1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic entry points for the idle threads and 4 * implementation of the idle task scheduling class. 5 * 6 * (NOTE: these are not related to SCHED_IDLE batch scheduled 7 * tasks which are handled in sched/fair.c ) 8 */ 9 10 /* Linker adds these: start and end of __cpuidle functions */ 11 extern char __cpuidle_text_start[], __cpuidle_text_end[]; 12 13 /** 14 * sched_idle_set_state - Record idle state for the current CPU. 15 * @idle_state: State to record. 16 */ 17 void sched_idle_set_state(struct cpuidle_state *idle_state) 18 { 19 idle_set_state(this_rq(), idle_state); 20 } 21 22 static int __read_mostly cpu_idle_force_poll; 23 24 void cpu_idle_poll_ctrl(bool enable) 25 { 26 if (enable) { 27 cpu_idle_force_poll++; 28 } else { 29 cpu_idle_force_poll--; 30 WARN_ON_ONCE(cpu_idle_force_poll < 0); 31 } 32 } 33 34 #ifdef CONFIG_GENERIC_IDLE_POLL_SETUP 35 static int __init cpu_idle_poll_setup(char *__unused) 36 { 37 cpu_idle_force_poll = 1; 38 39 return 1; 40 } 41 __setup("nohlt", cpu_idle_poll_setup); 42 43 static int __init cpu_idle_nopoll_setup(char *__unused) 44 { 45 cpu_idle_force_poll = 0; 46 47 return 1; 48 } 49 __setup("hlt", cpu_idle_nopoll_setup); 50 #endif 51 52 static noinline int __cpuidle cpu_idle_poll(void) 53 { 54 trace_cpu_idle(0, smp_processor_id()); 55 stop_critical_timings(); 56 ct_idle_enter(); 57 local_irq_enable(); 58 59 while (!tif_need_resched() && 60 (cpu_idle_force_poll || tick_check_broadcast_expired())) 61 cpu_relax(); 62 63 ct_idle_exit(); 64 start_critical_timings(); 65 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); 66 67 return 1; 68 } 69 70 /* Weak implementations for optional arch specific functions */ 71 void __weak arch_cpu_idle_prepare(void) { } 72 void __weak arch_cpu_idle_enter(void) { } 73 void __weak arch_cpu_idle_exit(void) { } 74 void __weak arch_cpu_idle_dead(void) { } 75 void __weak arch_cpu_idle(void) 76 { 77 cpu_idle_force_poll = 1; 78 raw_local_irq_enable(); 79 } 80 81 /** 82 * default_idle_call - Default CPU idle routine. 83 * 84 * To use when the cpuidle framework cannot be used. 85 */ 86 void __cpuidle default_idle_call(void) 87 { 88 if (current_clr_polling_and_test()) { 89 local_irq_enable(); 90 } else { 91 92 trace_cpu_idle(1, smp_processor_id()); 93 stop_critical_timings(); 94 95 /* 96 * arch_cpu_idle() is supposed to enable IRQs, however 97 * we can't do that because of RCU and tracing. 98 * 99 * Trace IRQs enable here, then switch off RCU, and have 100 * arch_cpu_idle() use raw_local_irq_enable(). Note that 101 * ct_idle_enter() relies on lockdep IRQ state, so switch that 102 * last -- this is very similar to the entry code. 103 */ 104 trace_hardirqs_on_prepare(); 105 lockdep_hardirqs_on_prepare(); 106 ct_idle_enter(); 107 lockdep_hardirqs_on(_THIS_IP_); 108 109 arch_cpu_idle(); 110 111 /* 112 * OK, so IRQs are enabled here, but RCU needs them disabled to 113 * turn itself back on.. funny thing is that disabling IRQs 114 * will cause tracing, which needs RCU. Jump through hoops to 115 * make it 'work'. 116 */ 117 raw_local_irq_disable(); 118 lockdep_hardirqs_off(_THIS_IP_); 119 ct_idle_exit(); 120 lockdep_hardirqs_on(_THIS_IP_); 121 raw_local_irq_enable(); 122 123 start_critical_timings(); 124 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); 125 } 126 } 127 128 static int call_cpuidle_s2idle(struct cpuidle_driver *drv, 129 struct cpuidle_device *dev) 130 { 131 if (current_clr_polling_and_test()) 132 return -EBUSY; 133 134 return cpuidle_enter_s2idle(drv, dev); 135 } 136 137 static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev, 138 int next_state) 139 { 140 /* 141 * The idle task must be scheduled, it is pointless to go to idle, just 142 * update no idle residency and return. 143 */ 144 if (current_clr_polling_and_test()) { 145 dev->last_residency_ns = 0; 146 local_irq_enable(); 147 return -EBUSY; 148 } 149 150 /* 151 * Enter the idle state previously returned by the governor decision. 152 * This function will block until an interrupt occurs and will take 153 * care of re-enabling the local interrupts 154 */ 155 return cpuidle_enter(drv, dev, next_state); 156 } 157 158 /** 159 * cpuidle_idle_call - the main idle function 160 * 161 * NOTE: no locks or semaphores should be used here 162 * 163 * On architectures that support TIF_POLLING_NRFLAG, is called with polling 164 * set, and it returns with polling set. If it ever stops polling, it 165 * must clear the polling bit. 166 */ 167 static void cpuidle_idle_call(void) 168 { 169 struct cpuidle_device *dev = cpuidle_get_device(); 170 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); 171 int next_state, entered_state; 172 173 /* 174 * Check if the idle task must be rescheduled. If it is the 175 * case, exit the function after re-enabling the local irq. 176 */ 177 if (need_resched()) { 178 local_irq_enable(); 179 return; 180 } 181 182 /* 183 * The RCU framework needs to be told that we are entering an idle 184 * section, so no more rcu read side critical sections and one more 185 * step to the grace period 186 */ 187 188 if (cpuidle_not_available(drv, dev)) { 189 tick_nohz_idle_stop_tick(); 190 191 default_idle_call(); 192 goto exit_idle; 193 } 194 195 /* 196 * Suspend-to-idle ("s2idle") is a system state in which all user space 197 * has been frozen, all I/O devices have been suspended and the only 198 * activity happens here and in interrupts (if any). In that case bypass 199 * the cpuidle governor and go straight for the deepest idle state 200 * available. Possibly also suspend the local tick and the entire 201 * timekeeping to prevent timer interrupts from kicking us out of idle 202 * until a proper wakeup interrupt happens. 203 */ 204 205 if (idle_should_enter_s2idle() || dev->forced_idle_latency_limit_ns) { 206 u64 max_latency_ns; 207 208 if (idle_should_enter_s2idle()) { 209 210 entered_state = call_cpuidle_s2idle(drv, dev); 211 if (entered_state > 0) 212 goto exit_idle; 213 214 max_latency_ns = U64_MAX; 215 } else { 216 max_latency_ns = dev->forced_idle_latency_limit_ns; 217 } 218 219 tick_nohz_idle_stop_tick(); 220 221 next_state = cpuidle_find_deepest_state(drv, dev, max_latency_ns); 222 call_cpuidle(drv, dev, next_state); 223 } else { 224 bool stop_tick = true; 225 226 /* 227 * Ask the cpuidle framework to choose a convenient idle state. 228 */ 229 next_state = cpuidle_select(drv, dev, &stop_tick); 230 231 if (stop_tick || tick_nohz_tick_stopped()) 232 tick_nohz_idle_stop_tick(); 233 else 234 tick_nohz_idle_retain_tick(); 235 236 entered_state = call_cpuidle(drv, dev, next_state); 237 /* 238 * Give the governor an opportunity to reflect on the outcome 239 */ 240 cpuidle_reflect(dev, entered_state); 241 } 242 243 exit_idle: 244 __current_set_polling(); 245 246 /* 247 * It is up to the idle functions to reenable local interrupts 248 */ 249 if (WARN_ON_ONCE(irqs_disabled())) 250 local_irq_enable(); 251 } 252 253 /* 254 * Generic idle loop implementation 255 * 256 * Called with polling cleared. 257 */ 258 static void do_idle(void) 259 { 260 int cpu = smp_processor_id(); 261 262 /* 263 * Check if we need to update blocked load 264 */ 265 nohz_run_idle_balance(cpu); 266 267 /* 268 * If the arch has a polling bit, we maintain an invariant: 269 * 270 * Our polling bit is clear if we're not scheduled (i.e. if rq->curr != 271 * rq->idle). This means that, if rq->idle has the polling bit set, 272 * then setting need_resched is guaranteed to cause the CPU to 273 * reschedule. 274 */ 275 276 __current_set_polling(); 277 tick_nohz_idle_enter(); 278 279 while (!need_resched()) { 280 rmb(); 281 282 local_irq_disable(); 283 284 if (cpu_is_offline(cpu)) { 285 tick_nohz_idle_stop_tick(); 286 cpuhp_report_idle_dead(); 287 arch_cpu_idle_dead(); 288 } 289 290 arch_cpu_idle_enter(); 291 rcu_nocb_flush_deferred_wakeup(); 292 293 /* 294 * In poll mode we reenable interrupts and spin. Also if we 295 * detected in the wakeup from idle path that the tick 296 * broadcast device expired for us, we don't want to go deep 297 * idle as we know that the IPI is going to arrive right away. 298 */ 299 if (cpu_idle_force_poll || tick_check_broadcast_expired()) { 300 tick_nohz_idle_restart_tick(); 301 cpu_idle_poll(); 302 } else { 303 cpuidle_idle_call(); 304 } 305 arch_cpu_idle_exit(); 306 } 307 308 /* 309 * Since we fell out of the loop above, we know TIF_NEED_RESCHED must 310 * be set, propagate it into PREEMPT_NEED_RESCHED. 311 * 312 * This is required because for polling idle loops we will not have had 313 * an IPI to fold the state for us. 314 */ 315 preempt_set_need_resched(); 316 tick_nohz_idle_exit(); 317 __current_clr_polling(); 318 319 /* 320 * We promise to call sched_ttwu_pending() and reschedule if 321 * need_resched() is set while polling is set. That means that clearing 322 * polling needs to be visible before doing these things. 323 */ 324 smp_mb__after_atomic(); 325 326 /* 327 * RCU relies on this call to be done outside of an RCU read-side 328 * critical section. 329 */ 330 flush_smp_call_function_queue(); 331 schedule_idle(); 332 333 if (unlikely(klp_patch_pending(current))) 334 klp_update_patch_state(current); 335 } 336 337 bool cpu_in_idle(unsigned long pc) 338 { 339 return pc >= (unsigned long)__cpuidle_text_start && 340 pc < (unsigned long)__cpuidle_text_end; 341 } 342 343 struct idle_timer { 344 struct hrtimer timer; 345 int done; 346 }; 347 348 static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer) 349 { 350 struct idle_timer *it = container_of(timer, struct idle_timer, timer); 351 352 WRITE_ONCE(it->done, 1); 353 set_tsk_need_resched(current); 354 355 return HRTIMER_NORESTART; 356 } 357 358 void play_idle_precise(u64 duration_ns, u64 latency_ns) 359 { 360 struct idle_timer it; 361 362 /* 363 * Only FIFO tasks can disable the tick since they don't need the forced 364 * preemption. 365 */ 366 WARN_ON_ONCE(current->policy != SCHED_FIFO); 367 WARN_ON_ONCE(current->nr_cpus_allowed != 1); 368 WARN_ON_ONCE(!(current->flags & PF_KTHREAD)); 369 WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY)); 370 WARN_ON_ONCE(!duration_ns); 371 WARN_ON_ONCE(current->mm); 372 373 rcu_sleep_check(); 374 preempt_disable(); 375 current->flags |= PF_IDLE; 376 cpuidle_use_deepest_state(latency_ns); 377 378 it.done = 0; 379 hrtimer_init_on_stack(&it.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 380 it.timer.function = idle_inject_timer_fn; 381 hrtimer_start(&it.timer, ns_to_ktime(duration_ns), 382 HRTIMER_MODE_REL_PINNED_HARD); 383 384 while (!READ_ONCE(it.done)) 385 do_idle(); 386 387 cpuidle_use_deepest_state(0); 388 current->flags &= ~PF_IDLE; 389 390 preempt_fold_need_resched(); 391 preempt_enable(); 392 } 393 EXPORT_SYMBOL_GPL(play_idle_precise); 394 395 void cpu_startup_entry(enum cpuhp_state state) 396 { 397 arch_cpu_idle_prepare(); 398 cpuhp_online_idle(state); 399 while (1) 400 do_idle(); 401 } 402 403 /* 404 * idle-task scheduling class. 405 */ 406 407 #ifdef CONFIG_SMP 408 static int 409 select_task_rq_idle(struct task_struct *p, int cpu, int flags) 410 { 411 return task_cpu(p); /* IDLE tasks as never migrated */ 412 } 413 414 static int 415 balance_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 416 { 417 return WARN_ON_ONCE(1); 418 } 419 #endif 420 421 /* 422 * Idle tasks are unconditionally rescheduled: 423 */ 424 static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int flags) 425 { 426 resched_curr(rq); 427 } 428 429 static void put_prev_task_idle(struct rq *rq, struct task_struct *prev) 430 { 431 } 432 433 static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first) 434 { 435 update_idle_core(rq); 436 schedstat_inc(rq->sched_goidle); 437 } 438 439 #ifdef CONFIG_SMP 440 static struct task_struct *pick_task_idle(struct rq *rq) 441 { 442 return rq->idle; 443 } 444 #endif 445 446 struct task_struct *pick_next_task_idle(struct rq *rq) 447 { 448 struct task_struct *next = rq->idle; 449 450 set_next_task_idle(rq, next, true); 451 452 return next; 453 } 454 455 /* 456 * It is not legal to sleep in the idle task - print a warning 457 * message if some code attempts to do it: 458 */ 459 static void 460 dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags) 461 { 462 raw_spin_rq_unlock_irq(rq); 463 printk(KERN_ERR "bad: scheduling from the idle thread!\n"); 464 dump_stack(); 465 raw_spin_rq_lock_irq(rq); 466 } 467 468 /* 469 * scheduler tick hitting a task of our scheduling class. 470 * 471 * NOTE: This function can be called remotely by the tick offload that 472 * goes along full dynticks. Therefore no local assumption can be made 473 * and everything must be accessed through the @rq and @curr passed in 474 * parameters. 475 */ 476 static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued) 477 { 478 } 479 480 static void switched_to_idle(struct rq *rq, struct task_struct *p) 481 { 482 BUG(); 483 } 484 485 static void 486 prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio) 487 { 488 BUG(); 489 } 490 491 static void update_curr_idle(struct rq *rq) 492 { 493 } 494 495 /* 496 * Simple, special scheduling class for the per-CPU idle tasks: 497 */ 498 DEFINE_SCHED_CLASS(idle) = { 499 500 /* no enqueue/yield_task for idle tasks */ 501 502 /* dequeue is not valid, we print a debug message there: */ 503 .dequeue_task = dequeue_task_idle, 504 505 .check_preempt_curr = check_preempt_curr_idle, 506 507 .pick_next_task = pick_next_task_idle, 508 .put_prev_task = put_prev_task_idle, 509 .set_next_task = set_next_task_idle, 510 511 #ifdef CONFIG_SMP 512 .balance = balance_idle, 513 .pick_task = pick_task_idle, 514 .select_task_rq = select_task_rq_idle, 515 .set_cpus_allowed = set_cpus_allowed_common, 516 #endif 517 518 .task_tick = task_tick_idle, 519 520 .prio_changed = prio_changed_idle, 521 .switched_to = switched_to_idle, 522 .update_curr = update_curr_idle, 523 }; 524