1UL << frac_bits; 249 250 if (n) { 251 for (;;) { 252 if (n & 1) { 253 result *= x; 254 result += 1UL << (frac_bits - 1); 255 result >>= frac_bits; 256 } 257 n >>= 1; 258 if (!n) 259 break; 260 x *= x; 261 x += 1UL << (frac_bits - 1); 262 x >>= frac_bits; 263 } 264 } 265 266 return result; 267 } 268 269 /* 270 * a1 = a0 * e + a * (1 - e) 271 * 272 * a2 = a1 * e + a * (1 - e) 273 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 274 * = a0 * e^2 + a * (1 - e) * (1 + e) 275 * 276 * a3 = a2 * e + a * (1 - e) 277 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 278 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 279 * 280 * ... 281 * 282 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 283 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 284 * = a0 * e^n + a * (1 - e^n) 285 * 286 * [1] application of the geometric series: 287 * 288 * n 1 - x^(n+1) 289 * S_n := \Sum x^i = ------------- 290 * i=0 1 - x 291 */ 292 static unsigned long 293 calc_load_n(unsigned long load, unsigned long exp, 294 unsigned long active, unsigned int n) 295 { 296 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 297 } 298 299 /* 300 * NO_HZ can leave us missing all per-cpu ticks calling 301 * calc_load_account_active(), but since an idle CPU folds its delta into 302 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold 303 * in the pending idle delta if our idle period crossed a load cycle boundary. 304 * 305 * Once we've updated the global active value, we need to apply the exponential 306 * weights adjusted to the number of cycles missed. 307 */ 308 static void calc_global_nohz(void) 309 { 310 long delta, active, n; 311 312 if (!time_before(jiffies, calc_load_update + 10)) { 313 /* 314 * Catch-up, fold however many we are behind still 315 */ 316 delta = jiffies - calc_load_update - 10; 317 n = 1 + (delta / LOAD_FREQ); 318 319 active = atomic_long_read(&calc_load_tasks); 320 active = active > 0 ? active * FIXED_1 : 0; 321 322 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 323 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 324 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 325 326 calc_load_update += n * LOAD_FREQ; 327 } 328 329 /* 330 * Flip the idle index... 331 * 332 * Make sure we first write the new time then flip the index, so that 333 * calc_load_write_idx() will see the new time when it reads the new 334 * index, this avoids a double flip messing things up. 335 */ 336 smp_wmb(); 337 calc_load_idx++; 338 } 339 #else /* !CONFIG_NO_HZ_COMMON */ 340 341 static inline long calc_load_fold_idle(void) { return 0; } 342 static inline void calc_global_nohz(void) { } 343 344 #endif /* CONFIG_NO_HZ_COMMON */ 345 346 /* 347 * calc_load - update the avenrun load estimates 10 ticks after the 348 * CPUs have updated calc_load_tasks. 349 * 350 * Called from the global timer code. 351 */ 352 void calc_global_load(unsigned long ticks) 353 { 354 long active, delta; 355 356 if (time_before(jiffies, calc_load_update + 10)) 357 return; 358 359 /* 360 * Fold the 'old' idle-delta to include all NO_HZ cpus. 361 */ 362 delta = calc_load_fold_idle(); 363 if (delta) 364 atomic_long_add(delta, &calc_load_tasks); 365 366 active = atomic_long_read(&calc_load_tasks); 367 active = active > 0 ? active * FIXED_1 : 0; 368 369 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 370 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 371 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 372 373 calc_load_update += LOAD_FREQ; 374 375 /* 376 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk. 377 */ 378 calc_global_nohz(); 379 } 380 381 /* 382 * Called from scheduler_tick() to periodically update this CPU's 383 * active count. 384 */ 385 void calc_global_load_tick(struct rq *this_rq) 386 { 387 long delta; 388 389 if (time_before(jiffies, this_rq->calc_load_update)) 390 return; 391 392 delta = calc_load_fold_active(this_rq); 393 if (delta) 394 atomic_long_add(delta, &calc_load_tasks); 395 396 this_rq->calc_load_update += LOAD_FREQ; 397 } 398