1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic entry points for the idle threads and 4 * implementation of the idle task scheduling class. 5 * 6 * (NOTE: these are not related to SCHED_IDLE batch scheduled 7 * tasks which are handled in sched/fair.c ) 8 */ 9 #include "sched.h" 10 11 #include <trace/events/power.h> 12 13 /* Linker adds these: start and end of __cpuidle functions */ 14 extern char __cpuidle_text_start[], __cpuidle_text_end[]; 15 16 /** 17 * sched_idle_set_state - Record idle state for the current CPU. 18 * @idle_state: State to record. 19 */ 20 void sched_idle_set_state(struct cpuidle_state *idle_state) 21 { 22 idle_set_state(this_rq(), idle_state); 23 } 24 25 static int __read_mostly cpu_idle_force_poll; 26 27 void cpu_idle_poll_ctrl(bool enable) 28 { 29 if (enable) { 30 cpu_idle_force_poll++; 31 } else { 32 cpu_idle_force_poll--; 33 WARN_ON_ONCE(cpu_idle_force_poll < 0); 34 } 35 } 36 37 #ifdef CONFIG_GENERIC_IDLE_POLL_SETUP 38 static int __init cpu_idle_poll_setup(char *__unused) 39 { 40 cpu_idle_force_poll = 1; 41 42 return 1; 43 } 44 __setup("nohlt", cpu_idle_poll_setup); 45 46 static int __init cpu_idle_nopoll_setup(char *__unused) 47 { 48 cpu_idle_force_poll = 0; 49 50 return 1; 51 } 52 __setup("hlt", cpu_idle_nopoll_setup); 53 #endif 54 55 static noinline int __cpuidle cpu_idle_poll(void) 56 { 57 trace_cpu_idle(0, smp_processor_id()); 58 stop_critical_timings(); 59 rcu_idle_enter(); 60 local_irq_enable(); 61 62 while (!tif_need_resched() && 63 (cpu_idle_force_poll || tick_check_broadcast_expired())) 64 cpu_relax(); 65 66 rcu_idle_exit(); 67 start_critical_timings(); 68 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); 69 70 return 1; 71 } 72 73 /* Weak implementations for optional arch specific functions */ 74 void __weak arch_cpu_idle_prepare(void) { } 75 void __weak arch_cpu_idle_enter(void) { } 76 void __weak arch_cpu_idle_exit(void) { } 77 void __weak arch_cpu_idle_dead(void) { } 78 void __weak arch_cpu_idle(void) 79 { 80 cpu_idle_force_poll = 1; 81 raw_local_irq_enable(); 82 } 83 84 /** 85 * default_idle_call - Default CPU idle routine. 86 * 87 * To use when the cpuidle framework cannot be used. 88 */ 89 void __cpuidle default_idle_call(void) 90 { 91 if (current_clr_polling_and_test()) { 92 local_irq_enable(); 93 } else { 94 95 trace_cpu_idle(1, smp_processor_id()); 96 stop_critical_timings(); 97 98 /* 99 * arch_cpu_idle() is supposed to enable IRQs, however 100 * we can't do that because of RCU and tracing. 101 * 102 * Trace IRQs enable here, then switch off RCU, and have 103 * arch_cpu_idle() use raw_local_irq_enable(). Note that 104 * rcu_idle_enter() relies on lockdep IRQ state, so switch that 105 * last -- this is very similar to the entry code. 106 */ 107 trace_hardirqs_on_prepare(); 108 lockdep_hardirqs_on_prepare(_THIS_IP_); 109 rcu_idle_enter(); 110 lockdep_hardirqs_on(_THIS_IP_); 111 112 arch_cpu_idle(); 113 114 /* 115 * OK, so IRQs are enabled here, but RCU needs them disabled to 116 * turn itself back on.. funny thing is that disabling IRQs 117 * will cause tracing, which needs RCU. Jump through hoops to 118 * make it 'work'. 119 */ 120 raw_local_irq_disable(); 121 lockdep_hardirqs_off(_THIS_IP_); 122 rcu_idle_exit(); 123 lockdep_hardirqs_on(_THIS_IP_); 124 raw_local_irq_enable(); 125 126 start_critical_timings(); 127 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); 128 } 129 } 130 131 static int call_cpuidle_s2idle(struct cpuidle_driver *drv, 132 struct cpuidle_device *dev) 133 { 134 if (current_clr_polling_and_test()) 135 return -EBUSY; 136 137 return cpuidle_enter_s2idle(drv, dev); 138 } 139 140 static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev, 141 int next_state) 142 { 143 /* 144 * The idle task must be scheduled, it is pointless to go to idle, just 145 * update no idle residency and return. 146 */ 147 if (current_clr_polling_and_test()) { 148 dev->last_residency_ns = 0; 149 local_irq_enable(); 150 return -EBUSY; 151 } 152 153 /* 154 * Enter the idle state previously returned by the governor decision. 155 * This function will block until an interrupt occurs and will take 156 * care of re-enabling the local interrupts 157 */ 158 return cpuidle_enter(drv, dev, next_state); 159 } 160 161 /** 162 * cpuidle_idle_call - the main idle function 163 * 164 * NOTE: no locks or semaphores should be used here 165 * 166 * On archs that support TIF_POLLING_NRFLAG, is called with polling 167 * set, and it returns with polling set. If it ever stops polling, it 168 * must clear the polling bit. 169 */ 170 static void cpuidle_idle_call(void) 171 { 172 struct cpuidle_device *dev = cpuidle_get_device(); 173 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); 174 int next_state, entered_state; 175 176 /* 177 * Check if the idle task must be rescheduled. If it is the 178 * case, exit the function after re-enabling the local irq. 179 */ 180 if (need_resched()) { 181 local_irq_enable(); 182 return; 183 } 184 185 /* 186 * The RCU framework needs to be told that we are entering an idle 187 * section, so no more rcu read side critical sections and one more 188 * step to the grace period 189 */ 190 191 if (cpuidle_not_available(drv, dev)) { 192 tick_nohz_idle_stop_tick(); 193 194 default_idle_call(); 195 goto exit_idle; 196 } 197 198 /* 199 * Suspend-to-idle ("s2idle") is a system state in which all user space 200 * has been frozen, all I/O devices have been suspended and the only 201 * activity happens here and in interrupts (if any). In that case bypass 202 * the cpuidle governor and go stratight for the deepest idle state 203 * available. Possibly also suspend the local tick and the entire 204 * timekeeping to prevent timer interrupts from kicking us out of idle 205 * until a proper wakeup interrupt happens. 206 */ 207 208 if (idle_should_enter_s2idle() || dev->forced_idle_latency_limit_ns) { 209 u64 max_latency_ns; 210 211 if (idle_should_enter_s2idle()) { 212 213 entered_state = call_cpuidle_s2idle(drv, dev); 214 if (entered_state > 0) 215 goto exit_idle; 216 217 max_latency_ns = U64_MAX; 218 } else { 219 max_latency_ns = dev->forced_idle_latency_limit_ns; 220 } 221 222 tick_nohz_idle_stop_tick(); 223 224 next_state = cpuidle_find_deepest_state(drv, dev, max_latency_ns); 225 call_cpuidle(drv, dev, next_state); 226 } else { 227 bool stop_tick = true; 228 229 /* 230 * Ask the cpuidle framework to choose a convenient idle state. 231 */ 232 next_state = cpuidle_select(drv, dev, &stop_tick); 233 234 if (stop_tick || tick_nohz_tick_stopped()) 235 tick_nohz_idle_stop_tick(); 236 else 237 tick_nohz_idle_retain_tick(); 238 239 entered_state = call_cpuidle(drv, dev, next_state); 240 /* 241 * Give the governor an opportunity to reflect on the outcome 242 */ 243 cpuidle_reflect(dev, entered_state); 244 } 245 246 exit_idle: 247 __current_set_polling(); 248 249 /* 250 * It is up to the idle functions to reenable local interrupts 251 */ 252 if (WARN_ON_ONCE(irqs_disabled())) 253 local_irq_enable(); 254 } 255 256 /* 257 * Generic idle loop implementation 258 * 259 * Called with polling cleared. 260 */ 261 static void do_idle(void) 262 { 263 int cpu = smp_processor_id(); 264 /* 265 * If the arch has a polling bit, we maintain an invariant: 266 * 267 * Our polling bit is clear if we're not scheduled (i.e. if rq->curr != 268 * rq->idle). This means that, if rq->idle has the polling bit set, 269 * then setting need_resched is guaranteed to cause the CPU to 270 * reschedule. 271 */ 272 273 __current_set_polling(); 274 tick_nohz_idle_enter(); 275 276 while (!need_resched()) { 277 rmb(); 278 279 local_irq_disable(); 280 281 if (cpu_is_offline(cpu)) { 282 tick_nohz_idle_stop_tick(); 283 cpuhp_report_idle_dead(); 284 arch_cpu_idle_dead(); 285 } 286 287 arch_cpu_idle_enter(); 288 289 /* 290 * In poll mode we reenable interrupts and spin. Also if we 291 * detected in the wakeup from idle path that the tick 292 * broadcast device expired for us, we don't want to go deep 293 * idle as we know that the IPI is going to arrive right away. 294 */ 295 if (cpu_idle_force_poll || tick_check_broadcast_expired()) { 296 tick_nohz_idle_restart_tick(); 297 cpu_idle_poll(); 298 } else { 299 cpuidle_idle_call(); 300 } 301 arch_cpu_idle_exit(); 302 } 303 304 /* 305 * Since we fell out of the loop above, we know TIF_NEED_RESCHED must 306 * be set, propagate it into PREEMPT_NEED_RESCHED. 307 * 308 * This is required because for polling idle loops we will not have had 309 * an IPI to fold the state for us. 310 */ 311 preempt_set_need_resched(); 312 tick_nohz_idle_exit(); 313 __current_clr_polling(); 314 315 /* 316 * We promise to call sched_ttwu_pending() and reschedule if 317 * need_resched() is set while polling is set. That means that clearing 318 * polling needs to be visible before doing these things. 319 */ 320 smp_mb__after_atomic(); 321 322 /* 323 * RCU relies on this call to be done outside of an RCU read-side 324 * critical section. 325 */ 326 flush_smp_call_function_from_idle(); 327 schedule_idle(); 328 329 if (unlikely(klp_patch_pending(current))) 330 klp_update_patch_state(current); 331 } 332 333 bool cpu_in_idle(unsigned long pc) 334 { 335 return pc >= (unsigned long)__cpuidle_text_start && 336 pc < (unsigned long)__cpuidle_text_end; 337 } 338 339 struct idle_timer { 340 struct hrtimer timer; 341 int done; 342 }; 343 344 static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer) 345 { 346 struct idle_timer *it = container_of(timer, struct idle_timer, timer); 347 348 WRITE_ONCE(it->done, 1); 349 set_tsk_need_resched(current); 350 351 return HRTIMER_NORESTART; 352 } 353 354 void play_idle_precise(u64 duration_ns, u64 latency_ns) 355 { 356 struct idle_timer it; 357 358 /* 359 * Only FIFO tasks can disable the tick since they don't need the forced 360 * preemption. 361 */ 362 WARN_ON_ONCE(current->policy != SCHED_FIFO); 363 WARN_ON_ONCE(current->nr_cpus_allowed != 1); 364 WARN_ON_ONCE(!(current->flags & PF_KTHREAD)); 365 WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY)); 366 WARN_ON_ONCE(!duration_ns); 367 WARN_ON_ONCE(current->mm); 368 369 rcu_sleep_check(); 370 preempt_disable(); 371 current->flags |= PF_IDLE; 372 cpuidle_use_deepest_state(latency_ns); 373 374 it.done = 0; 375 hrtimer_init_on_stack(&it.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 376 it.timer.function = idle_inject_timer_fn; 377 hrtimer_start(&it.timer, ns_to_ktime(duration_ns), 378 HRTIMER_MODE_REL_PINNED); 379 380 while (!READ_ONCE(it.done)) 381 do_idle(); 382 383 cpuidle_use_deepest_state(0); 384 current->flags &= ~PF_IDLE; 385 386 preempt_fold_need_resched(); 387 preempt_enable(); 388 } 389 EXPORT_SYMBOL_GPL(play_idle_precise); 390 391 void cpu_startup_entry(enum cpuhp_state state) 392 { 393 arch_cpu_idle_prepare(); 394 cpuhp_online_idle(state); 395 while (1) 396 do_idle(); 397 } 398 399 /* 400 * idle-task scheduling class. 401 */ 402 403 #ifdef CONFIG_SMP 404 static int 405 select_task_rq_idle(struct task_struct *p, int cpu, int flags) 406 { 407 return task_cpu(p); /* IDLE tasks as never migrated */ 408 } 409 410 static int 411 balance_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 412 { 413 return WARN_ON_ONCE(1); 414 } 415 #endif 416 417 /* 418 * Idle tasks are unconditionally rescheduled: 419 */ 420 static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int flags) 421 { 422 resched_curr(rq); 423 } 424 425 static void put_prev_task_idle(struct rq *rq, struct task_struct *prev) 426 { 427 } 428 429 static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first) 430 { 431 update_idle_core(rq); 432 schedstat_inc(rq->sched_goidle); 433 } 434 435 struct task_struct *pick_next_task_idle(struct rq *rq) 436 { 437 struct task_struct *next = rq->idle; 438 439 set_next_task_idle(rq, next, true); 440 441 return next; 442 } 443 444 /* 445 * It is not legal to sleep in the idle task - print a warning 446 * message if some code attempts to do it: 447 */ 448 static void 449 dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags) 450 { 451 raw_spin_unlock_irq(&rq->lock); 452 printk(KERN_ERR "bad: scheduling from the idle thread!\n"); 453 dump_stack(); 454 raw_spin_lock_irq(&rq->lock); 455 } 456 457 /* 458 * scheduler tick hitting a task of our scheduling class. 459 * 460 * NOTE: This function can be called remotely by the tick offload that 461 * goes along full dynticks. Therefore no local assumption can be made 462 * and everything must be accessed through the @rq and @curr passed in 463 * parameters. 464 */ 465 static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued) 466 { 467 } 468 469 static void switched_to_idle(struct rq *rq, struct task_struct *p) 470 { 471 BUG(); 472 } 473 474 static void 475 prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio) 476 { 477 BUG(); 478 } 479 480 static void update_curr_idle(struct rq *rq) 481 { 482 } 483 484 /* 485 * Simple, special scheduling class for the per-CPU idle tasks: 486 */ 487 DEFINE_SCHED_CLASS(idle) = { 488 489 /* no enqueue/yield_task for idle tasks */ 490 491 /* dequeue is not valid, we print a debug message there: */ 492 .dequeue_task = dequeue_task_idle, 493 494 .check_preempt_curr = check_preempt_curr_idle, 495 496 .pick_next_task = pick_next_task_idle, 497 .put_prev_task = put_prev_task_idle, 498 .set_next_task = set_next_task_idle, 499 500 #ifdef CONFIG_SMP 501 .balance = balance_idle, 502 .select_task_rq = select_task_rq_idle, 503 .set_cpus_allowed = set_cpus_allowed_common, 504 #endif 505 506 .task_tick = task_tick_idle, 507 508 .prio_changed = prio_changed_idle, 509 .switched_to = switched_to_idle, 510 .update_curr = update_curr_idle, 511 }; 512