1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23 #include <linux/latencytop.h> 24 #include <linux/sched.h> 25 #include <linux/cpumask.h> 26 #include <linux/slab.h> 27 #include <linux/profile.h> 28 #include <linux/interrupt.h> 29 #include <linux/mempolicy.h> 30 #include <linux/migrate.h> 31 #include <linux/task_work.h> 32 33 #include <trace/events/sched.h> 34 35 #include "sched.h" 36 37 /* 38 * Targeted preemption latency for CPU-bound tasks: 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 40 * 41 * NOTE: this latency value is not the same as the concept of 42 * 'timeslice length' - timeslices in CFS are of variable length 43 * and have no persistent notion like in traditional, time-slice 44 * based scheduling concepts. 45 * 46 * (to see the precise effective timeslice length of your workload, 47 * run vmstat and monitor the context-switches (cs) field) 48 */ 49 unsigned int sysctl_sched_latency = 6000000ULL; 50 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 51 52 /* 53 * The initial- and re-scaling of tunables is configurable 54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 55 * 56 * Options are: 57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 60 */ 61 enum sched_tunable_scaling sysctl_sched_tunable_scaling 62 = SCHED_TUNABLESCALING_LOG; 63 64 /* 65 * Minimal preemption granularity for CPU-bound tasks: 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 67 */ 68 unsigned int sysctl_sched_min_granularity = 750000ULL; 69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 70 71 /* 72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 73 */ 74 static unsigned int sched_nr_latency = 8; 75 76 /* 77 * After fork, child runs first. If set to 0 (default) then 78 * parent will (try to) run first. 79 */ 80 unsigned int sysctl_sched_child_runs_first __read_mostly; 81 82 /* 83 * SCHED_OTHER wake-up granularity. 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 85 * 86 * This option delays the preemption effects of decoupled workloads 87 * and reduces their over-scheduling. Synchronous workloads will still 88 * have immediate wakeup/sleep latencies. 89 */ 90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 92 93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 94 95 /* 96 * The exponential sliding window over which load is averaged for shares 97 * distribution. 98 * (default: 10msec) 99 */ 100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 101 102 #ifdef CONFIG_CFS_BANDWIDTH 103 /* 104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 105 * each time a cfs_rq requests quota. 106 * 107 * Note: in the case that the slice exceeds the runtime remaining (either due 108 * to consumption or the quota being specified to be smaller than the slice) 109 * we will always only issue the remaining available time. 110 * 111 * default: 5 msec, units: microseconds 112 */ 113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 114 #endif 115 116 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 117 { 118 lw->weight += inc; 119 lw->inv_weight = 0; 120 } 121 122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 123 { 124 lw->weight -= dec; 125 lw->inv_weight = 0; 126 } 127 128 static inline void update_load_set(struct load_weight *lw, unsigned long w) 129 { 130 lw->weight = w; 131 lw->inv_weight = 0; 132 } 133 134 /* 135 * Increase the granularity value when there are more CPUs, 136 * because with more CPUs the 'effective latency' as visible 137 * to users decreases. But the relationship is not linear, 138 * so pick a second-best guess by going with the log2 of the 139 * number of CPUs. 140 * 141 * This idea comes from the SD scheduler of Con Kolivas: 142 */ 143 static int get_update_sysctl_factor(void) 144 { 145 unsigned int cpus = min_t(int, num_online_cpus(), 8); 146 unsigned int factor; 147 148 switch (sysctl_sched_tunable_scaling) { 149 case SCHED_TUNABLESCALING_NONE: 150 factor = 1; 151 break; 152 case SCHED_TUNABLESCALING_LINEAR: 153 factor = cpus; 154 break; 155 case SCHED_TUNABLESCALING_LOG: 156 default: 157 factor = 1 + ilog2(cpus); 158 break; 159 } 160 161 return factor; 162 } 163 164 static void update_sysctl(void) 165 { 166 unsigned int factor = get_update_sysctl_factor(); 167 168 #define SET_SYSCTL(name) \ 169 (sysctl_##name = (factor) * normalized_sysctl_##name) 170 SET_SYSCTL(sched_min_granularity); 171 SET_SYSCTL(sched_latency); 172 SET_SYSCTL(sched_wakeup_granularity); 173 #undef SET_SYSCTL 174 } 175 176 void sched_init_granularity(void) 177 { 178 update_sysctl(); 179 } 180 181 #if BITS_PER_LONG == 32 182 # define WMULT_CONST (~0UL) 183 #else 184 # define WMULT_CONST (1UL << 32) 185 #endif 186 187 #define WMULT_SHIFT 32 188 189 /* 190 * Shift right and round: 191 */ 192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) 193 194 /* 195 * delta *= weight / lw 196 */ 197 static unsigned long 198 calc_delta_mine(unsigned long delta_exec, unsigned long weight, 199 struct load_weight *lw) 200 { 201 u64 tmp; 202 203 /* 204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched 205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than 206 * 2^SCHED_LOAD_RESOLUTION. 207 */ 208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION))) 209 tmp = (u64)delta_exec * scale_load_down(weight); 210 else 211 tmp = (u64)delta_exec; 212 213 if (!lw->inv_weight) { 214 unsigned long w = scale_load_down(lw->weight); 215 216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 217 lw->inv_weight = 1; 218 else if (unlikely(!w)) 219 lw->inv_weight = WMULT_CONST; 220 else 221 lw->inv_weight = WMULT_CONST / w; 222 } 223 224 /* 225 * Check whether we'd overflow the 64-bit multiplication: 226 */ 227 if (unlikely(tmp > WMULT_CONST)) 228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, 229 WMULT_SHIFT/2); 230 else 231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); 232 233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); 234 } 235 236 237 const struct sched_class fair_sched_class; 238 239 /************************************************************** 240 * CFS operations on generic schedulable entities: 241 */ 242 243 #ifdef CONFIG_FAIR_GROUP_SCHED 244 245 /* cpu runqueue to which this cfs_rq is attached */ 246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 247 { 248 return cfs_rq->rq; 249 } 250 251 /* An entity is a task if it doesn't "own" a runqueue */ 252 #define entity_is_task(se) (!se->my_q) 253 254 static inline struct task_struct *task_of(struct sched_entity *se) 255 { 256 #ifdef CONFIG_SCHED_DEBUG 257 WARN_ON_ONCE(!entity_is_task(se)); 258 #endif 259 return container_of(se, struct task_struct, se); 260 } 261 262 /* Walk up scheduling entities hierarchy */ 263 #define for_each_sched_entity(se) \ 264 for (; se; se = se->parent) 265 266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 267 { 268 return p->se.cfs_rq; 269 } 270 271 /* runqueue on which this entity is (to be) queued */ 272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 273 { 274 return se->cfs_rq; 275 } 276 277 /* runqueue "owned" by this group */ 278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 279 { 280 return grp->my_q; 281 } 282 283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 284 int force_update); 285 286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 287 { 288 if (!cfs_rq->on_list) { 289 /* 290 * Ensure we either appear before our parent (if already 291 * enqueued) or force our parent to appear after us when it is 292 * enqueued. The fact that we always enqueue bottom-up 293 * reduces this to two cases. 294 */ 295 if (cfs_rq->tg->parent && 296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 298 &rq_of(cfs_rq)->leaf_cfs_rq_list); 299 } else { 300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 301 &rq_of(cfs_rq)->leaf_cfs_rq_list); 302 } 303 304 cfs_rq->on_list = 1; 305 /* We should have no load, but we need to update last_decay. */ 306 update_cfs_rq_blocked_load(cfs_rq, 0); 307 } 308 } 309 310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 311 { 312 if (cfs_rq->on_list) { 313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 314 cfs_rq->on_list = 0; 315 } 316 } 317 318 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 321 322 /* Do the two (enqueued) entities belong to the same group ? */ 323 static inline int 324 is_same_group(struct sched_entity *se, struct sched_entity *pse) 325 { 326 if (se->cfs_rq == pse->cfs_rq) 327 return 1; 328 329 return 0; 330 } 331 332 static inline struct sched_entity *parent_entity(struct sched_entity *se) 333 { 334 return se->parent; 335 } 336 337 /* return depth at which a sched entity is present in the hierarchy */ 338 static inline int depth_se(struct sched_entity *se) 339 { 340 int depth = 0; 341 342 for_each_sched_entity(se) 343 depth++; 344 345 return depth; 346 } 347 348 static void 349 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 350 { 351 int se_depth, pse_depth; 352 353 /* 354 * preemption test can be made between sibling entities who are in the 355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 356 * both tasks until we find their ancestors who are siblings of common 357 * parent. 358 */ 359 360 /* First walk up until both entities are at same depth */ 361 se_depth = depth_se(*se); 362 pse_depth = depth_se(*pse); 363 364 while (se_depth > pse_depth) { 365 se_depth--; 366 *se = parent_entity(*se); 367 } 368 369 while (pse_depth > se_depth) { 370 pse_depth--; 371 *pse = parent_entity(*pse); 372 } 373 374 while (!is_same_group(*se, *pse)) { 375 *se = parent_entity(*se); 376 *pse = parent_entity(*pse); 377 } 378 } 379 380 #else /* !CONFIG_FAIR_GROUP_SCHED */ 381 382 static inline struct task_struct *task_of(struct sched_entity *se) 383 { 384 return container_of(se, struct task_struct, se); 385 } 386 387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 388 { 389 return container_of(cfs_rq, struct rq, cfs); 390 } 391 392 #define entity_is_task(se) 1 393 394 #define for_each_sched_entity(se) \ 395 for (; se; se = NULL) 396 397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 398 { 399 return &task_rq(p)->cfs; 400 } 401 402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 403 { 404 struct task_struct *p = task_of(se); 405 struct rq *rq = task_rq(p); 406 407 return &rq->cfs; 408 } 409 410 /* runqueue "owned" by this group */ 411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 412 { 413 return NULL; 414 } 415 416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 417 { 418 } 419 420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 421 { 422 } 423 424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 426 427 static inline int 428 is_same_group(struct sched_entity *se, struct sched_entity *pse) 429 { 430 return 1; 431 } 432 433 static inline struct sched_entity *parent_entity(struct sched_entity *se) 434 { 435 return NULL; 436 } 437 438 static inline void 439 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 440 { 441 } 442 443 #endif /* CONFIG_FAIR_GROUP_SCHED */ 444 445 static __always_inline 446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec); 447 448 /************************************************************** 449 * Scheduling class tree data structure manipulation methods: 450 */ 451 452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 453 { 454 s64 delta = (s64)(vruntime - max_vruntime); 455 if (delta > 0) 456 max_vruntime = vruntime; 457 458 return max_vruntime; 459 } 460 461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 462 { 463 s64 delta = (s64)(vruntime - min_vruntime); 464 if (delta < 0) 465 min_vruntime = vruntime; 466 467 return min_vruntime; 468 } 469 470 static inline int entity_before(struct sched_entity *a, 471 struct sched_entity *b) 472 { 473 return (s64)(a->vruntime - b->vruntime) < 0; 474 } 475 476 static void update_min_vruntime(struct cfs_rq *cfs_rq) 477 { 478 u64 vruntime = cfs_rq->min_vruntime; 479 480 if (cfs_rq->curr) 481 vruntime = cfs_rq->curr->vruntime; 482 483 if (cfs_rq->rb_leftmost) { 484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 485 struct sched_entity, 486 run_node); 487 488 if (!cfs_rq->curr) 489 vruntime = se->vruntime; 490 else 491 vruntime = min_vruntime(vruntime, se->vruntime); 492 } 493 494 /* ensure we never gain time by being placed backwards. */ 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 496 #ifndef CONFIG_64BIT 497 smp_wmb(); 498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 499 #endif 500 } 501 502 /* 503 * Enqueue an entity into the rb-tree: 504 */ 505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 506 { 507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 508 struct rb_node *parent = NULL; 509 struct sched_entity *entry; 510 int leftmost = 1; 511 512 /* 513 * Find the right place in the rbtree: 514 */ 515 while (*link) { 516 parent = *link; 517 entry = rb_entry(parent, struct sched_entity, run_node); 518 /* 519 * We dont care about collisions. Nodes with 520 * the same key stay together. 521 */ 522 if (entity_before(se, entry)) { 523 link = &parent->rb_left; 524 } else { 525 link = &parent->rb_right; 526 leftmost = 0; 527 } 528 } 529 530 /* 531 * Maintain a cache of leftmost tree entries (it is frequently 532 * used): 533 */ 534 if (leftmost) 535 cfs_rq->rb_leftmost = &se->run_node; 536 537 rb_link_node(&se->run_node, parent, link); 538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 539 } 540 541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 542 { 543 if (cfs_rq->rb_leftmost == &se->run_node) { 544 struct rb_node *next_node; 545 546 next_node = rb_next(&se->run_node); 547 cfs_rq->rb_leftmost = next_node; 548 } 549 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 551 } 552 553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 554 { 555 struct rb_node *left = cfs_rq->rb_leftmost; 556 557 if (!left) 558 return NULL; 559 560 return rb_entry(left, struct sched_entity, run_node); 561 } 562 563 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 564 { 565 struct rb_node *next = rb_next(&se->run_node); 566 567 if (!next) 568 return NULL; 569 570 return rb_entry(next, struct sched_entity, run_node); 571 } 572 573 #ifdef CONFIG_SCHED_DEBUG 574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 575 { 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 577 578 if (!last) 579 return NULL; 580 581 return rb_entry(last, struct sched_entity, run_node); 582 } 583 584 /************************************************************** 585 * Scheduling class statistics methods: 586 */ 587 588 int sched_proc_update_handler(struct ctl_table *table, int write, 589 void __user *buffer, size_t *lenp, 590 loff_t *ppos) 591 { 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 593 int factor = get_update_sysctl_factor(); 594 595 if (ret || !write) 596 return ret; 597 598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 599 sysctl_sched_min_granularity); 600 601 #define WRT_SYSCTL(name) \ 602 (normalized_sysctl_##name = sysctl_##name / (factor)) 603 WRT_SYSCTL(sched_min_granularity); 604 WRT_SYSCTL(sched_latency); 605 WRT_SYSCTL(sched_wakeup_granularity); 606 #undef WRT_SYSCTL 607 608 return 0; 609 } 610 #endif 611 612 /* 613 * delta /= w 614 */ 615 static inline unsigned long 616 calc_delta_fair(unsigned long delta, struct sched_entity *se) 617 { 618 if (unlikely(se->load.weight != NICE_0_LOAD)) 619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); 620 621 return delta; 622 } 623 624 /* 625 * The idea is to set a period in which each task runs once. 626 * 627 * When there are too many tasks (sched_nr_latency) we have to stretch 628 * this period because otherwise the slices get too small. 629 * 630 * p = (nr <= nl) ? l : l*nr/nl 631 */ 632 static u64 __sched_period(unsigned long nr_running) 633 { 634 u64 period = sysctl_sched_latency; 635 unsigned long nr_latency = sched_nr_latency; 636 637 if (unlikely(nr_running > nr_latency)) { 638 period = sysctl_sched_min_granularity; 639 period *= nr_running; 640 } 641 642 return period; 643 } 644 645 /* 646 * We calculate the wall-time slice from the period by taking a part 647 * proportional to the weight. 648 * 649 * s = p*P[w/rw] 650 */ 651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 652 { 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 654 655 for_each_sched_entity(se) { 656 struct load_weight *load; 657 struct load_weight lw; 658 659 cfs_rq = cfs_rq_of(se); 660 load = &cfs_rq->load; 661 662 if (unlikely(!se->on_rq)) { 663 lw = cfs_rq->load; 664 665 update_load_add(&lw, se->load.weight); 666 load = &lw; 667 } 668 slice = calc_delta_mine(slice, se->load.weight, load); 669 } 670 return slice; 671 } 672 673 /* 674 * We calculate the vruntime slice of a to-be-inserted task. 675 * 676 * vs = s/w 677 */ 678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 679 { 680 return calc_delta_fair(sched_slice(cfs_rq, se), se); 681 } 682 683 #ifdef CONFIG_SMP 684 static inline void __update_task_entity_contrib(struct sched_entity *se); 685 686 /* Give new task start runnable values to heavy its load in infant time */ 687 void init_task_runnable_average(struct task_struct *p) 688 { 689 u32 slice; 690 691 p->se.avg.decay_count = 0; 692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; 693 p->se.avg.runnable_avg_sum = slice; 694 p->se.avg.runnable_avg_period = slice; 695 __update_task_entity_contrib(&p->se); 696 } 697 #else 698 void init_task_runnable_average(struct task_struct *p) 699 { 700 } 701 #endif 702 703 /* 704 * Update the current task's runtime statistics. Skip current tasks that 705 * are not in our scheduling class. 706 */ 707 static inline void 708 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, 709 unsigned long delta_exec) 710 { 711 unsigned long delta_exec_weighted; 712 713 schedstat_set(curr->statistics.exec_max, 714 max((u64)delta_exec, curr->statistics.exec_max)); 715 716 curr->sum_exec_runtime += delta_exec; 717 schedstat_add(cfs_rq, exec_clock, delta_exec); 718 delta_exec_weighted = calc_delta_fair(delta_exec, curr); 719 720 curr->vruntime += delta_exec_weighted; 721 update_min_vruntime(cfs_rq); 722 } 723 724 static void update_curr(struct cfs_rq *cfs_rq) 725 { 726 struct sched_entity *curr = cfs_rq->curr; 727 u64 now = rq_clock_task(rq_of(cfs_rq)); 728 unsigned long delta_exec; 729 730 if (unlikely(!curr)) 731 return; 732 733 /* 734 * Get the amount of time the current task was running 735 * since the last time we changed load (this cannot 736 * overflow on 32 bits): 737 */ 738 delta_exec = (unsigned long)(now - curr->exec_start); 739 if (!delta_exec) 740 return; 741 742 __update_curr(cfs_rq, curr, delta_exec); 743 curr->exec_start = now; 744 745 if (entity_is_task(curr)) { 746 struct task_struct *curtask = task_of(curr); 747 748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 749 cpuacct_charge(curtask, delta_exec); 750 account_group_exec_runtime(curtask, delta_exec); 751 } 752 753 account_cfs_rq_runtime(cfs_rq, delta_exec); 754 } 755 756 static inline void 757 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 758 { 759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); 760 } 761 762 /* 763 * Task is being enqueued - update stats: 764 */ 765 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 766 { 767 /* 768 * Are we enqueueing a waiting task? (for current tasks 769 * a dequeue/enqueue event is a NOP) 770 */ 771 if (se != cfs_rq->curr) 772 update_stats_wait_start(cfs_rq, se); 773 } 774 775 static void 776 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 777 { 778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); 780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 783 #ifdef CONFIG_SCHEDSTATS 784 if (entity_is_task(se)) { 785 trace_sched_stat_wait(task_of(se), 786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 787 } 788 #endif 789 schedstat_set(se->statistics.wait_start, 0); 790 } 791 792 static inline void 793 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 794 { 795 /* 796 * Mark the end of the wait period if dequeueing a 797 * waiting task: 798 */ 799 if (se != cfs_rq->curr) 800 update_stats_wait_end(cfs_rq, se); 801 } 802 803 /* 804 * We are picking a new current task - update its stats: 805 */ 806 static inline void 807 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 808 { 809 /* 810 * We are starting a new run period: 811 */ 812 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 813 } 814 815 /************************************************** 816 * Scheduling class queueing methods: 817 */ 818 819 #ifdef CONFIG_NUMA_BALANCING 820 /* 821 * numa task sample period in ms 822 */ 823 unsigned int sysctl_numa_balancing_scan_period_min = 100; 824 unsigned int sysctl_numa_balancing_scan_period_max = 100*50; 825 unsigned int sysctl_numa_balancing_scan_period_reset = 100*600; 826 827 /* Portion of address space to scan in MB */ 828 unsigned int sysctl_numa_balancing_scan_size = 256; 829 830 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 831 unsigned int sysctl_numa_balancing_scan_delay = 1000; 832 833 static void task_numa_placement(struct task_struct *p) 834 { 835 int seq; 836 837 if (!p->mm) /* for example, ksmd faulting in a user's mm */ 838 return; 839 seq = ACCESS_ONCE(p->mm->numa_scan_seq); 840 if (p->numa_scan_seq == seq) 841 return; 842 p->numa_scan_seq = seq; 843 844 /* FIXME: Scheduling placement policy hints go here */ 845 } 846 847 /* 848 * Got a PROT_NONE fault for a page on @node. 849 */ 850 void task_numa_fault(int node, int pages, bool migrated) 851 { 852 struct task_struct *p = current; 853 854 if (!numabalancing_enabled) 855 return; 856 857 /* FIXME: Allocate task-specific structure for placement policy here */ 858 859 /* 860 * If pages are properly placed (did not migrate) then scan slower. 861 * This is reset periodically in case of phase changes 862 */ 863 if (!migrated) 864 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max, 865 p->numa_scan_period + jiffies_to_msecs(10)); 866 867 task_numa_placement(p); 868 } 869 870 static void reset_ptenuma_scan(struct task_struct *p) 871 { 872 ACCESS_ONCE(p->mm->numa_scan_seq)++; 873 p->mm->numa_scan_offset = 0; 874 } 875 876 /* 877 * The expensive part of numa migration is done from task_work context. 878 * Triggered from task_tick_numa(). 879 */ 880 void task_numa_work(struct callback_head *work) 881 { 882 unsigned long migrate, next_scan, now = jiffies; 883 struct task_struct *p = current; 884 struct mm_struct *mm = p->mm; 885 struct vm_area_struct *vma; 886 unsigned long start, end; 887 long pages; 888 889 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 890 891 work->next = work; /* protect against double add */ 892 /* 893 * Who cares about NUMA placement when they're dying. 894 * 895 * NOTE: make sure not to dereference p->mm before this check, 896 * exit_task_work() happens _after_ exit_mm() so we could be called 897 * without p->mm even though we still had it when we enqueued this 898 * work. 899 */ 900 if (p->flags & PF_EXITING) 901 return; 902 903 /* 904 * We do not care about task placement until a task runs on a node 905 * other than the first one used by the address space. This is 906 * largely because migrations are driven by what CPU the task 907 * is running on. If it's never scheduled on another node, it'll 908 * not migrate so why bother trapping the fault. 909 */ 910 if (mm->first_nid == NUMA_PTE_SCAN_INIT) 911 mm->first_nid = numa_node_id(); 912 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) { 913 /* Are we running on a new node yet? */ 914 if (numa_node_id() == mm->first_nid && 915 !sched_feat_numa(NUMA_FORCE)) 916 return; 917 918 mm->first_nid = NUMA_PTE_SCAN_ACTIVE; 919 } 920 921 /* 922 * Reset the scan period if enough time has gone by. Objective is that 923 * scanning will be reduced if pages are properly placed. As tasks 924 * can enter different phases this needs to be re-examined. Lacking 925 * proper tracking of reference behaviour, this blunt hammer is used. 926 */ 927 migrate = mm->numa_next_reset; 928 if (time_after(now, migrate)) { 929 p->numa_scan_period = sysctl_numa_balancing_scan_period_min; 930 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset); 931 xchg(&mm->numa_next_reset, next_scan); 932 } 933 934 /* 935 * Enforce maximal scan/migration frequency.. 936 */ 937 migrate = mm->numa_next_scan; 938 if (time_before(now, migrate)) 939 return; 940 941 if (p->numa_scan_period == 0) 942 p->numa_scan_period = sysctl_numa_balancing_scan_period_min; 943 944 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 945 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 946 return; 947 948 /* 949 * Do not set pte_numa if the current running node is rate-limited. 950 * This loses statistics on the fault but if we are unwilling to 951 * migrate to this node, it is less likely we can do useful work 952 */ 953 if (migrate_ratelimited(numa_node_id())) 954 return; 955 956 start = mm->numa_scan_offset; 957 pages = sysctl_numa_balancing_scan_size; 958 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 959 if (!pages) 960 return; 961 962 down_read(&mm->mmap_sem); 963 vma = find_vma(mm, start); 964 if (!vma) { 965 reset_ptenuma_scan(p); 966 start = 0; 967 vma = mm->mmap; 968 } 969 for (; vma; vma = vma->vm_next) { 970 if (!vma_migratable(vma)) 971 continue; 972 973 /* Skip small VMAs. They are not likely to be of relevance */ 974 if (vma->vm_end - vma->vm_start < HPAGE_SIZE) 975 continue; 976 977 do { 978 start = max(start, vma->vm_start); 979 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 980 end = min(end, vma->vm_end); 981 pages -= change_prot_numa(vma, start, end); 982 983 start = end; 984 if (pages <= 0) 985 goto out; 986 } while (end != vma->vm_end); 987 } 988 989 out: 990 /* 991 * It is possible to reach the end of the VMA list but the last few VMAs are 992 * not guaranteed to the vma_migratable. If they are not, we would find the 993 * !migratable VMA on the next scan but not reset the scanner to the start 994 * so check it now. 995 */ 996 if (vma) 997 mm->numa_scan_offset = start; 998 else 999 reset_ptenuma_scan(p); 1000 up_read(&mm->mmap_sem); 1001 } 1002 1003 /* 1004 * Drive the periodic memory faults.. 1005 */ 1006 void task_tick_numa(struct rq *rq, struct task_struct *curr) 1007 { 1008 struct callback_head *work = &curr->numa_work; 1009 u64 period, now; 1010 1011 /* 1012 * We don't care about NUMA placement if we don't have memory. 1013 */ 1014 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 1015 return; 1016 1017 /* 1018 * Using runtime rather than walltime has the dual advantage that 1019 * we (mostly) drive the selection from busy threads and that the 1020 * task needs to have done some actual work before we bother with 1021 * NUMA placement. 1022 */ 1023 now = curr->se.sum_exec_runtime; 1024 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 1025 1026 if (now - curr->node_stamp > period) { 1027 if (!curr->node_stamp) 1028 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min; 1029 curr->node_stamp = now; 1030 1031 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 1032 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 1033 task_work_add(curr, work, true); 1034 } 1035 } 1036 } 1037 #else 1038 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 1039 { 1040 } 1041 #endif /* CONFIG_NUMA_BALANCING */ 1042 1043 static void 1044 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 1045 { 1046 update_load_add(&cfs_rq->load, se->load.weight); 1047 if (!parent_entity(se)) 1048 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 1049 #ifdef CONFIG_SMP 1050 if (entity_is_task(se)) 1051 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks); 1052 #endif 1053 cfs_rq->nr_running++; 1054 } 1055 1056 static void 1057 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 1058 { 1059 update_load_sub(&cfs_rq->load, se->load.weight); 1060 if (!parent_entity(se)) 1061 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 1062 if (entity_is_task(se)) 1063 list_del_init(&se->group_node); 1064 cfs_rq->nr_running--; 1065 } 1066 1067 #ifdef CONFIG_FAIR_GROUP_SCHED 1068 # ifdef CONFIG_SMP 1069 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 1070 { 1071 long tg_weight; 1072 1073 /* 1074 * Use this CPU's actual weight instead of the last load_contribution 1075 * to gain a more accurate current total weight. See 1076 * update_cfs_rq_load_contribution(). 1077 */ 1078 tg_weight = atomic_long_read(&tg->load_avg); 1079 tg_weight -= cfs_rq->tg_load_contrib; 1080 tg_weight += cfs_rq->load.weight; 1081 1082 return tg_weight; 1083 } 1084 1085 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 1086 { 1087 long tg_weight, load, shares; 1088 1089 tg_weight = calc_tg_weight(tg, cfs_rq); 1090 load = cfs_rq->load.weight; 1091 1092 shares = (tg->shares * load); 1093 if (tg_weight) 1094 shares /= tg_weight; 1095 1096 if (shares < MIN_SHARES) 1097 shares = MIN_SHARES; 1098 if (shares > tg->shares) 1099 shares = tg->shares; 1100 1101 return shares; 1102 } 1103 # else /* CONFIG_SMP */ 1104 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 1105 { 1106 return tg->shares; 1107 } 1108 # endif /* CONFIG_SMP */ 1109 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 1110 unsigned long weight) 1111 { 1112 if (se->on_rq) { 1113 /* commit outstanding execution time */ 1114 if (cfs_rq->curr == se) 1115 update_curr(cfs_rq); 1116 account_entity_dequeue(cfs_rq, se); 1117 } 1118 1119 update_load_set(&se->load, weight); 1120 1121 if (se->on_rq) 1122 account_entity_enqueue(cfs_rq, se); 1123 } 1124 1125 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 1126 1127 static void update_cfs_shares(struct cfs_rq *cfs_rq) 1128 { 1129 struct task_group *tg; 1130 struct sched_entity *se; 1131 long shares; 1132 1133 tg = cfs_rq->tg; 1134 se = tg->se[cpu_of(rq_of(cfs_rq))]; 1135 if (!se || throttled_hierarchy(cfs_rq)) 1136 return; 1137 #ifndef CONFIG_SMP 1138 if (likely(se->load.weight == tg->shares)) 1139 return; 1140 #endif 1141 shares = calc_cfs_shares(cfs_rq, tg); 1142 1143 reweight_entity(cfs_rq_of(se), se, shares); 1144 } 1145 #else /* CONFIG_FAIR_GROUP_SCHED */ 1146 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 1147 { 1148 } 1149 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1150 1151 #ifdef CONFIG_SMP 1152 /* 1153 * We choose a half-life close to 1 scheduling period. 1154 * Note: The tables below are dependent on this value. 1155 */ 1156 #define LOAD_AVG_PERIOD 32 1157 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 1158 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ 1159 1160 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 1161 static const u32 runnable_avg_yN_inv[] = { 1162 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 1163 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 1164 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 1165 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 1166 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 1167 0x85aac367, 0x82cd8698, 1168 }; 1169 1170 /* 1171 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 1172 * over-estimates when re-combining. 1173 */ 1174 static const u32 runnable_avg_yN_sum[] = { 1175 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 1176 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 1177 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 1178 }; 1179 1180 /* 1181 * Approximate: 1182 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 1183 */ 1184 static __always_inline u64 decay_load(u64 val, u64 n) 1185 { 1186 unsigned int local_n; 1187 1188 if (!n) 1189 return val; 1190 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 1191 return 0; 1192 1193 /* after bounds checking we can collapse to 32-bit */ 1194 local_n = n; 1195 1196 /* 1197 * As y^PERIOD = 1/2, we can combine 1198 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD) 1199 * With a look-up table which covers k^n (n<PERIOD) 1200 * 1201 * To achieve constant time decay_load. 1202 */ 1203 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 1204 val >>= local_n / LOAD_AVG_PERIOD; 1205 local_n %= LOAD_AVG_PERIOD; 1206 } 1207 1208 val *= runnable_avg_yN_inv[local_n]; 1209 /* We don't use SRR here since we always want to round down. */ 1210 return val >> 32; 1211 } 1212 1213 /* 1214 * For updates fully spanning n periods, the contribution to runnable 1215 * average will be: \Sum 1024*y^n 1216 * 1217 * We can compute this reasonably efficiently by combining: 1218 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 1219 */ 1220 static u32 __compute_runnable_contrib(u64 n) 1221 { 1222 u32 contrib = 0; 1223 1224 if (likely(n <= LOAD_AVG_PERIOD)) 1225 return runnable_avg_yN_sum[n]; 1226 else if (unlikely(n >= LOAD_AVG_MAX_N)) 1227 return LOAD_AVG_MAX; 1228 1229 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ 1230 do { 1231 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ 1232 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; 1233 1234 n -= LOAD_AVG_PERIOD; 1235 } while (n > LOAD_AVG_PERIOD); 1236 1237 contrib = decay_load(contrib, n); 1238 return contrib + runnable_avg_yN_sum[n]; 1239 } 1240 1241 /* 1242 * We can represent the historical contribution to runnable average as the 1243 * coefficients of a geometric series. To do this we sub-divide our runnable 1244 * history into segments of approximately 1ms (1024us); label the segment that 1245 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 1246 * 1247 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 1248 * p0 p1 p2 1249 * (now) (~1ms ago) (~2ms ago) 1250 * 1251 * Let u_i denote the fraction of p_i that the entity was runnable. 1252 * 1253 * We then designate the fractions u_i as our co-efficients, yielding the 1254 * following representation of historical load: 1255 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 1256 * 1257 * We choose y based on the with of a reasonably scheduling period, fixing: 1258 * y^32 = 0.5 1259 * 1260 * This means that the contribution to load ~32ms ago (u_32) will be weighted 1261 * approximately half as much as the contribution to load within the last ms 1262 * (u_0). 1263 * 1264 * When a period "rolls over" and we have new u_0`, multiplying the previous 1265 * sum again by y is sufficient to update: 1266 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 1267 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 1268 */ 1269 static __always_inline int __update_entity_runnable_avg(u64 now, 1270 struct sched_avg *sa, 1271 int runnable) 1272 { 1273 u64 delta, periods; 1274 u32 runnable_contrib; 1275 int delta_w, decayed = 0; 1276 1277 delta = now - sa->last_runnable_update; 1278 /* 1279 * This should only happen when time goes backwards, which it 1280 * unfortunately does during sched clock init when we swap over to TSC. 1281 */ 1282 if ((s64)delta < 0) { 1283 sa->last_runnable_update = now; 1284 return 0; 1285 } 1286 1287 /* 1288 * Use 1024ns as the unit of measurement since it's a reasonable 1289 * approximation of 1us and fast to compute. 1290 */ 1291 delta >>= 10; 1292 if (!delta) 1293 return 0; 1294 sa->last_runnable_update = now; 1295 1296 /* delta_w is the amount already accumulated against our next period */ 1297 delta_w = sa->runnable_avg_period % 1024; 1298 if (delta + delta_w >= 1024) { 1299 /* period roll-over */ 1300 decayed = 1; 1301 1302 /* 1303 * Now that we know we're crossing a period boundary, figure 1304 * out how much from delta we need to complete the current 1305 * period and accrue it. 1306 */ 1307 delta_w = 1024 - delta_w; 1308 if (runnable) 1309 sa->runnable_avg_sum += delta_w; 1310 sa->runnable_avg_period += delta_w; 1311 1312 delta -= delta_w; 1313 1314 /* Figure out how many additional periods this update spans */ 1315 periods = delta / 1024; 1316 delta %= 1024; 1317 1318 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, 1319 periods + 1); 1320 sa->runnable_avg_period = decay_load(sa->runnable_avg_period, 1321 periods + 1); 1322 1323 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 1324 runnable_contrib = __compute_runnable_contrib(periods); 1325 if (runnable) 1326 sa->runnable_avg_sum += runnable_contrib; 1327 sa->runnable_avg_period += runnable_contrib; 1328 } 1329 1330 /* Remainder of delta accrued against u_0` */ 1331 if (runnable) 1332 sa->runnable_avg_sum += delta; 1333 sa->runnable_avg_period += delta; 1334 1335 return decayed; 1336 } 1337 1338 /* Synchronize an entity's decay with its parenting cfs_rq.*/ 1339 static inline u64 __synchronize_entity_decay(struct sched_entity *se) 1340 { 1341 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1342 u64 decays = atomic64_read(&cfs_rq->decay_counter); 1343 1344 decays -= se->avg.decay_count; 1345 if (!decays) 1346 return 0; 1347 1348 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); 1349 se->avg.decay_count = 0; 1350 1351 return decays; 1352 } 1353 1354 #ifdef CONFIG_FAIR_GROUP_SCHED 1355 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 1356 int force_update) 1357 { 1358 struct task_group *tg = cfs_rq->tg; 1359 long tg_contrib; 1360 1361 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; 1362 tg_contrib -= cfs_rq->tg_load_contrib; 1363 1364 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) { 1365 atomic_long_add(tg_contrib, &tg->load_avg); 1366 cfs_rq->tg_load_contrib += tg_contrib; 1367 } 1368 } 1369 1370 /* 1371 * Aggregate cfs_rq runnable averages into an equivalent task_group 1372 * representation for computing load contributions. 1373 */ 1374 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 1375 struct cfs_rq *cfs_rq) 1376 { 1377 struct task_group *tg = cfs_rq->tg; 1378 long contrib; 1379 1380 /* The fraction of a cpu used by this cfs_rq */ 1381 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT, 1382 sa->runnable_avg_period + 1); 1383 contrib -= cfs_rq->tg_runnable_contrib; 1384 1385 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { 1386 atomic_add(contrib, &tg->runnable_avg); 1387 cfs_rq->tg_runnable_contrib += contrib; 1388 } 1389 } 1390 1391 static inline void __update_group_entity_contrib(struct sched_entity *se) 1392 { 1393 struct cfs_rq *cfs_rq = group_cfs_rq(se); 1394 struct task_group *tg = cfs_rq->tg; 1395 int runnable_avg; 1396 1397 u64 contrib; 1398 1399 contrib = cfs_rq->tg_load_contrib * tg->shares; 1400 se->avg.load_avg_contrib = div_u64(contrib, 1401 atomic_long_read(&tg->load_avg) + 1); 1402 1403 /* 1404 * For group entities we need to compute a correction term in the case 1405 * that they are consuming <1 cpu so that we would contribute the same 1406 * load as a task of equal weight. 1407 * 1408 * Explicitly co-ordinating this measurement would be expensive, but 1409 * fortunately the sum of each cpus contribution forms a usable 1410 * lower-bound on the true value. 1411 * 1412 * Consider the aggregate of 2 contributions. Either they are disjoint 1413 * (and the sum represents true value) or they are disjoint and we are 1414 * understating by the aggregate of their overlap. 1415 * 1416 * Extending this to N cpus, for a given overlap, the maximum amount we 1417 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of 1418 * cpus that overlap for this interval and w_i is the interval width. 1419 * 1420 * On a small machine; the first term is well-bounded which bounds the 1421 * total error since w_i is a subset of the period. Whereas on a 1422 * larger machine, while this first term can be larger, if w_i is the 1423 * of consequential size guaranteed to see n_i*w_i quickly converge to 1424 * our upper bound of 1-cpu. 1425 */ 1426 runnable_avg = atomic_read(&tg->runnable_avg); 1427 if (runnable_avg < NICE_0_LOAD) { 1428 se->avg.load_avg_contrib *= runnable_avg; 1429 se->avg.load_avg_contrib >>= NICE_0_SHIFT; 1430 } 1431 } 1432 #else 1433 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 1434 int force_update) {} 1435 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 1436 struct cfs_rq *cfs_rq) {} 1437 static inline void __update_group_entity_contrib(struct sched_entity *se) {} 1438 #endif 1439 1440 static inline void __update_task_entity_contrib(struct sched_entity *se) 1441 { 1442 u32 contrib; 1443 1444 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ 1445 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); 1446 contrib /= (se->avg.runnable_avg_period + 1); 1447 se->avg.load_avg_contrib = scale_load(contrib); 1448 } 1449 1450 /* Compute the current contribution to load_avg by se, return any delta */ 1451 static long __update_entity_load_avg_contrib(struct sched_entity *se) 1452 { 1453 long old_contrib = se->avg.load_avg_contrib; 1454 1455 if (entity_is_task(se)) { 1456 __update_task_entity_contrib(se); 1457 } else { 1458 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); 1459 __update_group_entity_contrib(se); 1460 } 1461 1462 return se->avg.load_avg_contrib - old_contrib; 1463 } 1464 1465 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, 1466 long load_contrib) 1467 { 1468 if (likely(load_contrib < cfs_rq->blocked_load_avg)) 1469 cfs_rq->blocked_load_avg -= load_contrib; 1470 else 1471 cfs_rq->blocked_load_avg = 0; 1472 } 1473 1474 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 1475 1476 /* Update a sched_entity's runnable average */ 1477 static inline void update_entity_load_avg(struct sched_entity *se, 1478 int update_cfs_rq) 1479 { 1480 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1481 long contrib_delta; 1482 u64 now; 1483 1484 /* 1485 * For a group entity we need to use their owned cfs_rq_clock_task() in 1486 * case they are the parent of a throttled hierarchy. 1487 */ 1488 if (entity_is_task(se)) 1489 now = cfs_rq_clock_task(cfs_rq); 1490 else 1491 now = cfs_rq_clock_task(group_cfs_rq(se)); 1492 1493 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq)) 1494 return; 1495 1496 contrib_delta = __update_entity_load_avg_contrib(se); 1497 1498 if (!update_cfs_rq) 1499 return; 1500 1501 if (se->on_rq) 1502 cfs_rq->runnable_load_avg += contrib_delta; 1503 else 1504 subtract_blocked_load_contrib(cfs_rq, -contrib_delta); 1505 } 1506 1507 /* 1508 * Decay the load contributed by all blocked children and account this so that 1509 * their contribution may appropriately discounted when they wake up. 1510 */ 1511 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) 1512 { 1513 u64 now = cfs_rq_clock_task(cfs_rq) >> 20; 1514 u64 decays; 1515 1516 decays = now - cfs_rq->last_decay; 1517 if (!decays && !force_update) 1518 return; 1519 1520 if (atomic_long_read(&cfs_rq->removed_load)) { 1521 unsigned long removed_load; 1522 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0); 1523 subtract_blocked_load_contrib(cfs_rq, removed_load); 1524 } 1525 1526 if (decays) { 1527 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, 1528 decays); 1529 atomic64_add(decays, &cfs_rq->decay_counter); 1530 cfs_rq->last_decay = now; 1531 } 1532 1533 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); 1534 } 1535 1536 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) 1537 { 1538 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable); 1539 __update_tg_runnable_avg(&rq->avg, &rq->cfs); 1540 } 1541 1542 /* Add the load generated by se into cfs_rq's child load-average */ 1543 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 1544 struct sched_entity *se, 1545 int wakeup) 1546 { 1547 /* 1548 * We track migrations using entity decay_count <= 0, on a wake-up 1549 * migration we use a negative decay count to track the remote decays 1550 * accumulated while sleeping. 1551 * 1552 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they 1553 * are seen by enqueue_entity_load_avg() as a migration with an already 1554 * constructed load_avg_contrib. 1555 */ 1556 if (unlikely(se->avg.decay_count <= 0)) { 1557 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq)); 1558 if (se->avg.decay_count) { 1559 /* 1560 * In a wake-up migration we have to approximate the 1561 * time sleeping. This is because we can't synchronize 1562 * clock_task between the two cpus, and it is not 1563 * guaranteed to be read-safe. Instead, we can 1564 * approximate this using our carried decays, which are 1565 * explicitly atomically readable. 1566 */ 1567 se->avg.last_runnable_update -= (-se->avg.decay_count) 1568 << 20; 1569 update_entity_load_avg(se, 0); 1570 /* Indicate that we're now synchronized and on-rq */ 1571 se->avg.decay_count = 0; 1572 } 1573 wakeup = 0; 1574 } else { 1575 /* 1576 * Task re-woke on same cpu (or else migrate_task_rq_fair() 1577 * would have made count negative); we must be careful to avoid 1578 * double-accounting blocked time after synchronizing decays. 1579 */ 1580 se->avg.last_runnable_update += __synchronize_entity_decay(se) 1581 << 20; 1582 } 1583 1584 /* migrated tasks did not contribute to our blocked load */ 1585 if (wakeup) { 1586 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 1587 update_entity_load_avg(se, 0); 1588 } 1589 1590 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; 1591 /* we force update consideration on load-balancer moves */ 1592 update_cfs_rq_blocked_load(cfs_rq, !wakeup); 1593 } 1594 1595 /* 1596 * Remove se's load from this cfs_rq child load-average, if the entity is 1597 * transitioning to a blocked state we track its projected decay using 1598 * blocked_load_avg. 1599 */ 1600 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 1601 struct sched_entity *se, 1602 int sleep) 1603 { 1604 update_entity_load_avg(se, 1); 1605 /* we force update consideration on load-balancer moves */ 1606 update_cfs_rq_blocked_load(cfs_rq, !sleep); 1607 1608 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; 1609 if (sleep) { 1610 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 1611 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 1612 } /* migrations, e.g. sleep=0 leave decay_count == 0 */ 1613 } 1614 1615 /* 1616 * Update the rq's load with the elapsed running time before entering 1617 * idle. if the last scheduled task is not a CFS task, idle_enter will 1618 * be the only way to update the runnable statistic. 1619 */ 1620 void idle_enter_fair(struct rq *this_rq) 1621 { 1622 update_rq_runnable_avg(this_rq, 1); 1623 } 1624 1625 /* 1626 * Update the rq's load with the elapsed idle time before a task is 1627 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will 1628 * be the only way to update the runnable statistic. 1629 */ 1630 void idle_exit_fair(struct rq *this_rq) 1631 { 1632 update_rq_runnable_avg(this_rq, 0); 1633 } 1634 1635 #else 1636 static inline void update_entity_load_avg(struct sched_entity *se, 1637 int update_cfs_rq) {} 1638 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 1639 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 1640 struct sched_entity *se, 1641 int wakeup) {} 1642 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 1643 struct sched_entity *se, 1644 int sleep) {} 1645 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 1646 int force_update) {} 1647 #endif 1648 1649 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 1650 { 1651 #ifdef CONFIG_SCHEDSTATS 1652 struct task_struct *tsk = NULL; 1653 1654 if (entity_is_task(se)) 1655 tsk = task_of(se); 1656 1657 if (se->statistics.sleep_start) { 1658 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 1659 1660 if ((s64)delta < 0) 1661 delta = 0; 1662 1663 if (unlikely(delta > se->statistics.sleep_max)) 1664 se->statistics.sleep_max = delta; 1665 1666 se->statistics.sleep_start = 0; 1667 se->statistics.sum_sleep_runtime += delta; 1668 1669 if (tsk) { 1670 account_scheduler_latency(tsk, delta >> 10, 1); 1671 trace_sched_stat_sleep(tsk, delta); 1672 } 1673 } 1674 if (se->statistics.block_start) { 1675 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 1676 1677 if ((s64)delta < 0) 1678 delta = 0; 1679 1680 if (unlikely(delta > se->statistics.block_max)) 1681 se->statistics.block_max = delta; 1682 1683 se->statistics.block_start = 0; 1684 se->statistics.sum_sleep_runtime += delta; 1685 1686 if (tsk) { 1687 if (tsk->in_iowait) { 1688 se->statistics.iowait_sum += delta; 1689 se->statistics.iowait_count++; 1690 trace_sched_stat_iowait(tsk, delta); 1691 } 1692 1693 trace_sched_stat_blocked(tsk, delta); 1694 1695 /* 1696 * Blocking time is in units of nanosecs, so shift by 1697 * 20 to get a milliseconds-range estimation of the 1698 * amount of time that the task spent sleeping: 1699 */ 1700 if (unlikely(prof_on == SLEEP_PROFILING)) { 1701 profile_hits(SLEEP_PROFILING, 1702 (void *)get_wchan(tsk), 1703 delta >> 20); 1704 } 1705 account_scheduler_latency(tsk, delta >> 10, 0); 1706 } 1707 } 1708 #endif 1709 } 1710 1711 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 1712 { 1713 #ifdef CONFIG_SCHED_DEBUG 1714 s64 d = se->vruntime - cfs_rq->min_vruntime; 1715 1716 if (d < 0) 1717 d = -d; 1718 1719 if (d > 3*sysctl_sched_latency) 1720 schedstat_inc(cfs_rq, nr_spread_over); 1721 #endif 1722 } 1723 1724 static void 1725 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 1726 { 1727 u64 vruntime = cfs_rq->min_vruntime; 1728 1729 /* 1730 * The 'current' period is already promised to the current tasks, 1731 * however the extra weight of the new task will slow them down a 1732 * little, place the new task so that it fits in the slot that 1733 * stays open at the end. 1734 */ 1735 if (initial && sched_feat(START_DEBIT)) 1736 vruntime += sched_vslice(cfs_rq, se); 1737 1738 /* sleeps up to a single latency don't count. */ 1739 if (!initial) { 1740 unsigned long thresh = sysctl_sched_latency; 1741 1742 /* 1743 * Halve their sleep time's effect, to allow 1744 * for a gentler effect of sleepers: 1745 */ 1746 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 1747 thresh >>= 1; 1748 1749 vruntime -= thresh; 1750 } 1751 1752 /* ensure we never gain time by being placed backwards. */ 1753 se->vruntime = max_vruntime(se->vruntime, vruntime); 1754 } 1755 1756 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 1757 1758 static void 1759 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1760 { 1761 /* 1762 * Update the normalized vruntime before updating min_vruntime 1763 * through calling update_curr(). 1764 */ 1765 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 1766 se->vruntime += cfs_rq->min_vruntime; 1767 1768 /* 1769 * Update run-time statistics of the 'current'. 1770 */ 1771 update_curr(cfs_rq); 1772 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); 1773 account_entity_enqueue(cfs_rq, se); 1774 update_cfs_shares(cfs_rq); 1775 1776 if (flags & ENQUEUE_WAKEUP) { 1777 place_entity(cfs_rq, se, 0); 1778 enqueue_sleeper(cfs_rq, se); 1779 } 1780 1781 update_stats_enqueue(cfs_rq, se); 1782 check_spread(cfs_rq, se); 1783 if (se != cfs_rq->curr) 1784 __enqueue_entity(cfs_rq, se); 1785 se->on_rq = 1; 1786 1787 if (cfs_rq->nr_running == 1) { 1788 list_add_leaf_cfs_rq(cfs_rq); 1789 check_enqueue_throttle(cfs_rq); 1790 } 1791 } 1792 1793 static void __clear_buddies_last(struct sched_entity *se) 1794 { 1795 for_each_sched_entity(se) { 1796 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1797 if (cfs_rq->last == se) 1798 cfs_rq->last = NULL; 1799 else 1800 break; 1801 } 1802 } 1803 1804 static void __clear_buddies_next(struct sched_entity *se) 1805 { 1806 for_each_sched_entity(se) { 1807 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1808 if (cfs_rq->next == se) 1809 cfs_rq->next = NULL; 1810 else 1811 break; 1812 } 1813 } 1814 1815 static void __clear_buddies_skip(struct sched_entity *se) 1816 { 1817 for_each_sched_entity(se) { 1818 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1819 if (cfs_rq->skip == se) 1820 cfs_rq->skip = NULL; 1821 else 1822 break; 1823 } 1824 } 1825 1826 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 1827 { 1828 if (cfs_rq->last == se) 1829 __clear_buddies_last(se); 1830 1831 if (cfs_rq->next == se) 1832 __clear_buddies_next(se); 1833 1834 if (cfs_rq->skip == se) 1835 __clear_buddies_skip(se); 1836 } 1837 1838 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 1839 1840 static void 1841 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1842 { 1843 /* 1844 * Update run-time statistics of the 'current'. 1845 */ 1846 update_curr(cfs_rq); 1847 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); 1848 1849 update_stats_dequeue(cfs_rq, se); 1850 if (flags & DEQUEUE_SLEEP) { 1851 #ifdef CONFIG_SCHEDSTATS 1852 if (entity_is_task(se)) { 1853 struct task_struct *tsk = task_of(se); 1854 1855 if (tsk->state & TASK_INTERRUPTIBLE) 1856 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 1857 if (tsk->state & TASK_UNINTERRUPTIBLE) 1858 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 1859 } 1860 #endif 1861 } 1862 1863 clear_buddies(cfs_rq, se); 1864 1865 if (se != cfs_rq->curr) 1866 __dequeue_entity(cfs_rq, se); 1867 se->on_rq = 0; 1868 account_entity_dequeue(cfs_rq, se); 1869 1870 /* 1871 * Normalize the entity after updating the min_vruntime because the 1872 * update can refer to the ->curr item and we need to reflect this 1873 * movement in our normalized position. 1874 */ 1875 if (!(flags & DEQUEUE_SLEEP)) 1876 se->vruntime -= cfs_rq->min_vruntime; 1877 1878 /* return excess runtime on last dequeue */ 1879 return_cfs_rq_runtime(cfs_rq); 1880 1881 update_min_vruntime(cfs_rq); 1882 update_cfs_shares(cfs_rq); 1883 } 1884 1885 /* 1886 * Preempt the current task with a newly woken task if needed: 1887 */ 1888 static void 1889 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1890 { 1891 unsigned long ideal_runtime, delta_exec; 1892 struct sched_entity *se; 1893 s64 delta; 1894 1895 ideal_runtime = sched_slice(cfs_rq, curr); 1896 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 1897 if (delta_exec > ideal_runtime) { 1898 resched_task(rq_of(cfs_rq)->curr); 1899 /* 1900 * The current task ran long enough, ensure it doesn't get 1901 * re-elected due to buddy favours. 1902 */ 1903 clear_buddies(cfs_rq, curr); 1904 return; 1905 } 1906 1907 /* 1908 * Ensure that a task that missed wakeup preemption by a 1909 * narrow margin doesn't have to wait for a full slice. 1910 * This also mitigates buddy induced latencies under load. 1911 */ 1912 if (delta_exec < sysctl_sched_min_granularity) 1913 return; 1914 1915 se = __pick_first_entity(cfs_rq); 1916 delta = curr->vruntime - se->vruntime; 1917 1918 if (delta < 0) 1919 return; 1920 1921 if (delta > ideal_runtime) 1922 resched_task(rq_of(cfs_rq)->curr); 1923 } 1924 1925 static void 1926 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 1927 { 1928 /* 'current' is not kept within the tree. */ 1929 if (se->on_rq) { 1930 /* 1931 * Any task has to be enqueued before it get to execute on 1932 * a CPU. So account for the time it spent waiting on the 1933 * runqueue. 1934 */ 1935 update_stats_wait_end(cfs_rq, se); 1936 __dequeue_entity(cfs_rq, se); 1937 } 1938 1939 update_stats_curr_start(cfs_rq, se); 1940 cfs_rq->curr = se; 1941 #ifdef CONFIG_SCHEDSTATS 1942 /* 1943 * Track our maximum slice length, if the CPU's load is at 1944 * least twice that of our own weight (i.e. dont track it 1945 * when there are only lesser-weight tasks around): 1946 */ 1947 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 1948 se->statistics.slice_max = max(se->statistics.slice_max, 1949 se->sum_exec_runtime - se->prev_sum_exec_runtime); 1950 } 1951 #endif 1952 se->prev_sum_exec_runtime = se->sum_exec_runtime; 1953 } 1954 1955 static int 1956 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 1957 1958 /* 1959 * Pick the next process, keeping these things in mind, in this order: 1960 * 1) keep things fair between processes/task groups 1961 * 2) pick the "next" process, since someone really wants that to run 1962 * 3) pick the "last" process, for cache locality 1963 * 4) do not run the "skip" process, if something else is available 1964 */ 1965 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) 1966 { 1967 struct sched_entity *se = __pick_first_entity(cfs_rq); 1968 struct sched_entity *left = se; 1969 1970 /* 1971 * Avoid running the skip buddy, if running something else can 1972 * be done without getting too unfair. 1973 */ 1974 if (cfs_rq->skip == se) { 1975 struct sched_entity *second = __pick_next_entity(se); 1976 if (second && wakeup_preempt_entity(second, left) < 1) 1977 se = second; 1978 } 1979 1980 /* 1981 * Prefer last buddy, try to return the CPU to a preempted task. 1982 */ 1983 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 1984 se = cfs_rq->last; 1985 1986 /* 1987 * Someone really wants this to run. If it's not unfair, run it. 1988 */ 1989 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 1990 se = cfs_rq->next; 1991 1992 clear_buddies(cfs_rq, se); 1993 1994 return se; 1995 } 1996 1997 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 1998 1999 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 2000 { 2001 /* 2002 * If still on the runqueue then deactivate_task() 2003 * was not called and update_curr() has to be done: 2004 */ 2005 if (prev->on_rq) 2006 update_curr(cfs_rq); 2007 2008 /* throttle cfs_rqs exceeding runtime */ 2009 check_cfs_rq_runtime(cfs_rq); 2010 2011 check_spread(cfs_rq, prev); 2012 if (prev->on_rq) { 2013 update_stats_wait_start(cfs_rq, prev); 2014 /* Put 'current' back into the tree. */ 2015 __enqueue_entity(cfs_rq, prev); 2016 /* in !on_rq case, update occurred at dequeue */ 2017 update_entity_load_avg(prev, 1); 2018 } 2019 cfs_rq->curr = NULL; 2020 } 2021 2022 static void 2023 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 2024 { 2025 /* 2026 * Update run-time statistics of the 'current'. 2027 */ 2028 update_curr(cfs_rq); 2029 2030 /* 2031 * Ensure that runnable average is periodically updated. 2032 */ 2033 update_entity_load_avg(curr, 1); 2034 update_cfs_rq_blocked_load(cfs_rq, 1); 2035 2036 #ifdef CONFIG_SCHED_HRTICK 2037 /* 2038 * queued ticks are scheduled to match the slice, so don't bother 2039 * validating it and just reschedule. 2040 */ 2041 if (queued) { 2042 resched_task(rq_of(cfs_rq)->curr); 2043 return; 2044 } 2045 /* 2046 * don't let the period tick interfere with the hrtick preemption 2047 */ 2048 if (!sched_feat(DOUBLE_TICK) && 2049 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 2050 return; 2051 #endif 2052 2053 if (cfs_rq->nr_running > 1) 2054 check_preempt_tick(cfs_rq, curr); 2055 } 2056 2057 2058 /************************************************** 2059 * CFS bandwidth control machinery 2060 */ 2061 2062 #ifdef CONFIG_CFS_BANDWIDTH 2063 2064 #ifdef HAVE_JUMP_LABEL 2065 static struct static_key __cfs_bandwidth_used; 2066 2067 static inline bool cfs_bandwidth_used(void) 2068 { 2069 return static_key_false(&__cfs_bandwidth_used); 2070 } 2071 2072 void account_cfs_bandwidth_used(int enabled, int was_enabled) 2073 { 2074 /* only need to count groups transitioning between enabled/!enabled */ 2075 if (enabled && !was_enabled) 2076 static_key_slow_inc(&__cfs_bandwidth_used); 2077 else if (!enabled && was_enabled) 2078 static_key_slow_dec(&__cfs_bandwidth_used); 2079 } 2080 #else /* HAVE_JUMP_LABEL */ 2081 static bool cfs_bandwidth_used(void) 2082 { 2083 return true; 2084 } 2085 2086 void account_cfs_bandwidth_used(int enabled, int was_enabled) {} 2087 #endif /* HAVE_JUMP_LABEL */ 2088 2089 /* 2090 * default period for cfs group bandwidth. 2091 * default: 0.1s, units: nanoseconds 2092 */ 2093 static inline u64 default_cfs_period(void) 2094 { 2095 return 100000000ULL; 2096 } 2097 2098 static inline u64 sched_cfs_bandwidth_slice(void) 2099 { 2100 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 2101 } 2102 2103 /* 2104 * Replenish runtime according to assigned quota and update expiration time. 2105 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 2106 * additional synchronization around rq->lock. 2107 * 2108 * requires cfs_b->lock 2109 */ 2110 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 2111 { 2112 u64 now; 2113 2114 if (cfs_b->quota == RUNTIME_INF) 2115 return; 2116 2117 now = sched_clock_cpu(smp_processor_id()); 2118 cfs_b->runtime = cfs_b->quota; 2119 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 2120 } 2121 2122 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 2123 { 2124 return &tg->cfs_bandwidth; 2125 } 2126 2127 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 2128 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 2129 { 2130 if (unlikely(cfs_rq->throttle_count)) 2131 return cfs_rq->throttled_clock_task; 2132 2133 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 2134 } 2135 2136 /* returns 0 on failure to allocate runtime */ 2137 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2138 { 2139 struct task_group *tg = cfs_rq->tg; 2140 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 2141 u64 amount = 0, min_amount, expires; 2142 2143 /* note: this is a positive sum as runtime_remaining <= 0 */ 2144 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 2145 2146 raw_spin_lock(&cfs_b->lock); 2147 if (cfs_b->quota == RUNTIME_INF) 2148 amount = min_amount; 2149 else { 2150 /* 2151 * If the bandwidth pool has become inactive, then at least one 2152 * period must have elapsed since the last consumption. 2153 * Refresh the global state and ensure bandwidth timer becomes 2154 * active. 2155 */ 2156 if (!cfs_b->timer_active) { 2157 __refill_cfs_bandwidth_runtime(cfs_b); 2158 __start_cfs_bandwidth(cfs_b); 2159 } 2160 2161 if (cfs_b->runtime > 0) { 2162 amount = min(cfs_b->runtime, min_amount); 2163 cfs_b->runtime -= amount; 2164 cfs_b->idle = 0; 2165 } 2166 } 2167 expires = cfs_b->runtime_expires; 2168 raw_spin_unlock(&cfs_b->lock); 2169 2170 cfs_rq->runtime_remaining += amount; 2171 /* 2172 * we may have advanced our local expiration to account for allowed 2173 * spread between our sched_clock and the one on which runtime was 2174 * issued. 2175 */ 2176 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 2177 cfs_rq->runtime_expires = expires; 2178 2179 return cfs_rq->runtime_remaining > 0; 2180 } 2181 2182 /* 2183 * Note: This depends on the synchronization provided by sched_clock and the 2184 * fact that rq->clock snapshots this value. 2185 */ 2186 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2187 { 2188 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2189 2190 /* if the deadline is ahead of our clock, nothing to do */ 2191 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 2192 return; 2193 2194 if (cfs_rq->runtime_remaining < 0) 2195 return; 2196 2197 /* 2198 * If the local deadline has passed we have to consider the 2199 * possibility that our sched_clock is 'fast' and the global deadline 2200 * has not truly expired. 2201 * 2202 * Fortunately we can check determine whether this the case by checking 2203 * whether the global deadline has advanced. 2204 */ 2205 2206 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) { 2207 /* extend local deadline, drift is bounded above by 2 ticks */ 2208 cfs_rq->runtime_expires += TICK_NSEC; 2209 } else { 2210 /* global deadline is ahead, expiration has passed */ 2211 cfs_rq->runtime_remaining = 0; 2212 } 2213 } 2214 2215 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 2216 unsigned long delta_exec) 2217 { 2218 /* dock delta_exec before expiring quota (as it could span periods) */ 2219 cfs_rq->runtime_remaining -= delta_exec; 2220 expire_cfs_rq_runtime(cfs_rq); 2221 2222 if (likely(cfs_rq->runtime_remaining > 0)) 2223 return; 2224 2225 /* 2226 * if we're unable to extend our runtime we resched so that the active 2227 * hierarchy can be throttled 2228 */ 2229 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 2230 resched_task(rq_of(cfs_rq)->curr); 2231 } 2232 2233 static __always_inline 2234 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) 2235 { 2236 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 2237 return; 2238 2239 __account_cfs_rq_runtime(cfs_rq, delta_exec); 2240 } 2241 2242 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 2243 { 2244 return cfs_bandwidth_used() && cfs_rq->throttled; 2245 } 2246 2247 /* check whether cfs_rq, or any parent, is throttled */ 2248 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 2249 { 2250 return cfs_bandwidth_used() && cfs_rq->throttle_count; 2251 } 2252 2253 /* 2254 * Ensure that neither of the group entities corresponding to src_cpu or 2255 * dest_cpu are members of a throttled hierarchy when performing group 2256 * load-balance operations. 2257 */ 2258 static inline int throttled_lb_pair(struct task_group *tg, 2259 int src_cpu, int dest_cpu) 2260 { 2261 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 2262 2263 src_cfs_rq = tg->cfs_rq[src_cpu]; 2264 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 2265 2266 return throttled_hierarchy(src_cfs_rq) || 2267 throttled_hierarchy(dest_cfs_rq); 2268 } 2269 2270 /* updated child weight may affect parent so we have to do this bottom up */ 2271 static int tg_unthrottle_up(struct task_group *tg, void *data) 2272 { 2273 struct rq *rq = data; 2274 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 2275 2276 cfs_rq->throttle_count--; 2277 #ifdef CONFIG_SMP 2278 if (!cfs_rq->throttle_count) { 2279 /* adjust cfs_rq_clock_task() */ 2280 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 2281 cfs_rq->throttled_clock_task; 2282 } 2283 #endif 2284 2285 return 0; 2286 } 2287 2288 static int tg_throttle_down(struct task_group *tg, void *data) 2289 { 2290 struct rq *rq = data; 2291 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 2292 2293 /* group is entering throttled state, stop time */ 2294 if (!cfs_rq->throttle_count) 2295 cfs_rq->throttled_clock_task = rq_clock_task(rq); 2296 cfs_rq->throttle_count++; 2297 2298 return 0; 2299 } 2300 2301 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 2302 { 2303 struct rq *rq = rq_of(cfs_rq); 2304 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2305 struct sched_entity *se; 2306 long task_delta, dequeue = 1; 2307 2308 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 2309 2310 /* freeze hierarchy runnable averages while throttled */ 2311 rcu_read_lock(); 2312 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 2313 rcu_read_unlock(); 2314 2315 task_delta = cfs_rq->h_nr_running; 2316 for_each_sched_entity(se) { 2317 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 2318 /* throttled entity or throttle-on-deactivate */ 2319 if (!se->on_rq) 2320 break; 2321 2322 if (dequeue) 2323 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 2324 qcfs_rq->h_nr_running -= task_delta; 2325 2326 if (qcfs_rq->load.weight) 2327 dequeue = 0; 2328 } 2329 2330 if (!se) 2331 rq->nr_running -= task_delta; 2332 2333 cfs_rq->throttled = 1; 2334 cfs_rq->throttled_clock = rq_clock(rq); 2335 raw_spin_lock(&cfs_b->lock); 2336 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 2337 raw_spin_unlock(&cfs_b->lock); 2338 } 2339 2340 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 2341 { 2342 struct rq *rq = rq_of(cfs_rq); 2343 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2344 struct sched_entity *se; 2345 int enqueue = 1; 2346 long task_delta; 2347 2348 se = cfs_rq->tg->se[cpu_of(rq)]; 2349 2350 cfs_rq->throttled = 0; 2351 2352 update_rq_clock(rq); 2353 2354 raw_spin_lock(&cfs_b->lock); 2355 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 2356 list_del_rcu(&cfs_rq->throttled_list); 2357 raw_spin_unlock(&cfs_b->lock); 2358 2359 /* update hierarchical throttle state */ 2360 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 2361 2362 if (!cfs_rq->load.weight) 2363 return; 2364 2365 task_delta = cfs_rq->h_nr_running; 2366 for_each_sched_entity(se) { 2367 if (se->on_rq) 2368 enqueue = 0; 2369 2370 cfs_rq = cfs_rq_of(se); 2371 if (enqueue) 2372 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 2373 cfs_rq->h_nr_running += task_delta; 2374 2375 if (cfs_rq_throttled(cfs_rq)) 2376 break; 2377 } 2378 2379 if (!se) 2380 rq->nr_running += task_delta; 2381 2382 /* determine whether we need to wake up potentially idle cpu */ 2383 if (rq->curr == rq->idle && rq->cfs.nr_running) 2384 resched_task(rq->curr); 2385 } 2386 2387 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 2388 u64 remaining, u64 expires) 2389 { 2390 struct cfs_rq *cfs_rq; 2391 u64 runtime = remaining; 2392 2393 rcu_read_lock(); 2394 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 2395 throttled_list) { 2396 struct rq *rq = rq_of(cfs_rq); 2397 2398 raw_spin_lock(&rq->lock); 2399 if (!cfs_rq_throttled(cfs_rq)) 2400 goto next; 2401 2402 runtime = -cfs_rq->runtime_remaining + 1; 2403 if (runtime > remaining) 2404 runtime = remaining; 2405 remaining -= runtime; 2406 2407 cfs_rq->runtime_remaining += runtime; 2408 cfs_rq->runtime_expires = expires; 2409 2410 /* we check whether we're throttled above */ 2411 if (cfs_rq->runtime_remaining > 0) 2412 unthrottle_cfs_rq(cfs_rq); 2413 2414 next: 2415 raw_spin_unlock(&rq->lock); 2416 2417 if (!remaining) 2418 break; 2419 } 2420 rcu_read_unlock(); 2421 2422 return remaining; 2423 } 2424 2425 /* 2426 * Responsible for refilling a task_group's bandwidth and unthrottling its 2427 * cfs_rqs as appropriate. If there has been no activity within the last 2428 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 2429 * used to track this state. 2430 */ 2431 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 2432 { 2433 u64 runtime, runtime_expires; 2434 int idle = 1, throttled; 2435 2436 raw_spin_lock(&cfs_b->lock); 2437 /* no need to continue the timer with no bandwidth constraint */ 2438 if (cfs_b->quota == RUNTIME_INF) 2439 goto out_unlock; 2440 2441 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 2442 /* idle depends on !throttled (for the case of a large deficit) */ 2443 idle = cfs_b->idle && !throttled; 2444 cfs_b->nr_periods += overrun; 2445 2446 /* if we're going inactive then everything else can be deferred */ 2447 if (idle) 2448 goto out_unlock; 2449 2450 __refill_cfs_bandwidth_runtime(cfs_b); 2451 2452 if (!throttled) { 2453 /* mark as potentially idle for the upcoming period */ 2454 cfs_b->idle = 1; 2455 goto out_unlock; 2456 } 2457 2458 /* account preceding periods in which throttling occurred */ 2459 cfs_b->nr_throttled += overrun; 2460 2461 /* 2462 * There are throttled entities so we must first use the new bandwidth 2463 * to unthrottle them before making it generally available. This 2464 * ensures that all existing debts will be paid before a new cfs_rq is 2465 * allowed to run. 2466 */ 2467 runtime = cfs_b->runtime; 2468 runtime_expires = cfs_b->runtime_expires; 2469 cfs_b->runtime = 0; 2470 2471 /* 2472 * This check is repeated as we are holding onto the new bandwidth 2473 * while we unthrottle. This can potentially race with an unthrottled 2474 * group trying to acquire new bandwidth from the global pool. 2475 */ 2476 while (throttled && runtime > 0) { 2477 raw_spin_unlock(&cfs_b->lock); 2478 /* we can't nest cfs_b->lock while distributing bandwidth */ 2479 runtime = distribute_cfs_runtime(cfs_b, runtime, 2480 runtime_expires); 2481 raw_spin_lock(&cfs_b->lock); 2482 2483 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 2484 } 2485 2486 /* return (any) remaining runtime */ 2487 cfs_b->runtime = runtime; 2488 /* 2489 * While we are ensured activity in the period following an 2490 * unthrottle, this also covers the case in which the new bandwidth is 2491 * insufficient to cover the existing bandwidth deficit. (Forcing the 2492 * timer to remain active while there are any throttled entities.) 2493 */ 2494 cfs_b->idle = 0; 2495 out_unlock: 2496 if (idle) 2497 cfs_b->timer_active = 0; 2498 raw_spin_unlock(&cfs_b->lock); 2499 2500 return idle; 2501 } 2502 2503 /* a cfs_rq won't donate quota below this amount */ 2504 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 2505 /* minimum remaining period time to redistribute slack quota */ 2506 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 2507 /* how long we wait to gather additional slack before distributing */ 2508 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 2509 2510 /* are we near the end of the current quota period? */ 2511 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 2512 { 2513 struct hrtimer *refresh_timer = &cfs_b->period_timer; 2514 u64 remaining; 2515 2516 /* if the call-back is running a quota refresh is already occurring */ 2517 if (hrtimer_callback_running(refresh_timer)) 2518 return 1; 2519 2520 /* is a quota refresh about to occur? */ 2521 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 2522 if (remaining < min_expire) 2523 return 1; 2524 2525 return 0; 2526 } 2527 2528 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 2529 { 2530 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 2531 2532 /* if there's a quota refresh soon don't bother with slack */ 2533 if (runtime_refresh_within(cfs_b, min_left)) 2534 return; 2535 2536 start_bandwidth_timer(&cfs_b->slack_timer, 2537 ns_to_ktime(cfs_bandwidth_slack_period)); 2538 } 2539 2540 /* we know any runtime found here is valid as update_curr() precedes return */ 2541 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2542 { 2543 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2544 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 2545 2546 if (slack_runtime <= 0) 2547 return; 2548 2549 raw_spin_lock(&cfs_b->lock); 2550 if (cfs_b->quota != RUNTIME_INF && 2551 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 2552 cfs_b->runtime += slack_runtime; 2553 2554 /* we are under rq->lock, defer unthrottling using a timer */ 2555 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 2556 !list_empty(&cfs_b->throttled_cfs_rq)) 2557 start_cfs_slack_bandwidth(cfs_b); 2558 } 2559 raw_spin_unlock(&cfs_b->lock); 2560 2561 /* even if it's not valid for return we don't want to try again */ 2562 cfs_rq->runtime_remaining -= slack_runtime; 2563 } 2564 2565 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2566 { 2567 if (!cfs_bandwidth_used()) 2568 return; 2569 2570 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 2571 return; 2572 2573 __return_cfs_rq_runtime(cfs_rq); 2574 } 2575 2576 /* 2577 * This is done with a timer (instead of inline with bandwidth return) since 2578 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 2579 */ 2580 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 2581 { 2582 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 2583 u64 expires; 2584 2585 /* confirm we're still not at a refresh boundary */ 2586 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) 2587 return; 2588 2589 raw_spin_lock(&cfs_b->lock); 2590 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { 2591 runtime = cfs_b->runtime; 2592 cfs_b->runtime = 0; 2593 } 2594 expires = cfs_b->runtime_expires; 2595 raw_spin_unlock(&cfs_b->lock); 2596 2597 if (!runtime) 2598 return; 2599 2600 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 2601 2602 raw_spin_lock(&cfs_b->lock); 2603 if (expires == cfs_b->runtime_expires) 2604 cfs_b->runtime = runtime; 2605 raw_spin_unlock(&cfs_b->lock); 2606 } 2607 2608 /* 2609 * When a group wakes up we want to make sure that its quota is not already 2610 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 2611 * runtime as update_curr() throttling can not not trigger until it's on-rq. 2612 */ 2613 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 2614 { 2615 if (!cfs_bandwidth_used()) 2616 return; 2617 2618 /* an active group must be handled by the update_curr()->put() path */ 2619 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 2620 return; 2621 2622 /* ensure the group is not already throttled */ 2623 if (cfs_rq_throttled(cfs_rq)) 2624 return; 2625 2626 /* update runtime allocation */ 2627 account_cfs_rq_runtime(cfs_rq, 0); 2628 if (cfs_rq->runtime_remaining <= 0) 2629 throttle_cfs_rq(cfs_rq); 2630 } 2631 2632 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 2633 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2634 { 2635 if (!cfs_bandwidth_used()) 2636 return; 2637 2638 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 2639 return; 2640 2641 /* 2642 * it's possible for a throttled entity to be forced into a running 2643 * state (e.g. set_curr_task), in this case we're finished. 2644 */ 2645 if (cfs_rq_throttled(cfs_rq)) 2646 return; 2647 2648 throttle_cfs_rq(cfs_rq); 2649 } 2650 2651 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 2652 { 2653 struct cfs_bandwidth *cfs_b = 2654 container_of(timer, struct cfs_bandwidth, slack_timer); 2655 do_sched_cfs_slack_timer(cfs_b); 2656 2657 return HRTIMER_NORESTART; 2658 } 2659 2660 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 2661 { 2662 struct cfs_bandwidth *cfs_b = 2663 container_of(timer, struct cfs_bandwidth, period_timer); 2664 ktime_t now; 2665 int overrun; 2666 int idle = 0; 2667 2668 for (;;) { 2669 now = hrtimer_cb_get_time(timer); 2670 overrun = hrtimer_forward(timer, now, cfs_b->period); 2671 2672 if (!overrun) 2673 break; 2674 2675 idle = do_sched_cfs_period_timer(cfs_b, overrun); 2676 } 2677 2678 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 2679 } 2680 2681 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2682 { 2683 raw_spin_lock_init(&cfs_b->lock); 2684 cfs_b->runtime = 0; 2685 cfs_b->quota = RUNTIME_INF; 2686 cfs_b->period = ns_to_ktime(default_cfs_period()); 2687 2688 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 2689 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2690 cfs_b->period_timer.function = sched_cfs_period_timer; 2691 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2692 cfs_b->slack_timer.function = sched_cfs_slack_timer; 2693 } 2694 2695 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2696 { 2697 cfs_rq->runtime_enabled = 0; 2698 INIT_LIST_HEAD(&cfs_rq->throttled_list); 2699 } 2700 2701 /* requires cfs_b->lock, may release to reprogram timer */ 2702 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2703 { 2704 /* 2705 * The timer may be active because we're trying to set a new bandwidth 2706 * period or because we're racing with the tear-down path 2707 * (timer_active==0 becomes visible before the hrtimer call-back 2708 * terminates). In either case we ensure that it's re-programmed 2709 */ 2710 while (unlikely(hrtimer_active(&cfs_b->period_timer))) { 2711 raw_spin_unlock(&cfs_b->lock); 2712 /* ensure cfs_b->lock is available while we wait */ 2713 hrtimer_cancel(&cfs_b->period_timer); 2714 2715 raw_spin_lock(&cfs_b->lock); 2716 /* if someone else restarted the timer then we're done */ 2717 if (cfs_b->timer_active) 2718 return; 2719 } 2720 2721 cfs_b->timer_active = 1; 2722 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); 2723 } 2724 2725 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2726 { 2727 hrtimer_cancel(&cfs_b->period_timer); 2728 hrtimer_cancel(&cfs_b->slack_timer); 2729 } 2730 2731 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 2732 { 2733 struct cfs_rq *cfs_rq; 2734 2735 for_each_leaf_cfs_rq(rq, cfs_rq) { 2736 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2737 2738 if (!cfs_rq->runtime_enabled) 2739 continue; 2740 2741 /* 2742 * clock_task is not advancing so we just need to make sure 2743 * there's some valid quota amount 2744 */ 2745 cfs_rq->runtime_remaining = cfs_b->quota; 2746 if (cfs_rq_throttled(cfs_rq)) 2747 unthrottle_cfs_rq(cfs_rq); 2748 } 2749 } 2750 2751 #else /* CONFIG_CFS_BANDWIDTH */ 2752 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 2753 { 2754 return rq_clock_task(rq_of(cfs_rq)); 2755 } 2756 2757 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 2758 unsigned long delta_exec) {} 2759 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2760 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 2761 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2762 2763 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 2764 { 2765 return 0; 2766 } 2767 2768 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 2769 { 2770 return 0; 2771 } 2772 2773 static inline int throttled_lb_pair(struct task_group *tg, 2774 int src_cpu, int dest_cpu) 2775 { 2776 return 0; 2777 } 2778 2779 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 2780 2781 #ifdef CONFIG_FAIR_GROUP_SCHED 2782 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2783 #endif 2784 2785 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 2786 { 2787 return NULL; 2788 } 2789 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 2790 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 2791 2792 #endif /* CONFIG_CFS_BANDWIDTH */ 2793 2794 /************************************************** 2795 * CFS operations on tasks: 2796 */ 2797 2798 #ifdef CONFIG_SCHED_HRTICK 2799 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 2800 { 2801 struct sched_entity *se = &p->se; 2802 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2803 2804 WARN_ON(task_rq(p) != rq); 2805 2806 if (cfs_rq->nr_running > 1) { 2807 u64 slice = sched_slice(cfs_rq, se); 2808 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 2809 s64 delta = slice - ran; 2810 2811 if (delta < 0) { 2812 if (rq->curr == p) 2813 resched_task(p); 2814 return; 2815 } 2816 2817 /* 2818 * Don't schedule slices shorter than 10000ns, that just 2819 * doesn't make sense. Rely on vruntime for fairness. 2820 */ 2821 if (rq->curr != p) 2822 delta = max_t(s64, 10000LL, delta); 2823 2824 hrtick_start(rq, delta); 2825 } 2826 } 2827 2828 /* 2829 * called from enqueue/dequeue and updates the hrtick when the 2830 * current task is from our class and nr_running is low enough 2831 * to matter. 2832 */ 2833 static void hrtick_update(struct rq *rq) 2834 { 2835 struct task_struct *curr = rq->curr; 2836 2837 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 2838 return; 2839 2840 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 2841 hrtick_start_fair(rq, curr); 2842 } 2843 #else /* !CONFIG_SCHED_HRTICK */ 2844 static inline void 2845 hrtick_start_fair(struct rq *rq, struct task_struct *p) 2846 { 2847 } 2848 2849 static inline void hrtick_update(struct rq *rq) 2850 { 2851 } 2852 #endif 2853 2854 /* 2855 * The enqueue_task method is called before nr_running is 2856 * increased. Here we update the fair scheduling stats and 2857 * then put the task into the rbtree: 2858 */ 2859 static void 2860 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 2861 { 2862 struct cfs_rq *cfs_rq; 2863 struct sched_entity *se = &p->se; 2864 2865 for_each_sched_entity(se) { 2866 if (se->on_rq) 2867 break; 2868 cfs_rq = cfs_rq_of(se); 2869 enqueue_entity(cfs_rq, se, flags); 2870 2871 /* 2872 * end evaluation on encountering a throttled cfs_rq 2873 * 2874 * note: in the case of encountering a throttled cfs_rq we will 2875 * post the final h_nr_running increment below. 2876 */ 2877 if (cfs_rq_throttled(cfs_rq)) 2878 break; 2879 cfs_rq->h_nr_running++; 2880 2881 flags = ENQUEUE_WAKEUP; 2882 } 2883 2884 for_each_sched_entity(se) { 2885 cfs_rq = cfs_rq_of(se); 2886 cfs_rq->h_nr_running++; 2887 2888 if (cfs_rq_throttled(cfs_rq)) 2889 break; 2890 2891 update_cfs_shares(cfs_rq); 2892 update_entity_load_avg(se, 1); 2893 } 2894 2895 if (!se) { 2896 update_rq_runnable_avg(rq, rq->nr_running); 2897 inc_nr_running(rq); 2898 } 2899 hrtick_update(rq); 2900 } 2901 2902 static void set_next_buddy(struct sched_entity *se); 2903 2904 /* 2905 * The dequeue_task method is called before nr_running is 2906 * decreased. We remove the task from the rbtree and 2907 * update the fair scheduling stats: 2908 */ 2909 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 2910 { 2911 struct cfs_rq *cfs_rq; 2912 struct sched_entity *se = &p->se; 2913 int task_sleep = flags & DEQUEUE_SLEEP; 2914 2915 for_each_sched_entity(se) { 2916 cfs_rq = cfs_rq_of(se); 2917 dequeue_entity(cfs_rq, se, flags); 2918 2919 /* 2920 * end evaluation on encountering a throttled cfs_rq 2921 * 2922 * note: in the case of encountering a throttled cfs_rq we will 2923 * post the final h_nr_running decrement below. 2924 */ 2925 if (cfs_rq_throttled(cfs_rq)) 2926 break; 2927 cfs_rq->h_nr_running--; 2928 2929 /* Don't dequeue parent if it has other entities besides us */ 2930 if (cfs_rq->load.weight) { 2931 /* 2932 * Bias pick_next to pick a task from this cfs_rq, as 2933 * p is sleeping when it is within its sched_slice. 2934 */ 2935 if (task_sleep && parent_entity(se)) 2936 set_next_buddy(parent_entity(se)); 2937 2938 /* avoid re-evaluating load for this entity */ 2939 se = parent_entity(se); 2940 break; 2941 } 2942 flags |= DEQUEUE_SLEEP; 2943 } 2944 2945 for_each_sched_entity(se) { 2946 cfs_rq = cfs_rq_of(se); 2947 cfs_rq->h_nr_running--; 2948 2949 if (cfs_rq_throttled(cfs_rq)) 2950 break; 2951 2952 update_cfs_shares(cfs_rq); 2953 update_entity_load_avg(se, 1); 2954 } 2955 2956 if (!se) { 2957 dec_nr_running(rq); 2958 update_rq_runnable_avg(rq, 1); 2959 } 2960 hrtick_update(rq); 2961 } 2962 2963 #ifdef CONFIG_SMP 2964 /* Used instead of source_load when we know the type == 0 */ 2965 static unsigned long weighted_cpuload(const int cpu) 2966 { 2967 return cpu_rq(cpu)->cfs.runnable_load_avg; 2968 } 2969 2970 /* 2971 * Return a low guess at the load of a migration-source cpu weighted 2972 * according to the scheduling class and "nice" value. 2973 * 2974 * We want to under-estimate the load of migration sources, to 2975 * balance conservatively. 2976 */ 2977 static unsigned long source_load(int cpu, int type) 2978 { 2979 struct rq *rq = cpu_rq(cpu); 2980 unsigned long total = weighted_cpuload(cpu); 2981 2982 if (type == 0 || !sched_feat(LB_BIAS)) 2983 return total; 2984 2985 return min(rq->cpu_load[type-1], total); 2986 } 2987 2988 /* 2989 * Return a high guess at the load of a migration-target cpu weighted 2990 * according to the scheduling class and "nice" value. 2991 */ 2992 static unsigned long target_load(int cpu, int type) 2993 { 2994 struct rq *rq = cpu_rq(cpu); 2995 unsigned long total = weighted_cpuload(cpu); 2996 2997 if (type == 0 || !sched_feat(LB_BIAS)) 2998 return total; 2999 3000 return max(rq->cpu_load[type-1], total); 3001 } 3002 3003 static unsigned long power_of(int cpu) 3004 { 3005 return cpu_rq(cpu)->cpu_power; 3006 } 3007 3008 static unsigned long cpu_avg_load_per_task(int cpu) 3009 { 3010 struct rq *rq = cpu_rq(cpu); 3011 unsigned long nr_running = ACCESS_ONCE(rq->nr_running); 3012 unsigned long load_avg = rq->cfs.runnable_load_avg; 3013 3014 if (nr_running) 3015 return load_avg / nr_running; 3016 3017 return 0; 3018 } 3019 3020 3021 static void task_waking_fair(struct task_struct *p) 3022 { 3023 struct sched_entity *se = &p->se; 3024 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3025 u64 min_vruntime; 3026 3027 #ifndef CONFIG_64BIT 3028 u64 min_vruntime_copy; 3029 3030 do { 3031 min_vruntime_copy = cfs_rq->min_vruntime_copy; 3032 smp_rmb(); 3033 min_vruntime = cfs_rq->min_vruntime; 3034 } while (min_vruntime != min_vruntime_copy); 3035 #else 3036 min_vruntime = cfs_rq->min_vruntime; 3037 #endif 3038 3039 se->vruntime -= min_vruntime; 3040 } 3041 3042 #ifdef CONFIG_FAIR_GROUP_SCHED 3043 /* 3044 * effective_load() calculates the load change as seen from the root_task_group 3045 * 3046 * Adding load to a group doesn't make a group heavier, but can cause movement 3047 * of group shares between cpus. Assuming the shares were perfectly aligned one 3048 * can calculate the shift in shares. 3049 * 3050 * Calculate the effective load difference if @wl is added (subtracted) to @tg 3051 * on this @cpu and results in a total addition (subtraction) of @wg to the 3052 * total group weight. 3053 * 3054 * Given a runqueue weight distribution (rw_i) we can compute a shares 3055 * distribution (s_i) using: 3056 * 3057 * s_i = rw_i / \Sum rw_j (1) 3058 * 3059 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 3060 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 3061 * shares distribution (s_i): 3062 * 3063 * rw_i = { 2, 4, 1, 0 } 3064 * s_i = { 2/7, 4/7, 1/7, 0 } 3065 * 3066 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 3067 * task used to run on and the CPU the waker is running on), we need to 3068 * compute the effect of waking a task on either CPU and, in case of a sync 3069 * wakeup, compute the effect of the current task going to sleep. 3070 * 3071 * So for a change of @wl to the local @cpu with an overall group weight change 3072 * of @wl we can compute the new shares distribution (s'_i) using: 3073 * 3074 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 3075 * 3076 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 3077 * differences in waking a task to CPU 0. The additional task changes the 3078 * weight and shares distributions like: 3079 * 3080 * rw'_i = { 3, 4, 1, 0 } 3081 * s'_i = { 3/8, 4/8, 1/8, 0 } 3082 * 3083 * We can then compute the difference in effective weight by using: 3084 * 3085 * dw_i = S * (s'_i - s_i) (3) 3086 * 3087 * Where 'S' is the group weight as seen by its parent. 3088 * 3089 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 3090 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 3091 * 4/7) times the weight of the group. 3092 */ 3093 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 3094 { 3095 struct sched_entity *se = tg->se[cpu]; 3096 3097 if (!tg->parent) /* the trivial, non-cgroup case */ 3098 return wl; 3099 3100 for_each_sched_entity(se) { 3101 long w, W; 3102 3103 tg = se->my_q->tg; 3104 3105 /* 3106 * W = @wg + \Sum rw_j 3107 */ 3108 W = wg + calc_tg_weight(tg, se->my_q); 3109 3110 /* 3111 * w = rw_i + @wl 3112 */ 3113 w = se->my_q->load.weight + wl; 3114 3115 /* 3116 * wl = S * s'_i; see (2) 3117 */ 3118 if (W > 0 && w < W) 3119 wl = (w * tg->shares) / W; 3120 else 3121 wl = tg->shares; 3122 3123 /* 3124 * Per the above, wl is the new se->load.weight value; since 3125 * those are clipped to [MIN_SHARES, ...) do so now. See 3126 * calc_cfs_shares(). 3127 */ 3128 if (wl < MIN_SHARES) 3129 wl = MIN_SHARES; 3130 3131 /* 3132 * wl = dw_i = S * (s'_i - s_i); see (3) 3133 */ 3134 wl -= se->load.weight; 3135 3136 /* 3137 * Recursively apply this logic to all parent groups to compute 3138 * the final effective load change on the root group. Since 3139 * only the @tg group gets extra weight, all parent groups can 3140 * only redistribute existing shares. @wl is the shift in shares 3141 * resulting from this level per the above. 3142 */ 3143 wg = 0; 3144 } 3145 3146 return wl; 3147 } 3148 #else 3149 3150 static inline unsigned long effective_load(struct task_group *tg, int cpu, 3151 unsigned long wl, unsigned long wg) 3152 { 3153 return wl; 3154 } 3155 3156 #endif 3157 3158 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 3159 { 3160 s64 this_load, load; 3161 int idx, this_cpu, prev_cpu; 3162 unsigned long tl_per_task; 3163 struct task_group *tg; 3164 unsigned long weight; 3165 int balanced; 3166 3167 idx = sd->wake_idx; 3168 this_cpu = smp_processor_id(); 3169 prev_cpu = task_cpu(p); 3170 load = source_load(prev_cpu, idx); 3171 this_load = target_load(this_cpu, idx); 3172 3173 /* 3174 * If sync wakeup then subtract the (maximum possible) 3175 * effect of the currently running task from the load 3176 * of the current CPU: 3177 */ 3178 if (sync) { 3179 tg = task_group(current); 3180 weight = current->se.load.weight; 3181 3182 this_load += effective_load(tg, this_cpu, -weight, -weight); 3183 load += effective_load(tg, prev_cpu, 0, -weight); 3184 } 3185 3186 tg = task_group(p); 3187 weight = p->se.load.weight; 3188 3189 /* 3190 * In low-load situations, where prev_cpu is idle and this_cpu is idle 3191 * due to the sync cause above having dropped this_load to 0, we'll 3192 * always have an imbalance, but there's really nothing you can do 3193 * about that, so that's good too. 3194 * 3195 * Otherwise check if either cpus are near enough in load to allow this 3196 * task to be woken on this_cpu. 3197 */ 3198 if (this_load > 0) { 3199 s64 this_eff_load, prev_eff_load; 3200 3201 this_eff_load = 100; 3202 this_eff_load *= power_of(prev_cpu); 3203 this_eff_load *= this_load + 3204 effective_load(tg, this_cpu, weight, weight); 3205 3206 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 3207 prev_eff_load *= power_of(this_cpu); 3208 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 3209 3210 balanced = this_eff_load <= prev_eff_load; 3211 } else 3212 balanced = true; 3213 3214 /* 3215 * If the currently running task will sleep within 3216 * a reasonable amount of time then attract this newly 3217 * woken task: 3218 */ 3219 if (sync && balanced) 3220 return 1; 3221 3222 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 3223 tl_per_task = cpu_avg_load_per_task(this_cpu); 3224 3225 if (balanced || 3226 (this_load <= load && 3227 this_load + target_load(prev_cpu, idx) <= tl_per_task)) { 3228 /* 3229 * This domain has SD_WAKE_AFFINE and 3230 * p is cache cold in this domain, and 3231 * there is no bad imbalance. 3232 */ 3233 schedstat_inc(sd, ttwu_move_affine); 3234 schedstat_inc(p, se.statistics.nr_wakeups_affine); 3235 3236 return 1; 3237 } 3238 return 0; 3239 } 3240 3241 /* 3242 * find_idlest_group finds and returns the least busy CPU group within the 3243 * domain. 3244 */ 3245 static struct sched_group * 3246 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 3247 int this_cpu, int load_idx) 3248 { 3249 struct sched_group *idlest = NULL, *group = sd->groups; 3250 unsigned long min_load = ULONG_MAX, this_load = 0; 3251 int imbalance = 100 + (sd->imbalance_pct-100)/2; 3252 3253 do { 3254 unsigned long load, avg_load; 3255 int local_group; 3256 int i; 3257 3258 /* Skip over this group if it has no CPUs allowed */ 3259 if (!cpumask_intersects(sched_group_cpus(group), 3260 tsk_cpus_allowed(p))) 3261 continue; 3262 3263 local_group = cpumask_test_cpu(this_cpu, 3264 sched_group_cpus(group)); 3265 3266 /* Tally up the load of all CPUs in the group */ 3267 avg_load = 0; 3268 3269 for_each_cpu(i, sched_group_cpus(group)) { 3270 /* Bias balancing toward cpus of our domain */ 3271 if (local_group) 3272 load = source_load(i, load_idx); 3273 else 3274 load = target_load(i, load_idx); 3275 3276 avg_load += load; 3277 } 3278 3279 /* Adjust by relative CPU power of the group */ 3280 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; 3281 3282 if (local_group) { 3283 this_load = avg_load; 3284 } else if (avg_load < min_load) { 3285 min_load = avg_load; 3286 idlest = group; 3287 } 3288 } while (group = group->next, group != sd->groups); 3289 3290 if (!idlest || 100*this_load < imbalance*min_load) 3291 return NULL; 3292 return idlest; 3293 } 3294 3295 /* 3296 * find_idlest_cpu - find the idlest cpu among the cpus in group. 3297 */ 3298 static int 3299 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 3300 { 3301 unsigned long load, min_load = ULONG_MAX; 3302 int idlest = -1; 3303 int i; 3304 3305 /* Traverse only the allowed CPUs */ 3306 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 3307 load = weighted_cpuload(i); 3308 3309 if (load < min_load || (load == min_load && i == this_cpu)) { 3310 min_load = load; 3311 idlest = i; 3312 } 3313 } 3314 3315 return idlest; 3316 } 3317 3318 /* 3319 * Try and locate an idle CPU in the sched_domain. 3320 */ 3321 static int select_idle_sibling(struct task_struct *p, int target) 3322 { 3323 struct sched_domain *sd; 3324 struct sched_group *sg; 3325 int i = task_cpu(p); 3326 3327 if (idle_cpu(target)) 3328 return target; 3329 3330 /* 3331 * If the prevous cpu is cache affine and idle, don't be stupid. 3332 */ 3333 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 3334 return i; 3335 3336 /* 3337 * Otherwise, iterate the domains and find an elegible idle cpu. 3338 */ 3339 sd = rcu_dereference(per_cpu(sd_llc, target)); 3340 for_each_lower_domain(sd) { 3341 sg = sd->groups; 3342 do { 3343 if (!cpumask_intersects(sched_group_cpus(sg), 3344 tsk_cpus_allowed(p))) 3345 goto next; 3346 3347 for_each_cpu(i, sched_group_cpus(sg)) { 3348 if (i == target || !idle_cpu(i)) 3349 goto next; 3350 } 3351 3352 target = cpumask_first_and(sched_group_cpus(sg), 3353 tsk_cpus_allowed(p)); 3354 goto done; 3355 next: 3356 sg = sg->next; 3357 } while (sg != sd->groups); 3358 } 3359 done: 3360 return target; 3361 } 3362 3363 /* 3364 * sched_balance_self: balance the current task (running on cpu) in domains 3365 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and 3366 * SD_BALANCE_EXEC. 3367 * 3368 * Balance, ie. select the least loaded group. 3369 * 3370 * Returns the target CPU number, or the same CPU if no balancing is needed. 3371 * 3372 * preempt must be disabled. 3373 */ 3374 static int 3375 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) 3376 { 3377 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 3378 int cpu = smp_processor_id(); 3379 int prev_cpu = task_cpu(p); 3380 int new_cpu = cpu; 3381 int want_affine = 0; 3382 int sync = wake_flags & WF_SYNC; 3383 3384 if (p->nr_cpus_allowed == 1) 3385 return prev_cpu; 3386 3387 if (sd_flag & SD_BALANCE_WAKE) { 3388 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 3389 want_affine = 1; 3390 new_cpu = prev_cpu; 3391 } 3392 3393 rcu_read_lock(); 3394 for_each_domain(cpu, tmp) { 3395 if (!(tmp->flags & SD_LOAD_BALANCE)) 3396 continue; 3397 3398 /* 3399 * If both cpu and prev_cpu are part of this domain, 3400 * cpu is a valid SD_WAKE_AFFINE target. 3401 */ 3402 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 3403 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 3404 affine_sd = tmp; 3405 break; 3406 } 3407 3408 if (tmp->flags & sd_flag) 3409 sd = tmp; 3410 } 3411 3412 if (affine_sd) { 3413 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 3414 prev_cpu = cpu; 3415 3416 new_cpu = select_idle_sibling(p, prev_cpu); 3417 goto unlock; 3418 } 3419 3420 while (sd) { 3421 int load_idx = sd->forkexec_idx; 3422 struct sched_group *group; 3423 int weight; 3424 3425 if (!(sd->flags & sd_flag)) { 3426 sd = sd->child; 3427 continue; 3428 } 3429 3430 if (sd_flag & SD_BALANCE_WAKE) 3431 load_idx = sd->wake_idx; 3432 3433 group = find_idlest_group(sd, p, cpu, load_idx); 3434 if (!group) { 3435 sd = sd->child; 3436 continue; 3437 } 3438 3439 new_cpu = find_idlest_cpu(group, p, cpu); 3440 if (new_cpu == -1 || new_cpu == cpu) { 3441 /* Now try balancing at a lower domain level of cpu */ 3442 sd = sd->child; 3443 continue; 3444 } 3445 3446 /* Now try balancing at a lower domain level of new_cpu */ 3447 cpu = new_cpu; 3448 weight = sd->span_weight; 3449 sd = NULL; 3450 for_each_domain(cpu, tmp) { 3451 if (weight <= tmp->span_weight) 3452 break; 3453 if (tmp->flags & sd_flag) 3454 sd = tmp; 3455 } 3456 /* while loop will break here if sd == NULL */ 3457 } 3458 unlock: 3459 rcu_read_unlock(); 3460 3461 return new_cpu; 3462 } 3463 3464 /* 3465 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 3466 * cfs_rq_of(p) references at time of call are still valid and identify the 3467 * previous cpu. However, the caller only guarantees p->pi_lock is held; no 3468 * other assumptions, including the state of rq->lock, should be made. 3469 */ 3470 static void 3471 migrate_task_rq_fair(struct task_struct *p, int next_cpu) 3472 { 3473 struct sched_entity *se = &p->se; 3474 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3475 3476 /* 3477 * Load tracking: accumulate removed load so that it can be processed 3478 * when we next update owning cfs_rq under rq->lock. Tasks contribute 3479 * to blocked load iff they have a positive decay-count. It can never 3480 * be negative here since on-rq tasks have decay-count == 0. 3481 */ 3482 if (se->avg.decay_count) { 3483 se->avg.decay_count = -__synchronize_entity_decay(se); 3484 atomic_long_add(se->avg.load_avg_contrib, 3485 &cfs_rq->removed_load); 3486 } 3487 } 3488 #endif /* CONFIG_SMP */ 3489 3490 static unsigned long 3491 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 3492 { 3493 unsigned long gran = sysctl_sched_wakeup_granularity; 3494 3495 /* 3496 * Since its curr running now, convert the gran from real-time 3497 * to virtual-time in his units. 3498 * 3499 * By using 'se' instead of 'curr' we penalize light tasks, so 3500 * they get preempted easier. That is, if 'se' < 'curr' then 3501 * the resulting gran will be larger, therefore penalizing the 3502 * lighter, if otoh 'se' > 'curr' then the resulting gran will 3503 * be smaller, again penalizing the lighter task. 3504 * 3505 * This is especially important for buddies when the leftmost 3506 * task is higher priority than the buddy. 3507 */ 3508 return calc_delta_fair(gran, se); 3509 } 3510 3511 /* 3512 * Should 'se' preempt 'curr'. 3513 * 3514 * |s1 3515 * |s2 3516 * |s3 3517 * g 3518 * |<--->|c 3519 * 3520 * w(c, s1) = -1 3521 * w(c, s2) = 0 3522 * w(c, s3) = 1 3523 * 3524 */ 3525 static int 3526 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 3527 { 3528 s64 gran, vdiff = curr->vruntime - se->vruntime; 3529 3530 if (vdiff <= 0) 3531 return -1; 3532 3533 gran = wakeup_gran(curr, se); 3534 if (vdiff > gran) 3535 return 1; 3536 3537 return 0; 3538 } 3539 3540 static void set_last_buddy(struct sched_entity *se) 3541 { 3542 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 3543 return; 3544 3545 for_each_sched_entity(se) 3546 cfs_rq_of(se)->last = se; 3547 } 3548 3549 static void set_next_buddy(struct sched_entity *se) 3550 { 3551 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 3552 return; 3553 3554 for_each_sched_entity(se) 3555 cfs_rq_of(se)->next = se; 3556 } 3557 3558 static void set_skip_buddy(struct sched_entity *se) 3559 { 3560 for_each_sched_entity(se) 3561 cfs_rq_of(se)->skip = se; 3562 } 3563 3564 /* 3565 * Preempt the current task with a newly woken task if needed: 3566 */ 3567 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 3568 { 3569 struct task_struct *curr = rq->curr; 3570 struct sched_entity *se = &curr->se, *pse = &p->se; 3571 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 3572 int scale = cfs_rq->nr_running >= sched_nr_latency; 3573 int next_buddy_marked = 0; 3574 3575 if (unlikely(se == pse)) 3576 return; 3577 3578 /* 3579 * This is possible from callers such as move_task(), in which we 3580 * unconditionally check_prempt_curr() after an enqueue (which may have 3581 * lead to a throttle). This both saves work and prevents false 3582 * next-buddy nomination below. 3583 */ 3584 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 3585 return; 3586 3587 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 3588 set_next_buddy(pse); 3589 next_buddy_marked = 1; 3590 } 3591 3592 /* 3593 * We can come here with TIF_NEED_RESCHED already set from new task 3594 * wake up path. 3595 * 3596 * Note: this also catches the edge-case of curr being in a throttled 3597 * group (e.g. via set_curr_task), since update_curr() (in the 3598 * enqueue of curr) will have resulted in resched being set. This 3599 * prevents us from potentially nominating it as a false LAST_BUDDY 3600 * below. 3601 */ 3602 if (test_tsk_need_resched(curr)) 3603 return; 3604 3605 /* Idle tasks are by definition preempted by non-idle tasks. */ 3606 if (unlikely(curr->policy == SCHED_IDLE) && 3607 likely(p->policy != SCHED_IDLE)) 3608 goto preempt; 3609 3610 /* 3611 * Batch and idle tasks do not preempt non-idle tasks (their preemption 3612 * is driven by the tick): 3613 */ 3614 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 3615 return; 3616 3617 find_matching_se(&se, &pse); 3618 update_curr(cfs_rq_of(se)); 3619 BUG_ON(!pse); 3620 if (wakeup_preempt_entity(se, pse) == 1) { 3621 /* 3622 * Bias pick_next to pick the sched entity that is 3623 * triggering this preemption. 3624 */ 3625 if (!next_buddy_marked) 3626 set_next_buddy(pse); 3627 goto preempt; 3628 } 3629 3630 return; 3631 3632 preempt: 3633 resched_task(curr); 3634 /* 3635 * Only set the backward buddy when the current task is still 3636 * on the rq. This can happen when a wakeup gets interleaved 3637 * with schedule on the ->pre_schedule() or idle_balance() 3638 * point, either of which can * drop the rq lock. 3639 * 3640 * Also, during early boot the idle thread is in the fair class, 3641 * for obvious reasons its a bad idea to schedule back to it. 3642 */ 3643 if (unlikely(!se->on_rq || curr == rq->idle)) 3644 return; 3645 3646 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 3647 set_last_buddy(se); 3648 } 3649 3650 static struct task_struct *pick_next_task_fair(struct rq *rq) 3651 { 3652 struct task_struct *p; 3653 struct cfs_rq *cfs_rq = &rq->cfs; 3654 struct sched_entity *se; 3655 3656 if (!cfs_rq->nr_running) 3657 return NULL; 3658 3659 do { 3660 se = pick_next_entity(cfs_rq); 3661 set_next_entity(cfs_rq, se); 3662 cfs_rq = group_cfs_rq(se); 3663 } while (cfs_rq); 3664 3665 p = task_of(se); 3666 if (hrtick_enabled(rq)) 3667 hrtick_start_fair(rq, p); 3668 3669 return p; 3670 } 3671 3672 /* 3673 * Account for a descheduled task: 3674 */ 3675 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 3676 { 3677 struct sched_entity *se = &prev->se; 3678 struct cfs_rq *cfs_rq; 3679 3680 for_each_sched_entity(se) { 3681 cfs_rq = cfs_rq_of(se); 3682 put_prev_entity(cfs_rq, se); 3683 } 3684 } 3685 3686 /* 3687 * sched_yield() is very simple 3688 * 3689 * The magic of dealing with the ->skip buddy is in pick_next_entity. 3690 */ 3691 static void yield_task_fair(struct rq *rq) 3692 { 3693 struct task_struct *curr = rq->curr; 3694 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 3695 struct sched_entity *se = &curr->se; 3696 3697 /* 3698 * Are we the only task in the tree? 3699 */ 3700 if (unlikely(rq->nr_running == 1)) 3701 return; 3702 3703 clear_buddies(cfs_rq, se); 3704 3705 if (curr->policy != SCHED_BATCH) { 3706 update_rq_clock(rq); 3707 /* 3708 * Update run-time statistics of the 'current'. 3709 */ 3710 update_curr(cfs_rq); 3711 /* 3712 * Tell update_rq_clock() that we've just updated, 3713 * so we don't do microscopic update in schedule() 3714 * and double the fastpath cost. 3715 */ 3716 rq->skip_clock_update = 1; 3717 } 3718 3719 set_skip_buddy(se); 3720 } 3721 3722 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 3723 { 3724 struct sched_entity *se = &p->se; 3725 3726 /* throttled hierarchies are not runnable */ 3727 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 3728 return false; 3729 3730 /* Tell the scheduler that we'd really like pse to run next. */ 3731 set_next_buddy(se); 3732 3733 yield_task_fair(rq); 3734 3735 return true; 3736 } 3737 3738 #ifdef CONFIG_SMP 3739 /************************************************** 3740 * Fair scheduling class load-balancing methods. 3741 * 3742 * BASICS 3743 * 3744 * The purpose of load-balancing is to achieve the same basic fairness the 3745 * per-cpu scheduler provides, namely provide a proportional amount of compute 3746 * time to each task. This is expressed in the following equation: 3747 * 3748 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 3749 * 3750 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 3751 * W_i,0 is defined as: 3752 * 3753 * W_i,0 = \Sum_j w_i,j (2) 3754 * 3755 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 3756 * is derived from the nice value as per prio_to_weight[]. 3757 * 3758 * The weight average is an exponential decay average of the instantaneous 3759 * weight: 3760 * 3761 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 3762 * 3763 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the 3764 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 3765 * can also include other factors [XXX]. 3766 * 3767 * To achieve this balance we define a measure of imbalance which follows 3768 * directly from (1): 3769 * 3770 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4) 3771 * 3772 * We them move tasks around to minimize the imbalance. In the continuous 3773 * function space it is obvious this converges, in the discrete case we get 3774 * a few fun cases generally called infeasible weight scenarios. 3775 * 3776 * [XXX expand on: 3777 * - infeasible weights; 3778 * - local vs global optima in the discrete case. ] 3779 * 3780 * 3781 * SCHED DOMAINS 3782 * 3783 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 3784 * for all i,j solution, we create a tree of cpus that follows the hardware 3785 * topology where each level pairs two lower groups (or better). This results 3786 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 3787 * tree to only the first of the previous level and we decrease the frequency 3788 * of load-balance at each level inv. proportional to the number of cpus in 3789 * the groups. 3790 * 3791 * This yields: 3792 * 3793 * log_2 n 1 n 3794 * \Sum { --- * --- * 2^i } = O(n) (5) 3795 * i = 0 2^i 2^i 3796 * `- size of each group 3797 * | | `- number of cpus doing load-balance 3798 * | `- freq 3799 * `- sum over all levels 3800 * 3801 * Coupled with a limit on how many tasks we can migrate every balance pass, 3802 * this makes (5) the runtime complexity of the balancer. 3803 * 3804 * An important property here is that each CPU is still (indirectly) connected 3805 * to every other cpu in at most O(log n) steps: 3806 * 3807 * The adjacency matrix of the resulting graph is given by: 3808 * 3809 * log_2 n 3810 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 3811 * k = 0 3812 * 3813 * And you'll find that: 3814 * 3815 * A^(log_2 n)_i,j != 0 for all i,j (7) 3816 * 3817 * Showing there's indeed a path between every cpu in at most O(log n) steps. 3818 * The task movement gives a factor of O(m), giving a convergence complexity 3819 * of: 3820 * 3821 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 3822 * 3823 * 3824 * WORK CONSERVING 3825 * 3826 * In order to avoid CPUs going idle while there's still work to do, new idle 3827 * balancing is more aggressive and has the newly idle cpu iterate up the domain 3828 * tree itself instead of relying on other CPUs to bring it work. 3829 * 3830 * This adds some complexity to both (5) and (8) but it reduces the total idle 3831 * time. 3832 * 3833 * [XXX more?] 3834 * 3835 * 3836 * CGROUPS 3837 * 3838 * Cgroups make a horror show out of (2), instead of a simple sum we get: 3839 * 3840 * s_k,i 3841 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 3842 * S_k 3843 * 3844 * Where 3845 * 3846 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 3847 * 3848 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 3849 * 3850 * The big problem is S_k, its a global sum needed to compute a local (W_i) 3851 * property. 3852 * 3853 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 3854 * rewrite all of this once again.] 3855 */ 3856 3857 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 3858 3859 #define LBF_ALL_PINNED 0x01 3860 #define LBF_NEED_BREAK 0x02 3861 #define LBF_SOME_PINNED 0x04 3862 3863 struct lb_env { 3864 struct sched_domain *sd; 3865 3866 struct rq *src_rq; 3867 int src_cpu; 3868 3869 int dst_cpu; 3870 struct rq *dst_rq; 3871 3872 struct cpumask *dst_grpmask; 3873 int new_dst_cpu; 3874 enum cpu_idle_type idle; 3875 long imbalance; 3876 /* The set of CPUs under consideration for load-balancing */ 3877 struct cpumask *cpus; 3878 3879 unsigned int flags; 3880 3881 unsigned int loop; 3882 unsigned int loop_break; 3883 unsigned int loop_max; 3884 }; 3885 3886 /* 3887 * move_task - move a task from one runqueue to another runqueue. 3888 * Both runqueues must be locked. 3889 */ 3890 static void move_task(struct task_struct *p, struct lb_env *env) 3891 { 3892 deactivate_task(env->src_rq, p, 0); 3893 set_task_cpu(p, env->dst_cpu); 3894 activate_task(env->dst_rq, p, 0); 3895 check_preempt_curr(env->dst_rq, p, 0); 3896 } 3897 3898 /* 3899 * Is this task likely cache-hot: 3900 */ 3901 static int 3902 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) 3903 { 3904 s64 delta; 3905 3906 if (p->sched_class != &fair_sched_class) 3907 return 0; 3908 3909 if (unlikely(p->policy == SCHED_IDLE)) 3910 return 0; 3911 3912 /* 3913 * Buddy candidates are cache hot: 3914 */ 3915 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && 3916 (&p->se == cfs_rq_of(&p->se)->next || 3917 &p->se == cfs_rq_of(&p->se)->last)) 3918 return 1; 3919 3920 if (sysctl_sched_migration_cost == -1) 3921 return 1; 3922 if (sysctl_sched_migration_cost == 0) 3923 return 0; 3924 3925 delta = now - p->se.exec_start; 3926 3927 return delta < (s64)sysctl_sched_migration_cost; 3928 } 3929 3930 /* 3931 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 3932 */ 3933 static 3934 int can_migrate_task(struct task_struct *p, struct lb_env *env) 3935 { 3936 int tsk_cache_hot = 0; 3937 /* 3938 * We do not migrate tasks that are: 3939 * 1) throttled_lb_pair, or 3940 * 2) cannot be migrated to this CPU due to cpus_allowed, or 3941 * 3) running (obviously), or 3942 * 4) are cache-hot on their current CPU. 3943 */ 3944 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 3945 return 0; 3946 3947 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 3948 int cpu; 3949 3950 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 3951 3952 /* 3953 * Remember if this task can be migrated to any other cpu in 3954 * our sched_group. We may want to revisit it if we couldn't 3955 * meet load balance goals by pulling other tasks on src_cpu. 3956 * 3957 * Also avoid computing new_dst_cpu if we have already computed 3958 * one in current iteration. 3959 */ 3960 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED)) 3961 return 0; 3962 3963 /* Prevent to re-select dst_cpu via env's cpus */ 3964 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 3965 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 3966 env->flags |= LBF_SOME_PINNED; 3967 env->new_dst_cpu = cpu; 3968 break; 3969 } 3970 } 3971 3972 return 0; 3973 } 3974 3975 /* Record that we found atleast one task that could run on dst_cpu */ 3976 env->flags &= ~LBF_ALL_PINNED; 3977 3978 if (task_running(env->src_rq, p)) { 3979 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 3980 return 0; 3981 } 3982 3983 /* 3984 * Aggressive migration if: 3985 * 1) task is cache cold, or 3986 * 2) too many balance attempts have failed. 3987 */ 3988 3989 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd); 3990 if (!tsk_cache_hot || 3991 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 3992 3993 if (tsk_cache_hot) { 3994 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 3995 schedstat_inc(p, se.statistics.nr_forced_migrations); 3996 } 3997 3998 return 1; 3999 } 4000 4001 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 4002 return 0; 4003 } 4004 4005 /* 4006 * move_one_task tries to move exactly one task from busiest to this_rq, as 4007 * part of active balancing operations within "domain". 4008 * Returns 1 if successful and 0 otherwise. 4009 * 4010 * Called with both runqueues locked. 4011 */ 4012 static int move_one_task(struct lb_env *env) 4013 { 4014 struct task_struct *p, *n; 4015 4016 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 4017 if (!can_migrate_task(p, env)) 4018 continue; 4019 4020 move_task(p, env); 4021 /* 4022 * Right now, this is only the second place move_task() 4023 * is called, so we can safely collect move_task() 4024 * stats here rather than inside move_task(). 4025 */ 4026 schedstat_inc(env->sd, lb_gained[env->idle]); 4027 return 1; 4028 } 4029 return 0; 4030 } 4031 4032 static unsigned long task_h_load(struct task_struct *p); 4033 4034 static const unsigned int sched_nr_migrate_break = 32; 4035 4036 /* 4037 * move_tasks tries to move up to imbalance weighted load from busiest to 4038 * this_rq, as part of a balancing operation within domain "sd". 4039 * Returns 1 if successful and 0 otherwise. 4040 * 4041 * Called with both runqueues locked. 4042 */ 4043 static int move_tasks(struct lb_env *env) 4044 { 4045 struct list_head *tasks = &env->src_rq->cfs_tasks; 4046 struct task_struct *p; 4047 unsigned long load; 4048 int pulled = 0; 4049 4050 if (env->imbalance <= 0) 4051 return 0; 4052 4053 while (!list_empty(tasks)) { 4054 p = list_first_entry(tasks, struct task_struct, se.group_node); 4055 4056 env->loop++; 4057 /* We've more or less seen every task there is, call it quits */ 4058 if (env->loop > env->loop_max) 4059 break; 4060 4061 /* take a breather every nr_migrate tasks */ 4062 if (env->loop > env->loop_break) { 4063 env->loop_break += sched_nr_migrate_break; 4064 env->flags |= LBF_NEED_BREAK; 4065 break; 4066 } 4067 4068 if (!can_migrate_task(p, env)) 4069 goto next; 4070 4071 load = task_h_load(p); 4072 4073 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 4074 goto next; 4075 4076 if ((load / 2) > env->imbalance) 4077 goto next; 4078 4079 move_task(p, env); 4080 pulled++; 4081 env->imbalance -= load; 4082 4083 #ifdef CONFIG_PREEMPT 4084 /* 4085 * NEWIDLE balancing is a source of latency, so preemptible 4086 * kernels will stop after the first task is pulled to minimize 4087 * the critical section. 4088 */ 4089 if (env->idle == CPU_NEWLY_IDLE) 4090 break; 4091 #endif 4092 4093 /* 4094 * We only want to steal up to the prescribed amount of 4095 * weighted load. 4096 */ 4097 if (env->imbalance <= 0) 4098 break; 4099 4100 continue; 4101 next: 4102 list_move_tail(&p->se.group_node, tasks); 4103 } 4104 4105 /* 4106 * Right now, this is one of only two places move_task() is called, 4107 * so we can safely collect move_task() stats here rather than 4108 * inside move_task(). 4109 */ 4110 schedstat_add(env->sd, lb_gained[env->idle], pulled); 4111 4112 return pulled; 4113 } 4114 4115 #ifdef CONFIG_FAIR_GROUP_SCHED 4116 /* 4117 * update tg->load_weight by folding this cpu's load_avg 4118 */ 4119 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu) 4120 { 4121 struct sched_entity *se = tg->se[cpu]; 4122 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 4123 4124 /* throttled entities do not contribute to load */ 4125 if (throttled_hierarchy(cfs_rq)) 4126 return; 4127 4128 update_cfs_rq_blocked_load(cfs_rq, 1); 4129 4130 if (se) { 4131 update_entity_load_avg(se, 1); 4132 /* 4133 * We pivot on our runnable average having decayed to zero for 4134 * list removal. This generally implies that all our children 4135 * have also been removed (modulo rounding error or bandwidth 4136 * control); however, such cases are rare and we can fix these 4137 * at enqueue. 4138 * 4139 * TODO: fix up out-of-order children on enqueue. 4140 */ 4141 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running) 4142 list_del_leaf_cfs_rq(cfs_rq); 4143 } else { 4144 struct rq *rq = rq_of(cfs_rq); 4145 update_rq_runnable_avg(rq, rq->nr_running); 4146 } 4147 } 4148 4149 static void update_blocked_averages(int cpu) 4150 { 4151 struct rq *rq = cpu_rq(cpu); 4152 struct cfs_rq *cfs_rq; 4153 unsigned long flags; 4154 4155 raw_spin_lock_irqsave(&rq->lock, flags); 4156 update_rq_clock(rq); 4157 /* 4158 * Iterates the task_group tree in a bottom up fashion, see 4159 * list_add_leaf_cfs_rq() for details. 4160 */ 4161 for_each_leaf_cfs_rq(rq, cfs_rq) { 4162 /* 4163 * Note: We may want to consider periodically releasing 4164 * rq->lock about these updates so that creating many task 4165 * groups does not result in continually extending hold time. 4166 */ 4167 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu); 4168 } 4169 4170 raw_spin_unlock_irqrestore(&rq->lock, flags); 4171 } 4172 4173 /* 4174 * Compute the cpu's hierarchical load factor for each task group. 4175 * This needs to be done in a top-down fashion because the load of a child 4176 * group is a fraction of its parents load. 4177 */ 4178 static int tg_load_down(struct task_group *tg, void *data) 4179 { 4180 unsigned long load; 4181 long cpu = (long)data; 4182 4183 if (!tg->parent) { 4184 load = cpu_rq(cpu)->avg.load_avg_contrib; 4185 } else { 4186 load = tg->parent->cfs_rq[cpu]->h_load; 4187 load = div64_ul(load * tg->se[cpu]->avg.load_avg_contrib, 4188 tg->parent->cfs_rq[cpu]->runnable_load_avg + 1); 4189 } 4190 4191 tg->cfs_rq[cpu]->h_load = load; 4192 4193 return 0; 4194 } 4195 4196 static void update_h_load(long cpu) 4197 { 4198 struct rq *rq = cpu_rq(cpu); 4199 unsigned long now = jiffies; 4200 4201 if (rq->h_load_throttle == now) 4202 return; 4203 4204 rq->h_load_throttle = now; 4205 4206 rcu_read_lock(); 4207 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); 4208 rcu_read_unlock(); 4209 } 4210 4211 static unsigned long task_h_load(struct task_struct *p) 4212 { 4213 struct cfs_rq *cfs_rq = task_cfs_rq(p); 4214 4215 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load, 4216 cfs_rq->runnable_load_avg + 1); 4217 } 4218 #else 4219 static inline void update_blocked_averages(int cpu) 4220 { 4221 } 4222 4223 static inline void update_h_load(long cpu) 4224 { 4225 } 4226 4227 static unsigned long task_h_load(struct task_struct *p) 4228 { 4229 return p->se.avg.load_avg_contrib; 4230 } 4231 #endif 4232 4233 /********** Helpers for find_busiest_group ************************/ 4234 /* 4235 * sd_lb_stats - Structure to store the statistics of a sched_domain 4236 * during load balancing. 4237 */ 4238 struct sd_lb_stats { 4239 struct sched_group *busiest; /* Busiest group in this sd */ 4240 struct sched_group *this; /* Local group in this sd */ 4241 unsigned long total_load; /* Total load of all groups in sd */ 4242 unsigned long total_pwr; /* Total power of all groups in sd */ 4243 unsigned long avg_load; /* Average load across all groups in sd */ 4244 4245 /** Statistics of this group */ 4246 unsigned long this_load; 4247 unsigned long this_load_per_task; 4248 unsigned long this_nr_running; 4249 unsigned long this_has_capacity; 4250 unsigned int this_idle_cpus; 4251 4252 /* Statistics of the busiest group */ 4253 unsigned int busiest_idle_cpus; 4254 unsigned long max_load; 4255 unsigned long busiest_load_per_task; 4256 unsigned long busiest_nr_running; 4257 unsigned long busiest_group_capacity; 4258 unsigned long busiest_has_capacity; 4259 unsigned int busiest_group_weight; 4260 4261 int group_imb; /* Is there imbalance in this sd */ 4262 }; 4263 4264 /* 4265 * sg_lb_stats - stats of a sched_group required for load_balancing 4266 */ 4267 struct sg_lb_stats { 4268 unsigned long avg_load; /*Avg load across the CPUs of the group */ 4269 unsigned long group_load; /* Total load over the CPUs of the group */ 4270 unsigned long sum_nr_running; /* Nr tasks running in the group */ 4271 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 4272 unsigned long group_capacity; 4273 unsigned long idle_cpus; 4274 unsigned long group_weight; 4275 int group_imb; /* Is there an imbalance in the group ? */ 4276 int group_has_capacity; /* Is there extra capacity in the group? */ 4277 }; 4278 4279 /** 4280 * get_sd_load_idx - Obtain the load index for a given sched domain. 4281 * @sd: The sched_domain whose load_idx is to be obtained. 4282 * @idle: The Idle status of the CPU for whose sd load_icx is obtained. 4283 */ 4284 static inline int get_sd_load_idx(struct sched_domain *sd, 4285 enum cpu_idle_type idle) 4286 { 4287 int load_idx; 4288 4289 switch (idle) { 4290 case CPU_NOT_IDLE: 4291 load_idx = sd->busy_idx; 4292 break; 4293 4294 case CPU_NEWLY_IDLE: 4295 load_idx = sd->newidle_idx; 4296 break; 4297 default: 4298 load_idx = sd->idle_idx; 4299 break; 4300 } 4301 4302 return load_idx; 4303 } 4304 4305 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) 4306 { 4307 return SCHED_POWER_SCALE; 4308 } 4309 4310 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) 4311 { 4312 return default_scale_freq_power(sd, cpu); 4313 } 4314 4315 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) 4316 { 4317 unsigned long weight = sd->span_weight; 4318 unsigned long smt_gain = sd->smt_gain; 4319 4320 smt_gain /= weight; 4321 4322 return smt_gain; 4323 } 4324 4325 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) 4326 { 4327 return default_scale_smt_power(sd, cpu); 4328 } 4329 4330 static unsigned long scale_rt_power(int cpu) 4331 { 4332 struct rq *rq = cpu_rq(cpu); 4333 u64 total, available, age_stamp, avg; 4334 4335 /* 4336 * Since we're reading these variables without serialization make sure 4337 * we read them once before doing sanity checks on them. 4338 */ 4339 age_stamp = ACCESS_ONCE(rq->age_stamp); 4340 avg = ACCESS_ONCE(rq->rt_avg); 4341 4342 total = sched_avg_period() + (rq_clock(rq) - age_stamp); 4343 4344 if (unlikely(total < avg)) { 4345 /* Ensures that power won't end up being negative */ 4346 available = 0; 4347 } else { 4348 available = total - avg; 4349 } 4350 4351 if (unlikely((s64)total < SCHED_POWER_SCALE)) 4352 total = SCHED_POWER_SCALE; 4353 4354 total >>= SCHED_POWER_SHIFT; 4355 4356 return div_u64(available, total); 4357 } 4358 4359 static void update_cpu_power(struct sched_domain *sd, int cpu) 4360 { 4361 unsigned long weight = sd->span_weight; 4362 unsigned long power = SCHED_POWER_SCALE; 4363 struct sched_group *sdg = sd->groups; 4364 4365 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { 4366 if (sched_feat(ARCH_POWER)) 4367 power *= arch_scale_smt_power(sd, cpu); 4368 else 4369 power *= default_scale_smt_power(sd, cpu); 4370 4371 power >>= SCHED_POWER_SHIFT; 4372 } 4373 4374 sdg->sgp->power_orig = power; 4375 4376 if (sched_feat(ARCH_POWER)) 4377 power *= arch_scale_freq_power(sd, cpu); 4378 else 4379 power *= default_scale_freq_power(sd, cpu); 4380 4381 power >>= SCHED_POWER_SHIFT; 4382 4383 power *= scale_rt_power(cpu); 4384 power >>= SCHED_POWER_SHIFT; 4385 4386 if (!power) 4387 power = 1; 4388 4389 cpu_rq(cpu)->cpu_power = power; 4390 sdg->sgp->power = power; 4391 } 4392 4393 void update_group_power(struct sched_domain *sd, int cpu) 4394 { 4395 struct sched_domain *child = sd->child; 4396 struct sched_group *group, *sdg = sd->groups; 4397 unsigned long power; 4398 unsigned long interval; 4399 4400 interval = msecs_to_jiffies(sd->balance_interval); 4401 interval = clamp(interval, 1UL, max_load_balance_interval); 4402 sdg->sgp->next_update = jiffies + interval; 4403 4404 if (!child) { 4405 update_cpu_power(sd, cpu); 4406 return; 4407 } 4408 4409 power = 0; 4410 4411 if (child->flags & SD_OVERLAP) { 4412 /* 4413 * SD_OVERLAP domains cannot assume that child groups 4414 * span the current group. 4415 */ 4416 4417 for_each_cpu(cpu, sched_group_cpus(sdg)) 4418 power += power_of(cpu); 4419 } else { 4420 /* 4421 * !SD_OVERLAP domains can assume that child groups 4422 * span the current group. 4423 */ 4424 4425 group = child->groups; 4426 do { 4427 power += group->sgp->power; 4428 group = group->next; 4429 } while (group != child->groups); 4430 } 4431 4432 sdg->sgp->power_orig = sdg->sgp->power = power; 4433 } 4434 4435 /* 4436 * Try and fix up capacity for tiny siblings, this is needed when 4437 * things like SD_ASYM_PACKING need f_b_g to select another sibling 4438 * which on its own isn't powerful enough. 4439 * 4440 * See update_sd_pick_busiest() and check_asym_packing(). 4441 */ 4442 static inline int 4443 fix_small_capacity(struct sched_domain *sd, struct sched_group *group) 4444 { 4445 /* 4446 * Only siblings can have significantly less than SCHED_POWER_SCALE 4447 */ 4448 if (!(sd->flags & SD_SHARE_CPUPOWER)) 4449 return 0; 4450 4451 /* 4452 * If ~90% of the cpu_power is still there, we're good. 4453 */ 4454 if (group->sgp->power * 32 > group->sgp->power_orig * 29) 4455 return 1; 4456 4457 return 0; 4458 } 4459 4460 /** 4461 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 4462 * @env: The load balancing environment. 4463 * @group: sched_group whose statistics are to be updated. 4464 * @load_idx: Load index of sched_domain of this_cpu for load calc. 4465 * @local_group: Does group contain this_cpu. 4466 * @balance: Should we balance. 4467 * @sgs: variable to hold the statistics for this group. 4468 */ 4469 static inline void update_sg_lb_stats(struct lb_env *env, 4470 struct sched_group *group, int load_idx, 4471 int local_group, int *balance, struct sg_lb_stats *sgs) 4472 { 4473 unsigned long nr_running, max_nr_running, min_nr_running; 4474 unsigned long load, max_cpu_load, min_cpu_load; 4475 unsigned int balance_cpu = -1, first_idle_cpu = 0; 4476 unsigned long avg_load_per_task = 0; 4477 int i; 4478 4479 if (local_group) 4480 balance_cpu = group_balance_cpu(group); 4481 4482 /* Tally up the load of all CPUs in the group */ 4483 max_cpu_load = 0; 4484 min_cpu_load = ~0UL; 4485 max_nr_running = 0; 4486 min_nr_running = ~0UL; 4487 4488 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 4489 struct rq *rq = cpu_rq(i); 4490 4491 nr_running = rq->nr_running; 4492 4493 /* Bias balancing toward cpus of our domain */ 4494 if (local_group) { 4495 if (idle_cpu(i) && !first_idle_cpu && 4496 cpumask_test_cpu(i, sched_group_mask(group))) { 4497 first_idle_cpu = 1; 4498 balance_cpu = i; 4499 } 4500 4501 load = target_load(i, load_idx); 4502 } else { 4503 load = source_load(i, load_idx); 4504 if (load > max_cpu_load) 4505 max_cpu_load = load; 4506 if (min_cpu_load > load) 4507 min_cpu_load = load; 4508 4509 if (nr_running > max_nr_running) 4510 max_nr_running = nr_running; 4511 if (min_nr_running > nr_running) 4512 min_nr_running = nr_running; 4513 } 4514 4515 sgs->group_load += load; 4516 sgs->sum_nr_running += nr_running; 4517 sgs->sum_weighted_load += weighted_cpuload(i); 4518 if (idle_cpu(i)) 4519 sgs->idle_cpus++; 4520 } 4521 4522 /* 4523 * First idle cpu or the first cpu(busiest) in this sched group 4524 * is eligible for doing load balancing at this and above 4525 * domains. In the newly idle case, we will allow all the cpu's 4526 * to do the newly idle load balance. 4527 */ 4528 if (local_group) { 4529 if (env->idle != CPU_NEWLY_IDLE) { 4530 if (balance_cpu != env->dst_cpu) { 4531 *balance = 0; 4532 return; 4533 } 4534 update_group_power(env->sd, env->dst_cpu); 4535 } else if (time_after_eq(jiffies, group->sgp->next_update)) 4536 update_group_power(env->sd, env->dst_cpu); 4537 } 4538 4539 /* Adjust by relative CPU power of the group */ 4540 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power; 4541 4542 /* 4543 * Consider the group unbalanced when the imbalance is larger 4544 * than the average weight of a task. 4545 * 4546 * APZ: with cgroup the avg task weight can vary wildly and 4547 * might not be a suitable number - should we keep a 4548 * normalized nr_running number somewhere that negates 4549 * the hierarchy? 4550 */ 4551 if (sgs->sum_nr_running) 4552 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 4553 4554 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && 4555 (max_nr_running - min_nr_running) > 1) 4556 sgs->group_imb = 1; 4557 4558 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power, 4559 SCHED_POWER_SCALE); 4560 if (!sgs->group_capacity) 4561 sgs->group_capacity = fix_small_capacity(env->sd, group); 4562 sgs->group_weight = group->group_weight; 4563 4564 if (sgs->group_capacity > sgs->sum_nr_running) 4565 sgs->group_has_capacity = 1; 4566 } 4567 4568 /** 4569 * update_sd_pick_busiest - return 1 on busiest group 4570 * @env: The load balancing environment. 4571 * @sds: sched_domain statistics 4572 * @sg: sched_group candidate to be checked for being the busiest 4573 * @sgs: sched_group statistics 4574 * 4575 * Determine if @sg is a busier group than the previously selected 4576 * busiest group. 4577 */ 4578 static bool update_sd_pick_busiest(struct lb_env *env, 4579 struct sd_lb_stats *sds, 4580 struct sched_group *sg, 4581 struct sg_lb_stats *sgs) 4582 { 4583 if (sgs->avg_load <= sds->max_load) 4584 return false; 4585 4586 if (sgs->sum_nr_running > sgs->group_capacity) 4587 return true; 4588 4589 if (sgs->group_imb) 4590 return true; 4591 4592 /* 4593 * ASYM_PACKING needs to move all the work to the lowest 4594 * numbered CPUs in the group, therefore mark all groups 4595 * higher than ourself as busy. 4596 */ 4597 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && 4598 env->dst_cpu < group_first_cpu(sg)) { 4599 if (!sds->busiest) 4600 return true; 4601 4602 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 4603 return true; 4604 } 4605 4606 return false; 4607 } 4608 4609 /** 4610 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 4611 * @env: The load balancing environment. 4612 * @balance: Should we balance. 4613 * @sds: variable to hold the statistics for this sched_domain. 4614 */ 4615 static inline void update_sd_lb_stats(struct lb_env *env, 4616 int *balance, struct sd_lb_stats *sds) 4617 { 4618 struct sched_domain *child = env->sd->child; 4619 struct sched_group *sg = env->sd->groups; 4620 struct sg_lb_stats sgs; 4621 int load_idx, prefer_sibling = 0; 4622 4623 if (child && child->flags & SD_PREFER_SIBLING) 4624 prefer_sibling = 1; 4625 4626 load_idx = get_sd_load_idx(env->sd, env->idle); 4627 4628 do { 4629 int local_group; 4630 4631 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 4632 memset(&sgs, 0, sizeof(sgs)); 4633 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs); 4634 4635 if (local_group && !(*balance)) 4636 return; 4637 4638 sds->total_load += sgs.group_load; 4639 sds->total_pwr += sg->sgp->power; 4640 4641 /* 4642 * In case the child domain prefers tasks go to siblings 4643 * first, lower the sg capacity to one so that we'll try 4644 * and move all the excess tasks away. We lower the capacity 4645 * of a group only if the local group has the capacity to fit 4646 * these excess tasks, i.e. nr_running < group_capacity. The 4647 * extra check prevents the case where you always pull from the 4648 * heaviest group when it is already under-utilized (possible 4649 * with a large weight task outweighs the tasks on the system). 4650 */ 4651 if (prefer_sibling && !local_group && sds->this_has_capacity) 4652 sgs.group_capacity = min(sgs.group_capacity, 1UL); 4653 4654 if (local_group) { 4655 sds->this_load = sgs.avg_load; 4656 sds->this = sg; 4657 sds->this_nr_running = sgs.sum_nr_running; 4658 sds->this_load_per_task = sgs.sum_weighted_load; 4659 sds->this_has_capacity = sgs.group_has_capacity; 4660 sds->this_idle_cpus = sgs.idle_cpus; 4661 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) { 4662 sds->max_load = sgs.avg_load; 4663 sds->busiest = sg; 4664 sds->busiest_nr_running = sgs.sum_nr_running; 4665 sds->busiest_idle_cpus = sgs.idle_cpus; 4666 sds->busiest_group_capacity = sgs.group_capacity; 4667 sds->busiest_load_per_task = sgs.sum_weighted_load; 4668 sds->busiest_has_capacity = sgs.group_has_capacity; 4669 sds->busiest_group_weight = sgs.group_weight; 4670 sds->group_imb = sgs.group_imb; 4671 } 4672 4673 sg = sg->next; 4674 } while (sg != env->sd->groups); 4675 } 4676 4677 /** 4678 * check_asym_packing - Check to see if the group is packed into the 4679 * sched doman. 4680 * 4681 * This is primarily intended to used at the sibling level. Some 4682 * cores like POWER7 prefer to use lower numbered SMT threads. In the 4683 * case of POWER7, it can move to lower SMT modes only when higher 4684 * threads are idle. When in lower SMT modes, the threads will 4685 * perform better since they share less core resources. Hence when we 4686 * have idle threads, we want them to be the higher ones. 4687 * 4688 * This packing function is run on idle threads. It checks to see if 4689 * the busiest CPU in this domain (core in the P7 case) has a higher 4690 * CPU number than the packing function is being run on. Here we are 4691 * assuming lower CPU number will be equivalent to lower a SMT thread 4692 * number. 4693 * 4694 * Returns 1 when packing is required and a task should be moved to 4695 * this CPU. The amount of the imbalance is returned in *imbalance. 4696 * 4697 * @env: The load balancing environment. 4698 * @sds: Statistics of the sched_domain which is to be packed 4699 */ 4700 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 4701 { 4702 int busiest_cpu; 4703 4704 if (!(env->sd->flags & SD_ASYM_PACKING)) 4705 return 0; 4706 4707 if (!sds->busiest) 4708 return 0; 4709 4710 busiest_cpu = group_first_cpu(sds->busiest); 4711 if (env->dst_cpu > busiest_cpu) 4712 return 0; 4713 4714 env->imbalance = DIV_ROUND_CLOSEST( 4715 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE); 4716 4717 return 1; 4718 } 4719 4720 /** 4721 * fix_small_imbalance - Calculate the minor imbalance that exists 4722 * amongst the groups of a sched_domain, during 4723 * load balancing. 4724 * @env: The load balancing environment. 4725 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 4726 */ 4727 static inline 4728 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 4729 { 4730 unsigned long tmp, pwr_now = 0, pwr_move = 0; 4731 unsigned int imbn = 2; 4732 unsigned long scaled_busy_load_per_task; 4733 4734 if (sds->this_nr_running) { 4735 sds->this_load_per_task /= sds->this_nr_running; 4736 if (sds->busiest_load_per_task > 4737 sds->this_load_per_task) 4738 imbn = 1; 4739 } else { 4740 sds->this_load_per_task = 4741 cpu_avg_load_per_task(env->dst_cpu); 4742 } 4743 4744 scaled_busy_load_per_task = sds->busiest_load_per_task 4745 * SCHED_POWER_SCALE; 4746 scaled_busy_load_per_task /= sds->busiest->sgp->power; 4747 4748 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >= 4749 (scaled_busy_load_per_task * imbn)) { 4750 env->imbalance = sds->busiest_load_per_task; 4751 return; 4752 } 4753 4754 /* 4755 * OK, we don't have enough imbalance to justify moving tasks, 4756 * however we may be able to increase total CPU power used by 4757 * moving them. 4758 */ 4759 4760 pwr_now += sds->busiest->sgp->power * 4761 min(sds->busiest_load_per_task, sds->max_load); 4762 pwr_now += sds->this->sgp->power * 4763 min(sds->this_load_per_task, sds->this_load); 4764 pwr_now /= SCHED_POWER_SCALE; 4765 4766 /* Amount of load we'd subtract */ 4767 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / 4768 sds->busiest->sgp->power; 4769 if (sds->max_load > tmp) 4770 pwr_move += sds->busiest->sgp->power * 4771 min(sds->busiest_load_per_task, sds->max_load - tmp); 4772 4773 /* Amount of load we'd add */ 4774 if (sds->max_load * sds->busiest->sgp->power < 4775 sds->busiest_load_per_task * SCHED_POWER_SCALE) 4776 tmp = (sds->max_load * sds->busiest->sgp->power) / 4777 sds->this->sgp->power; 4778 else 4779 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / 4780 sds->this->sgp->power; 4781 pwr_move += sds->this->sgp->power * 4782 min(sds->this_load_per_task, sds->this_load + tmp); 4783 pwr_move /= SCHED_POWER_SCALE; 4784 4785 /* Move if we gain throughput */ 4786 if (pwr_move > pwr_now) 4787 env->imbalance = sds->busiest_load_per_task; 4788 } 4789 4790 /** 4791 * calculate_imbalance - Calculate the amount of imbalance present within the 4792 * groups of a given sched_domain during load balance. 4793 * @env: load balance environment 4794 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 4795 */ 4796 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 4797 { 4798 unsigned long max_pull, load_above_capacity = ~0UL; 4799 4800 sds->busiest_load_per_task /= sds->busiest_nr_running; 4801 if (sds->group_imb) { 4802 sds->busiest_load_per_task = 4803 min(sds->busiest_load_per_task, sds->avg_load); 4804 } 4805 4806 /* 4807 * In the presence of smp nice balancing, certain scenarios can have 4808 * max load less than avg load(as we skip the groups at or below 4809 * its cpu_power, while calculating max_load..) 4810 */ 4811 if (sds->max_load < sds->avg_load) { 4812 env->imbalance = 0; 4813 return fix_small_imbalance(env, sds); 4814 } 4815 4816 if (!sds->group_imb) { 4817 /* 4818 * Don't want to pull so many tasks that a group would go idle. 4819 */ 4820 load_above_capacity = (sds->busiest_nr_running - 4821 sds->busiest_group_capacity); 4822 4823 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); 4824 4825 load_above_capacity /= sds->busiest->sgp->power; 4826 } 4827 4828 /* 4829 * We're trying to get all the cpus to the average_load, so we don't 4830 * want to push ourselves above the average load, nor do we wish to 4831 * reduce the max loaded cpu below the average load. At the same time, 4832 * we also don't want to reduce the group load below the group capacity 4833 * (so that we can implement power-savings policies etc). Thus we look 4834 * for the minimum possible imbalance. 4835 * Be careful of negative numbers as they'll appear as very large values 4836 * with unsigned longs. 4837 */ 4838 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity); 4839 4840 /* How much load to actually move to equalise the imbalance */ 4841 env->imbalance = min(max_pull * sds->busiest->sgp->power, 4842 (sds->avg_load - sds->this_load) * sds->this->sgp->power) 4843 / SCHED_POWER_SCALE; 4844 4845 /* 4846 * if *imbalance is less than the average load per runnable task 4847 * there is no guarantee that any tasks will be moved so we'll have 4848 * a think about bumping its value to force at least one task to be 4849 * moved 4850 */ 4851 if (env->imbalance < sds->busiest_load_per_task) 4852 return fix_small_imbalance(env, sds); 4853 4854 } 4855 4856 /******* find_busiest_group() helpers end here *********************/ 4857 4858 /** 4859 * find_busiest_group - Returns the busiest group within the sched_domain 4860 * if there is an imbalance. If there isn't an imbalance, and 4861 * the user has opted for power-savings, it returns a group whose 4862 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 4863 * such a group exists. 4864 * 4865 * Also calculates the amount of weighted load which should be moved 4866 * to restore balance. 4867 * 4868 * @env: The load balancing environment. 4869 * @balance: Pointer to a variable indicating if this_cpu 4870 * is the appropriate cpu to perform load balancing at this_level. 4871 * 4872 * Returns: - the busiest group if imbalance exists. 4873 * - If no imbalance and user has opted for power-savings balance, 4874 * return the least loaded group whose CPUs can be 4875 * put to idle by rebalancing its tasks onto our group. 4876 */ 4877 static struct sched_group * 4878 find_busiest_group(struct lb_env *env, int *balance) 4879 { 4880 struct sd_lb_stats sds; 4881 4882 memset(&sds, 0, sizeof(sds)); 4883 4884 /* 4885 * Compute the various statistics relavent for load balancing at 4886 * this level. 4887 */ 4888 update_sd_lb_stats(env, balance, &sds); 4889 4890 /* 4891 * this_cpu is not the appropriate cpu to perform load balancing at 4892 * this level. 4893 */ 4894 if (!(*balance)) 4895 goto ret; 4896 4897 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 4898 check_asym_packing(env, &sds)) 4899 return sds.busiest; 4900 4901 /* There is no busy sibling group to pull tasks from */ 4902 if (!sds.busiest || sds.busiest_nr_running == 0) 4903 goto out_balanced; 4904 4905 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; 4906 4907 /* 4908 * If the busiest group is imbalanced the below checks don't 4909 * work because they assumes all things are equal, which typically 4910 * isn't true due to cpus_allowed constraints and the like. 4911 */ 4912 if (sds.group_imb) 4913 goto force_balance; 4914 4915 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 4916 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity && 4917 !sds.busiest_has_capacity) 4918 goto force_balance; 4919 4920 /* 4921 * If the local group is more busy than the selected busiest group 4922 * don't try and pull any tasks. 4923 */ 4924 if (sds.this_load >= sds.max_load) 4925 goto out_balanced; 4926 4927 /* 4928 * Don't pull any tasks if this group is already above the domain 4929 * average load. 4930 */ 4931 if (sds.this_load >= sds.avg_load) 4932 goto out_balanced; 4933 4934 if (env->idle == CPU_IDLE) { 4935 /* 4936 * This cpu is idle. If the busiest group load doesn't 4937 * have more tasks than the number of available cpu's and 4938 * there is no imbalance between this and busiest group 4939 * wrt to idle cpu's, it is balanced. 4940 */ 4941 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) && 4942 sds.busiest_nr_running <= sds.busiest_group_weight) 4943 goto out_balanced; 4944 } else { 4945 /* 4946 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 4947 * imbalance_pct to be conservative. 4948 */ 4949 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load) 4950 goto out_balanced; 4951 } 4952 4953 force_balance: 4954 /* Looks like there is an imbalance. Compute it */ 4955 calculate_imbalance(env, &sds); 4956 return sds.busiest; 4957 4958 out_balanced: 4959 ret: 4960 env->imbalance = 0; 4961 return NULL; 4962 } 4963 4964 /* 4965 * find_busiest_queue - find the busiest runqueue among the cpus in group. 4966 */ 4967 static struct rq *find_busiest_queue(struct lb_env *env, 4968 struct sched_group *group) 4969 { 4970 struct rq *busiest = NULL, *rq; 4971 unsigned long max_load = 0; 4972 int i; 4973 4974 for_each_cpu(i, sched_group_cpus(group)) { 4975 unsigned long power = power_of(i); 4976 unsigned long capacity = DIV_ROUND_CLOSEST(power, 4977 SCHED_POWER_SCALE); 4978 unsigned long wl; 4979 4980 if (!capacity) 4981 capacity = fix_small_capacity(env->sd, group); 4982 4983 if (!cpumask_test_cpu(i, env->cpus)) 4984 continue; 4985 4986 rq = cpu_rq(i); 4987 wl = weighted_cpuload(i); 4988 4989 /* 4990 * When comparing with imbalance, use weighted_cpuload() 4991 * which is not scaled with the cpu power. 4992 */ 4993 if (capacity && rq->nr_running == 1 && wl > env->imbalance) 4994 continue; 4995 4996 /* 4997 * For the load comparisons with the other cpu's, consider 4998 * the weighted_cpuload() scaled with the cpu power, so that 4999 * the load can be moved away from the cpu that is potentially 5000 * running at a lower capacity. 5001 */ 5002 wl = (wl * SCHED_POWER_SCALE) / power; 5003 5004 if (wl > max_load) { 5005 max_load = wl; 5006 busiest = rq; 5007 } 5008 } 5009 5010 return busiest; 5011 } 5012 5013 /* 5014 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 5015 * so long as it is large enough. 5016 */ 5017 #define MAX_PINNED_INTERVAL 512 5018 5019 /* Working cpumask for load_balance and load_balance_newidle. */ 5020 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5021 5022 static int need_active_balance(struct lb_env *env) 5023 { 5024 struct sched_domain *sd = env->sd; 5025 5026 if (env->idle == CPU_NEWLY_IDLE) { 5027 5028 /* 5029 * ASYM_PACKING needs to force migrate tasks from busy but 5030 * higher numbered CPUs in order to pack all tasks in the 5031 * lowest numbered CPUs. 5032 */ 5033 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 5034 return 1; 5035 } 5036 5037 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 5038 } 5039 5040 static int active_load_balance_cpu_stop(void *data); 5041 5042 /* 5043 * Check this_cpu to ensure it is balanced within domain. Attempt to move 5044 * tasks if there is an imbalance. 5045 */ 5046 static int load_balance(int this_cpu, struct rq *this_rq, 5047 struct sched_domain *sd, enum cpu_idle_type idle, 5048 int *balance) 5049 { 5050 int ld_moved, cur_ld_moved, active_balance = 0; 5051 struct sched_group *group; 5052 struct rq *busiest; 5053 unsigned long flags; 5054 struct cpumask *cpus = __get_cpu_var(load_balance_mask); 5055 5056 struct lb_env env = { 5057 .sd = sd, 5058 .dst_cpu = this_cpu, 5059 .dst_rq = this_rq, 5060 .dst_grpmask = sched_group_cpus(sd->groups), 5061 .idle = idle, 5062 .loop_break = sched_nr_migrate_break, 5063 .cpus = cpus, 5064 }; 5065 5066 /* 5067 * For NEWLY_IDLE load_balancing, we don't need to consider 5068 * other cpus in our group 5069 */ 5070 if (idle == CPU_NEWLY_IDLE) 5071 env.dst_grpmask = NULL; 5072 5073 cpumask_copy(cpus, cpu_active_mask); 5074 5075 schedstat_inc(sd, lb_count[idle]); 5076 5077 redo: 5078 group = find_busiest_group(&env, balance); 5079 5080 if (*balance == 0) 5081 goto out_balanced; 5082 5083 if (!group) { 5084 schedstat_inc(sd, lb_nobusyg[idle]); 5085 goto out_balanced; 5086 } 5087 5088 busiest = find_busiest_queue(&env, group); 5089 if (!busiest) { 5090 schedstat_inc(sd, lb_nobusyq[idle]); 5091 goto out_balanced; 5092 } 5093 5094 BUG_ON(busiest == env.dst_rq); 5095 5096 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 5097 5098 ld_moved = 0; 5099 if (busiest->nr_running > 1) { 5100 /* 5101 * Attempt to move tasks. If find_busiest_group has found 5102 * an imbalance but busiest->nr_running <= 1, the group is 5103 * still unbalanced. ld_moved simply stays zero, so it is 5104 * correctly treated as an imbalance. 5105 */ 5106 env.flags |= LBF_ALL_PINNED; 5107 env.src_cpu = busiest->cpu; 5108 env.src_rq = busiest; 5109 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 5110 5111 update_h_load(env.src_cpu); 5112 more_balance: 5113 local_irq_save(flags); 5114 double_rq_lock(env.dst_rq, busiest); 5115 5116 /* 5117 * cur_ld_moved - load moved in current iteration 5118 * ld_moved - cumulative load moved across iterations 5119 */ 5120 cur_ld_moved = move_tasks(&env); 5121 ld_moved += cur_ld_moved; 5122 double_rq_unlock(env.dst_rq, busiest); 5123 local_irq_restore(flags); 5124 5125 /* 5126 * some other cpu did the load balance for us. 5127 */ 5128 if (cur_ld_moved && env.dst_cpu != smp_processor_id()) 5129 resched_cpu(env.dst_cpu); 5130 5131 if (env.flags & LBF_NEED_BREAK) { 5132 env.flags &= ~LBF_NEED_BREAK; 5133 goto more_balance; 5134 } 5135 5136 /* 5137 * Revisit (affine) tasks on src_cpu that couldn't be moved to 5138 * us and move them to an alternate dst_cpu in our sched_group 5139 * where they can run. The upper limit on how many times we 5140 * iterate on same src_cpu is dependent on number of cpus in our 5141 * sched_group. 5142 * 5143 * This changes load balance semantics a bit on who can move 5144 * load to a given_cpu. In addition to the given_cpu itself 5145 * (or a ilb_cpu acting on its behalf where given_cpu is 5146 * nohz-idle), we now have balance_cpu in a position to move 5147 * load to given_cpu. In rare situations, this may cause 5148 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 5149 * _independently_ and at _same_ time to move some load to 5150 * given_cpu) causing exceess load to be moved to given_cpu. 5151 * This however should not happen so much in practice and 5152 * moreover subsequent load balance cycles should correct the 5153 * excess load moved. 5154 */ 5155 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) { 5156 5157 env.dst_rq = cpu_rq(env.new_dst_cpu); 5158 env.dst_cpu = env.new_dst_cpu; 5159 env.flags &= ~LBF_SOME_PINNED; 5160 env.loop = 0; 5161 env.loop_break = sched_nr_migrate_break; 5162 5163 /* Prevent to re-select dst_cpu via env's cpus */ 5164 cpumask_clear_cpu(env.dst_cpu, env.cpus); 5165 5166 /* 5167 * Go back to "more_balance" rather than "redo" since we 5168 * need to continue with same src_cpu. 5169 */ 5170 goto more_balance; 5171 } 5172 5173 /* All tasks on this runqueue were pinned by CPU affinity */ 5174 if (unlikely(env.flags & LBF_ALL_PINNED)) { 5175 cpumask_clear_cpu(cpu_of(busiest), cpus); 5176 if (!cpumask_empty(cpus)) { 5177 env.loop = 0; 5178 env.loop_break = sched_nr_migrate_break; 5179 goto redo; 5180 } 5181 goto out_balanced; 5182 } 5183 } 5184 5185 if (!ld_moved) { 5186 schedstat_inc(sd, lb_failed[idle]); 5187 /* 5188 * Increment the failure counter only on periodic balance. 5189 * We do not want newidle balance, which can be very 5190 * frequent, pollute the failure counter causing 5191 * excessive cache_hot migrations and active balances. 5192 */ 5193 if (idle != CPU_NEWLY_IDLE) 5194 sd->nr_balance_failed++; 5195 5196 if (need_active_balance(&env)) { 5197 raw_spin_lock_irqsave(&busiest->lock, flags); 5198 5199 /* don't kick the active_load_balance_cpu_stop, 5200 * if the curr task on busiest cpu can't be 5201 * moved to this_cpu 5202 */ 5203 if (!cpumask_test_cpu(this_cpu, 5204 tsk_cpus_allowed(busiest->curr))) { 5205 raw_spin_unlock_irqrestore(&busiest->lock, 5206 flags); 5207 env.flags |= LBF_ALL_PINNED; 5208 goto out_one_pinned; 5209 } 5210 5211 /* 5212 * ->active_balance synchronizes accesses to 5213 * ->active_balance_work. Once set, it's cleared 5214 * only after active load balance is finished. 5215 */ 5216 if (!busiest->active_balance) { 5217 busiest->active_balance = 1; 5218 busiest->push_cpu = this_cpu; 5219 active_balance = 1; 5220 } 5221 raw_spin_unlock_irqrestore(&busiest->lock, flags); 5222 5223 if (active_balance) { 5224 stop_one_cpu_nowait(cpu_of(busiest), 5225 active_load_balance_cpu_stop, busiest, 5226 &busiest->active_balance_work); 5227 } 5228 5229 /* 5230 * We've kicked active balancing, reset the failure 5231 * counter. 5232 */ 5233 sd->nr_balance_failed = sd->cache_nice_tries+1; 5234 } 5235 } else 5236 sd->nr_balance_failed = 0; 5237 5238 if (likely(!active_balance)) { 5239 /* We were unbalanced, so reset the balancing interval */ 5240 sd->balance_interval = sd->min_interval; 5241 } else { 5242 /* 5243 * If we've begun active balancing, start to back off. This 5244 * case may not be covered by the all_pinned logic if there 5245 * is only 1 task on the busy runqueue (because we don't call 5246 * move_tasks). 5247 */ 5248 if (sd->balance_interval < sd->max_interval) 5249 sd->balance_interval *= 2; 5250 } 5251 5252 goto out; 5253 5254 out_balanced: 5255 schedstat_inc(sd, lb_balanced[idle]); 5256 5257 sd->nr_balance_failed = 0; 5258 5259 out_one_pinned: 5260 /* tune up the balancing interval */ 5261 if (((env.flags & LBF_ALL_PINNED) && 5262 sd->balance_interval < MAX_PINNED_INTERVAL) || 5263 (sd->balance_interval < sd->max_interval)) 5264 sd->balance_interval *= 2; 5265 5266 ld_moved = 0; 5267 out: 5268 return ld_moved; 5269 } 5270 5271 /* 5272 * idle_balance is called by schedule() if this_cpu is about to become 5273 * idle. Attempts to pull tasks from other CPUs. 5274 */ 5275 void idle_balance(int this_cpu, struct rq *this_rq) 5276 { 5277 struct sched_domain *sd; 5278 int pulled_task = 0; 5279 unsigned long next_balance = jiffies + HZ; 5280 5281 this_rq->idle_stamp = rq_clock(this_rq); 5282 5283 if (this_rq->avg_idle < sysctl_sched_migration_cost) 5284 return; 5285 5286 /* 5287 * Drop the rq->lock, but keep IRQ/preempt disabled. 5288 */ 5289 raw_spin_unlock(&this_rq->lock); 5290 5291 update_blocked_averages(this_cpu); 5292 rcu_read_lock(); 5293 for_each_domain(this_cpu, sd) { 5294 unsigned long interval; 5295 int balance = 1; 5296 5297 if (!(sd->flags & SD_LOAD_BALANCE)) 5298 continue; 5299 5300 if (sd->flags & SD_BALANCE_NEWIDLE) { 5301 /* If we've pulled tasks over stop searching: */ 5302 pulled_task = load_balance(this_cpu, this_rq, 5303 sd, CPU_NEWLY_IDLE, &balance); 5304 } 5305 5306 interval = msecs_to_jiffies(sd->balance_interval); 5307 if (time_after(next_balance, sd->last_balance + interval)) 5308 next_balance = sd->last_balance + interval; 5309 if (pulled_task) { 5310 this_rq->idle_stamp = 0; 5311 break; 5312 } 5313 } 5314 rcu_read_unlock(); 5315 5316 raw_spin_lock(&this_rq->lock); 5317 5318 if (pulled_task || time_after(jiffies, this_rq->next_balance)) { 5319 /* 5320 * We are going idle. next_balance may be set based on 5321 * a busy processor. So reset next_balance. 5322 */ 5323 this_rq->next_balance = next_balance; 5324 } 5325 } 5326 5327 /* 5328 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 5329 * running tasks off the busiest CPU onto idle CPUs. It requires at 5330 * least 1 task to be running on each physical CPU where possible, and 5331 * avoids physical / logical imbalances. 5332 */ 5333 static int active_load_balance_cpu_stop(void *data) 5334 { 5335 struct rq *busiest_rq = data; 5336 int busiest_cpu = cpu_of(busiest_rq); 5337 int target_cpu = busiest_rq->push_cpu; 5338 struct rq *target_rq = cpu_rq(target_cpu); 5339 struct sched_domain *sd; 5340 5341 raw_spin_lock_irq(&busiest_rq->lock); 5342 5343 /* make sure the requested cpu hasn't gone down in the meantime */ 5344 if (unlikely(busiest_cpu != smp_processor_id() || 5345 !busiest_rq->active_balance)) 5346 goto out_unlock; 5347 5348 /* Is there any task to move? */ 5349 if (busiest_rq->nr_running <= 1) 5350 goto out_unlock; 5351 5352 /* 5353 * This condition is "impossible", if it occurs 5354 * we need to fix it. Originally reported by 5355 * Bjorn Helgaas on a 128-cpu setup. 5356 */ 5357 BUG_ON(busiest_rq == target_rq); 5358 5359 /* move a task from busiest_rq to target_rq */ 5360 double_lock_balance(busiest_rq, target_rq); 5361 5362 /* Search for an sd spanning us and the target CPU. */ 5363 rcu_read_lock(); 5364 for_each_domain(target_cpu, sd) { 5365 if ((sd->flags & SD_LOAD_BALANCE) && 5366 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 5367 break; 5368 } 5369 5370 if (likely(sd)) { 5371 struct lb_env env = { 5372 .sd = sd, 5373 .dst_cpu = target_cpu, 5374 .dst_rq = target_rq, 5375 .src_cpu = busiest_rq->cpu, 5376 .src_rq = busiest_rq, 5377 .idle = CPU_IDLE, 5378 }; 5379 5380 schedstat_inc(sd, alb_count); 5381 5382 if (move_one_task(&env)) 5383 schedstat_inc(sd, alb_pushed); 5384 else 5385 schedstat_inc(sd, alb_failed); 5386 } 5387 rcu_read_unlock(); 5388 double_unlock_balance(busiest_rq, target_rq); 5389 out_unlock: 5390 busiest_rq->active_balance = 0; 5391 raw_spin_unlock_irq(&busiest_rq->lock); 5392 return 0; 5393 } 5394 5395 #ifdef CONFIG_NO_HZ_COMMON 5396 /* 5397 * idle load balancing details 5398 * - When one of the busy CPUs notice that there may be an idle rebalancing 5399 * needed, they will kick the idle load balancer, which then does idle 5400 * load balancing for all the idle CPUs. 5401 */ 5402 static struct { 5403 cpumask_var_t idle_cpus_mask; 5404 atomic_t nr_cpus; 5405 unsigned long next_balance; /* in jiffy units */ 5406 } nohz ____cacheline_aligned; 5407 5408 static inline int find_new_ilb(int call_cpu) 5409 { 5410 int ilb = cpumask_first(nohz.idle_cpus_mask); 5411 5412 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 5413 return ilb; 5414 5415 return nr_cpu_ids; 5416 } 5417 5418 /* 5419 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 5420 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 5421 * CPU (if there is one). 5422 */ 5423 static void nohz_balancer_kick(int cpu) 5424 { 5425 int ilb_cpu; 5426 5427 nohz.next_balance++; 5428 5429 ilb_cpu = find_new_ilb(cpu); 5430 5431 if (ilb_cpu >= nr_cpu_ids) 5432 return; 5433 5434 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 5435 return; 5436 /* 5437 * Use smp_send_reschedule() instead of resched_cpu(). 5438 * This way we generate a sched IPI on the target cpu which 5439 * is idle. And the softirq performing nohz idle load balance 5440 * will be run before returning from the IPI. 5441 */ 5442 smp_send_reschedule(ilb_cpu); 5443 return; 5444 } 5445 5446 static inline void nohz_balance_exit_idle(int cpu) 5447 { 5448 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 5449 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 5450 atomic_dec(&nohz.nr_cpus); 5451 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 5452 } 5453 } 5454 5455 static inline void set_cpu_sd_state_busy(void) 5456 { 5457 struct sched_domain *sd; 5458 5459 rcu_read_lock(); 5460 sd = rcu_dereference_check_sched_domain(this_rq()->sd); 5461 5462 if (!sd || !sd->nohz_idle) 5463 goto unlock; 5464 sd->nohz_idle = 0; 5465 5466 for (; sd; sd = sd->parent) 5467 atomic_inc(&sd->groups->sgp->nr_busy_cpus); 5468 unlock: 5469 rcu_read_unlock(); 5470 } 5471 5472 void set_cpu_sd_state_idle(void) 5473 { 5474 struct sched_domain *sd; 5475 5476 rcu_read_lock(); 5477 sd = rcu_dereference_check_sched_domain(this_rq()->sd); 5478 5479 if (!sd || sd->nohz_idle) 5480 goto unlock; 5481 sd->nohz_idle = 1; 5482 5483 for (; sd; sd = sd->parent) 5484 atomic_dec(&sd->groups->sgp->nr_busy_cpus); 5485 unlock: 5486 rcu_read_unlock(); 5487 } 5488 5489 /* 5490 * This routine will record that the cpu is going idle with tick stopped. 5491 * This info will be used in performing idle load balancing in the future. 5492 */ 5493 void nohz_balance_enter_idle(int cpu) 5494 { 5495 /* 5496 * If this cpu is going down, then nothing needs to be done. 5497 */ 5498 if (!cpu_active(cpu)) 5499 return; 5500 5501 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 5502 return; 5503 5504 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 5505 atomic_inc(&nohz.nr_cpus); 5506 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 5507 } 5508 5509 static int sched_ilb_notifier(struct notifier_block *nfb, 5510 unsigned long action, void *hcpu) 5511 { 5512 switch (action & ~CPU_TASKS_FROZEN) { 5513 case CPU_DYING: 5514 nohz_balance_exit_idle(smp_processor_id()); 5515 return NOTIFY_OK; 5516 default: 5517 return NOTIFY_DONE; 5518 } 5519 } 5520 #endif 5521 5522 static DEFINE_SPINLOCK(balancing); 5523 5524 /* 5525 * Scale the max load_balance interval with the number of CPUs in the system. 5526 * This trades load-balance latency on larger machines for less cross talk. 5527 */ 5528 void update_max_interval(void) 5529 { 5530 max_load_balance_interval = HZ*num_online_cpus()/10; 5531 } 5532 5533 /* 5534 * It checks each scheduling domain to see if it is due to be balanced, 5535 * and initiates a balancing operation if so. 5536 * 5537 * Balancing parameters are set up in init_sched_domains. 5538 */ 5539 static void rebalance_domains(int cpu, enum cpu_idle_type idle) 5540 { 5541 int balance = 1; 5542 struct rq *rq = cpu_rq(cpu); 5543 unsigned long interval; 5544 struct sched_domain *sd; 5545 /* Earliest time when we have to do rebalance again */ 5546 unsigned long next_balance = jiffies + 60*HZ; 5547 int update_next_balance = 0; 5548 int need_serialize; 5549 5550 update_blocked_averages(cpu); 5551 5552 rcu_read_lock(); 5553 for_each_domain(cpu, sd) { 5554 if (!(sd->flags & SD_LOAD_BALANCE)) 5555 continue; 5556 5557 interval = sd->balance_interval; 5558 if (idle != CPU_IDLE) 5559 interval *= sd->busy_factor; 5560 5561 /* scale ms to jiffies */ 5562 interval = msecs_to_jiffies(interval); 5563 interval = clamp(interval, 1UL, max_load_balance_interval); 5564 5565 need_serialize = sd->flags & SD_SERIALIZE; 5566 5567 if (need_serialize) { 5568 if (!spin_trylock(&balancing)) 5569 goto out; 5570 } 5571 5572 if (time_after_eq(jiffies, sd->last_balance + interval)) { 5573 if (load_balance(cpu, rq, sd, idle, &balance)) { 5574 /* 5575 * The LBF_SOME_PINNED logic could have changed 5576 * env->dst_cpu, so we can't know our idle 5577 * state even if we migrated tasks. Update it. 5578 */ 5579 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 5580 } 5581 sd->last_balance = jiffies; 5582 } 5583 if (need_serialize) 5584 spin_unlock(&balancing); 5585 out: 5586 if (time_after(next_balance, sd->last_balance + interval)) { 5587 next_balance = sd->last_balance + interval; 5588 update_next_balance = 1; 5589 } 5590 5591 /* 5592 * Stop the load balance at this level. There is another 5593 * CPU in our sched group which is doing load balancing more 5594 * actively. 5595 */ 5596 if (!balance) 5597 break; 5598 } 5599 rcu_read_unlock(); 5600 5601 /* 5602 * next_balance will be updated only when there is a need. 5603 * When the cpu is attached to null domain for ex, it will not be 5604 * updated. 5605 */ 5606 if (likely(update_next_balance)) 5607 rq->next_balance = next_balance; 5608 } 5609 5610 #ifdef CONFIG_NO_HZ_COMMON 5611 /* 5612 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 5613 * rebalancing for all the cpus for whom scheduler ticks are stopped. 5614 */ 5615 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) 5616 { 5617 struct rq *this_rq = cpu_rq(this_cpu); 5618 struct rq *rq; 5619 int balance_cpu; 5620 5621 if (idle != CPU_IDLE || 5622 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 5623 goto end; 5624 5625 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 5626 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 5627 continue; 5628 5629 /* 5630 * If this cpu gets work to do, stop the load balancing 5631 * work being done for other cpus. Next load 5632 * balancing owner will pick it up. 5633 */ 5634 if (need_resched()) 5635 break; 5636 5637 rq = cpu_rq(balance_cpu); 5638 5639 raw_spin_lock_irq(&rq->lock); 5640 update_rq_clock(rq); 5641 update_idle_cpu_load(rq); 5642 raw_spin_unlock_irq(&rq->lock); 5643 5644 rebalance_domains(balance_cpu, CPU_IDLE); 5645 5646 if (time_after(this_rq->next_balance, rq->next_balance)) 5647 this_rq->next_balance = rq->next_balance; 5648 } 5649 nohz.next_balance = this_rq->next_balance; 5650 end: 5651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 5652 } 5653 5654 /* 5655 * Current heuristic for kicking the idle load balancer in the presence 5656 * of an idle cpu is the system. 5657 * - This rq has more than one task. 5658 * - At any scheduler domain level, this cpu's scheduler group has multiple 5659 * busy cpu's exceeding the group's power. 5660 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 5661 * domain span are idle. 5662 */ 5663 static inline int nohz_kick_needed(struct rq *rq, int cpu) 5664 { 5665 unsigned long now = jiffies; 5666 struct sched_domain *sd; 5667 5668 if (unlikely(idle_cpu(cpu))) 5669 return 0; 5670 5671 /* 5672 * We may be recently in ticked or tickless idle mode. At the first 5673 * busy tick after returning from idle, we will update the busy stats. 5674 */ 5675 set_cpu_sd_state_busy(); 5676 nohz_balance_exit_idle(cpu); 5677 5678 /* 5679 * None are in tickless mode and hence no need for NOHZ idle load 5680 * balancing. 5681 */ 5682 if (likely(!atomic_read(&nohz.nr_cpus))) 5683 return 0; 5684 5685 if (time_before(now, nohz.next_balance)) 5686 return 0; 5687 5688 if (rq->nr_running >= 2) 5689 goto need_kick; 5690 5691 rcu_read_lock(); 5692 for_each_domain(cpu, sd) { 5693 struct sched_group *sg = sd->groups; 5694 struct sched_group_power *sgp = sg->sgp; 5695 int nr_busy = atomic_read(&sgp->nr_busy_cpus); 5696 5697 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1) 5698 goto need_kick_unlock; 5699 5700 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight 5701 && (cpumask_first_and(nohz.idle_cpus_mask, 5702 sched_domain_span(sd)) < cpu)) 5703 goto need_kick_unlock; 5704 5705 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING))) 5706 break; 5707 } 5708 rcu_read_unlock(); 5709 return 0; 5710 5711 need_kick_unlock: 5712 rcu_read_unlock(); 5713 need_kick: 5714 return 1; 5715 } 5716 #else 5717 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } 5718 #endif 5719 5720 /* 5721 * run_rebalance_domains is triggered when needed from the scheduler tick. 5722 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 5723 */ 5724 static void run_rebalance_domains(struct softirq_action *h) 5725 { 5726 int this_cpu = smp_processor_id(); 5727 struct rq *this_rq = cpu_rq(this_cpu); 5728 enum cpu_idle_type idle = this_rq->idle_balance ? 5729 CPU_IDLE : CPU_NOT_IDLE; 5730 5731 rebalance_domains(this_cpu, idle); 5732 5733 /* 5734 * If this cpu has a pending nohz_balance_kick, then do the 5735 * balancing on behalf of the other idle cpus whose ticks are 5736 * stopped. 5737 */ 5738 nohz_idle_balance(this_cpu, idle); 5739 } 5740 5741 static inline int on_null_domain(int cpu) 5742 { 5743 return !rcu_dereference_sched(cpu_rq(cpu)->sd); 5744 } 5745 5746 /* 5747 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 5748 */ 5749 void trigger_load_balance(struct rq *rq, int cpu) 5750 { 5751 /* Don't need to rebalance while attached to NULL domain */ 5752 if (time_after_eq(jiffies, rq->next_balance) && 5753 likely(!on_null_domain(cpu))) 5754 raise_softirq(SCHED_SOFTIRQ); 5755 #ifdef CONFIG_NO_HZ_COMMON 5756 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) 5757 nohz_balancer_kick(cpu); 5758 #endif 5759 } 5760 5761 static void rq_online_fair(struct rq *rq) 5762 { 5763 update_sysctl(); 5764 } 5765 5766 static void rq_offline_fair(struct rq *rq) 5767 { 5768 update_sysctl(); 5769 5770 /* Ensure any throttled groups are reachable by pick_next_task */ 5771 unthrottle_offline_cfs_rqs(rq); 5772 } 5773 5774 #endif /* CONFIG_SMP */ 5775 5776 /* 5777 * scheduler tick hitting a task of our scheduling class: 5778 */ 5779 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 5780 { 5781 struct cfs_rq *cfs_rq; 5782 struct sched_entity *se = &curr->se; 5783 5784 for_each_sched_entity(se) { 5785 cfs_rq = cfs_rq_of(se); 5786 entity_tick(cfs_rq, se, queued); 5787 } 5788 5789 if (numabalancing_enabled) 5790 task_tick_numa(rq, curr); 5791 5792 update_rq_runnable_avg(rq, 1); 5793 } 5794 5795 /* 5796 * called on fork with the child task as argument from the parent's context 5797 * - child not yet on the tasklist 5798 * - preemption disabled 5799 */ 5800 static void task_fork_fair(struct task_struct *p) 5801 { 5802 struct cfs_rq *cfs_rq; 5803 struct sched_entity *se = &p->se, *curr; 5804 int this_cpu = smp_processor_id(); 5805 struct rq *rq = this_rq(); 5806 unsigned long flags; 5807 5808 raw_spin_lock_irqsave(&rq->lock, flags); 5809 5810 update_rq_clock(rq); 5811 5812 cfs_rq = task_cfs_rq(current); 5813 curr = cfs_rq->curr; 5814 5815 if (unlikely(task_cpu(p) != this_cpu)) { 5816 rcu_read_lock(); 5817 __set_task_cpu(p, this_cpu); 5818 rcu_read_unlock(); 5819 } 5820 5821 update_curr(cfs_rq); 5822 5823 if (curr) 5824 se->vruntime = curr->vruntime; 5825 place_entity(cfs_rq, se, 1); 5826 5827 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 5828 /* 5829 * Upon rescheduling, sched_class::put_prev_task() will place 5830 * 'current' within the tree based on its new key value. 5831 */ 5832 swap(curr->vruntime, se->vruntime); 5833 resched_task(rq->curr); 5834 } 5835 5836 se->vruntime -= cfs_rq->min_vruntime; 5837 5838 raw_spin_unlock_irqrestore(&rq->lock, flags); 5839 } 5840 5841 /* 5842 * Priority of the task has changed. Check to see if we preempt 5843 * the current task. 5844 */ 5845 static void 5846 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 5847 { 5848 if (!p->se.on_rq) 5849 return; 5850 5851 /* 5852 * Reschedule if we are currently running on this runqueue and 5853 * our priority decreased, or if we are not currently running on 5854 * this runqueue and our priority is higher than the current's 5855 */ 5856 if (rq->curr == p) { 5857 if (p->prio > oldprio) 5858 resched_task(rq->curr); 5859 } else 5860 check_preempt_curr(rq, p, 0); 5861 } 5862 5863 static void switched_from_fair(struct rq *rq, struct task_struct *p) 5864 { 5865 struct sched_entity *se = &p->se; 5866 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5867 5868 /* 5869 * Ensure the task's vruntime is normalized, so that when its 5870 * switched back to the fair class the enqueue_entity(.flags=0) will 5871 * do the right thing. 5872 * 5873 * If it was on_rq, then the dequeue_entity(.flags=0) will already 5874 * have normalized the vruntime, if it was !on_rq, then only when 5875 * the task is sleeping will it still have non-normalized vruntime. 5876 */ 5877 if (!se->on_rq && p->state != TASK_RUNNING) { 5878 /* 5879 * Fix up our vruntime so that the current sleep doesn't 5880 * cause 'unlimited' sleep bonus. 5881 */ 5882 place_entity(cfs_rq, se, 0); 5883 se->vruntime -= cfs_rq->min_vruntime; 5884 } 5885 5886 #ifdef CONFIG_SMP 5887 /* 5888 * Remove our load from contribution when we leave sched_fair 5889 * and ensure we don't carry in an old decay_count if we 5890 * switch back. 5891 */ 5892 if (p->se.avg.decay_count) { 5893 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se); 5894 __synchronize_entity_decay(&p->se); 5895 subtract_blocked_load_contrib(cfs_rq, 5896 p->se.avg.load_avg_contrib); 5897 } 5898 #endif 5899 } 5900 5901 /* 5902 * We switched to the sched_fair class. 5903 */ 5904 static void switched_to_fair(struct rq *rq, struct task_struct *p) 5905 { 5906 if (!p->se.on_rq) 5907 return; 5908 5909 /* 5910 * We were most likely switched from sched_rt, so 5911 * kick off the schedule if running, otherwise just see 5912 * if we can still preempt the current task. 5913 */ 5914 if (rq->curr == p) 5915 resched_task(rq->curr); 5916 else 5917 check_preempt_curr(rq, p, 0); 5918 } 5919 5920 /* Account for a task changing its policy or group. 5921 * 5922 * This routine is mostly called to set cfs_rq->curr field when a task 5923 * migrates between groups/classes. 5924 */ 5925 static void set_curr_task_fair(struct rq *rq) 5926 { 5927 struct sched_entity *se = &rq->curr->se; 5928 5929 for_each_sched_entity(se) { 5930 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5931 5932 set_next_entity(cfs_rq, se); 5933 /* ensure bandwidth has been allocated on our new cfs_rq */ 5934 account_cfs_rq_runtime(cfs_rq, 0); 5935 } 5936 } 5937 5938 void init_cfs_rq(struct cfs_rq *cfs_rq) 5939 { 5940 cfs_rq->tasks_timeline = RB_ROOT; 5941 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 5942 #ifndef CONFIG_64BIT 5943 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 5944 #endif 5945 #ifdef CONFIG_SMP 5946 atomic64_set(&cfs_rq->decay_counter, 1); 5947 atomic_long_set(&cfs_rq->removed_load, 0); 5948 #endif 5949 } 5950 5951 #ifdef CONFIG_FAIR_GROUP_SCHED 5952 static void task_move_group_fair(struct task_struct *p, int on_rq) 5953 { 5954 struct cfs_rq *cfs_rq; 5955 /* 5956 * If the task was not on the rq at the time of this cgroup movement 5957 * it must have been asleep, sleeping tasks keep their ->vruntime 5958 * absolute on their old rq until wakeup (needed for the fair sleeper 5959 * bonus in place_entity()). 5960 * 5961 * If it was on the rq, we've just 'preempted' it, which does convert 5962 * ->vruntime to a relative base. 5963 * 5964 * Make sure both cases convert their relative position when migrating 5965 * to another cgroup's rq. This does somewhat interfere with the 5966 * fair sleeper stuff for the first placement, but who cares. 5967 */ 5968 /* 5969 * When !on_rq, vruntime of the task has usually NOT been normalized. 5970 * But there are some cases where it has already been normalized: 5971 * 5972 * - Moving a forked child which is waiting for being woken up by 5973 * wake_up_new_task(). 5974 * - Moving a task which has been woken up by try_to_wake_up() and 5975 * waiting for actually being woken up by sched_ttwu_pending(). 5976 * 5977 * To prevent boost or penalty in the new cfs_rq caused by delta 5978 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 5979 */ 5980 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING)) 5981 on_rq = 1; 5982 5983 if (!on_rq) 5984 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; 5985 set_task_rq(p, task_cpu(p)); 5986 if (!on_rq) { 5987 cfs_rq = cfs_rq_of(&p->se); 5988 p->se.vruntime += cfs_rq->min_vruntime; 5989 #ifdef CONFIG_SMP 5990 /* 5991 * migrate_task_rq_fair() will have removed our previous 5992 * contribution, but we must synchronize for ongoing future 5993 * decay. 5994 */ 5995 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 5996 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib; 5997 #endif 5998 } 5999 } 6000 6001 void free_fair_sched_group(struct task_group *tg) 6002 { 6003 int i; 6004 6005 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 6006 6007 for_each_possible_cpu(i) { 6008 if (tg->cfs_rq) 6009 kfree(tg->cfs_rq[i]); 6010 if (tg->se) 6011 kfree(tg->se[i]); 6012 } 6013 6014 kfree(tg->cfs_rq); 6015 kfree(tg->se); 6016 } 6017 6018 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 6019 { 6020 struct cfs_rq *cfs_rq; 6021 struct sched_entity *se; 6022 int i; 6023 6024 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 6025 if (!tg->cfs_rq) 6026 goto err; 6027 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 6028 if (!tg->se) 6029 goto err; 6030 6031 tg->shares = NICE_0_LOAD; 6032 6033 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 6034 6035 for_each_possible_cpu(i) { 6036 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 6037 GFP_KERNEL, cpu_to_node(i)); 6038 if (!cfs_rq) 6039 goto err; 6040 6041 se = kzalloc_node(sizeof(struct sched_entity), 6042 GFP_KERNEL, cpu_to_node(i)); 6043 if (!se) 6044 goto err_free_rq; 6045 6046 init_cfs_rq(cfs_rq); 6047 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 6048 } 6049 6050 return 1; 6051 6052 err_free_rq: 6053 kfree(cfs_rq); 6054 err: 6055 return 0; 6056 } 6057 6058 void unregister_fair_sched_group(struct task_group *tg, int cpu) 6059 { 6060 struct rq *rq = cpu_rq(cpu); 6061 unsigned long flags; 6062 6063 /* 6064 * Only empty task groups can be destroyed; so we can speculatively 6065 * check on_list without danger of it being re-added. 6066 */ 6067 if (!tg->cfs_rq[cpu]->on_list) 6068 return; 6069 6070 raw_spin_lock_irqsave(&rq->lock, flags); 6071 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 6072 raw_spin_unlock_irqrestore(&rq->lock, flags); 6073 } 6074 6075 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 6076 struct sched_entity *se, int cpu, 6077 struct sched_entity *parent) 6078 { 6079 struct rq *rq = cpu_rq(cpu); 6080 6081 cfs_rq->tg = tg; 6082 cfs_rq->rq = rq; 6083 init_cfs_rq_runtime(cfs_rq); 6084 6085 tg->cfs_rq[cpu] = cfs_rq; 6086 tg->se[cpu] = se; 6087 6088 /* se could be NULL for root_task_group */ 6089 if (!se) 6090 return; 6091 6092 if (!parent) 6093 se->cfs_rq = &rq->cfs; 6094 else 6095 se->cfs_rq = parent->my_q; 6096 6097 se->my_q = cfs_rq; 6098 update_load_set(&se->load, 0); 6099 se->parent = parent; 6100 } 6101 6102 static DEFINE_MUTEX(shares_mutex); 6103 6104 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 6105 { 6106 int i; 6107 unsigned long flags; 6108 6109 /* 6110 * We can't change the weight of the root cgroup. 6111 */ 6112 if (!tg->se[0]) 6113 return -EINVAL; 6114 6115 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 6116 6117 mutex_lock(&shares_mutex); 6118 if (tg->shares == shares) 6119 goto done; 6120 6121 tg->shares = shares; 6122 for_each_possible_cpu(i) { 6123 struct rq *rq = cpu_rq(i); 6124 struct sched_entity *se; 6125 6126 se = tg->se[i]; 6127 /* Propagate contribution to hierarchy */ 6128 raw_spin_lock_irqsave(&rq->lock, flags); 6129 6130 /* Possible calls to update_curr() need rq clock */ 6131 update_rq_clock(rq); 6132 for_each_sched_entity(se) 6133 update_cfs_shares(group_cfs_rq(se)); 6134 raw_spin_unlock_irqrestore(&rq->lock, flags); 6135 } 6136 6137 done: 6138 mutex_unlock(&shares_mutex); 6139 return 0; 6140 } 6141 #else /* CONFIG_FAIR_GROUP_SCHED */ 6142 6143 void free_fair_sched_group(struct task_group *tg) { } 6144 6145 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 6146 { 6147 return 1; 6148 } 6149 6150 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 6151 6152 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6153 6154 6155 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 6156 { 6157 struct sched_entity *se = &task->se; 6158 unsigned int rr_interval = 0; 6159 6160 /* 6161 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 6162 * idle runqueue: 6163 */ 6164 if (rq->cfs.load.weight) 6165 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 6166 6167 return rr_interval; 6168 } 6169 6170 /* 6171 * All the scheduling class methods: 6172 */ 6173 const struct sched_class fair_sched_class = { 6174 .next = &idle_sched_class, 6175 .enqueue_task = enqueue_task_fair, 6176 .dequeue_task = dequeue_task_fair, 6177 .yield_task = yield_task_fair, 6178 .yield_to_task = yield_to_task_fair, 6179 6180 .check_preempt_curr = check_preempt_wakeup, 6181 6182 .pick_next_task = pick_next_task_fair, 6183 .put_prev_task = put_prev_task_fair, 6184 6185 #ifdef CONFIG_SMP 6186 .select_task_rq = select_task_rq_fair, 6187 .migrate_task_rq = migrate_task_rq_fair, 6188 6189 .rq_online = rq_online_fair, 6190 .rq_offline = rq_offline_fair, 6191 6192 .task_waking = task_waking_fair, 6193 #endif 6194 6195 .set_curr_task = set_curr_task_fair, 6196 .task_tick = task_tick_fair, 6197 .task_fork = task_fork_fair, 6198 6199 .prio_changed = prio_changed_fair, 6200 .switched_from = switched_from_fair, 6201 .switched_to = switched_to_fair, 6202 6203 .get_rr_interval = get_rr_interval_fair, 6204 6205 #ifdef CONFIG_FAIR_GROUP_SCHED 6206 .task_move_group = task_move_group_fair, 6207 #endif 6208 }; 6209 6210 #ifdef CONFIG_SCHED_DEBUG 6211 void print_cfs_stats(struct seq_file *m, int cpu) 6212 { 6213 struct cfs_rq *cfs_rq; 6214 6215 rcu_read_lock(); 6216 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 6217 print_cfs_rq(m, cpu, cfs_rq); 6218 rcu_read_unlock(); 6219 } 6220 #endif 6221 6222 __init void init_sched_fair_class(void) 6223 { 6224 #ifdef CONFIG_SMP 6225 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 6226 6227 #ifdef CONFIG_NO_HZ_COMMON 6228 nohz.next_balance = jiffies; 6229 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 6230 cpu_notifier(sched_ilb_notifier, 0); 6231 #endif 6232 #endif /* SMP */ 6233 6234 } 6235