xref: /openbmc/linux/kernel/sched/fair.c (revision f0931824)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include <linux/sched/cond_resched.h>
55 
56 #include "sched.h"
57 #include "stats.h"
58 #include "autogroup.h"
59 
60 /*
61  * The initial- and re-scaling of tunables is configurable
62  *
63  * Options are:
64  *
65  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
66  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
67  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
68  *
69  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
70  */
71 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
72 
73 /*
74  * Minimal preemption granularity for CPU-bound tasks:
75  *
76  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
77  */
78 unsigned int sysctl_sched_base_slice			= 750000ULL;
79 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
80 
81 /*
82  * After fork, child runs first. If set to 0 (default) then
83  * parent will (try to) run first.
84  */
85 unsigned int sysctl_sched_child_runs_first __read_mostly;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 int sched_thermal_decay_shift;
90 static int __init setup_sched_thermal_decay_shift(char *str)
91 {
92 	int _shift = 0;
93 
94 	if (kstrtoint(str, 0, &_shift))
95 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
96 
97 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 	return 1;
99 }
100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
101 
102 #ifdef CONFIG_SMP
103 /*
104  * For asym packing, by default the lower numbered CPU has higher priority.
105  */
106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 	return -cpu;
109 }
110 
111 /*
112  * The margin used when comparing utilization with CPU capacity.
113  *
114  * (default: ~20%)
115  */
116 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
117 
118 /*
119  * The margin used when comparing CPU capacities.
120  * is 'cap1' noticeably greater than 'cap2'
121  *
122  * (default: ~5%)
123  */
124 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
125 #endif
126 
127 #ifdef CONFIG_CFS_BANDWIDTH
128 /*
129  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
130  * each time a cfs_rq requests quota.
131  *
132  * Note: in the case that the slice exceeds the runtime remaining (either due
133  * to consumption or the quota being specified to be smaller than the slice)
134  * we will always only issue the remaining available time.
135  *
136  * (default: 5 msec, units: microseconds)
137  */
138 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
139 #endif
140 
141 #ifdef CONFIG_NUMA_BALANCING
142 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
143 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
144 #endif
145 
146 #ifdef CONFIG_SYSCTL
147 static struct ctl_table sched_fair_sysctls[] = {
148 	{
149 		.procname       = "sched_child_runs_first",
150 		.data           = &sysctl_sched_child_runs_first,
151 		.maxlen         = sizeof(unsigned int),
152 		.mode           = 0644,
153 		.proc_handler   = proc_dointvec,
154 	},
155 #ifdef CONFIG_CFS_BANDWIDTH
156 	{
157 		.procname       = "sched_cfs_bandwidth_slice_us",
158 		.data           = &sysctl_sched_cfs_bandwidth_slice,
159 		.maxlen         = sizeof(unsigned int),
160 		.mode           = 0644,
161 		.proc_handler   = proc_dointvec_minmax,
162 		.extra1         = SYSCTL_ONE,
163 	},
164 #endif
165 #ifdef CONFIG_NUMA_BALANCING
166 	{
167 		.procname	= "numa_balancing_promote_rate_limit_MBps",
168 		.data		= &sysctl_numa_balancing_promote_rate_limit,
169 		.maxlen		= sizeof(unsigned int),
170 		.mode		= 0644,
171 		.proc_handler	= proc_dointvec_minmax,
172 		.extra1		= SYSCTL_ZERO,
173 	},
174 #endif /* CONFIG_NUMA_BALANCING */
175 	{}
176 };
177 
178 static int __init sched_fair_sysctl_init(void)
179 {
180 	register_sysctl_init("kernel", sched_fair_sysctls);
181 	return 0;
182 }
183 late_initcall(sched_fair_sysctl_init);
184 #endif
185 
186 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
187 {
188 	lw->weight += inc;
189 	lw->inv_weight = 0;
190 }
191 
192 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
193 {
194 	lw->weight -= dec;
195 	lw->inv_weight = 0;
196 }
197 
198 static inline void update_load_set(struct load_weight *lw, unsigned long w)
199 {
200 	lw->weight = w;
201 	lw->inv_weight = 0;
202 }
203 
204 /*
205  * Increase the granularity value when there are more CPUs,
206  * because with more CPUs the 'effective latency' as visible
207  * to users decreases. But the relationship is not linear,
208  * so pick a second-best guess by going with the log2 of the
209  * number of CPUs.
210  *
211  * This idea comes from the SD scheduler of Con Kolivas:
212  */
213 static unsigned int get_update_sysctl_factor(void)
214 {
215 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
216 	unsigned int factor;
217 
218 	switch (sysctl_sched_tunable_scaling) {
219 	case SCHED_TUNABLESCALING_NONE:
220 		factor = 1;
221 		break;
222 	case SCHED_TUNABLESCALING_LINEAR:
223 		factor = cpus;
224 		break;
225 	case SCHED_TUNABLESCALING_LOG:
226 	default:
227 		factor = 1 + ilog2(cpus);
228 		break;
229 	}
230 
231 	return factor;
232 }
233 
234 static void update_sysctl(void)
235 {
236 	unsigned int factor = get_update_sysctl_factor();
237 
238 #define SET_SYSCTL(name) \
239 	(sysctl_##name = (factor) * normalized_sysctl_##name)
240 	SET_SYSCTL(sched_base_slice);
241 #undef SET_SYSCTL
242 }
243 
244 void __init sched_init_granularity(void)
245 {
246 	update_sysctl();
247 }
248 
249 #define WMULT_CONST	(~0U)
250 #define WMULT_SHIFT	32
251 
252 static void __update_inv_weight(struct load_weight *lw)
253 {
254 	unsigned long w;
255 
256 	if (likely(lw->inv_weight))
257 		return;
258 
259 	w = scale_load_down(lw->weight);
260 
261 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
262 		lw->inv_weight = 1;
263 	else if (unlikely(!w))
264 		lw->inv_weight = WMULT_CONST;
265 	else
266 		lw->inv_weight = WMULT_CONST / w;
267 }
268 
269 /*
270  * delta_exec * weight / lw.weight
271  *   OR
272  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
273  *
274  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
275  * we're guaranteed shift stays positive because inv_weight is guaranteed to
276  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
277  *
278  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
279  * weight/lw.weight <= 1, and therefore our shift will also be positive.
280  */
281 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
282 {
283 	u64 fact = scale_load_down(weight);
284 	u32 fact_hi = (u32)(fact >> 32);
285 	int shift = WMULT_SHIFT;
286 	int fs;
287 
288 	__update_inv_weight(lw);
289 
290 	if (unlikely(fact_hi)) {
291 		fs = fls(fact_hi);
292 		shift -= fs;
293 		fact >>= fs;
294 	}
295 
296 	fact = mul_u32_u32(fact, lw->inv_weight);
297 
298 	fact_hi = (u32)(fact >> 32);
299 	if (fact_hi) {
300 		fs = fls(fact_hi);
301 		shift -= fs;
302 		fact >>= fs;
303 	}
304 
305 	return mul_u64_u32_shr(delta_exec, fact, shift);
306 }
307 
308 /*
309  * delta /= w
310  */
311 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
312 {
313 	if (unlikely(se->load.weight != NICE_0_LOAD))
314 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
315 
316 	return delta;
317 }
318 
319 const struct sched_class fair_sched_class;
320 
321 /**************************************************************
322  * CFS operations on generic schedulable entities:
323  */
324 
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 
327 /* Walk up scheduling entities hierarchy */
328 #define for_each_sched_entity(se) \
329 		for (; se; se = se->parent)
330 
331 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
332 {
333 	struct rq *rq = rq_of(cfs_rq);
334 	int cpu = cpu_of(rq);
335 
336 	if (cfs_rq->on_list)
337 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
338 
339 	cfs_rq->on_list = 1;
340 
341 	/*
342 	 * Ensure we either appear before our parent (if already
343 	 * enqueued) or force our parent to appear after us when it is
344 	 * enqueued. The fact that we always enqueue bottom-up
345 	 * reduces this to two cases and a special case for the root
346 	 * cfs_rq. Furthermore, it also means that we will always reset
347 	 * tmp_alone_branch either when the branch is connected
348 	 * to a tree or when we reach the top of the tree
349 	 */
350 	if (cfs_rq->tg->parent &&
351 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
352 		/*
353 		 * If parent is already on the list, we add the child
354 		 * just before. Thanks to circular linked property of
355 		 * the list, this means to put the child at the tail
356 		 * of the list that starts by parent.
357 		 */
358 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
359 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
360 		/*
361 		 * The branch is now connected to its tree so we can
362 		 * reset tmp_alone_branch to the beginning of the
363 		 * list.
364 		 */
365 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366 		return true;
367 	}
368 
369 	if (!cfs_rq->tg->parent) {
370 		/*
371 		 * cfs rq without parent should be put
372 		 * at the tail of the list.
373 		 */
374 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
375 			&rq->leaf_cfs_rq_list);
376 		/*
377 		 * We have reach the top of a tree so we can reset
378 		 * tmp_alone_branch to the beginning of the list.
379 		 */
380 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
381 		return true;
382 	}
383 
384 	/*
385 	 * The parent has not already been added so we want to
386 	 * make sure that it will be put after us.
387 	 * tmp_alone_branch points to the begin of the branch
388 	 * where we will add parent.
389 	 */
390 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
391 	/*
392 	 * update tmp_alone_branch to points to the new begin
393 	 * of the branch
394 	 */
395 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
396 	return false;
397 }
398 
399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
400 {
401 	if (cfs_rq->on_list) {
402 		struct rq *rq = rq_of(cfs_rq);
403 
404 		/*
405 		 * With cfs_rq being unthrottled/throttled during an enqueue,
406 		 * it can happen the tmp_alone_branch points the a leaf that
407 		 * we finally want to del. In this case, tmp_alone_branch moves
408 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
409 		 * at the end of the enqueue.
410 		 */
411 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
412 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
413 
414 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
415 		cfs_rq->on_list = 0;
416 	}
417 }
418 
419 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
420 {
421 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
422 }
423 
424 /* Iterate thr' all leaf cfs_rq's on a runqueue */
425 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
426 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
427 				 leaf_cfs_rq_list)
428 
429 /* Do the two (enqueued) entities belong to the same group ? */
430 static inline struct cfs_rq *
431 is_same_group(struct sched_entity *se, struct sched_entity *pse)
432 {
433 	if (se->cfs_rq == pse->cfs_rq)
434 		return se->cfs_rq;
435 
436 	return NULL;
437 }
438 
439 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
440 {
441 	return se->parent;
442 }
443 
444 static void
445 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
446 {
447 	int se_depth, pse_depth;
448 
449 	/*
450 	 * preemption test can be made between sibling entities who are in the
451 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
452 	 * both tasks until we find their ancestors who are siblings of common
453 	 * parent.
454 	 */
455 
456 	/* First walk up until both entities are at same depth */
457 	se_depth = (*se)->depth;
458 	pse_depth = (*pse)->depth;
459 
460 	while (se_depth > pse_depth) {
461 		se_depth--;
462 		*se = parent_entity(*se);
463 	}
464 
465 	while (pse_depth > se_depth) {
466 		pse_depth--;
467 		*pse = parent_entity(*pse);
468 	}
469 
470 	while (!is_same_group(*se, *pse)) {
471 		*se = parent_entity(*se);
472 		*pse = parent_entity(*pse);
473 	}
474 }
475 
476 static int tg_is_idle(struct task_group *tg)
477 {
478 	return tg->idle > 0;
479 }
480 
481 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
482 {
483 	return cfs_rq->idle > 0;
484 }
485 
486 static int se_is_idle(struct sched_entity *se)
487 {
488 	if (entity_is_task(se))
489 		return task_has_idle_policy(task_of(se));
490 	return cfs_rq_is_idle(group_cfs_rq(se));
491 }
492 
493 #else	/* !CONFIG_FAIR_GROUP_SCHED */
494 
495 #define for_each_sched_entity(se) \
496 		for (; se; se = NULL)
497 
498 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
499 {
500 	return true;
501 }
502 
503 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
504 {
505 }
506 
507 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
508 {
509 }
510 
511 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
512 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
513 
514 static inline struct sched_entity *parent_entity(struct sched_entity *se)
515 {
516 	return NULL;
517 }
518 
519 static inline void
520 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
521 {
522 }
523 
524 static inline int tg_is_idle(struct task_group *tg)
525 {
526 	return 0;
527 }
528 
529 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
530 {
531 	return 0;
532 }
533 
534 static int se_is_idle(struct sched_entity *se)
535 {
536 	return 0;
537 }
538 
539 #endif	/* CONFIG_FAIR_GROUP_SCHED */
540 
541 static __always_inline
542 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
543 
544 /**************************************************************
545  * Scheduling class tree data structure manipulation methods:
546  */
547 
548 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
549 {
550 	s64 delta = (s64)(vruntime - max_vruntime);
551 	if (delta > 0)
552 		max_vruntime = vruntime;
553 
554 	return max_vruntime;
555 }
556 
557 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
558 {
559 	s64 delta = (s64)(vruntime - min_vruntime);
560 	if (delta < 0)
561 		min_vruntime = vruntime;
562 
563 	return min_vruntime;
564 }
565 
566 static inline bool entity_before(const struct sched_entity *a,
567 				 const struct sched_entity *b)
568 {
569 	return (s64)(a->vruntime - b->vruntime) < 0;
570 }
571 
572 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
573 {
574 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
575 }
576 
577 #define __node_2_se(node) \
578 	rb_entry((node), struct sched_entity, run_node)
579 
580 /*
581  * Compute virtual time from the per-task service numbers:
582  *
583  * Fair schedulers conserve lag:
584  *
585  *   \Sum lag_i = 0
586  *
587  * Where lag_i is given by:
588  *
589  *   lag_i = S - s_i = w_i * (V - v_i)
590  *
591  * Where S is the ideal service time and V is it's virtual time counterpart.
592  * Therefore:
593  *
594  *   \Sum lag_i = 0
595  *   \Sum w_i * (V - v_i) = 0
596  *   \Sum w_i * V - w_i * v_i = 0
597  *
598  * From which we can solve an expression for V in v_i (which we have in
599  * se->vruntime):
600  *
601  *       \Sum v_i * w_i   \Sum v_i * w_i
602  *   V = -------------- = --------------
603  *          \Sum w_i            W
604  *
605  * Specifically, this is the weighted average of all entity virtual runtimes.
606  *
607  * [[ NOTE: this is only equal to the ideal scheduler under the condition
608  *          that join/leave operations happen at lag_i = 0, otherwise the
609  *          virtual time has non-continguous motion equivalent to:
610  *
611  *	      V +-= lag_i / W
612  *
613  *	    Also see the comment in place_entity() that deals with this. ]]
614  *
615  * However, since v_i is u64, and the multiplcation could easily overflow
616  * transform it into a relative form that uses smaller quantities:
617  *
618  * Substitute: v_i == (v_i - v0) + v0
619  *
620  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
621  * V = ---------------------------- = --------------------- + v0
622  *                  W                            W
623  *
624  * Which we track using:
625  *
626  *                    v0 := cfs_rq->min_vruntime
627  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
628  *              \Sum w_i := cfs_rq->avg_load
629  *
630  * Since min_vruntime is a monotonic increasing variable that closely tracks
631  * the per-task service, these deltas: (v_i - v), will be in the order of the
632  * maximal (virtual) lag induced in the system due to quantisation.
633  *
634  * Also, we use scale_load_down() to reduce the size.
635  *
636  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
637  */
638 static void
639 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
640 {
641 	unsigned long weight = scale_load_down(se->load.weight);
642 	s64 key = entity_key(cfs_rq, se);
643 
644 	cfs_rq->avg_vruntime += key * weight;
645 	cfs_rq->avg_load += weight;
646 }
647 
648 static void
649 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
650 {
651 	unsigned long weight = scale_load_down(se->load.weight);
652 	s64 key = entity_key(cfs_rq, se);
653 
654 	cfs_rq->avg_vruntime -= key * weight;
655 	cfs_rq->avg_load -= weight;
656 }
657 
658 static inline
659 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
660 {
661 	/*
662 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
663 	 */
664 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
665 }
666 
667 /*
668  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
669  * For this to be so, the result of this function must have a left bias.
670  */
671 u64 avg_vruntime(struct cfs_rq *cfs_rq)
672 {
673 	struct sched_entity *curr = cfs_rq->curr;
674 	s64 avg = cfs_rq->avg_vruntime;
675 	long load = cfs_rq->avg_load;
676 
677 	if (curr && curr->on_rq) {
678 		unsigned long weight = scale_load_down(curr->load.weight);
679 
680 		avg += entity_key(cfs_rq, curr) * weight;
681 		load += weight;
682 	}
683 
684 	if (load) {
685 		/* sign flips effective floor / ceil */
686 		if (avg < 0)
687 			avg -= (load - 1);
688 		avg = div_s64(avg, load);
689 	}
690 
691 	return cfs_rq->min_vruntime + avg;
692 }
693 
694 /*
695  * lag_i = S - s_i = w_i * (V - v_i)
696  *
697  * However, since V is approximated by the weighted average of all entities it
698  * is possible -- by addition/removal/reweight to the tree -- to move V around
699  * and end up with a larger lag than we started with.
700  *
701  * Limit this to either double the slice length with a minimum of TICK_NSEC
702  * since that is the timing granularity.
703  *
704  * EEVDF gives the following limit for a steady state system:
705  *
706  *   -r_max < lag < max(r_max, q)
707  *
708  * XXX could add max_slice to the augmented data to track this.
709  */
710 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
711 {
712 	s64 vlag, limit;
713 
714 	vlag = avruntime - se->vruntime;
715 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
716 
717 	return clamp(vlag, -limit, limit);
718 }
719 
720 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
721 {
722 	SCHED_WARN_ON(!se->on_rq);
723 
724 	se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
725 }
726 
727 /*
728  * Entity is eligible once it received less service than it ought to have,
729  * eg. lag >= 0.
730  *
731  * lag_i = S - s_i = w_i*(V - v_i)
732  *
733  * lag_i >= 0 -> V >= v_i
734  *
735  *     \Sum (v_i - v)*w_i
736  * V = ------------------ + v
737  *          \Sum w_i
738  *
739  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
740  *
741  * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
742  *       to the loss in precision caused by the division.
743  */
744 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
745 {
746 	struct sched_entity *curr = cfs_rq->curr;
747 	s64 avg = cfs_rq->avg_vruntime;
748 	long load = cfs_rq->avg_load;
749 
750 	if (curr && curr->on_rq) {
751 		unsigned long weight = scale_load_down(curr->load.weight);
752 
753 		avg += entity_key(cfs_rq, curr) * weight;
754 		load += weight;
755 	}
756 
757 	return avg >= entity_key(cfs_rq, se) * load;
758 }
759 
760 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
761 {
762 	u64 min_vruntime = cfs_rq->min_vruntime;
763 	/*
764 	 * open coded max_vruntime() to allow updating avg_vruntime
765 	 */
766 	s64 delta = (s64)(vruntime - min_vruntime);
767 	if (delta > 0) {
768 		avg_vruntime_update(cfs_rq, delta);
769 		min_vruntime = vruntime;
770 	}
771 	return min_vruntime;
772 }
773 
774 static void update_min_vruntime(struct cfs_rq *cfs_rq)
775 {
776 	struct sched_entity *se = __pick_first_entity(cfs_rq);
777 	struct sched_entity *curr = cfs_rq->curr;
778 
779 	u64 vruntime = cfs_rq->min_vruntime;
780 
781 	if (curr) {
782 		if (curr->on_rq)
783 			vruntime = curr->vruntime;
784 		else
785 			curr = NULL;
786 	}
787 
788 	if (se) {
789 		if (!curr)
790 			vruntime = se->vruntime;
791 		else
792 			vruntime = min_vruntime(vruntime, se->vruntime);
793 	}
794 
795 	/* ensure we never gain time by being placed backwards. */
796 	u64_u32_store(cfs_rq->min_vruntime,
797 		      __update_min_vruntime(cfs_rq, vruntime));
798 }
799 
800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
801 {
802 	return entity_before(__node_2_se(a), __node_2_se(b));
803 }
804 
805 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
806 
807 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node)
808 {
809 	if (node) {
810 		struct sched_entity *rse = __node_2_se(node);
811 		if (deadline_gt(min_deadline, se, rse))
812 			se->min_deadline = rse->min_deadline;
813 	}
814 }
815 
816 /*
817  * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline)
818  */
819 static inline bool min_deadline_update(struct sched_entity *se, bool exit)
820 {
821 	u64 old_min_deadline = se->min_deadline;
822 	struct rb_node *node = &se->run_node;
823 
824 	se->min_deadline = se->deadline;
825 	__update_min_deadline(se, node->rb_right);
826 	__update_min_deadline(se, node->rb_left);
827 
828 	return se->min_deadline == old_min_deadline;
829 }
830 
831 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity,
832 		     run_node, min_deadline, min_deadline_update);
833 
834 /*
835  * Enqueue an entity into the rb-tree:
836  */
837 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
838 {
839 	avg_vruntime_add(cfs_rq, se);
840 	se->min_deadline = se->deadline;
841 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
842 				__entity_less, &min_deadline_cb);
843 }
844 
845 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
846 {
847 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
848 				  &min_deadline_cb);
849 	avg_vruntime_sub(cfs_rq, se);
850 }
851 
852 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
853 {
854 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
855 
856 	if (!left)
857 		return NULL;
858 
859 	return __node_2_se(left);
860 }
861 
862 /*
863  * Earliest Eligible Virtual Deadline First
864  *
865  * In order to provide latency guarantees for different request sizes
866  * EEVDF selects the best runnable task from two criteria:
867  *
868  *  1) the task must be eligible (must be owed service)
869  *
870  *  2) from those tasks that meet 1), we select the one
871  *     with the earliest virtual deadline.
872  *
873  * We can do this in O(log n) time due to an augmented RB-tree. The
874  * tree keeps the entries sorted on service, but also functions as a
875  * heap based on the deadline by keeping:
876  *
877  *  se->min_deadline = min(se->deadline, se->{left,right}->min_deadline)
878  *
879  * Which allows an EDF like search on (sub)trees.
880  */
881 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq)
882 {
883 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
884 	struct sched_entity *curr = cfs_rq->curr;
885 	struct sched_entity *best = NULL;
886 	struct sched_entity *best_left = NULL;
887 
888 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
889 		curr = NULL;
890 	best = curr;
891 
892 	/*
893 	 * Once selected, run a task until it either becomes non-eligible or
894 	 * until it gets a new slice. See the HACK in set_next_entity().
895 	 */
896 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
897 		return curr;
898 
899 	while (node) {
900 		struct sched_entity *se = __node_2_se(node);
901 
902 		/*
903 		 * If this entity is not eligible, try the left subtree.
904 		 */
905 		if (!entity_eligible(cfs_rq, se)) {
906 			node = node->rb_left;
907 			continue;
908 		}
909 
910 		/*
911 		 * Now we heap search eligible trees for the best (min_)deadline
912 		 */
913 		if (!best || deadline_gt(deadline, best, se))
914 			best = se;
915 
916 		/*
917 		 * Every se in a left branch is eligible, keep track of the
918 		 * branch with the best min_deadline
919 		 */
920 		if (node->rb_left) {
921 			struct sched_entity *left = __node_2_se(node->rb_left);
922 
923 			if (!best_left || deadline_gt(min_deadline, best_left, left))
924 				best_left = left;
925 
926 			/*
927 			 * min_deadline is in the left branch. rb_left and all
928 			 * descendants are eligible, so immediately switch to the second
929 			 * loop.
930 			 */
931 			if (left->min_deadline == se->min_deadline)
932 				break;
933 		}
934 
935 		/* min_deadline is at this node, no need to look right */
936 		if (se->deadline == se->min_deadline)
937 			break;
938 
939 		/* else min_deadline is in the right branch. */
940 		node = node->rb_right;
941 	}
942 
943 	/*
944 	 * We ran into an eligible node which is itself the best.
945 	 * (Or nr_running == 0 and both are NULL)
946 	 */
947 	if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0)
948 		return best;
949 
950 	/*
951 	 * Now best_left and all of its children are eligible, and we are just
952 	 * looking for deadline == min_deadline
953 	 */
954 	node = &best_left->run_node;
955 	while (node) {
956 		struct sched_entity *se = __node_2_se(node);
957 
958 		/* min_deadline is the current node */
959 		if (se->deadline == se->min_deadline)
960 			return se;
961 
962 		/* min_deadline is in the left branch */
963 		if (node->rb_left &&
964 		    __node_2_se(node->rb_left)->min_deadline == se->min_deadline) {
965 			node = node->rb_left;
966 			continue;
967 		}
968 
969 		/* else min_deadline is in the right branch */
970 		node = node->rb_right;
971 	}
972 	return NULL;
973 }
974 
975 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
976 {
977 	struct sched_entity *se = __pick_eevdf(cfs_rq);
978 
979 	if (!se) {
980 		struct sched_entity *left = __pick_first_entity(cfs_rq);
981 		if (left) {
982 			pr_err("EEVDF scheduling fail, picking leftmost\n");
983 			return left;
984 		}
985 	}
986 
987 	return se;
988 }
989 
990 #ifdef CONFIG_SCHED_DEBUG
991 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
992 {
993 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
994 
995 	if (!last)
996 		return NULL;
997 
998 	return __node_2_se(last);
999 }
1000 
1001 /**************************************************************
1002  * Scheduling class statistics methods:
1003  */
1004 #ifdef CONFIG_SMP
1005 int sched_update_scaling(void)
1006 {
1007 	unsigned int factor = get_update_sysctl_factor();
1008 
1009 #define WRT_SYSCTL(name) \
1010 	(normalized_sysctl_##name = sysctl_##name / (factor))
1011 	WRT_SYSCTL(sched_base_slice);
1012 #undef WRT_SYSCTL
1013 
1014 	return 0;
1015 }
1016 #endif
1017 #endif
1018 
1019 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1020 
1021 /*
1022  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1023  * this is probably good enough.
1024  */
1025 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1026 {
1027 	if ((s64)(se->vruntime - se->deadline) < 0)
1028 		return;
1029 
1030 	/*
1031 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1032 	 * nice) while the request time r_i is determined by
1033 	 * sysctl_sched_base_slice.
1034 	 */
1035 	se->slice = sysctl_sched_base_slice;
1036 
1037 	/*
1038 	 * EEVDF: vd_i = ve_i + r_i / w_i
1039 	 */
1040 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1041 
1042 	/*
1043 	 * The task has consumed its request, reschedule.
1044 	 */
1045 	if (cfs_rq->nr_running > 1) {
1046 		resched_curr(rq_of(cfs_rq));
1047 		clear_buddies(cfs_rq, se);
1048 	}
1049 }
1050 
1051 #include "pelt.h"
1052 #ifdef CONFIG_SMP
1053 
1054 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1055 static unsigned long task_h_load(struct task_struct *p);
1056 static unsigned long capacity_of(int cpu);
1057 
1058 /* Give new sched_entity start runnable values to heavy its load in infant time */
1059 void init_entity_runnable_average(struct sched_entity *se)
1060 {
1061 	struct sched_avg *sa = &se->avg;
1062 
1063 	memset(sa, 0, sizeof(*sa));
1064 
1065 	/*
1066 	 * Tasks are initialized with full load to be seen as heavy tasks until
1067 	 * they get a chance to stabilize to their real load level.
1068 	 * Group entities are initialized with zero load to reflect the fact that
1069 	 * nothing has been attached to the task group yet.
1070 	 */
1071 	if (entity_is_task(se))
1072 		sa->load_avg = scale_load_down(se->load.weight);
1073 
1074 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1075 }
1076 
1077 /*
1078  * With new tasks being created, their initial util_avgs are extrapolated
1079  * based on the cfs_rq's current util_avg:
1080  *
1081  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1082  *
1083  * However, in many cases, the above util_avg does not give a desired
1084  * value. Moreover, the sum of the util_avgs may be divergent, such
1085  * as when the series is a harmonic series.
1086  *
1087  * To solve this problem, we also cap the util_avg of successive tasks to
1088  * only 1/2 of the left utilization budget:
1089  *
1090  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1091  *
1092  * where n denotes the nth task and cpu_scale the CPU capacity.
1093  *
1094  * For example, for a CPU with 1024 of capacity, a simplest series from
1095  * the beginning would be like:
1096  *
1097  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1098  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1099  *
1100  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1101  * if util_avg > util_avg_cap.
1102  */
1103 void post_init_entity_util_avg(struct task_struct *p)
1104 {
1105 	struct sched_entity *se = &p->se;
1106 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1107 	struct sched_avg *sa = &se->avg;
1108 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1109 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1110 
1111 	if (p->sched_class != &fair_sched_class) {
1112 		/*
1113 		 * For !fair tasks do:
1114 		 *
1115 		update_cfs_rq_load_avg(now, cfs_rq);
1116 		attach_entity_load_avg(cfs_rq, se);
1117 		switched_from_fair(rq, p);
1118 		 *
1119 		 * such that the next switched_to_fair() has the
1120 		 * expected state.
1121 		 */
1122 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1123 		return;
1124 	}
1125 
1126 	if (cap > 0) {
1127 		if (cfs_rq->avg.util_avg != 0) {
1128 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
1129 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1130 
1131 			if (sa->util_avg > cap)
1132 				sa->util_avg = cap;
1133 		} else {
1134 			sa->util_avg = cap;
1135 		}
1136 	}
1137 
1138 	sa->runnable_avg = sa->util_avg;
1139 }
1140 
1141 #else /* !CONFIG_SMP */
1142 void init_entity_runnable_average(struct sched_entity *se)
1143 {
1144 }
1145 void post_init_entity_util_avg(struct task_struct *p)
1146 {
1147 }
1148 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1149 {
1150 }
1151 #endif /* CONFIG_SMP */
1152 
1153 /*
1154  * Update the current task's runtime statistics.
1155  */
1156 static void update_curr(struct cfs_rq *cfs_rq)
1157 {
1158 	struct sched_entity *curr = cfs_rq->curr;
1159 	u64 now = rq_clock_task(rq_of(cfs_rq));
1160 	u64 delta_exec;
1161 
1162 	if (unlikely(!curr))
1163 		return;
1164 
1165 	delta_exec = now - curr->exec_start;
1166 	if (unlikely((s64)delta_exec <= 0))
1167 		return;
1168 
1169 	curr->exec_start = now;
1170 
1171 	if (schedstat_enabled()) {
1172 		struct sched_statistics *stats;
1173 
1174 		stats = __schedstats_from_se(curr);
1175 		__schedstat_set(stats->exec_max,
1176 				max(delta_exec, stats->exec_max));
1177 	}
1178 
1179 	curr->sum_exec_runtime += delta_exec;
1180 	schedstat_add(cfs_rq->exec_clock, delta_exec);
1181 
1182 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1183 	update_deadline(cfs_rq, curr);
1184 	update_min_vruntime(cfs_rq);
1185 
1186 	if (entity_is_task(curr)) {
1187 		struct task_struct *curtask = task_of(curr);
1188 
1189 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
1190 		cgroup_account_cputime(curtask, delta_exec);
1191 		account_group_exec_runtime(curtask, delta_exec);
1192 	}
1193 
1194 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1195 }
1196 
1197 static void update_curr_fair(struct rq *rq)
1198 {
1199 	update_curr(cfs_rq_of(&rq->curr->se));
1200 }
1201 
1202 static inline void
1203 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1204 {
1205 	struct sched_statistics *stats;
1206 	struct task_struct *p = NULL;
1207 
1208 	if (!schedstat_enabled())
1209 		return;
1210 
1211 	stats = __schedstats_from_se(se);
1212 
1213 	if (entity_is_task(se))
1214 		p = task_of(se);
1215 
1216 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1217 }
1218 
1219 static inline void
1220 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1221 {
1222 	struct sched_statistics *stats;
1223 	struct task_struct *p = NULL;
1224 
1225 	if (!schedstat_enabled())
1226 		return;
1227 
1228 	stats = __schedstats_from_se(se);
1229 
1230 	/*
1231 	 * When the sched_schedstat changes from 0 to 1, some sched se
1232 	 * maybe already in the runqueue, the se->statistics.wait_start
1233 	 * will be 0.So it will let the delta wrong. We need to avoid this
1234 	 * scenario.
1235 	 */
1236 	if (unlikely(!schedstat_val(stats->wait_start)))
1237 		return;
1238 
1239 	if (entity_is_task(se))
1240 		p = task_of(se);
1241 
1242 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1243 }
1244 
1245 static inline void
1246 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1247 {
1248 	struct sched_statistics *stats;
1249 	struct task_struct *tsk = NULL;
1250 
1251 	if (!schedstat_enabled())
1252 		return;
1253 
1254 	stats = __schedstats_from_se(se);
1255 
1256 	if (entity_is_task(se))
1257 		tsk = task_of(se);
1258 
1259 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1260 }
1261 
1262 /*
1263  * Task is being enqueued - update stats:
1264  */
1265 static inline void
1266 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1267 {
1268 	if (!schedstat_enabled())
1269 		return;
1270 
1271 	/*
1272 	 * Are we enqueueing a waiting task? (for current tasks
1273 	 * a dequeue/enqueue event is a NOP)
1274 	 */
1275 	if (se != cfs_rq->curr)
1276 		update_stats_wait_start_fair(cfs_rq, se);
1277 
1278 	if (flags & ENQUEUE_WAKEUP)
1279 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1280 }
1281 
1282 static inline void
1283 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1284 {
1285 
1286 	if (!schedstat_enabled())
1287 		return;
1288 
1289 	/*
1290 	 * Mark the end of the wait period if dequeueing a
1291 	 * waiting task:
1292 	 */
1293 	if (se != cfs_rq->curr)
1294 		update_stats_wait_end_fair(cfs_rq, se);
1295 
1296 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1297 		struct task_struct *tsk = task_of(se);
1298 		unsigned int state;
1299 
1300 		/* XXX racy against TTWU */
1301 		state = READ_ONCE(tsk->__state);
1302 		if (state & TASK_INTERRUPTIBLE)
1303 			__schedstat_set(tsk->stats.sleep_start,
1304 				      rq_clock(rq_of(cfs_rq)));
1305 		if (state & TASK_UNINTERRUPTIBLE)
1306 			__schedstat_set(tsk->stats.block_start,
1307 				      rq_clock(rq_of(cfs_rq)));
1308 	}
1309 }
1310 
1311 /*
1312  * We are picking a new current task - update its stats:
1313  */
1314 static inline void
1315 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1316 {
1317 	/*
1318 	 * We are starting a new run period:
1319 	 */
1320 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1321 }
1322 
1323 /**************************************************
1324  * Scheduling class queueing methods:
1325  */
1326 
1327 static inline bool is_core_idle(int cpu)
1328 {
1329 #ifdef CONFIG_SCHED_SMT
1330 	int sibling;
1331 
1332 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1333 		if (cpu == sibling)
1334 			continue;
1335 
1336 		if (!idle_cpu(sibling))
1337 			return false;
1338 	}
1339 #endif
1340 
1341 	return true;
1342 }
1343 
1344 #ifdef CONFIG_NUMA
1345 #define NUMA_IMBALANCE_MIN 2
1346 
1347 static inline long
1348 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1349 {
1350 	/*
1351 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1352 	 * threshold. Above this threshold, individual tasks may be contending
1353 	 * for both memory bandwidth and any shared HT resources.  This is an
1354 	 * approximation as the number of running tasks may not be related to
1355 	 * the number of busy CPUs due to sched_setaffinity.
1356 	 */
1357 	if (dst_running > imb_numa_nr)
1358 		return imbalance;
1359 
1360 	/*
1361 	 * Allow a small imbalance based on a simple pair of communicating
1362 	 * tasks that remain local when the destination is lightly loaded.
1363 	 */
1364 	if (imbalance <= NUMA_IMBALANCE_MIN)
1365 		return 0;
1366 
1367 	return imbalance;
1368 }
1369 #endif /* CONFIG_NUMA */
1370 
1371 #ifdef CONFIG_NUMA_BALANCING
1372 /*
1373  * Approximate time to scan a full NUMA task in ms. The task scan period is
1374  * calculated based on the tasks virtual memory size and
1375  * numa_balancing_scan_size.
1376  */
1377 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1378 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1379 
1380 /* Portion of address space to scan in MB */
1381 unsigned int sysctl_numa_balancing_scan_size = 256;
1382 
1383 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1384 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1385 
1386 /* The page with hint page fault latency < threshold in ms is considered hot */
1387 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1388 
1389 struct numa_group {
1390 	refcount_t refcount;
1391 
1392 	spinlock_t lock; /* nr_tasks, tasks */
1393 	int nr_tasks;
1394 	pid_t gid;
1395 	int active_nodes;
1396 
1397 	struct rcu_head rcu;
1398 	unsigned long total_faults;
1399 	unsigned long max_faults_cpu;
1400 	/*
1401 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1402 	 *
1403 	 * Faults_cpu is used to decide whether memory should move
1404 	 * towards the CPU. As a consequence, these stats are weighted
1405 	 * more by CPU use than by memory faults.
1406 	 */
1407 	unsigned long faults[];
1408 };
1409 
1410 /*
1411  * For functions that can be called in multiple contexts that permit reading
1412  * ->numa_group (see struct task_struct for locking rules).
1413  */
1414 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1415 {
1416 	return rcu_dereference_check(p->numa_group, p == current ||
1417 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1418 }
1419 
1420 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1421 {
1422 	return rcu_dereference_protected(p->numa_group, p == current);
1423 }
1424 
1425 static inline unsigned long group_faults_priv(struct numa_group *ng);
1426 static inline unsigned long group_faults_shared(struct numa_group *ng);
1427 
1428 static unsigned int task_nr_scan_windows(struct task_struct *p)
1429 {
1430 	unsigned long rss = 0;
1431 	unsigned long nr_scan_pages;
1432 
1433 	/*
1434 	 * Calculations based on RSS as non-present and empty pages are skipped
1435 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1436 	 * on resident pages
1437 	 */
1438 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1439 	rss = get_mm_rss(p->mm);
1440 	if (!rss)
1441 		rss = nr_scan_pages;
1442 
1443 	rss = round_up(rss, nr_scan_pages);
1444 	return rss / nr_scan_pages;
1445 }
1446 
1447 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1448 #define MAX_SCAN_WINDOW 2560
1449 
1450 static unsigned int task_scan_min(struct task_struct *p)
1451 {
1452 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1453 	unsigned int scan, floor;
1454 	unsigned int windows = 1;
1455 
1456 	if (scan_size < MAX_SCAN_WINDOW)
1457 		windows = MAX_SCAN_WINDOW / scan_size;
1458 	floor = 1000 / windows;
1459 
1460 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1461 	return max_t(unsigned int, floor, scan);
1462 }
1463 
1464 static unsigned int task_scan_start(struct task_struct *p)
1465 {
1466 	unsigned long smin = task_scan_min(p);
1467 	unsigned long period = smin;
1468 	struct numa_group *ng;
1469 
1470 	/* Scale the maximum scan period with the amount of shared memory. */
1471 	rcu_read_lock();
1472 	ng = rcu_dereference(p->numa_group);
1473 	if (ng) {
1474 		unsigned long shared = group_faults_shared(ng);
1475 		unsigned long private = group_faults_priv(ng);
1476 
1477 		period *= refcount_read(&ng->refcount);
1478 		period *= shared + 1;
1479 		period /= private + shared + 1;
1480 	}
1481 	rcu_read_unlock();
1482 
1483 	return max(smin, period);
1484 }
1485 
1486 static unsigned int task_scan_max(struct task_struct *p)
1487 {
1488 	unsigned long smin = task_scan_min(p);
1489 	unsigned long smax;
1490 	struct numa_group *ng;
1491 
1492 	/* Watch for min being lower than max due to floor calculations */
1493 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1494 
1495 	/* Scale the maximum scan period with the amount of shared memory. */
1496 	ng = deref_curr_numa_group(p);
1497 	if (ng) {
1498 		unsigned long shared = group_faults_shared(ng);
1499 		unsigned long private = group_faults_priv(ng);
1500 		unsigned long period = smax;
1501 
1502 		period *= refcount_read(&ng->refcount);
1503 		period *= shared + 1;
1504 		period /= private + shared + 1;
1505 
1506 		smax = max(smax, period);
1507 	}
1508 
1509 	return max(smin, smax);
1510 }
1511 
1512 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1513 {
1514 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1515 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1516 }
1517 
1518 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1519 {
1520 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1521 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1522 }
1523 
1524 /* Shared or private faults. */
1525 #define NR_NUMA_HINT_FAULT_TYPES 2
1526 
1527 /* Memory and CPU locality */
1528 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1529 
1530 /* Averaged statistics, and temporary buffers. */
1531 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1532 
1533 pid_t task_numa_group_id(struct task_struct *p)
1534 {
1535 	struct numa_group *ng;
1536 	pid_t gid = 0;
1537 
1538 	rcu_read_lock();
1539 	ng = rcu_dereference(p->numa_group);
1540 	if (ng)
1541 		gid = ng->gid;
1542 	rcu_read_unlock();
1543 
1544 	return gid;
1545 }
1546 
1547 /*
1548  * The averaged statistics, shared & private, memory & CPU,
1549  * occupy the first half of the array. The second half of the
1550  * array is for current counters, which are averaged into the
1551  * first set by task_numa_placement.
1552  */
1553 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1554 {
1555 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1556 }
1557 
1558 static inline unsigned long task_faults(struct task_struct *p, int nid)
1559 {
1560 	if (!p->numa_faults)
1561 		return 0;
1562 
1563 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1564 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1565 }
1566 
1567 static inline unsigned long group_faults(struct task_struct *p, int nid)
1568 {
1569 	struct numa_group *ng = deref_task_numa_group(p);
1570 
1571 	if (!ng)
1572 		return 0;
1573 
1574 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1575 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1576 }
1577 
1578 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1579 {
1580 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1581 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1582 }
1583 
1584 static inline unsigned long group_faults_priv(struct numa_group *ng)
1585 {
1586 	unsigned long faults = 0;
1587 	int node;
1588 
1589 	for_each_online_node(node) {
1590 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1591 	}
1592 
1593 	return faults;
1594 }
1595 
1596 static inline unsigned long group_faults_shared(struct numa_group *ng)
1597 {
1598 	unsigned long faults = 0;
1599 	int node;
1600 
1601 	for_each_online_node(node) {
1602 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1603 	}
1604 
1605 	return faults;
1606 }
1607 
1608 /*
1609  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1610  * considered part of a numa group's pseudo-interleaving set. Migrations
1611  * between these nodes are slowed down, to allow things to settle down.
1612  */
1613 #define ACTIVE_NODE_FRACTION 3
1614 
1615 static bool numa_is_active_node(int nid, struct numa_group *ng)
1616 {
1617 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1618 }
1619 
1620 /* Handle placement on systems where not all nodes are directly connected. */
1621 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1622 					int lim_dist, bool task)
1623 {
1624 	unsigned long score = 0;
1625 	int node, max_dist;
1626 
1627 	/*
1628 	 * All nodes are directly connected, and the same distance
1629 	 * from each other. No need for fancy placement algorithms.
1630 	 */
1631 	if (sched_numa_topology_type == NUMA_DIRECT)
1632 		return 0;
1633 
1634 	/* sched_max_numa_distance may be changed in parallel. */
1635 	max_dist = READ_ONCE(sched_max_numa_distance);
1636 	/*
1637 	 * This code is called for each node, introducing N^2 complexity,
1638 	 * which should be ok given the number of nodes rarely exceeds 8.
1639 	 */
1640 	for_each_online_node(node) {
1641 		unsigned long faults;
1642 		int dist = node_distance(nid, node);
1643 
1644 		/*
1645 		 * The furthest away nodes in the system are not interesting
1646 		 * for placement; nid was already counted.
1647 		 */
1648 		if (dist >= max_dist || node == nid)
1649 			continue;
1650 
1651 		/*
1652 		 * On systems with a backplane NUMA topology, compare groups
1653 		 * of nodes, and move tasks towards the group with the most
1654 		 * memory accesses. When comparing two nodes at distance
1655 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1656 		 * of each group. Skip other nodes.
1657 		 */
1658 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1659 			continue;
1660 
1661 		/* Add up the faults from nearby nodes. */
1662 		if (task)
1663 			faults = task_faults(p, node);
1664 		else
1665 			faults = group_faults(p, node);
1666 
1667 		/*
1668 		 * On systems with a glueless mesh NUMA topology, there are
1669 		 * no fixed "groups of nodes". Instead, nodes that are not
1670 		 * directly connected bounce traffic through intermediate
1671 		 * nodes; a numa_group can occupy any set of nodes.
1672 		 * The further away a node is, the less the faults count.
1673 		 * This seems to result in good task placement.
1674 		 */
1675 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1676 			faults *= (max_dist - dist);
1677 			faults /= (max_dist - LOCAL_DISTANCE);
1678 		}
1679 
1680 		score += faults;
1681 	}
1682 
1683 	return score;
1684 }
1685 
1686 /*
1687  * These return the fraction of accesses done by a particular task, or
1688  * task group, on a particular numa node.  The group weight is given a
1689  * larger multiplier, in order to group tasks together that are almost
1690  * evenly spread out between numa nodes.
1691  */
1692 static inline unsigned long task_weight(struct task_struct *p, int nid,
1693 					int dist)
1694 {
1695 	unsigned long faults, total_faults;
1696 
1697 	if (!p->numa_faults)
1698 		return 0;
1699 
1700 	total_faults = p->total_numa_faults;
1701 
1702 	if (!total_faults)
1703 		return 0;
1704 
1705 	faults = task_faults(p, nid);
1706 	faults += score_nearby_nodes(p, nid, dist, true);
1707 
1708 	return 1000 * faults / total_faults;
1709 }
1710 
1711 static inline unsigned long group_weight(struct task_struct *p, int nid,
1712 					 int dist)
1713 {
1714 	struct numa_group *ng = deref_task_numa_group(p);
1715 	unsigned long faults, total_faults;
1716 
1717 	if (!ng)
1718 		return 0;
1719 
1720 	total_faults = ng->total_faults;
1721 
1722 	if (!total_faults)
1723 		return 0;
1724 
1725 	faults = group_faults(p, nid);
1726 	faults += score_nearby_nodes(p, nid, dist, false);
1727 
1728 	return 1000 * faults / total_faults;
1729 }
1730 
1731 /*
1732  * If memory tiering mode is enabled, cpupid of slow memory page is
1733  * used to record scan time instead of CPU and PID.  When tiering mode
1734  * is disabled at run time, the scan time (in cpupid) will be
1735  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1736  * access out of array bound.
1737  */
1738 static inline bool cpupid_valid(int cpupid)
1739 {
1740 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1741 }
1742 
1743 /*
1744  * For memory tiering mode, if there are enough free pages (more than
1745  * enough watermark defined here) in fast memory node, to take full
1746  * advantage of fast memory capacity, all recently accessed slow
1747  * memory pages will be migrated to fast memory node without
1748  * considering hot threshold.
1749  */
1750 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1751 {
1752 	int z;
1753 	unsigned long enough_wmark;
1754 
1755 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1756 			   pgdat->node_present_pages >> 4);
1757 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1758 		struct zone *zone = pgdat->node_zones + z;
1759 
1760 		if (!populated_zone(zone))
1761 			continue;
1762 
1763 		if (zone_watermark_ok(zone, 0,
1764 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1765 				      ZONE_MOVABLE, 0))
1766 			return true;
1767 	}
1768 	return false;
1769 }
1770 
1771 /*
1772  * For memory tiering mode, when page tables are scanned, the scan
1773  * time will be recorded in struct page in addition to make page
1774  * PROT_NONE for slow memory page.  So when the page is accessed, in
1775  * hint page fault handler, the hint page fault latency is calculated
1776  * via,
1777  *
1778  *	hint page fault latency = hint page fault time - scan time
1779  *
1780  * The smaller the hint page fault latency, the higher the possibility
1781  * for the page to be hot.
1782  */
1783 static int numa_hint_fault_latency(struct page *page)
1784 {
1785 	int last_time, time;
1786 
1787 	time = jiffies_to_msecs(jiffies);
1788 	last_time = xchg_page_access_time(page, time);
1789 
1790 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1791 }
1792 
1793 /*
1794  * For memory tiering mode, too high promotion/demotion throughput may
1795  * hurt application latency.  So we provide a mechanism to rate limit
1796  * the number of pages that are tried to be promoted.
1797  */
1798 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1799 				      unsigned long rate_limit, int nr)
1800 {
1801 	unsigned long nr_cand;
1802 	unsigned int now, start;
1803 
1804 	now = jiffies_to_msecs(jiffies);
1805 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1806 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1807 	start = pgdat->nbp_rl_start;
1808 	if (now - start > MSEC_PER_SEC &&
1809 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1810 		pgdat->nbp_rl_nr_cand = nr_cand;
1811 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1812 		return true;
1813 	return false;
1814 }
1815 
1816 #define NUMA_MIGRATION_ADJUST_STEPS	16
1817 
1818 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1819 					    unsigned long rate_limit,
1820 					    unsigned int ref_th)
1821 {
1822 	unsigned int now, start, th_period, unit_th, th;
1823 	unsigned long nr_cand, ref_cand, diff_cand;
1824 
1825 	now = jiffies_to_msecs(jiffies);
1826 	th_period = sysctl_numa_balancing_scan_period_max;
1827 	start = pgdat->nbp_th_start;
1828 	if (now - start > th_period &&
1829 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1830 		ref_cand = rate_limit *
1831 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1832 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1833 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1834 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1835 		th = pgdat->nbp_threshold ? : ref_th;
1836 		if (diff_cand > ref_cand * 11 / 10)
1837 			th = max(th - unit_th, unit_th);
1838 		else if (diff_cand < ref_cand * 9 / 10)
1839 			th = min(th + unit_th, ref_th * 2);
1840 		pgdat->nbp_th_nr_cand = nr_cand;
1841 		pgdat->nbp_threshold = th;
1842 	}
1843 }
1844 
1845 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1846 				int src_nid, int dst_cpu)
1847 {
1848 	struct numa_group *ng = deref_curr_numa_group(p);
1849 	int dst_nid = cpu_to_node(dst_cpu);
1850 	int last_cpupid, this_cpupid;
1851 
1852 	/*
1853 	 * The pages in slow memory node should be migrated according
1854 	 * to hot/cold instead of private/shared.
1855 	 */
1856 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1857 	    !node_is_toptier(src_nid)) {
1858 		struct pglist_data *pgdat;
1859 		unsigned long rate_limit;
1860 		unsigned int latency, th, def_th;
1861 
1862 		pgdat = NODE_DATA(dst_nid);
1863 		if (pgdat_free_space_enough(pgdat)) {
1864 			/* workload changed, reset hot threshold */
1865 			pgdat->nbp_threshold = 0;
1866 			return true;
1867 		}
1868 
1869 		def_th = sysctl_numa_balancing_hot_threshold;
1870 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1871 			(20 - PAGE_SHIFT);
1872 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1873 
1874 		th = pgdat->nbp_threshold ? : def_th;
1875 		latency = numa_hint_fault_latency(page);
1876 		if (latency >= th)
1877 			return false;
1878 
1879 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1880 						  thp_nr_pages(page));
1881 	}
1882 
1883 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1884 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1885 
1886 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1887 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1888 		return false;
1889 
1890 	/*
1891 	 * Allow first faults or private faults to migrate immediately early in
1892 	 * the lifetime of a task. The magic number 4 is based on waiting for
1893 	 * two full passes of the "multi-stage node selection" test that is
1894 	 * executed below.
1895 	 */
1896 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1897 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1898 		return true;
1899 
1900 	/*
1901 	 * Multi-stage node selection is used in conjunction with a periodic
1902 	 * migration fault to build a temporal task<->page relation. By using
1903 	 * a two-stage filter we remove short/unlikely relations.
1904 	 *
1905 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1906 	 * a task's usage of a particular page (n_p) per total usage of this
1907 	 * page (n_t) (in a given time-span) to a probability.
1908 	 *
1909 	 * Our periodic faults will sample this probability and getting the
1910 	 * same result twice in a row, given these samples are fully
1911 	 * independent, is then given by P(n)^2, provided our sample period
1912 	 * is sufficiently short compared to the usage pattern.
1913 	 *
1914 	 * This quadric squishes small probabilities, making it less likely we
1915 	 * act on an unlikely task<->page relation.
1916 	 */
1917 	if (!cpupid_pid_unset(last_cpupid) &&
1918 				cpupid_to_nid(last_cpupid) != dst_nid)
1919 		return false;
1920 
1921 	/* Always allow migrate on private faults */
1922 	if (cpupid_match_pid(p, last_cpupid))
1923 		return true;
1924 
1925 	/* A shared fault, but p->numa_group has not been set up yet. */
1926 	if (!ng)
1927 		return true;
1928 
1929 	/*
1930 	 * Destination node is much more heavily used than the source
1931 	 * node? Allow migration.
1932 	 */
1933 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1934 					ACTIVE_NODE_FRACTION)
1935 		return true;
1936 
1937 	/*
1938 	 * Distribute memory according to CPU & memory use on each node,
1939 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1940 	 *
1941 	 * faults_cpu(dst)   3   faults_cpu(src)
1942 	 * --------------- * - > ---------------
1943 	 * faults_mem(dst)   4   faults_mem(src)
1944 	 */
1945 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1946 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1947 }
1948 
1949 /*
1950  * 'numa_type' describes the node at the moment of load balancing.
1951  */
1952 enum numa_type {
1953 	/* The node has spare capacity that can be used to run more tasks.  */
1954 	node_has_spare = 0,
1955 	/*
1956 	 * The node is fully used and the tasks don't compete for more CPU
1957 	 * cycles. Nevertheless, some tasks might wait before running.
1958 	 */
1959 	node_fully_busy,
1960 	/*
1961 	 * The node is overloaded and can't provide expected CPU cycles to all
1962 	 * tasks.
1963 	 */
1964 	node_overloaded
1965 };
1966 
1967 /* Cached statistics for all CPUs within a node */
1968 struct numa_stats {
1969 	unsigned long load;
1970 	unsigned long runnable;
1971 	unsigned long util;
1972 	/* Total compute capacity of CPUs on a node */
1973 	unsigned long compute_capacity;
1974 	unsigned int nr_running;
1975 	unsigned int weight;
1976 	enum numa_type node_type;
1977 	int idle_cpu;
1978 };
1979 
1980 struct task_numa_env {
1981 	struct task_struct *p;
1982 
1983 	int src_cpu, src_nid;
1984 	int dst_cpu, dst_nid;
1985 	int imb_numa_nr;
1986 
1987 	struct numa_stats src_stats, dst_stats;
1988 
1989 	int imbalance_pct;
1990 	int dist;
1991 
1992 	struct task_struct *best_task;
1993 	long best_imp;
1994 	int best_cpu;
1995 };
1996 
1997 static unsigned long cpu_load(struct rq *rq);
1998 static unsigned long cpu_runnable(struct rq *rq);
1999 
2000 static inline enum
2001 numa_type numa_classify(unsigned int imbalance_pct,
2002 			 struct numa_stats *ns)
2003 {
2004 	if ((ns->nr_running > ns->weight) &&
2005 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2006 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2007 		return node_overloaded;
2008 
2009 	if ((ns->nr_running < ns->weight) ||
2010 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2011 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2012 		return node_has_spare;
2013 
2014 	return node_fully_busy;
2015 }
2016 
2017 #ifdef CONFIG_SCHED_SMT
2018 /* Forward declarations of select_idle_sibling helpers */
2019 static inline bool test_idle_cores(int cpu);
2020 static inline int numa_idle_core(int idle_core, int cpu)
2021 {
2022 	if (!static_branch_likely(&sched_smt_present) ||
2023 	    idle_core >= 0 || !test_idle_cores(cpu))
2024 		return idle_core;
2025 
2026 	/*
2027 	 * Prefer cores instead of packing HT siblings
2028 	 * and triggering future load balancing.
2029 	 */
2030 	if (is_core_idle(cpu))
2031 		idle_core = cpu;
2032 
2033 	return idle_core;
2034 }
2035 #else
2036 static inline int numa_idle_core(int idle_core, int cpu)
2037 {
2038 	return idle_core;
2039 }
2040 #endif
2041 
2042 /*
2043  * Gather all necessary information to make NUMA balancing placement
2044  * decisions that are compatible with standard load balancer. This
2045  * borrows code and logic from update_sg_lb_stats but sharing a
2046  * common implementation is impractical.
2047  */
2048 static void update_numa_stats(struct task_numa_env *env,
2049 			      struct numa_stats *ns, int nid,
2050 			      bool find_idle)
2051 {
2052 	int cpu, idle_core = -1;
2053 
2054 	memset(ns, 0, sizeof(*ns));
2055 	ns->idle_cpu = -1;
2056 
2057 	rcu_read_lock();
2058 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2059 		struct rq *rq = cpu_rq(cpu);
2060 
2061 		ns->load += cpu_load(rq);
2062 		ns->runnable += cpu_runnable(rq);
2063 		ns->util += cpu_util_cfs(cpu);
2064 		ns->nr_running += rq->cfs.h_nr_running;
2065 		ns->compute_capacity += capacity_of(cpu);
2066 
2067 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2068 			if (READ_ONCE(rq->numa_migrate_on) ||
2069 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2070 				continue;
2071 
2072 			if (ns->idle_cpu == -1)
2073 				ns->idle_cpu = cpu;
2074 
2075 			idle_core = numa_idle_core(idle_core, cpu);
2076 		}
2077 	}
2078 	rcu_read_unlock();
2079 
2080 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2081 
2082 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2083 
2084 	if (idle_core >= 0)
2085 		ns->idle_cpu = idle_core;
2086 }
2087 
2088 static void task_numa_assign(struct task_numa_env *env,
2089 			     struct task_struct *p, long imp)
2090 {
2091 	struct rq *rq = cpu_rq(env->dst_cpu);
2092 
2093 	/* Check if run-queue part of active NUMA balance. */
2094 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2095 		int cpu;
2096 		int start = env->dst_cpu;
2097 
2098 		/* Find alternative idle CPU. */
2099 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2100 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2101 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2102 				continue;
2103 			}
2104 
2105 			env->dst_cpu = cpu;
2106 			rq = cpu_rq(env->dst_cpu);
2107 			if (!xchg(&rq->numa_migrate_on, 1))
2108 				goto assign;
2109 		}
2110 
2111 		/* Failed to find an alternative idle CPU */
2112 		return;
2113 	}
2114 
2115 assign:
2116 	/*
2117 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2118 	 * found a better CPU to move/swap.
2119 	 */
2120 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2121 		rq = cpu_rq(env->best_cpu);
2122 		WRITE_ONCE(rq->numa_migrate_on, 0);
2123 	}
2124 
2125 	if (env->best_task)
2126 		put_task_struct(env->best_task);
2127 	if (p)
2128 		get_task_struct(p);
2129 
2130 	env->best_task = p;
2131 	env->best_imp = imp;
2132 	env->best_cpu = env->dst_cpu;
2133 }
2134 
2135 static bool load_too_imbalanced(long src_load, long dst_load,
2136 				struct task_numa_env *env)
2137 {
2138 	long imb, old_imb;
2139 	long orig_src_load, orig_dst_load;
2140 	long src_capacity, dst_capacity;
2141 
2142 	/*
2143 	 * The load is corrected for the CPU capacity available on each node.
2144 	 *
2145 	 * src_load        dst_load
2146 	 * ------------ vs ---------
2147 	 * src_capacity    dst_capacity
2148 	 */
2149 	src_capacity = env->src_stats.compute_capacity;
2150 	dst_capacity = env->dst_stats.compute_capacity;
2151 
2152 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2153 
2154 	orig_src_load = env->src_stats.load;
2155 	orig_dst_load = env->dst_stats.load;
2156 
2157 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2158 
2159 	/* Would this change make things worse? */
2160 	return (imb > old_imb);
2161 }
2162 
2163 /*
2164  * Maximum NUMA importance can be 1998 (2*999);
2165  * SMALLIMP @ 30 would be close to 1998/64.
2166  * Used to deter task migration.
2167  */
2168 #define SMALLIMP	30
2169 
2170 /*
2171  * This checks if the overall compute and NUMA accesses of the system would
2172  * be improved if the source tasks was migrated to the target dst_cpu taking
2173  * into account that it might be best if task running on the dst_cpu should
2174  * be exchanged with the source task
2175  */
2176 static bool task_numa_compare(struct task_numa_env *env,
2177 			      long taskimp, long groupimp, bool maymove)
2178 {
2179 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2180 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2181 	long imp = p_ng ? groupimp : taskimp;
2182 	struct task_struct *cur;
2183 	long src_load, dst_load;
2184 	int dist = env->dist;
2185 	long moveimp = imp;
2186 	long load;
2187 	bool stopsearch = false;
2188 
2189 	if (READ_ONCE(dst_rq->numa_migrate_on))
2190 		return false;
2191 
2192 	rcu_read_lock();
2193 	cur = rcu_dereference(dst_rq->curr);
2194 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2195 		cur = NULL;
2196 
2197 	/*
2198 	 * Because we have preemption enabled we can get migrated around and
2199 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2200 	 */
2201 	if (cur == env->p) {
2202 		stopsearch = true;
2203 		goto unlock;
2204 	}
2205 
2206 	if (!cur) {
2207 		if (maymove && moveimp >= env->best_imp)
2208 			goto assign;
2209 		else
2210 			goto unlock;
2211 	}
2212 
2213 	/* Skip this swap candidate if cannot move to the source cpu. */
2214 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2215 		goto unlock;
2216 
2217 	/*
2218 	 * Skip this swap candidate if it is not moving to its preferred
2219 	 * node and the best task is.
2220 	 */
2221 	if (env->best_task &&
2222 	    env->best_task->numa_preferred_nid == env->src_nid &&
2223 	    cur->numa_preferred_nid != env->src_nid) {
2224 		goto unlock;
2225 	}
2226 
2227 	/*
2228 	 * "imp" is the fault differential for the source task between the
2229 	 * source and destination node. Calculate the total differential for
2230 	 * the source task and potential destination task. The more negative
2231 	 * the value is, the more remote accesses that would be expected to
2232 	 * be incurred if the tasks were swapped.
2233 	 *
2234 	 * If dst and source tasks are in the same NUMA group, or not
2235 	 * in any group then look only at task weights.
2236 	 */
2237 	cur_ng = rcu_dereference(cur->numa_group);
2238 	if (cur_ng == p_ng) {
2239 		/*
2240 		 * Do not swap within a group or between tasks that have
2241 		 * no group if there is spare capacity. Swapping does
2242 		 * not address the load imbalance and helps one task at
2243 		 * the cost of punishing another.
2244 		 */
2245 		if (env->dst_stats.node_type == node_has_spare)
2246 			goto unlock;
2247 
2248 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2249 		      task_weight(cur, env->dst_nid, dist);
2250 		/*
2251 		 * Add some hysteresis to prevent swapping the
2252 		 * tasks within a group over tiny differences.
2253 		 */
2254 		if (cur_ng)
2255 			imp -= imp / 16;
2256 	} else {
2257 		/*
2258 		 * Compare the group weights. If a task is all by itself
2259 		 * (not part of a group), use the task weight instead.
2260 		 */
2261 		if (cur_ng && p_ng)
2262 			imp += group_weight(cur, env->src_nid, dist) -
2263 			       group_weight(cur, env->dst_nid, dist);
2264 		else
2265 			imp += task_weight(cur, env->src_nid, dist) -
2266 			       task_weight(cur, env->dst_nid, dist);
2267 	}
2268 
2269 	/* Discourage picking a task already on its preferred node */
2270 	if (cur->numa_preferred_nid == env->dst_nid)
2271 		imp -= imp / 16;
2272 
2273 	/*
2274 	 * Encourage picking a task that moves to its preferred node.
2275 	 * This potentially makes imp larger than it's maximum of
2276 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2277 	 * case, it does not matter.
2278 	 */
2279 	if (cur->numa_preferred_nid == env->src_nid)
2280 		imp += imp / 8;
2281 
2282 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2283 		imp = moveimp;
2284 		cur = NULL;
2285 		goto assign;
2286 	}
2287 
2288 	/*
2289 	 * Prefer swapping with a task moving to its preferred node over a
2290 	 * task that is not.
2291 	 */
2292 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2293 	    env->best_task->numa_preferred_nid != env->src_nid) {
2294 		goto assign;
2295 	}
2296 
2297 	/*
2298 	 * If the NUMA importance is less than SMALLIMP,
2299 	 * task migration might only result in ping pong
2300 	 * of tasks and also hurt performance due to cache
2301 	 * misses.
2302 	 */
2303 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2304 		goto unlock;
2305 
2306 	/*
2307 	 * In the overloaded case, try and keep the load balanced.
2308 	 */
2309 	load = task_h_load(env->p) - task_h_load(cur);
2310 	if (!load)
2311 		goto assign;
2312 
2313 	dst_load = env->dst_stats.load + load;
2314 	src_load = env->src_stats.load - load;
2315 
2316 	if (load_too_imbalanced(src_load, dst_load, env))
2317 		goto unlock;
2318 
2319 assign:
2320 	/* Evaluate an idle CPU for a task numa move. */
2321 	if (!cur) {
2322 		int cpu = env->dst_stats.idle_cpu;
2323 
2324 		/* Nothing cached so current CPU went idle since the search. */
2325 		if (cpu < 0)
2326 			cpu = env->dst_cpu;
2327 
2328 		/*
2329 		 * If the CPU is no longer truly idle and the previous best CPU
2330 		 * is, keep using it.
2331 		 */
2332 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2333 		    idle_cpu(env->best_cpu)) {
2334 			cpu = env->best_cpu;
2335 		}
2336 
2337 		env->dst_cpu = cpu;
2338 	}
2339 
2340 	task_numa_assign(env, cur, imp);
2341 
2342 	/*
2343 	 * If a move to idle is allowed because there is capacity or load
2344 	 * balance improves then stop the search. While a better swap
2345 	 * candidate may exist, a search is not free.
2346 	 */
2347 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2348 		stopsearch = true;
2349 
2350 	/*
2351 	 * If a swap candidate must be identified and the current best task
2352 	 * moves its preferred node then stop the search.
2353 	 */
2354 	if (!maymove && env->best_task &&
2355 	    env->best_task->numa_preferred_nid == env->src_nid) {
2356 		stopsearch = true;
2357 	}
2358 unlock:
2359 	rcu_read_unlock();
2360 
2361 	return stopsearch;
2362 }
2363 
2364 static void task_numa_find_cpu(struct task_numa_env *env,
2365 				long taskimp, long groupimp)
2366 {
2367 	bool maymove = false;
2368 	int cpu;
2369 
2370 	/*
2371 	 * If dst node has spare capacity, then check if there is an
2372 	 * imbalance that would be overruled by the load balancer.
2373 	 */
2374 	if (env->dst_stats.node_type == node_has_spare) {
2375 		unsigned int imbalance;
2376 		int src_running, dst_running;
2377 
2378 		/*
2379 		 * Would movement cause an imbalance? Note that if src has
2380 		 * more running tasks that the imbalance is ignored as the
2381 		 * move improves the imbalance from the perspective of the
2382 		 * CPU load balancer.
2383 		 * */
2384 		src_running = env->src_stats.nr_running - 1;
2385 		dst_running = env->dst_stats.nr_running + 1;
2386 		imbalance = max(0, dst_running - src_running);
2387 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2388 						  env->imb_numa_nr);
2389 
2390 		/* Use idle CPU if there is no imbalance */
2391 		if (!imbalance) {
2392 			maymove = true;
2393 			if (env->dst_stats.idle_cpu >= 0) {
2394 				env->dst_cpu = env->dst_stats.idle_cpu;
2395 				task_numa_assign(env, NULL, 0);
2396 				return;
2397 			}
2398 		}
2399 	} else {
2400 		long src_load, dst_load, load;
2401 		/*
2402 		 * If the improvement from just moving env->p direction is better
2403 		 * than swapping tasks around, check if a move is possible.
2404 		 */
2405 		load = task_h_load(env->p);
2406 		dst_load = env->dst_stats.load + load;
2407 		src_load = env->src_stats.load - load;
2408 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2409 	}
2410 
2411 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2412 		/* Skip this CPU if the source task cannot migrate */
2413 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2414 			continue;
2415 
2416 		env->dst_cpu = cpu;
2417 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2418 			break;
2419 	}
2420 }
2421 
2422 static int task_numa_migrate(struct task_struct *p)
2423 {
2424 	struct task_numa_env env = {
2425 		.p = p,
2426 
2427 		.src_cpu = task_cpu(p),
2428 		.src_nid = task_node(p),
2429 
2430 		.imbalance_pct = 112,
2431 
2432 		.best_task = NULL,
2433 		.best_imp = 0,
2434 		.best_cpu = -1,
2435 	};
2436 	unsigned long taskweight, groupweight;
2437 	struct sched_domain *sd;
2438 	long taskimp, groupimp;
2439 	struct numa_group *ng;
2440 	struct rq *best_rq;
2441 	int nid, ret, dist;
2442 
2443 	/*
2444 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2445 	 * imbalance and would be the first to start moving tasks about.
2446 	 *
2447 	 * And we want to avoid any moving of tasks about, as that would create
2448 	 * random movement of tasks -- counter the numa conditions we're trying
2449 	 * to satisfy here.
2450 	 */
2451 	rcu_read_lock();
2452 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2453 	if (sd) {
2454 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2455 		env.imb_numa_nr = sd->imb_numa_nr;
2456 	}
2457 	rcu_read_unlock();
2458 
2459 	/*
2460 	 * Cpusets can break the scheduler domain tree into smaller
2461 	 * balance domains, some of which do not cross NUMA boundaries.
2462 	 * Tasks that are "trapped" in such domains cannot be migrated
2463 	 * elsewhere, so there is no point in (re)trying.
2464 	 */
2465 	if (unlikely(!sd)) {
2466 		sched_setnuma(p, task_node(p));
2467 		return -EINVAL;
2468 	}
2469 
2470 	env.dst_nid = p->numa_preferred_nid;
2471 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2472 	taskweight = task_weight(p, env.src_nid, dist);
2473 	groupweight = group_weight(p, env.src_nid, dist);
2474 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2475 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2476 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2477 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2478 
2479 	/* Try to find a spot on the preferred nid. */
2480 	task_numa_find_cpu(&env, taskimp, groupimp);
2481 
2482 	/*
2483 	 * Look at other nodes in these cases:
2484 	 * - there is no space available on the preferred_nid
2485 	 * - the task is part of a numa_group that is interleaved across
2486 	 *   multiple NUMA nodes; in order to better consolidate the group,
2487 	 *   we need to check other locations.
2488 	 */
2489 	ng = deref_curr_numa_group(p);
2490 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2491 		for_each_node_state(nid, N_CPU) {
2492 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2493 				continue;
2494 
2495 			dist = node_distance(env.src_nid, env.dst_nid);
2496 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2497 						dist != env.dist) {
2498 				taskweight = task_weight(p, env.src_nid, dist);
2499 				groupweight = group_weight(p, env.src_nid, dist);
2500 			}
2501 
2502 			/* Only consider nodes where both task and groups benefit */
2503 			taskimp = task_weight(p, nid, dist) - taskweight;
2504 			groupimp = group_weight(p, nid, dist) - groupweight;
2505 			if (taskimp < 0 && groupimp < 0)
2506 				continue;
2507 
2508 			env.dist = dist;
2509 			env.dst_nid = nid;
2510 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2511 			task_numa_find_cpu(&env, taskimp, groupimp);
2512 		}
2513 	}
2514 
2515 	/*
2516 	 * If the task is part of a workload that spans multiple NUMA nodes,
2517 	 * and is migrating into one of the workload's active nodes, remember
2518 	 * this node as the task's preferred numa node, so the workload can
2519 	 * settle down.
2520 	 * A task that migrated to a second choice node will be better off
2521 	 * trying for a better one later. Do not set the preferred node here.
2522 	 */
2523 	if (ng) {
2524 		if (env.best_cpu == -1)
2525 			nid = env.src_nid;
2526 		else
2527 			nid = cpu_to_node(env.best_cpu);
2528 
2529 		if (nid != p->numa_preferred_nid)
2530 			sched_setnuma(p, nid);
2531 	}
2532 
2533 	/* No better CPU than the current one was found. */
2534 	if (env.best_cpu == -1) {
2535 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2536 		return -EAGAIN;
2537 	}
2538 
2539 	best_rq = cpu_rq(env.best_cpu);
2540 	if (env.best_task == NULL) {
2541 		ret = migrate_task_to(p, env.best_cpu);
2542 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2543 		if (ret != 0)
2544 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2545 		return ret;
2546 	}
2547 
2548 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2549 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2550 
2551 	if (ret != 0)
2552 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2553 	put_task_struct(env.best_task);
2554 	return ret;
2555 }
2556 
2557 /* Attempt to migrate a task to a CPU on the preferred node. */
2558 static void numa_migrate_preferred(struct task_struct *p)
2559 {
2560 	unsigned long interval = HZ;
2561 
2562 	/* This task has no NUMA fault statistics yet */
2563 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2564 		return;
2565 
2566 	/* Periodically retry migrating the task to the preferred node */
2567 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2568 	p->numa_migrate_retry = jiffies + interval;
2569 
2570 	/* Success if task is already running on preferred CPU */
2571 	if (task_node(p) == p->numa_preferred_nid)
2572 		return;
2573 
2574 	/* Otherwise, try migrate to a CPU on the preferred node */
2575 	task_numa_migrate(p);
2576 }
2577 
2578 /*
2579  * Find out how many nodes the workload is actively running on. Do this by
2580  * tracking the nodes from which NUMA hinting faults are triggered. This can
2581  * be different from the set of nodes where the workload's memory is currently
2582  * located.
2583  */
2584 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2585 {
2586 	unsigned long faults, max_faults = 0;
2587 	int nid, active_nodes = 0;
2588 
2589 	for_each_node_state(nid, N_CPU) {
2590 		faults = group_faults_cpu(numa_group, nid);
2591 		if (faults > max_faults)
2592 			max_faults = faults;
2593 	}
2594 
2595 	for_each_node_state(nid, N_CPU) {
2596 		faults = group_faults_cpu(numa_group, nid);
2597 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2598 			active_nodes++;
2599 	}
2600 
2601 	numa_group->max_faults_cpu = max_faults;
2602 	numa_group->active_nodes = active_nodes;
2603 }
2604 
2605 /*
2606  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2607  * increments. The more local the fault statistics are, the higher the scan
2608  * period will be for the next scan window. If local/(local+remote) ratio is
2609  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2610  * the scan period will decrease. Aim for 70% local accesses.
2611  */
2612 #define NUMA_PERIOD_SLOTS 10
2613 #define NUMA_PERIOD_THRESHOLD 7
2614 
2615 /*
2616  * Increase the scan period (slow down scanning) if the majority of
2617  * our memory is already on our local node, or if the majority of
2618  * the page accesses are shared with other processes.
2619  * Otherwise, decrease the scan period.
2620  */
2621 static void update_task_scan_period(struct task_struct *p,
2622 			unsigned long shared, unsigned long private)
2623 {
2624 	unsigned int period_slot;
2625 	int lr_ratio, ps_ratio;
2626 	int diff;
2627 
2628 	unsigned long remote = p->numa_faults_locality[0];
2629 	unsigned long local = p->numa_faults_locality[1];
2630 
2631 	/*
2632 	 * If there were no record hinting faults then either the task is
2633 	 * completely idle or all activity is in areas that are not of interest
2634 	 * to automatic numa balancing. Related to that, if there were failed
2635 	 * migration then it implies we are migrating too quickly or the local
2636 	 * node is overloaded. In either case, scan slower
2637 	 */
2638 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2639 		p->numa_scan_period = min(p->numa_scan_period_max,
2640 			p->numa_scan_period << 1);
2641 
2642 		p->mm->numa_next_scan = jiffies +
2643 			msecs_to_jiffies(p->numa_scan_period);
2644 
2645 		return;
2646 	}
2647 
2648 	/*
2649 	 * Prepare to scale scan period relative to the current period.
2650 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2651 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2652 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2653 	 */
2654 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2655 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2656 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2657 
2658 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2659 		/*
2660 		 * Most memory accesses are local. There is no need to
2661 		 * do fast NUMA scanning, since memory is already local.
2662 		 */
2663 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2664 		if (!slot)
2665 			slot = 1;
2666 		diff = slot * period_slot;
2667 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2668 		/*
2669 		 * Most memory accesses are shared with other tasks.
2670 		 * There is no point in continuing fast NUMA scanning,
2671 		 * since other tasks may just move the memory elsewhere.
2672 		 */
2673 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2674 		if (!slot)
2675 			slot = 1;
2676 		diff = slot * period_slot;
2677 	} else {
2678 		/*
2679 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2680 		 * yet they are not on the local NUMA node. Speed up
2681 		 * NUMA scanning to get the memory moved over.
2682 		 */
2683 		int ratio = max(lr_ratio, ps_ratio);
2684 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2685 	}
2686 
2687 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2688 			task_scan_min(p), task_scan_max(p));
2689 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2690 }
2691 
2692 /*
2693  * Get the fraction of time the task has been running since the last
2694  * NUMA placement cycle. The scheduler keeps similar statistics, but
2695  * decays those on a 32ms period, which is orders of magnitude off
2696  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2697  * stats only if the task is so new there are no NUMA statistics yet.
2698  */
2699 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2700 {
2701 	u64 runtime, delta, now;
2702 	/* Use the start of this time slice to avoid calculations. */
2703 	now = p->se.exec_start;
2704 	runtime = p->se.sum_exec_runtime;
2705 
2706 	if (p->last_task_numa_placement) {
2707 		delta = runtime - p->last_sum_exec_runtime;
2708 		*period = now - p->last_task_numa_placement;
2709 
2710 		/* Avoid time going backwards, prevent potential divide error: */
2711 		if (unlikely((s64)*period < 0))
2712 			*period = 0;
2713 	} else {
2714 		delta = p->se.avg.load_sum;
2715 		*period = LOAD_AVG_MAX;
2716 	}
2717 
2718 	p->last_sum_exec_runtime = runtime;
2719 	p->last_task_numa_placement = now;
2720 
2721 	return delta;
2722 }
2723 
2724 /*
2725  * Determine the preferred nid for a task in a numa_group. This needs to
2726  * be done in a way that produces consistent results with group_weight,
2727  * otherwise workloads might not converge.
2728  */
2729 static int preferred_group_nid(struct task_struct *p, int nid)
2730 {
2731 	nodemask_t nodes;
2732 	int dist;
2733 
2734 	/* Direct connections between all NUMA nodes. */
2735 	if (sched_numa_topology_type == NUMA_DIRECT)
2736 		return nid;
2737 
2738 	/*
2739 	 * On a system with glueless mesh NUMA topology, group_weight
2740 	 * scores nodes according to the number of NUMA hinting faults on
2741 	 * both the node itself, and on nearby nodes.
2742 	 */
2743 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2744 		unsigned long score, max_score = 0;
2745 		int node, max_node = nid;
2746 
2747 		dist = sched_max_numa_distance;
2748 
2749 		for_each_node_state(node, N_CPU) {
2750 			score = group_weight(p, node, dist);
2751 			if (score > max_score) {
2752 				max_score = score;
2753 				max_node = node;
2754 			}
2755 		}
2756 		return max_node;
2757 	}
2758 
2759 	/*
2760 	 * Finding the preferred nid in a system with NUMA backplane
2761 	 * interconnect topology is more involved. The goal is to locate
2762 	 * tasks from numa_groups near each other in the system, and
2763 	 * untangle workloads from different sides of the system. This requires
2764 	 * searching down the hierarchy of node groups, recursively searching
2765 	 * inside the highest scoring group of nodes. The nodemask tricks
2766 	 * keep the complexity of the search down.
2767 	 */
2768 	nodes = node_states[N_CPU];
2769 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2770 		unsigned long max_faults = 0;
2771 		nodemask_t max_group = NODE_MASK_NONE;
2772 		int a, b;
2773 
2774 		/* Are there nodes at this distance from each other? */
2775 		if (!find_numa_distance(dist))
2776 			continue;
2777 
2778 		for_each_node_mask(a, nodes) {
2779 			unsigned long faults = 0;
2780 			nodemask_t this_group;
2781 			nodes_clear(this_group);
2782 
2783 			/* Sum group's NUMA faults; includes a==b case. */
2784 			for_each_node_mask(b, nodes) {
2785 				if (node_distance(a, b) < dist) {
2786 					faults += group_faults(p, b);
2787 					node_set(b, this_group);
2788 					node_clear(b, nodes);
2789 				}
2790 			}
2791 
2792 			/* Remember the top group. */
2793 			if (faults > max_faults) {
2794 				max_faults = faults;
2795 				max_group = this_group;
2796 				/*
2797 				 * subtle: at the smallest distance there is
2798 				 * just one node left in each "group", the
2799 				 * winner is the preferred nid.
2800 				 */
2801 				nid = a;
2802 			}
2803 		}
2804 		/* Next round, evaluate the nodes within max_group. */
2805 		if (!max_faults)
2806 			break;
2807 		nodes = max_group;
2808 	}
2809 	return nid;
2810 }
2811 
2812 static void task_numa_placement(struct task_struct *p)
2813 {
2814 	int seq, nid, max_nid = NUMA_NO_NODE;
2815 	unsigned long max_faults = 0;
2816 	unsigned long fault_types[2] = { 0, 0 };
2817 	unsigned long total_faults;
2818 	u64 runtime, period;
2819 	spinlock_t *group_lock = NULL;
2820 	struct numa_group *ng;
2821 
2822 	/*
2823 	 * The p->mm->numa_scan_seq field gets updated without
2824 	 * exclusive access. Use READ_ONCE() here to ensure
2825 	 * that the field is read in a single access:
2826 	 */
2827 	seq = READ_ONCE(p->mm->numa_scan_seq);
2828 	if (p->numa_scan_seq == seq)
2829 		return;
2830 	p->numa_scan_seq = seq;
2831 	p->numa_scan_period_max = task_scan_max(p);
2832 
2833 	total_faults = p->numa_faults_locality[0] +
2834 		       p->numa_faults_locality[1];
2835 	runtime = numa_get_avg_runtime(p, &period);
2836 
2837 	/* If the task is part of a group prevent parallel updates to group stats */
2838 	ng = deref_curr_numa_group(p);
2839 	if (ng) {
2840 		group_lock = &ng->lock;
2841 		spin_lock_irq(group_lock);
2842 	}
2843 
2844 	/* Find the node with the highest number of faults */
2845 	for_each_online_node(nid) {
2846 		/* Keep track of the offsets in numa_faults array */
2847 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2848 		unsigned long faults = 0, group_faults = 0;
2849 		int priv;
2850 
2851 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2852 			long diff, f_diff, f_weight;
2853 
2854 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2855 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2856 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2857 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2858 
2859 			/* Decay existing window, copy faults since last scan */
2860 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2861 			fault_types[priv] += p->numa_faults[membuf_idx];
2862 			p->numa_faults[membuf_idx] = 0;
2863 
2864 			/*
2865 			 * Normalize the faults_from, so all tasks in a group
2866 			 * count according to CPU use, instead of by the raw
2867 			 * number of faults. Tasks with little runtime have
2868 			 * little over-all impact on throughput, and thus their
2869 			 * faults are less important.
2870 			 */
2871 			f_weight = div64_u64(runtime << 16, period + 1);
2872 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2873 				   (total_faults + 1);
2874 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2875 			p->numa_faults[cpubuf_idx] = 0;
2876 
2877 			p->numa_faults[mem_idx] += diff;
2878 			p->numa_faults[cpu_idx] += f_diff;
2879 			faults += p->numa_faults[mem_idx];
2880 			p->total_numa_faults += diff;
2881 			if (ng) {
2882 				/*
2883 				 * safe because we can only change our own group
2884 				 *
2885 				 * mem_idx represents the offset for a given
2886 				 * nid and priv in a specific region because it
2887 				 * is at the beginning of the numa_faults array.
2888 				 */
2889 				ng->faults[mem_idx] += diff;
2890 				ng->faults[cpu_idx] += f_diff;
2891 				ng->total_faults += diff;
2892 				group_faults += ng->faults[mem_idx];
2893 			}
2894 		}
2895 
2896 		if (!ng) {
2897 			if (faults > max_faults) {
2898 				max_faults = faults;
2899 				max_nid = nid;
2900 			}
2901 		} else if (group_faults > max_faults) {
2902 			max_faults = group_faults;
2903 			max_nid = nid;
2904 		}
2905 	}
2906 
2907 	/* Cannot migrate task to CPU-less node */
2908 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2909 		int near_nid = max_nid;
2910 		int distance, near_distance = INT_MAX;
2911 
2912 		for_each_node_state(nid, N_CPU) {
2913 			distance = node_distance(max_nid, nid);
2914 			if (distance < near_distance) {
2915 				near_nid = nid;
2916 				near_distance = distance;
2917 			}
2918 		}
2919 		max_nid = near_nid;
2920 	}
2921 
2922 	if (ng) {
2923 		numa_group_count_active_nodes(ng);
2924 		spin_unlock_irq(group_lock);
2925 		max_nid = preferred_group_nid(p, max_nid);
2926 	}
2927 
2928 	if (max_faults) {
2929 		/* Set the new preferred node */
2930 		if (max_nid != p->numa_preferred_nid)
2931 			sched_setnuma(p, max_nid);
2932 	}
2933 
2934 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2935 }
2936 
2937 static inline int get_numa_group(struct numa_group *grp)
2938 {
2939 	return refcount_inc_not_zero(&grp->refcount);
2940 }
2941 
2942 static inline void put_numa_group(struct numa_group *grp)
2943 {
2944 	if (refcount_dec_and_test(&grp->refcount))
2945 		kfree_rcu(grp, rcu);
2946 }
2947 
2948 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2949 			int *priv)
2950 {
2951 	struct numa_group *grp, *my_grp;
2952 	struct task_struct *tsk;
2953 	bool join = false;
2954 	int cpu = cpupid_to_cpu(cpupid);
2955 	int i;
2956 
2957 	if (unlikely(!deref_curr_numa_group(p))) {
2958 		unsigned int size = sizeof(struct numa_group) +
2959 				    NR_NUMA_HINT_FAULT_STATS *
2960 				    nr_node_ids * sizeof(unsigned long);
2961 
2962 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2963 		if (!grp)
2964 			return;
2965 
2966 		refcount_set(&grp->refcount, 1);
2967 		grp->active_nodes = 1;
2968 		grp->max_faults_cpu = 0;
2969 		spin_lock_init(&grp->lock);
2970 		grp->gid = p->pid;
2971 
2972 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2973 			grp->faults[i] = p->numa_faults[i];
2974 
2975 		grp->total_faults = p->total_numa_faults;
2976 
2977 		grp->nr_tasks++;
2978 		rcu_assign_pointer(p->numa_group, grp);
2979 	}
2980 
2981 	rcu_read_lock();
2982 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2983 
2984 	if (!cpupid_match_pid(tsk, cpupid))
2985 		goto no_join;
2986 
2987 	grp = rcu_dereference(tsk->numa_group);
2988 	if (!grp)
2989 		goto no_join;
2990 
2991 	my_grp = deref_curr_numa_group(p);
2992 	if (grp == my_grp)
2993 		goto no_join;
2994 
2995 	/*
2996 	 * Only join the other group if its bigger; if we're the bigger group,
2997 	 * the other task will join us.
2998 	 */
2999 	if (my_grp->nr_tasks > grp->nr_tasks)
3000 		goto no_join;
3001 
3002 	/*
3003 	 * Tie-break on the grp address.
3004 	 */
3005 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3006 		goto no_join;
3007 
3008 	/* Always join threads in the same process. */
3009 	if (tsk->mm == current->mm)
3010 		join = true;
3011 
3012 	/* Simple filter to avoid false positives due to PID collisions */
3013 	if (flags & TNF_SHARED)
3014 		join = true;
3015 
3016 	/* Update priv based on whether false sharing was detected */
3017 	*priv = !join;
3018 
3019 	if (join && !get_numa_group(grp))
3020 		goto no_join;
3021 
3022 	rcu_read_unlock();
3023 
3024 	if (!join)
3025 		return;
3026 
3027 	WARN_ON_ONCE(irqs_disabled());
3028 	double_lock_irq(&my_grp->lock, &grp->lock);
3029 
3030 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3031 		my_grp->faults[i] -= p->numa_faults[i];
3032 		grp->faults[i] += p->numa_faults[i];
3033 	}
3034 	my_grp->total_faults -= p->total_numa_faults;
3035 	grp->total_faults += p->total_numa_faults;
3036 
3037 	my_grp->nr_tasks--;
3038 	grp->nr_tasks++;
3039 
3040 	spin_unlock(&my_grp->lock);
3041 	spin_unlock_irq(&grp->lock);
3042 
3043 	rcu_assign_pointer(p->numa_group, grp);
3044 
3045 	put_numa_group(my_grp);
3046 	return;
3047 
3048 no_join:
3049 	rcu_read_unlock();
3050 	return;
3051 }
3052 
3053 /*
3054  * Get rid of NUMA statistics associated with a task (either current or dead).
3055  * If @final is set, the task is dead and has reached refcount zero, so we can
3056  * safely free all relevant data structures. Otherwise, there might be
3057  * concurrent reads from places like load balancing and procfs, and we should
3058  * reset the data back to default state without freeing ->numa_faults.
3059  */
3060 void task_numa_free(struct task_struct *p, bool final)
3061 {
3062 	/* safe: p either is current or is being freed by current */
3063 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3064 	unsigned long *numa_faults = p->numa_faults;
3065 	unsigned long flags;
3066 	int i;
3067 
3068 	if (!numa_faults)
3069 		return;
3070 
3071 	if (grp) {
3072 		spin_lock_irqsave(&grp->lock, flags);
3073 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3074 			grp->faults[i] -= p->numa_faults[i];
3075 		grp->total_faults -= p->total_numa_faults;
3076 
3077 		grp->nr_tasks--;
3078 		spin_unlock_irqrestore(&grp->lock, flags);
3079 		RCU_INIT_POINTER(p->numa_group, NULL);
3080 		put_numa_group(grp);
3081 	}
3082 
3083 	if (final) {
3084 		p->numa_faults = NULL;
3085 		kfree(numa_faults);
3086 	} else {
3087 		p->total_numa_faults = 0;
3088 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3089 			numa_faults[i] = 0;
3090 	}
3091 }
3092 
3093 /*
3094  * Got a PROT_NONE fault for a page on @node.
3095  */
3096 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3097 {
3098 	struct task_struct *p = current;
3099 	bool migrated = flags & TNF_MIGRATED;
3100 	int cpu_node = task_node(current);
3101 	int local = !!(flags & TNF_FAULT_LOCAL);
3102 	struct numa_group *ng;
3103 	int priv;
3104 
3105 	if (!static_branch_likely(&sched_numa_balancing))
3106 		return;
3107 
3108 	/* for example, ksmd faulting in a user's mm */
3109 	if (!p->mm)
3110 		return;
3111 
3112 	/*
3113 	 * NUMA faults statistics are unnecessary for the slow memory
3114 	 * node for memory tiering mode.
3115 	 */
3116 	if (!node_is_toptier(mem_node) &&
3117 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3118 	     !cpupid_valid(last_cpupid)))
3119 		return;
3120 
3121 	/* Allocate buffer to track faults on a per-node basis */
3122 	if (unlikely(!p->numa_faults)) {
3123 		int size = sizeof(*p->numa_faults) *
3124 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3125 
3126 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3127 		if (!p->numa_faults)
3128 			return;
3129 
3130 		p->total_numa_faults = 0;
3131 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3132 	}
3133 
3134 	/*
3135 	 * First accesses are treated as private, otherwise consider accesses
3136 	 * to be private if the accessing pid has not changed
3137 	 */
3138 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3139 		priv = 1;
3140 	} else {
3141 		priv = cpupid_match_pid(p, last_cpupid);
3142 		if (!priv && !(flags & TNF_NO_GROUP))
3143 			task_numa_group(p, last_cpupid, flags, &priv);
3144 	}
3145 
3146 	/*
3147 	 * If a workload spans multiple NUMA nodes, a shared fault that
3148 	 * occurs wholly within the set of nodes that the workload is
3149 	 * actively using should be counted as local. This allows the
3150 	 * scan rate to slow down when a workload has settled down.
3151 	 */
3152 	ng = deref_curr_numa_group(p);
3153 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3154 				numa_is_active_node(cpu_node, ng) &&
3155 				numa_is_active_node(mem_node, ng))
3156 		local = 1;
3157 
3158 	/*
3159 	 * Retry to migrate task to preferred node periodically, in case it
3160 	 * previously failed, or the scheduler moved us.
3161 	 */
3162 	if (time_after(jiffies, p->numa_migrate_retry)) {
3163 		task_numa_placement(p);
3164 		numa_migrate_preferred(p);
3165 	}
3166 
3167 	if (migrated)
3168 		p->numa_pages_migrated += pages;
3169 	if (flags & TNF_MIGRATE_FAIL)
3170 		p->numa_faults_locality[2] += pages;
3171 
3172 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3173 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3174 	p->numa_faults_locality[local] += pages;
3175 }
3176 
3177 static void reset_ptenuma_scan(struct task_struct *p)
3178 {
3179 	/*
3180 	 * We only did a read acquisition of the mmap sem, so
3181 	 * p->mm->numa_scan_seq is written to without exclusive access
3182 	 * and the update is not guaranteed to be atomic. That's not
3183 	 * much of an issue though, since this is just used for
3184 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3185 	 * expensive, to avoid any form of compiler optimizations:
3186 	 */
3187 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3188 	p->mm->numa_scan_offset = 0;
3189 }
3190 
3191 static bool vma_is_accessed(struct vm_area_struct *vma)
3192 {
3193 	unsigned long pids;
3194 	/*
3195 	 * Allow unconditional access first two times, so that all the (pages)
3196 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3197 	 * This is also done to avoid any side effect of task scanning
3198 	 * amplifying the unfairness of disjoint set of VMAs' access.
3199 	 */
3200 	if (READ_ONCE(current->mm->numa_scan_seq) < 2)
3201 		return true;
3202 
3203 	pids = vma->numab_state->access_pids[0] | vma->numab_state->access_pids[1];
3204 	return test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids);
3205 }
3206 
3207 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3208 
3209 /*
3210  * The expensive part of numa migration is done from task_work context.
3211  * Triggered from task_tick_numa().
3212  */
3213 static void task_numa_work(struct callback_head *work)
3214 {
3215 	unsigned long migrate, next_scan, now = jiffies;
3216 	struct task_struct *p = current;
3217 	struct mm_struct *mm = p->mm;
3218 	u64 runtime = p->se.sum_exec_runtime;
3219 	struct vm_area_struct *vma;
3220 	unsigned long start, end;
3221 	unsigned long nr_pte_updates = 0;
3222 	long pages, virtpages;
3223 	struct vma_iterator vmi;
3224 
3225 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3226 
3227 	work->next = work;
3228 	/*
3229 	 * Who cares about NUMA placement when they're dying.
3230 	 *
3231 	 * NOTE: make sure not to dereference p->mm before this check,
3232 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3233 	 * without p->mm even though we still had it when we enqueued this
3234 	 * work.
3235 	 */
3236 	if (p->flags & PF_EXITING)
3237 		return;
3238 
3239 	if (!mm->numa_next_scan) {
3240 		mm->numa_next_scan = now +
3241 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3242 	}
3243 
3244 	/*
3245 	 * Enforce maximal scan/migration frequency..
3246 	 */
3247 	migrate = mm->numa_next_scan;
3248 	if (time_before(now, migrate))
3249 		return;
3250 
3251 	if (p->numa_scan_period == 0) {
3252 		p->numa_scan_period_max = task_scan_max(p);
3253 		p->numa_scan_period = task_scan_start(p);
3254 	}
3255 
3256 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3257 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3258 		return;
3259 
3260 	/*
3261 	 * Delay this task enough that another task of this mm will likely win
3262 	 * the next time around.
3263 	 */
3264 	p->node_stamp += 2 * TICK_NSEC;
3265 
3266 	start = mm->numa_scan_offset;
3267 	pages = sysctl_numa_balancing_scan_size;
3268 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3269 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3270 	if (!pages)
3271 		return;
3272 
3273 
3274 	if (!mmap_read_trylock(mm))
3275 		return;
3276 	vma_iter_init(&vmi, mm, start);
3277 	vma = vma_next(&vmi);
3278 	if (!vma) {
3279 		reset_ptenuma_scan(p);
3280 		start = 0;
3281 		vma_iter_set(&vmi, start);
3282 		vma = vma_next(&vmi);
3283 	}
3284 
3285 	do {
3286 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3287 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3288 			continue;
3289 		}
3290 
3291 		/*
3292 		 * Shared library pages mapped by multiple processes are not
3293 		 * migrated as it is expected they are cache replicated. Avoid
3294 		 * hinting faults in read-only file-backed mappings or the vdso
3295 		 * as migrating the pages will be of marginal benefit.
3296 		 */
3297 		if (!vma->vm_mm ||
3298 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
3299 			continue;
3300 
3301 		/*
3302 		 * Skip inaccessible VMAs to avoid any confusion between
3303 		 * PROT_NONE and NUMA hinting ptes
3304 		 */
3305 		if (!vma_is_accessible(vma))
3306 			continue;
3307 
3308 		/* Initialise new per-VMA NUMAB state. */
3309 		if (!vma->numab_state) {
3310 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3311 				GFP_KERNEL);
3312 			if (!vma->numab_state)
3313 				continue;
3314 
3315 			vma->numab_state->next_scan = now +
3316 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3317 
3318 			/* Reset happens after 4 times scan delay of scan start */
3319 			vma->numab_state->next_pid_reset =  vma->numab_state->next_scan +
3320 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3321 		}
3322 
3323 		/*
3324 		 * Scanning the VMA's of short lived tasks add more overhead. So
3325 		 * delay the scan for new VMAs.
3326 		 */
3327 		if (mm->numa_scan_seq && time_before(jiffies,
3328 						vma->numab_state->next_scan))
3329 			continue;
3330 
3331 		/* Do not scan the VMA if task has not accessed */
3332 		if (!vma_is_accessed(vma))
3333 			continue;
3334 
3335 		/*
3336 		 * RESET access PIDs regularly for old VMAs. Resetting after checking
3337 		 * vma for recent access to avoid clearing PID info before access..
3338 		 */
3339 		if (mm->numa_scan_seq &&
3340 				time_after(jiffies, vma->numab_state->next_pid_reset)) {
3341 			vma->numab_state->next_pid_reset = vma->numab_state->next_pid_reset +
3342 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3343 			vma->numab_state->access_pids[0] = READ_ONCE(vma->numab_state->access_pids[1]);
3344 			vma->numab_state->access_pids[1] = 0;
3345 		}
3346 
3347 		do {
3348 			start = max(start, vma->vm_start);
3349 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3350 			end = min(end, vma->vm_end);
3351 			nr_pte_updates = change_prot_numa(vma, start, end);
3352 
3353 			/*
3354 			 * Try to scan sysctl_numa_balancing_size worth of
3355 			 * hpages that have at least one present PTE that
3356 			 * is not already pte-numa. If the VMA contains
3357 			 * areas that are unused or already full of prot_numa
3358 			 * PTEs, scan up to virtpages, to skip through those
3359 			 * areas faster.
3360 			 */
3361 			if (nr_pte_updates)
3362 				pages -= (end - start) >> PAGE_SHIFT;
3363 			virtpages -= (end - start) >> PAGE_SHIFT;
3364 
3365 			start = end;
3366 			if (pages <= 0 || virtpages <= 0)
3367 				goto out;
3368 
3369 			cond_resched();
3370 		} while (end != vma->vm_end);
3371 	} for_each_vma(vmi, vma);
3372 
3373 out:
3374 	/*
3375 	 * It is possible to reach the end of the VMA list but the last few
3376 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3377 	 * would find the !migratable VMA on the next scan but not reset the
3378 	 * scanner to the start so check it now.
3379 	 */
3380 	if (vma)
3381 		mm->numa_scan_offset = start;
3382 	else
3383 		reset_ptenuma_scan(p);
3384 	mmap_read_unlock(mm);
3385 
3386 	/*
3387 	 * Make sure tasks use at least 32x as much time to run other code
3388 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3389 	 * Usually update_task_scan_period slows down scanning enough; on an
3390 	 * overloaded system we need to limit overhead on a per task basis.
3391 	 */
3392 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3393 		u64 diff = p->se.sum_exec_runtime - runtime;
3394 		p->node_stamp += 32 * diff;
3395 	}
3396 }
3397 
3398 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3399 {
3400 	int mm_users = 0;
3401 	struct mm_struct *mm = p->mm;
3402 
3403 	if (mm) {
3404 		mm_users = atomic_read(&mm->mm_users);
3405 		if (mm_users == 1) {
3406 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3407 			mm->numa_scan_seq = 0;
3408 		}
3409 	}
3410 	p->node_stamp			= 0;
3411 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3412 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3413 	p->numa_migrate_retry		= 0;
3414 	/* Protect against double add, see task_tick_numa and task_numa_work */
3415 	p->numa_work.next		= &p->numa_work;
3416 	p->numa_faults			= NULL;
3417 	p->numa_pages_migrated		= 0;
3418 	p->total_numa_faults		= 0;
3419 	RCU_INIT_POINTER(p->numa_group, NULL);
3420 	p->last_task_numa_placement	= 0;
3421 	p->last_sum_exec_runtime	= 0;
3422 
3423 	init_task_work(&p->numa_work, task_numa_work);
3424 
3425 	/* New address space, reset the preferred nid */
3426 	if (!(clone_flags & CLONE_VM)) {
3427 		p->numa_preferred_nid = NUMA_NO_NODE;
3428 		return;
3429 	}
3430 
3431 	/*
3432 	 * New thread, keep existing numa_preferred_nid which should be copied
3433 	 * already by arch_dup_task_struct but stagger when scans start.
3434 	 */
3435 	if (mm) {
3436 		unsigned int delay;
3437 
3438 		delay = min_t(unsigned int, task_scan_max(current),
3439 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3440 		delay += 2 * TICK_NSEC;
3441 		p->node_stamp = delay;
3442 	}
3443 }
3444 
3445 /*
3446  * Drive the periodic memory faults..
3447  */
3448 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3449 {
3450 	struct callback_head *work = &curr->numa_work;
3451 	u64 period, now;
3452 
3453 	/*
3454 	 * We don't care about NUMA placement if we don't have memory.
3455 	 */
3456 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3457 		return;
3458 
3459 	/*
3460 	 * Using runtime rather than walltime has the dual advantage that
3461 	 * we (mostly) drive the selection from busy threads and that the
3462 	 * task needs to have done some actual work before we bother with
3463 	 * NUMA placement.
3464 	 */
3465 	now = curr->se.sum_exec_runtime;
3466 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3467 
3468 	if (now > curr->node_stamp + period) {
3469 		if (!curr->node_stamp)
3470 			curr->numa_scan_period = task_scan_start(curr);
3471 		curr->node_stamp += period;
3472 
3473 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3474 			task_work_add(curr, work, TWA_RESUME);
3475 	}
3476 }
3477 
3478 static void update_scan_period(struct task_struct *p, int new_cpu)
3479 {
3480 	int src_nid = cpu_to_node(task_cpu(p));
3481 	int dst_nid = cpu_to_node(new_cpu);
3482 
3483 	if (!static_branch_likely(&sched_numa_balancing))
3484 		return;
3485 
3486 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3487 		return;
3488 
3489 	if (src_nid == dst_nid)
3490 		return;
3491 
3492 	/*
3493 	 * Allow resets if faults have been trapped before one scan
3494 	 * has completed. This is most likely due to a new task that
3495 	 * is pulled cross-node due to wakeups or load balancing.
3496 	 */
3497 	if (p->numa_scan_seq) {
3498 		/*
3499 		 * Avoid scan adjustments if moving to the preferred
3500 		 * node or if the task was not previously running on
3501 		 * the preferred node.
3502 		 */
3503 		if (dst_nid == p->numa_preferred_nid ||
3504 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3505 			src_nid != p->numa_preferred_nid))
3506 			return;
3507 	}
3508 
3509 	p->numa_scan_period = task_scan_start(p);
3510 }
3511 
3512 #else
3513 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3514 {
3515 }
3516 
3517 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3518 {
3519 }
3520 
3521 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3522 {
3523 }
3524 
3525 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3526 {
3527 }
3528 
3529 #endif /* CONFIG_NUMA_BALANCING */
3530 
3531 static void
3532 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3533 {
3534 	update_load_add(&cfs_rq->load, se->load.weight);
3535 #ifdef CONFIG_SMP
3536 	if (entity_is_task(se)) {
3537 		struct rq *rq = rq_of(cfs_rq);
3538 
3539 		account_numa_enqueue(rq, task_of(se));
3540 		list_add(&se->group_node, &rq->cfs_tasks);
3541 	}
3542 #endif
3543 	cfs_rq->nr_running++;
3544 	if (se_is_idle(se))
3545 		cfs_rq->idle_nr_running++;
3546 }
3547 
3548 static void
3549 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3550 {
3551 	update_load_sub(&cfs_rq->load, se->load.weight);
3552 #ifdef CONFIG_SMP
3553 	if (entity_is_task(se)) {
3554 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3555 		list_del_init(&se->group_node);
3556 	}
3557 #endif
3558 	cfs_rq->nr_running--;
3559 	if (se_is_idle(se))
3560 		cfs_rq->idle_nr_running--;
3561 }
3562 
3563 /*
3564  * Signed add and clamp on underflow.
3565  *
3566  * Explicitly do a load-store to ensure the intermediate value never hits
3567  * memory. This allows lockless observations without ever seeing the negative
3568  * values.
3569  */
3570 #define add_positive(_ptr, _val) do {                           \
3571 	typeof(_ptr) ptr = (_ptr);                              \
3572 	typeof(_val) val = (_val);                              \
3573 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3574 								\
3575 	res = var + val;                                        \
3576 								\
3577 	if (val < 0 && res > var)                               \
3578 		res = 0;                                        \
3579 								\
3580 	WRITE_ONCE(*ptr, res);                                  \
3581 } while (0)
3582 
3583 /*
3584  * Unsigned subtract and clamp on underflow.
3585  *
3586  * Explicitly do a load-store to ensure the intermediate value never hits
3587  * memory. This allows lockless observations without ever seeing the negative
3588  * values.
3589  */
3590 #define sub_positive(_ptr, _val) do {				\
3591 	typeof(_ptr) ptr = (_ptr);				\
3592 	typeof(*ptr) val = (_val);				\
3593 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3594 	res = var - val;					\
3595 	if (res > var)						\
3596 		res = 0;					\
3597 	WRITE_ONCE(*ptr, res);					\
3598 } while (0)
3599 
3600 /*
3601  * Remove and clamp on negative, from a local variable.
3602  *
3603  * A variant of sub_positive(), which does not use explicit load-store
3604  * and is thus optimized for local variable updates.
3605  */
3606 #define lsub_positive(_ptr, _val) do {				\
3607 	typeof(_ptr) ptr = (_ptr);				\
3608 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3609 } while (0)
3610 
3611 #ifdef CONFIG_SMP
3612 static inline void
3613 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3614 {
3615 	cfs_rq->avg.load_avg += se->avg.load_avg;
3616 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3617 }
3618 
3619 static inline void
3620 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3621 {
3622 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3623 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3624 	/* See update_cfs_rq_load_avg() */
3625 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3626 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3627 }
3628 #else
3629 static inline void
3630 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3631 static inline void
3632 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3633 #endif
3634 
3635 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3636 			   unsigned long weight)
3637 {
3638 	unsigned long old_weight = se->load.weight;
3639 	s64 vlag, vslice;
3640 
3641 	/*
3642 	 * VRUNTIME
3643 	 * ========
3644 	 *
3645 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3646 	 * adjusted if re-weight at !0-lag point.
3647 	 *
3648 	 * Proof: For contradiction assume this is not true, so we can
3649 	 * re-weight without changing vruntime at !0-lag point.
3650 	 *
3651 	 *             Weight	VRuntime   Avg-VRuntime
3652 	 *     before    w          v            V
3653 	 *      after    w'         v'           V'
3654 	 *
3655 	 * Since lag needs to be preserved through re-weight:
3656 	 *
3657 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3658 	 *	==>	V' = (V - v)*w/w' + v		(1)
3659 	 *
3660 	 * Let W be the total weight of the entities before reweight,
3661 	 * since V' is the new weighted average of entities:
3662 	 *
3663 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3664 	 *
3665 	 * by using (1) & (2) we obtain:
3666 	 *
3667 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3668 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3669 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3670 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3671 	 *
3672 	 * Since we are doing at !0-lag point which means V != v, we
3673 	 * can simplify (3):
3674 	 *
3675 	 *	==>	W / (W + w' - w) = w / w'
3676 	 *	==>	Ww' = Ww + ww' - ww
3677 	 *	==>	W * (w' - w) = w * (w' - w)
3678 	 *	==>	W = w	(re-weight indicates w' != w)
3679 	 *
3680 	 * So the cfs_rq contains only one entity, hence vruntime of
3681 	 * the entity @v should always equal to the cfs_rq's weighted
3682 	 * average vruntime @V, which means we will always re-weight
3683 	 * at 0-lag point, thus breach assumption. Proof completed.
3684 	 *
3685 	 *
3686 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3687 	 * vruntime of all the entities.
3688 	 *
3689 	 * Proof: According to corollary #1, Eq. (1) should be:
3690 	 *
3691 	 *	(V - v)*w = (V' - v')*w'
3692 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3693 	 *
3694 	 * According to the weighted average formula, we have:
3695 	 *
3696 	 *	V' = (WV - wv + w'v') / (W - w + w')
3697 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3698 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3699 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3700 	 *
3701 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3702 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3703 	 *
3704 	 * If the entity is the only one in the cfs_rq, then reweight
3705 	 * always occurs at 0-lag point, so V won't change. Or else
3706 	 * there are other entities, hence W != w, then Eq. (5) turns
3707 	 * into V' = V. So V won't change in either case, proof done.
3708 	 *
3709 	 *
3710 	 * So according to corollary #1 & #2, the effect of re-weight
3711 	 * on vruntime should be:
3712 	 *
3713 	 *	v' = V' - (V - v) * w / w'		(4)
3714 	 *	   = V  - (V - v) * w / w'
3715 	 *	   = V  - vl * w / w'
3716 	 *	   = V  - vl'
3717 	 */
3718 	if (avruntime != se->vruntime) {
3719 		vlag = entity_lag(avruntime, se);
3720 		vlag = div_s64(vlag * old_weight, weight);
3721 		se->vruntime = avruntime - vlag;
3722 	}
3723 
3724 	/*
3725 	 * DEADLINE
3726 	 * ========
3727 	 *
3728 	 * When the weight changes, the virtual time slope changes and
3729 	 * we should adjust the relative virtual deadline accordingly.
3730 	 *
3731 	 *	d' = v' + (d - v)*w/w'
3732 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3733 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3734 	 *	   = V  + (d - V)*w/w'
3735 	 */
3736 	vslice = (s64)(se->deadline - avruntime);
3737 	vslice = div_s64(vslice * old_weight, weight);
3738 	se->deadline = avruntime + vslice;
3739 }
3740 
3741 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3742 			    unsigned long weight)
3743 {
3744 	bool curr = cfs_rq->curr == se;
3745 	u64 avruntime;
3746 
3747 	if (se->on_rq) {
3748 		/* commit outstanding execution time */
3749 		update_curr(cfs_rq);
3750 		avruntime = avg_vruntime(cfs_rq);
3751 		if (!curr)
3752 			__dequeue_entity(cfs_rq, se);
3753 		update_load_sub(&cfs_rq->load, se->load.weight);
3754 	}
3755 	dequeue_load_avg(cfs_rq, se);
3756 
3757 	if (se->on_rq) {
3758 		reweight_eevdf(se, avruntime, weight);
3759 	} else {
3760 		/*
3761 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3762 		 * we need to scale se->vlag when w_i changes.
3763 		 */
3764 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3765 	}
3766 
3767 	update_load_set(&se->load, weight);
3768 
3769 #ifdef CONFIG_SMP
3770 	do {
3771 		u32 divider = get_pelt_divider(&se->avg);
3772 
3773 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3774 	} while (0);
3775 #endif
3776 
3777 	enqueue_load_avg(cfs_rq, se);
3778 	if (se->on_rq) {
3779 		update_load_add(&cfs_rq->load, se->load.weight);
3780 		if (!curr)
3781 			__enqueue_entity(cfs_rq, se);
3782 
3783 		/*
3784 		 * The entity's vruntime has been adjusted, so let's check
3785 		 * whether the rq-wide min_vruntime needs updated too. Since
3786 		 * the calculations above require stable min_vruntime rather
3787 		 * than up-to-date one, we do the update at the end of the
3788 		 * reweight process.
3789 		 */
3790 		update_min_vruntime(cfs_rq);
3791 	}
3792 }
3793 
3794 void reweight_task(struct task_struct *p, int prio)
3795 {
3796 	struct sched_entity *se = &p->se;
3797 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3798 	struct load_weight *load = &se->load;
3799 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3800 
3801 	reweight_entity(cfs_rq, se, weight);
3802 	load->inv_weight = sched_prio_to_wmult[prio];
3803 }
3804 
3805 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3806 
3807 #ifdef CONFIG_FAIR_GROUP_SCHED
3808 #ifdef CONFIG_SMP
3809 /*
3810  * All this does is approximate the hierarchical proportion which includes that
3811  * global sum we all love to hate.
3812  *
3813  * That is, the weight of a group entity, is the proportional share of the
3814  * group weight based on the group runqueue weights. That is:
3815  *
3816  *                     tg->weight * grq->load.weight
3817  *   ge->load.weight = -----------------------------               (1)
3818  *                       \Sum grq->load.weight
3819  *
3820  * Now, because computing that sum is prohibitively expensive to compute (been
3821  * there, done that) we approximate it with this average stuff. The average
3822  * moves slower and therefore the approximation is cheaper and more stable.
3823  *
3824  * So instead of the above, we substitute:
3825  *
3826  *   grq->load.weight -> grq->avg.load_avg                         (2)
3827  *
3828  * which yields the following:
3829  *
3830  *                     tg->weight * grq->avg.load_avg
3831  *   ge->load.weight = ------------------------------              (3)
3832  *                             tg->load_avg
3833  *
3834  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3835  *
3836  * That is shares_avg, and it is right (given the approximation (2)).
3837  *
3838  * The problem with it is that because the average is slow -- it was designed
3839  * to be exactly that of course -- this leads to transients in boundary
3840  * conditions. In specific, the case where the group was idle and we start the
3841  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3842  * yielding bad latency etc..
3843  *
3844  * Now, in that special case (1) reduces to:
3845  *
3846  *                     tg->weight * grq->load.weight
3847  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3848  *                         grp->load.weight
3849  *
3850  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3851  *
3852  * So what we do is modify our approximation (3) to approach (4) in the (near)
3853  * UP case, like:
3854  *
3855  *   ge->load.weight =
3856  *
3857  *              tg->weight * grq->load.weight
3858  *     ---------------------------------------------------         (5)
3859  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3860  *
3861  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3862  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3863  *
3864  *
3865  *                     tg->weight * grq->load.weight
3866  *   ge->load.weight = -----------------------------		   (6)
3867  *                             tg_load_avg'
3868  *
3869  * Where:
3870  *
3871  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3872  *                  max(grq->load.weight, grq->avg.load_avg)
3873  *
3874  * And that is shares_weight and is icky. In the (near) UP case it approaches
3875  * (4) while in the normal case it approaches (3). It consistently
3876  * overestimates the ge->load.weight and therefore:
3877  *
3878  *   \Sum ge->load.weight >= tg->weight
3879  *
3880  * hence icky!
3881  */
3882 static long calc_group_shares(struct cfs_rq *cfs_rq)
3883 {
3884 	long tg_weight, tg_shares, load, shares;
3885 	struct task_group *tg = cfs_rq->tg;
3886 
3887 	tg_shares = READ_ONCE(tg->shares);
3888 
3889 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3890 
3891 	tg_weight = atomic_long_read(&tg->load_avg);
3892 
3893 	/* Ensure tg_weight >= load */
3894 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3895 	tg_weight += load;
3896 
3897 	shares = (tg_shares * load);
3898 	if (tg_weight)
3899 		shares /= tg_weight;
3900 
3901 	/*
3902 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3903 	 * of a group with small tg->shares value. It is a floor value which is
3904 	 * assigned as a minimum load.weight to the sched_entity representing
3905 	 * the group on a CPU.
3906 	 *
3907 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3908 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3909 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3910 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3911 	 * instead of 0.
3912 	 */
3913 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3914 }
3915 #endif /* CONFIG_SMP */
3916 
3917 /*
3918  * Recomputes the group entity based on the current state of its group
3919  * runqueue.
3920  */
3921 static void update_cfs_group(struct sched_entity *se)
3922 {
3923 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3924 	long shares;
3925 
3926 	if (!gcfs_rq)
3927 		return;
3928 
3929 	if (throttled_hierarchy(gcfs_rq))
3930 		return;
3931 
3932 #ifndef CONFIG_SMP
3933 	shares = READ_ONCE(gcfs_rq->tg->shares);
3934 #else
3935 	shares = calc_group_shares(gcfs_rq);
3936 #endif
3937 	if (unlikely(se->load.weight != shares))
3938 		reweight_entity(cfs_rq_of(se), se, shares);
3939 }
3940 
3941 #else /* CONFIG_FAIR_GROUP_SCHED */
3942 static inline void update_cfs_group(struct sched_entity *se)
3943 {
3944 }
3945 #endif /* CONFIG_FAIR_GROUP_SCHED */
3946 
3947 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3948 {
3949 	struct rq *rq = rq_of(cfs_rq);
3950 
3951 	if (&rq->cfs == cfs_rq) {
3952 		/*
3953 		 * There are a few boundary cases this might miss but it should
3954 		 * get called often enough that that should (hopefully) not be
3955 		 * a real problem.
3956 		 *
3957 		 * It will not get called when we go idle, because the idle
3958 		 * thread is a different class (!fair), nor will the utilization
3959 		 * number include things like RT tasks.
3960 		 *
3961 		 * As is, the util number is not freq-invariant (we'd have to
3962 		 * implement arch_scale_freq_capacity() for that).
3963 		 *
3964 		 * See cpu_util_cfs().
3965 		 */
3966 		cpufreq_update_util(rq, flags);
3967 	}
3968 }
3969 
3970 #ifdef CONFIG_SMP
3971 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3972 {
3973 	if (sa->load_sum)
3974 		return false;
3975 
3976 	if (sa->util_sum)
3977 		return false;
3978 
3979 	if (sa->runnable_sum)
3980 		return false;
3981 
3982 	/*
3983 	 * _avg must be null when _sum are null because _avg = _sum / divider
3984 	 * Make sure that rounding and/or propagation of PELT values never
3985 	 * break this.
3986 	 */
3987 	SCHED_WARN_ON(sa->load_avg ||
3988 		      sa->util_avg ||
3989 		      sa->runnable_avg);
3990 
3991 	return true;
3992 }
3993 
3994 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3995 {
3996 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
3997 				 cfs_rq->last_update_time_copy);
3998 }
3999 #ifdef CONFIG_FAIR_GROUP_SCHED
4000 /*
4001  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4002  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4003  * bottom-up, we only have to test whether the cfs_rq before us on the list
4004  * is our child.
4005  * If cfs_rq is not on the list, test whether a child needs its to be added to
4006  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4007  */
4008 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4009 {
4010 	struct cfs_rq *prev_cfs_rq;
4011 	struct list_head *prev;
4012 
4013 	if (cfs_rq->on_list) {
4014 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4015 	} else {
4016 		struct rq *rq = rq_of(cfs_rq);
4017 
4018 		prev = rq->tmp_alone_branch;
4019 	}
4020 
4021 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4022 
4023 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4024 }
4025 
4026 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4027 {
4028 	if (cfs_rq->load.weight)
4029 		return false;
4030 
4031 	if (!load_avg_is_decayed(&cfs_rq->avg))
4032 		return false;
4033 
4034 	if (child_cfs_rq_on_list(cfs_rq))
4035 		return false;
4036 
4037 	return true;
4038 }
4039 
4040 /**
4041  * update_tg_load_avg - update the tg's load avg
4042  * @cfs_rq: the cfs_rq whose avg changed
4043  *
4044  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4045  * However, because tg->load_avg is a global value there are performance
4046  * considerations.
4047  *
4048  * In order to avoid having to look at the other cfs_rq's, we use a
4049  * differential update where we store the last value we propagated. This in
4050  * turn allows skipping updates if the differential is 'small'.
4051  *
4052  * Updating tg's load_avg is necessary before update_cfs_share().
4053  */
4054 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4055 {
4056 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4057 
4058 	/*
4059 	 * No need to update load_avg for root_task_group as it is not used.
4060 	 */
4061 	if (cfs_rq->tg == &root_task_group)
4062 		return;
4063 
4064 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4065 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4066 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4067 	}
4068 }
4069 
4070 /*
4071  * Called within set_task_rq() right before setting a task's CPU. The
4072  * caller only guarantees p->pi_lock is held; no other assumptions,
4073  * including the state of rq->lock, should be made.
4074  */
4075 void set_task_rq_fair(struct sched_entity *se,
4076 		      struct cfs_rq *prev, struct cfs_rq *next)
4077 {
4078 	u64 p_last_update_time;
4079 	u64 n_last_update_time;
4080 
4081 	if (!sched_feat(ATTACH_AGE_LOAD))
4082 		return;
4083 
4084 	/*
4085 	 * We are supposed to update the task to "current" time, then its up to
4086 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4087 	 * getting what current time is, so simply throw away the out-of-date
4088 	 * time. This will result in the wakee task is less decayed, but giving
4089 	 * the wakee more load sounds not bad.
4090 	 */
4091 	if (!(se->avg.last_update_time && prev))
4092 		return;
4093 
4094 	p_last_update_time = cfs_rq_last_update_time(prev);
4095 	n_last_update_time = cfs_rq_last_update_time(next);
4096 
4097 	__update_load_avg_blocked_se(p_last_update_time, se);
4098 	se->avg.last_update_time = n_last_update_time;
4099 }
4100 
4101 /*
4102  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4103  * propagate its contribution. The key to this propagation is the invariant
4104  * that for each group:
4105  *
4106  *   ge->avg == grq->avg						(1)
4107  *
4108  * _IFF_ we look at the pure running and runnable sums. Because they
4109  * represent the very same entity, just at different points in the hierarchy.
4110  *
4111  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4112  * and simply copies the running/runnable sum over (but still wrong, because
4113  * the group entity and group rq do not have their PELT windows aligned).
4114  *
4115  * However, update_tg_cfs_load() is more complex. So we have:
4116  *
4117  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4118  *
4119  * And since, like util, the runnable part should be directly transferable,
4120  * the following would _appear_ to be the straight forward approach:
4121  *
4122  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4123  *
4124  * And per (1) we have:
4125  *
4126  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4127  *
4128  * Which gives:
4129  *
4130  *                      ge->load.weight * grq->avg.load_avg
4131  *   ge->avg.load_avg = -----------------------------------		(4)
4132  *                               grq->load.weight
4133  *
4134  * Except that is wrong!
4135  *
4136  * Because while for entities historical weight is not important and we
4137  * really only care about our future and therefore can consider a pure
4138  * runnable sum, runqueues can NOT do this.
4139  *
4140  * We specifically want runqueues to have a load_avg that includes
4141  * historical weights. Those represent the blocked load, the load we expect
4142  * to (shortly) return to us. This only works by keeping the weights as
4143  * integral part of the sum. We therefore cannot decompose as per (3).
4144  *
4145  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4146  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4147  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4148  * runnable section of these tasks overlap (or not). If they were to perfectly
4149  * align the rq as a whole would be runnable 2/3 of the time. If however we
4150  * always have at least 1 runnable task, the rq as a whole is always runnable.
4151  *
4152  * So we'll have to approximate.. :/
4153  *
4154  * Given the constraint:
4155  *
4156  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4157  *
4158  * We can construct a rule that adds runnable to a rq by assuming minimal
4159  * overlap.
4160  *
4161  * On removal, we'll assume each task is equally runnable; which yields:
4162  *
4163  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4164  *
4165  * XXX: only do this for the part of runnable > running ?
4166  *
4167  */
4168 static inline void
4169 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4170 {
4171 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4172 	u32 new_sum, divider;
4173 
4174 	/* Nothing to update */
4175 	if (!delta_avg)
4176 		return;
4177 
4178 	/*
4179 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4180 	 * See ___update_load_avg() for details.
4181 	 */
4182 	divider = get_pelt_divider(&cfs_rq->avg);
4183 
4184 
4185 	/* Set new sched_entity's utilization */
4186 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4187 	new_sum = se->avg.util_avg * divider;
4188 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4189 	se->avg.util_sum = new_sum;
4190 
4191 	/* Update parent cfs_rq utilization */
4192 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4193 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4194 
4195 	/* See update_cfs_rq_load_avg() */
4196 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4197 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4198 }
4199 
4200 static inline void
4201 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4202 {
4203 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4204 	u32 new_sum, divider;
4205 
4206 	/* Nothing to update */
4207 	if (!delta_avg)
4208 		return;
4209 
4210 	/*
4211 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4212 	 * See ___update_load_avg() for details.
4213 	 */
4214 	divider = get_pelt_divider(&cfs_rq->avg);
4215 
4216 	/* Set new sched_entity's runnable */
4217 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4218 	new_sum = se->avg.runnable_avg * divider;
4219 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4220 	se->avg.runnable_sum = new_sum;
4221 
4222 	/* Update parent cfs_rq runnable */
4223 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4224 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4225 	/* See update_cfs_rq_load_avg() */
4226 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4227 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4228 }
4229 
4230 static inline void
4231 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4232 {
4233 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4234 	unsigned long load_avg;
4235 	u64 load_sum = 0;
4236 	s64 delta_sum;
4237 	u32 divider;
4238 
4239 	if (!runnable_sum)
4240 		return;
4241 
4242 	gcfs_rq->prop_runnable_sum = 0;
4243 
4244 	/*
4245 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4246 	 * See ___update_load_avg() for details.
4247 	 */
4248 	divider = get_pelt_divider(&cfs_rq->avg);
4249 
4250 	if (runnable_sum >= 0) {
4251 		/*
4252 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4253 		 * the CPU is saturated running == runnable.
4254 		 */
4255 		runnable_sum += se->avg.load_sum;
4256 		runnable_sum = min_t(long, runnable_sum, divider);
4257 	} else {
4258 		/*
4259 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4260 		 * assuming all tasks are equally runnable.
4261 		 */
4262 		if (scale_load_down(gcfs_rq->load.weight)) {
4263 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4264 				scale_load_down(gcfs_rq->load.weight));
4265 		}
4266 
4267 		/* But make sure to not inflate se's runnable */
4268 		runnable_sum = min(se->avg.load_sum, load_sum);
4269 	}
4270 
4271 	/*
4272 	 * runnable_sum can't be lower than running_sum
4273 	 * Rescale running sum to be in the same range as runnable sum
4274 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4275 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4276 	 */
4277 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4278 	runnable_sum = max(runnable_sum, running_sum);
4279 
4280 	load_sum = se_weight(se) * runnable_sum;
4281 	load_avg = div_u64(load_sum, divider);
4282 
4283 	delta_avg = load_avg - se->avg.load_avg;
4284 	if (!delta_avg)
4285 		return;
4286 
4287 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4288 
4289 	se->avg.load_sum = runnable_sum;
4290 	se->avg.load_avg = load_avg;
4291 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4292 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4293 	/* See update_cfs_rq_load_avg() */
4294 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4295 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4296 }
4297 
4298 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4299 {
4300 	cfs_rq->propagate = 1;
4301 	cfs_rq->prop_runnable_sum += runnable_sum;
4302 }
4303 
4304 /* Update task and its cfs_rq load average */
4305 static inline int propagate_entity_load_avg(struct sched_entity *se)
4306 {
4307 	struct cfs_rq *cfs_rq, *gcfs_rq;
4308 
4309 	if (entity_is_task(se))
4310 		return 0;
4311 
4312 	gcfs_rq = group_cfs_rq(se);
4313 	if (!gcfs_rq->propagate)
4314 		return 0;
4315 
4316 	gcfs_rq->propagate = 0;
4317 
4318 	cfs_rq = cfs_rq_of(se);
4319 
4320 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4321 
4322 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4323 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4324 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4325 
4326 	trace_pelt_cfs_tp(cfs_rq);
4327 	trace_pelt_se_tp(se);
4328 
4329 	return 1;
4330 }
4331 
4332 /*
4333  * Check if we need to update the load and the utilization of a blocked
4334  * group_entity:
4335  */
4336 static inline bool skip_blocked_update(struct sched_entity *se)
4337 {
4338 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4339 
4340 	/*
4341 	 * If sched_entity still have not zero load or utilization, we have to
4342 	 * decay it:
4343 	 */
4344 	if (se->avg.load_avg || se->avg.util_avg)
4345 		return false;
4346 
4347 	/*
4348 	 * If there is a pending propagation, we have to update the load and
4349 	 * the utilization of the sched_entity:
4350 	 */
4351 	if (gcfs_rq->propagate)
4352 		return false;
4353 
4354 	/*
4355 	 * Otherwise, the load and the utilization of the sched_entity is
4356 	 * already zero and there is no pending propagation, so it will be a
4357 	 * waste of time to try to decay it:
4358 	 */
4359 	return true;
4360 }
4361 
4362 #else /* CONFIG_FAIR_GROUP_SCHED */
4363 
4364 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4365 
4366 static inline int propagate_entity_load_avg(struct sched_entity *se)
4367 {
4368 	return 0;
4369 }
4370 
4371 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4372 
4373 #endif /* CONFIG_FAIR_GROUP_SCHED */
4374 
4375 #ifdef CONFIG_NO_HZ_COMMON
4376 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4377 {
4378 	u64 throttled = 0, now, lut;
4379 	struct cfs_rq *cfs_rq;
4380 	struct rq *rq;
4381 	bool is_idle;
4382 
4383 	if (load_avg_is_decayed(&se->avg))
4384 		return;
4385 
4386 	cfs_rq = cfs_rq_of(se);
4387 	rq = rq_of(cfs_rq);
4388 
4389 	rcu_read_lock();
4390 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4391 	rcu_read_unlock();
4392 
4393 	/*
4394 	 * The lag estimation comes with a cost we don't want to pay all the
4395 	 * time. Hence, limiting to the case where the source CPU is idle and
4396 	 * we know we are at the greatest risk to have an outdated clock.
4397 	 */
4398 	if (!is_idle)
4399 		return;
4400 
4401 	/*
4402 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4403 	 *
4404 	 *   last_update_time (the cfs_rq's last_update_time)
4405 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4406 	 *      = rq_clock_pelt()@cfs_rq_idle
4407 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4408 	 *
4409 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4410 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4411 	 *
4412 	 *   rq_idle_lag (delta between now and rq's update)
4413 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4414 	 *
4415 	 * We can then write:
4416 	 *
4417 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4418 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4419 	 * Where:
4420 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4421 	 *      rq_clock()@rq_idle      is rq->clock_idle
4422 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4423 	 *                              is cfs_rq->throttled_pelt_idle
4424 	 */
4425 
4426 #ifdef CONFIG_CFS_BANDWIDTH
4427 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4428 	/* The clock has been stopped for throttling */
4429 	if (throttled == U64_MAX)
4430 		return;
4431 #endif
4432 	now = u64_u32_load(rq->clock_pelt_idle);
4433 	/*
4434 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4435 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4436 	 * which lead to an underestimation. The opposite would lead to an
4437 	 * overestimation.
4438 	 */
4439 	smp_rmb();
4440 	lut = cfs_rq_last_update_time(cfs_rq);
4441 
4442 	now -= throttled;
4443 	if (now < lut)
4444 		/*
4445 		 * cfs_rq->avg.last_update_time is more recent than our
4446 		 * estimation, let's use it.
4447 		 */
4448 		now = lut;
4449 	else
4450 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4451 
4452 	__update_load_avg_blocked_se(now, se);
4453 }
4454 #else
4455 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4456 #endif
4457 
4458 /**
4459  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4460  * @now: current time, as per cfs_rq_clock_pelt()
4461  * @cfs_rq: cfs_rq to update
4462  *
4463  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4464  * avg. The immediate corollary is that all (fair) tasks must be attached.
4465  *
4466  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4467  *
4468  * Return: true if the load decayed or we removed load.
4469  *
4470  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4471  * call update_tg_load_avg() when this function returns true.
4472  */
4473 static inline int
4474 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4475 {
4476 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4477 	struct sched_avg *sa = &cfs_rq->avg;
4478 	int decayed = 0;
4479 
4480 	if (cfs_rq->removed.nr) {
4481 		unsigned long r;
4482 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4483 
4484 		raw_spin_lock(&cfs_rq->removed.lock);
4485 		swap(cfs_rq->removed.util_avg, removed_util);
4486 		swap(cfs_rq->removed.load_avg, removed_load);
4487 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4488 		cfs_rq->removed.nr = 0;
4489 		raw_spin_unlock(&cfs_rq->removed.lock);
4490 
4491 		r = removed_load;
4492 		sub_positive(&sa->load_avg, r);
4493 		sub_positive(&sa->load_sum, r * divider);
4494 		/* See sa->util_sum below */
4495 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4496 
4497 		r = removed_util;
4498 		sub_positive(&sa->util_avg, r);
4499 		sub_positive(&sa->util_sum, r * divider);
4500 		/*
4501 		 * Because of rounding, se->util_sum might ends up being +1 more than
4502 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4503 		 * a lot of tasks with the rounding problem between 2 updates of
4504 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4505 		 * cfs_util_avg is not.
4506 		 * Check that util_sum is still above its lower bound for the new
4507 		 * util_avg. Given that period_contrib might have moved since the last
4508 		 * sync, we are only sure that util_sum must be above or equal to
4509 		 *    util_avg * minimum possible divider
4510 		 */
4511 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4512 
4513 		r = removed_runnable;
4514 		sub_positive(&sa->runnable_avg, r);
4515 		sub_positive(&sa->runnable_sum, r * divider);
4516 		/* See sa->util_sum above */
4517 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4518 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4519 
4520 		/*
4521 		 * removed_runnable is the unweighted version of removed_load so we
4522 		 * can use it to estimate removed_load_sum.
4523 		 */
4524 		add_tg_cfs_propagate(cfs_rq,
4525 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4526 
4527 		decayed = 1;
4528 	}
4529 
4530 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4531 	u64_u32_store_copy(sa->last_update_time,
4532 			   cfs_rq->last_update_time_copy,
4533 			   sa->last_update_time);
4534 	return decayed;
4535 }
4536 
4537 /**
4538  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4539  * @cfs_rq: cfs_rq to attach to
4540  * @se: sched_entity to attach
4541  *
4542  * Must call update_cfs_rq_load_avg() before this, since we rely on
4543  * cfs_rq->avg.last_update_time being current.
4544  */
4545 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4546 {
4547 	/*
4548 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4549 	 * See ___update_load_avg() for details.
4550 	 */
4551 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4552 
4553 	/*
4554 	 * When we attach the @se to the @cfs_rq, we must align the decay
4555 	 * window because without that, really weird and wonderful things can
4556 	 * happen.
4557 	 *
4558 	 * XXX illustrate
4559 	 */
4560 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4561 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4562 
4563 	/*
4564 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4565 	 * period_contrib. This isn't strictly correct, but since we're
4566 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4567 	 * _sum a little.
4568 	 */
4569 	se->avg.util_sum = se->avg.util_avg * divider;
4570 
4571 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4572 
4573 	se->avg.load_sum = se->avg.load_avg * divider;
4574 	if (se_weight(se) < se->avg.load_sum)
4575 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4576 	else
4577 		se->avg.load_sum = 1;
4578 
4579 	enqueue_load_avg(cfs_rq, se);
4580 	cfs_rq->avg.util_avg += se->avg.util_avg;
4581 	cfs_rq->avg.util_sum += se->avg.util_sum;
4582 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4583 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4584 
4585 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4586 
4587 	cfs_rq_util_change(cfs_rq, 0);
4588 
4589 	trace_pelt_cfs_tp(cfs_rq);
4590 }
4591 
4592 /**
4593  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4594  * @cfs_rq: cfs_rq to detach from
4595  * @se: sched_entity to detach
4596  *
4597  * Must call update_cfs_rq_load_avg() before this, since we rely on
4598  * cfs_rq->avg.last_update_time being current.
4599  */
4600 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4601 {
4602 	dequeue_load_avg(cfs_rq, se);
4603 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4604 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4605 	/* See update_cfs_rq_load_avg() */
4606 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4607 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4608 
4609 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4610 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4611 	/* See update_cfs_rq_load_avg() */
4612 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4613 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4614 
4615 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4616 
4617 	cfs_rq_util_change(cfs_rq, 0);
4618 
4619 	trace_pelt_cfs_tp(cfs_rq);
4620 }
4621 
4622 /*
4623  * Optional action to be done while updating the load average
4624  */
4625 #define UPDATE_TG	0x1
4626 #define SKIP_AGE_LOAD	0x2
4627 #define DO_ATTACH	0x4
4628 #define DO_DETACH	0x8
4629 
4630 /* Update task and its cfs_rq load average */
4631 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4632 {
4633 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4634 	int decayed;
4635 
4636 	/*
4637 	 * Track task load average for carrying it to new CPU after migrated, and
4638 	 * track group sched_entity load average for task_h_load calc in migration
4639 	 */
4640 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4641 		__update_load_avg_se(now, cfs_rq, se);
4642 
4643 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4644 	decayed |= propagate_entity_load_avg(se);
4645 
4646 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4647 
4648 		/*
4649 		 * DO_ATTACH means we're here from enqueue_entity().
4650 		 * !last_update_time means we've passed through
4651 		 * migrate_task_rq_fair() indicating we migrated.
4652 		 *
4653 		 * IOW we're enqueueing a task on a new CPU.
4654 		 */
4655 		attach_entity_load_avg(cfs_rq, se);
4656 		update_tg_load_avg(cfs_rq);
4657 
4658 	} else if (flags & DO_DETACH) {
4659 		/*
4660 		 * DO_DETACH means we're here from dequeue_entity()
4661 		 * and we are migrating task out of the CPU.
4662 		 */
4663 		detach_entity_load_avg(cfs_rq, se);
4664 		update_tg_load_avg(cfs_rq);
4665 	} else if (decayed) {
4666 		cfs_rq_util_change(cfs_rq, 0);
4667 
4668 		if (flags & UPDATE_TG)
4669 			update_tg_load_avg(cfs_rq);
4670 	}
4671 }
4672 
4673 /*
4674  * Synchronize entity load avg of dequeued entity without locking
4675  * the previous rq.
4676  */
4677 static void sync_entity_load_avg(struct sched_entity *se)
4678 {
4679 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4680 	u64 last_update_time;
4681 
4682 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4683 	__update_load_avg_blocked_se(last_update_time, se);
4684 }
4685 
4686 /*
4687  * Task first catches up with cfs_rq, and then subtract
4688  * itself from the cfs_rq (task must be off the queue now).
4689  */
4690 static void remove_entity_load_avg(struct sched_entity *se)
4691 {
4692 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4693 	unsigned long flags;
4694 
4695 	/*
4696 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4697 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4698 	 * so we can remove unconditionally.
4699 	 */
4700 
4701 	sync_entity_load_avg(se);
4702 
4703 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4704 	++cfs_rq->removed.nr;
4705 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4706 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4707 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4708 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4709 }
4710 
4711 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4712 {
4713 	return cfs_rq->avg.runnable_avg;
4714 }
4715 
4716 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4717 {
4718 	return cfs_rq->avg.load_avg;
4719 }
4720 
4721 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4722 
4723 static inline unsigned long task_util(struct task_struct *p)
4724 {
4725 	return READ_ONCE(p->se.avg.util_avg);
4726 }
4727 
4728 static inline unsigned long _task_util_est(struct task_struct *p)
4729 {
4730 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4731 
4732 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4733 }
4734 
4735 static inline unsigned long task_util_est(struct task_struct *p)
4736 {
4737 	return max(task_util(p), _task_util_est(p));
4738 }
4739 
4740 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4741 				    struct task_struct *p)
4742 {
4743 	unsigned int enqueued;
4744 
4745 	if (!sched_feat(UTIL_EST))
4746 		return;
4747 
4748 	/* Update root cfs_rq's estimated utilization */
4749 	enqueued  = cfs_rq->avg.util_est.enqueued;
4750 	enqueued += _task_util_est(p);
4751 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4752 
4753 	trace_sched_util_est_cfs_tp(cfs_rq);
4754 }
4755 
4756 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4757 				    struct task_struct *p)
4758 {
4759 	unsigned int enqueued;
4760 
4761 	if (!sched_feat(UTIL_EST))
4762 		return;
4763 
4764 	/* Update root cfs_rq's estimated utilization */
4765 	enqueued  = cfs_rq->avg.util_est.enqueued;
4766 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4767 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4768 
4769 	trace_sched_util_est_cfs_tp(cfs_rq);
4770 }
4771 
4772 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4773 
4774 /*
4775  * Check if a (signed) value is within a specified (unsigned) margin,
4776  * based on the observation that:
4777  *
4778  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4779  *
4780  * NOTE: this only works when value + margin < INT_MAX.
4781  */
4782 static inline bool within_margin(int value, int margin)
4783 {
4784 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4785 }
4786 
4787 static inline void util_est_update(struct cfs_rq *cfs_rq,
4788 				   struct task_struct *p,
4789 				   bool task_sleep)
4790 {
4791 	long last_ewma_diff, last_enqueued_diff;
4792 	struct util_est ue;
4793 
4794 	if (!sched_feat(UTIL_EST))
4795 		return;
4796 
4797 	/*
4798 	 * Skip update of task's estimated utilization when the task has not
4799 	 * yet completed an activation, e.g. being migrated.
4800 	 */
4801 	if (!task_sleep)
4802 		return;
4803 
4804 	/*
4805 	 * If the PELT values haven't changed since enqueue time,
4806 	 * skip the util_est update.
4807 	 */
4808 	ue = p->se.avg.util_est;
4809 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4810 		return;
4811 
4812 	last_enqueued_diff = ue.enqueued;
4813 
4814 	/*
4815 	 * Reset EWMA on utilization increases, the moving average is used only
4816 	 * to smooth utilization decreases.
4817 	 */
4818 	ue.enqueued = task_util(p);
4819 	if (sched_feat(UTIL_EST_FASTUP)) {
4820 		if (ue.ewma < ue.enqueued) {
4821 			ue.ewma = ue.enqueued;
4822 			goto done;
4823 		}
4824 	}
4825 
4826 	/*
4827 	 * Skip update of task's estimated utilization when its members are
4828 	 * already ~1% close to its last activation value.
4829 	 */
4830 	last_ewma_diff = ue.enqueued - ue.ewma;
4831 	last_enqueued_diff -= ue.enqueued;
4832 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4833 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4834 			goto done;
4835 
4836 		return;
4837 	}
4838 
4839 	/*
4840 	 * To avoid overestimation of actual task utilization, skip updates if
4841 	 * we cannot grant there is idle time in this CPU.
4842 	 */
4843 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4844 		return;
4845 
4846 	/*
4847 	 * Update Task's estimated utilization
4848 	 *
4849 	 * When *p completes an activation we can consolidate another sample
4850 	 * of the task size. This is done by storing the current PELT value
4851 	 * as ue.enqueued and by using this value to update the Exponential
4852 	 * Weighted Moving Average (EWMA):
4853 	 *
4854 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4855 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4856 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4857 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4858 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4859 	 *
4860 	 * Where 'w' is the weight of new samples, which is configured to be
4861 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4862 	 */
4863 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4864 	ue.ewma  += last_ewma_diff;
4865 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4866 done:
4867 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4868 	WRITE_ONCE(p->se.avg.util_est, ue);
4869 
4870 	trace_sched_util_est_se_tp(&p->se);
4871 }
4872 
4873 static inline int util_fits_cpu(unsigned long util,
4874 				unsigned long uclamp_min,
4875 				unsigned long uclamp_max,
4876 				int cpu)
4877 {
4878 	unsigned long capacity_orig, capacity_orig_thermal;
4879 	unsigned long capacity = capacity_of(cpu);
4880 	bool fits, uclamp_max_fits;
4881 
4882 	/*
4883 	 * Check if the real util fits without any uclamp boost/cap applied.
4884 	 */
4885 	fits = fits_capacity(util, capacity);
4886 
4887 	if (!uclamp_is_used())
4888 		return fits;
4889 
4890 	/*
4891 	 * We must use capacity_orig_of() for comparing against uclamp_min and
4892 	 * uclamp_max. We only care about capacity pressure (by using
4893 	 * capacity_of()) for comparing against the real util.
4894 	 *
4895 	 * If a task is boosted to 1024 for example, we don't want a tiny
4896 	 * pressure to skew the check whether it fits a CPU or not.
4897 	 *
4898 	 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
4899 	 * should fit a little cpu even if there's some pressure.
4900 	 *
4901 	 * Only exception is for thermal pressure since it has a direct impact
4902 	 * on available OPP of the system.
4903 	 *
4904 	 * We honour it for uclamp_min only as a drop in performance level
4905 	 * could result in not getting the requested minimum performance level.
4906 	 *
4907 	 * For uclamp_max, we can tolerate a drop in performance level as the
4908 	 * goal is to cap the task. So it's okay if it's getting less.
4909 	 */
4910 	capacity_orig = capacity_orig_of(cpu);
4911 	capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4912 
4913 	/*
4914 	 * We want to force a task to fit a cpu as implied by uclamp_max.
4915 	 * But we do have some corner cases to cater for..
4916 	 *
4917 	 *
4918 	 *                                 C=z
4919 	 *   |                             ___
4920 	 *   |                  C=y       |   |
4921 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
4922 	 *   |      C=x        |   |      |   |
4923 	 *   |      ___        |   |      |   |
4924 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
4925 	 *   |     |   |       |   |      |   |
4926 	 *   |     |   |       |   |      |   |
4927 	 *   +----------------------------------------
4928 	 *         cpu0        cpu1       cpu2
4929 	 *
4930 	 *   In the above example if a task is capped to a specific performance
4931 	 *   point, y, then when:
4932 	 *
4933 	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
4934 	 *     to cpu1
4935 	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
4936 	 *     uclamp_max request.
4937 	 *
4938 	 *   which is what we're enforcing here. A task always fits if
4939 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
4940 	 *   the normal upmigration rules should withhold still.
4941 	 *
4942 	 *   Only exception is when we are on max capacity, then we need to be
4943 	 *   careful not to block overutilized state. This is so because:
4944 	 *
4945 	 *     1. There's no concept of capping at max_capacity! We can't go
4946 	 *        beyond this performance level anyway.
4947 	 *     2. The system is being saturated when we're operating near
4948 	 *        max capacity, it doesn't make sense to block overutilized.
4949 	 */
4950 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
4951 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
4952 	fits = fits || uclamp_max_fits;
4953 
4954 	/*
4955 	 *
4956 	 *                                 C=z
4957 	 *   |                             ___       (region a, capped, util >= uclamp_max)
4958 	 *   |                  C=y       |   |
4959 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4960 	 *   |      C=x        |   |      |   |
4961 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
4962 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
4963 	 *   |     |   |       |   |      |   |
4964 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
4965 	 *   +----------------------------------------
4966 	 *         cpu0        cpu1       cpu2
4967 	 *
4968 	 * a) If util > uclamp_max, then we're capped, we don't care about
4969 	 *    actual fitness value here. We only care if uclamp_max fits
4970 	 *    capacity without taking margin/pressure into account.
4971 	 *    See comment above.
4972 	 *
4973 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
4974 	 *    fits_capacity() rules apply. Except we need to ensure that we
4975 	 *    enforce we remain within uclamp_max, see comment above.
4976 	 *
4977 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
4978 	 *    need to take into account the boosted value fits the CPU without
4979 	 *    taking margin/pressure into account.
4980 	 *
4981 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
4982 	 * just need to consider an extra check for case (c) after ensuring we
4983 	 * handle the case uclamp_min > uclamp_max.
4984 	 */
4985 	uclamp_min = min(uclamp_min, uclamp_max);
4986 	if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
4987 		return -1;
4988 
4989 	return fits;
4990 }
4991 
4992 static inline int task_fits_cpu(struct task_struct *p, int cpu)
4993 {
4994 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
4995 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
4996 	unsigned long util = task_util_est(p);
4997 	/*
4998 	 * Return true only if the cpu fully fits the task requirements, which
4999 	 * include the utilization but also the performance hints.
5000 	 */
5001 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5002 }
5003 
5004 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5005 {
5006 	if (!sched_asym_cpucap_active())
5007 		return;
5008 
5009 	if (!p || p->nr_cpus_allowed == 1) {
5010 		rq->misfit_task_load = 0;
5011 		return;
5012 	}
5013 
5014 	if (task_fits_cpu(p, cpu_of(rq))) {
5015 		rq->misfit_task_load = 0;
5016 		return;
5017 	}
5018 
5019 	/*
5020 	 * Make sure that misfit_task_load will not be null even if
5021 	 * task_h_load() returns 0.
5022 	 */
5023 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5024 }
5025 
5026 #else /* CONFIG_SMP */
5027 
5028 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5029 {
5030 	return !cfs_rq->nr_running;
5031 }
5032 
5033 #define UPDATE_TG	0x0
5034 #define SKIP_AGE_LOAD	0x0
5035 #define DO_ATTACH	0x0
5036 #define DO_DETACH	0x0
5037 
5038 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5039 {
5040 	cfs_rq_util_change(cfs_rq, 0);
5041 }
5042 
5043 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5044 
5045 static inline void
5046 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5047 static inline void
5048 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5049 
5050 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
5051 {
5052 	return 0;
5053 }
5054 
5055 static inline void
5056 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5057 
5058 static inline void
5059 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5060 
5061 static inline void
5062 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5063 		bool task_sleep) {}
5064 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5065 
5066 #endif /* CONFIG_SMP */
5067 
5068 static void
5069 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5070 {
5071 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5072 	s64 lag = 0;
5073 
5074 	se->slice = sysctl_sched_base_slice;
5075 	vslice = calc_delta_fair(se->slice, se);
5076 
5077 	/*
5078 	 * Due to how V is constructed as the weighted average of entities,
5079 	 * adding tasks with positive lag, or removing tasks with negative lag
5080 	 * will move 'time' backwards, this can screw around with the lag of
5081 	 * other tasks.
5082 	 *
5083 	 * EEVDF: placement strategy #1 / #2
5084 	 */
5085 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5086 		struct sched_entity *curr = cfs_rq->curr;
5087 		unsigned long load;
5088 
5089 		lag = se->vlag;
5090 
5091 		/*
5092 		 * If we want to place a task and preserve lag, we have to
5093 		 * consider the effect of the new entity on the weighted
5094 		 * average and compensate for this, otherwise lag can quickly
5095 		 * evaporate.
5096 		 *
5097 		 * Lag is defined as:
5098 		 *
5099 		 *   lag_i = S - s_i = w_i * (V - v_i)
5100 		 *
5101 		 * To avoid the 'w_i' term all over the place, we only track
5102 		 * the virtual lag:
5103 		 *
5104 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5105 		 *
5106 		 * And we take V to be the weighted average of all v:
5107 		 *
5108 		 *   V = (\Sum w_j*v_j) / W
5109 		 *
5110 		 * Where W is: \Sum w_j
5111 		 *
5112 		 * Then, the weighted average after adding an entity with lag
5113 		 * vl_i is given by:
5114 		 *
5115 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5116 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5117 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5118 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5119 		 *      = V - w_i*vl_i / (W + w_i)
5120 		 *
5121 		 * And the actual lag after adding an entity with vl_i is:
5122 		 *
5123 		 *   vl'_i = V' - v_i
5124 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5125 		 *         = vl_i - w_i*vl_i / (W + w_i)
5126 		 *
5127 		 * Which is strictly less than vl_i. So in order to preserve lag
5128 		 * we should inflate the lag before placement such that the
5129 		 * effective lag after placement comes out right.
5130 		 *
5131 		 * As such, invert the above relation for vl'_i to get the vl_i
5132 		 * we need to use such that the lag after placement is the lag
5133 		 * we computed before dequeue.
5134 		 *
5135 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5136 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5137 		 *
5138 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5139 		 *                   = W*vl_i
5140 		 *
5141 		 *   vl_i = (W + w_i)*vl'_i / W
5142 		 */
5143 		load = cfs_rq->avg_load;
5144 		if (curr && curr->on_rq)
5145 			load += scale_load_down(curr->load.weight);
5146 
5147 		lag *= load + scale_load_down(se->load.weight);
5148 		if (WARN_ON_ONCE(!load))
5149 			load = 1;
5150 		lag = div_s64(lag, load);
5151 	}
5152 
5153 	se->vruntime = vruntime - lag;
5154 
5155 	/*
5156 	 * When joining the competition; the exisiting tasks will be,
5157 	 * on average, halfway through their slice, as such start tasks
5158 	 * off with half a slice to ease into the competition.
5159 	 */
5160 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5161 		vslice /= 2;
5162 
5163 	/*
5164 	 * EEVDF: vd_i = ve_i + r_i/w_i
5165 	 */
5166 	se->deadline = se->vruntime + vslice;
5167 }
5168 
5169 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5170 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5171 
5172 static inline bool cfs_bandwidth_used(void);
5173 
5174 static void
5175 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5176 {
5177 	bool curr = cfs_rq->curr == se;
5178 
5179 	/*
5180 	 * If we're the current task, we must renormalise before calling
5181 	 * update_curr().
5182 	 */
5183 	if (curr)
5184 		place_entity(cfs_rq, se, flags);
5185 
5186 	update_curr(cfs_rq);
5187 
5188 	/*
5189 	 * When enqueuing a sched_entity, we must:
5190 	 *   - Update loads to have both entity and cfs_rq synced with now.
5191 	 *   - For group_entity, update its runnable_weight to reflect the new
5192 	 *     h_nr_running of its group cfs_rq.
5193 	 *   - For group_entity, update its weight to reflect the new share of
5194 	 *     its group cfs_rq
5195 	 *   - Add its new weight to cfs_rq->load.weight
5196 	 */
5197 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5198 	se_update_runnable(se);
5199 	/*
5200 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5201 	 * but update_cfs_group() here will re-adjust the weight and have to
5202 	 * undo/redo all that. Seems wasteful.
5203 	 */
5204 	update_cfs_group(se);
5205 
5206 	/*
5207 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5208 	 * we can place the entity.
5209 	 */
5210 	if (!curr)
5211 		place_entity(cfs_rq, se, flags);
5212 
5213 	account_entity_enqueue(cfs_rq, se);
5214 
5215 	/* Entity has migrated, no longer consider this task hot */
5216 	if (flags & ENQUEUE_MIGRATED)
5217 		se->exec_start = 0;
5218 
5219 	check_schedstat_required();
5220 	update_stats_enqueue_fair(cfs_rq, se, flags);
5221 	if (!curr)
5222 		__enqueue_entity(cfs_rq, se);
5223 	se->on_rq = 1;
5224 
5225 	if (cfs_rq->nr_running == 1) {
5226 		check_enqueue_throttle(cfs_rq);
5227 		if (!throttled_hierarchy(cfs_rq)) {
5228 			list_add_leaf_cfs_rq(cfs_rq);
5229 		} else {
5230 #ifdef CONFIG_CFS_BANDWIDTH
5231 			struct rq *rq = rq_of(cfs_rq);
5232 
5233 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5234 				cfs_rq->throttled_clock = rq_clock(rq);
5235 			if (!cfs_rq->throttled_clock_self)
5236 				cfs_rq->throttled_clock_self = rq_clock(rq);
5237 #endif
5238 		}
5239 	}
5240 }
5241 
5242 static void __clear_buddies_next(struct sched_entity *se)
5243 {
5244 	for_each_sched_entity(se) {
5245 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5246 		if (cfs_rq->next != se)
5247 			break;
5248 
5249 		cfs_rq->next = NULL;
5250 	}
5251 }
5252 
5253 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5254 {
5255 	if (cfs_rq->next == se)
5256 		__clear_buddies_next(se);
5257 }
5258 
5259 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5260 
5261 static void
5262 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5263 {
5264 	int action = UPDATE_TG;
5265 
5266 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5267 		action |= DO_DETACH;
5268 
5269 	/*
5270 	 * Update run-time statistics of the 'current'.
5271 	 */
5272 	update_curr(cfs_rq);
5273 
5274 	/*
5275 	 * When dequeuing a sched_entity, we must:
5276 	 *   - Update loads to have both entity and cfs_rq synced with now.
5277 	 *   - For group_entity, update its runnable_weight to reflect the new
5278 	 *     h_nr_running of its group cfs_rq.
5279 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5280 	 *   - For group entity, update its weight to reflect the new share
5281 	 *     of its group cfs_rq.
5282 	 */
5283 	update_load_avg(cfs_rq, se, action);
5284 	se_update_runnable(se);
5285 
5286 	update_stats_dequeue_fair(cfs_rq, se, flags);
5287 
5288 	clear_buddies(cfs_rq, se);
5289 
5290 	update_entity_lag(cfs_rq, se);
5291 	if (se != cfs_rq->curr)
5292 		__dequeue_entity(cfs_rq, se);
5293 	se->on_rq = 0;
5294 	account_entity_dequeue(cfs_rq, se);
5295 
5296 	/* return excess runtime on last dequeue */
5297 	return_cfs_rq_runtime(cfs_rq);
5298 
5299 	update_cfs_group(se);
5300 
5301 	/*
5302 	 * Now advance min_vruntime if @se was the entity holding it back,
5303 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5304 	 * put back on, and if we advance min_vruntime, we'll be placed back
5305 	 * further than we started -- ie. we'll be penalized.
5306 	 */
5307 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5308 		update_min_vruntime(cfs_rq);
5309 
5310 	if (cfs_rq->nr_running == 0)
5311 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5312 }
5313 
5314 static void
5315 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5316 {
5317 	clear_buddies(cfs_rq, se);
5318 
5319 	/* 'current' is not kept within the tree. */
5320 	if (se->on_rq) {
5321 		/*
5322 		 * Any task has to be enqueued before it get to execute on
5323 		 * a CPU. So account for the time it spent waiting on the
5324 		 * runqueue.
5325 		 */
5326 		update_stats_wait_end_fair(cfs_rq, se);
5327 		__dequeue_entity(cfs_rq, se);
5328 		update_load_avg(cfs_rq, se, UPDATE_TG);
5329 		/*
5330 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5331 		 * which isn't used until dequeue.
5332 		 */
5333 		se->vlag = se->deadline;
5334 	}
5335 
5336 	update_stats_curr_start(cfs_rq, se);
5337 	cfs_rq->curr = se;
5338 
5339 	/*
5340 	 * Track our maximum slice length, if the CPU's load is at
5341 	 * least twice that of our own weight (i.e. dont track it
5342 	 * when there are only lesser-weight tasks around):
5343 	 */
5344 	if (schedstat_enabled() &&
5345 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5346 		struct sched_statistics *stats;
5347 
5348 		stats = __schedstats_from_se(se);
5349 		__schedstat_set(stats->slice_max,
5350 				max((u64)stats->slice_max,
5351 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5352 	}
5353 
5354 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5355 }
5356 
5357 /*
5358  * Pick the next process, keeping these things in mind, in this order:
5359  * 1) keep things fair between processes/task groups
5360  * 2) pick the "next" process, since someone really wants that to run
5361  * 3) pick the "last" process, for cache locality
5362  * 4) do not run the "skip" process, if something else is available
5363  */
5364 static struct sched_entity *
5365 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
5366 {
5367 	/*
5368 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5369 	 */
5370 	if (sched_feat(NEXT_BUDDY) &&
5371 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5372 		return cfs_rq->next;
5373 
5374 	return pick_eevdf(cfs_rq);
5375 }
5376 
5377 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5378 
5379 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5380 {
5381 	/*
5382 	 * If still on the runqueue then deactivate_task()
5383 	 * was not called and update_curr() has to be done:
5384 	 */
5385 	if (prev->on_rq)
5386 		update_curr(cfs_rq);
5387 
5388 	/* throttle cfs_rqs exceeding runtime */
5389 	check_cfs_rq_runtime(cfs_rq);
5390 
5391 	if (prev->on_rq) {
5392 		update_stats_wait_start_fair(cfs_rq, prev);
5393 		/* Put 'current' back into the tree. */
5394 		__enqueue_entity(cfs_rq, prev);
5395 		/* in !on_rq case, update occurred at dequeue */
5396 		update_load_avg(cfs_rq, prev, 0);
5397 	}
5398 	cfs_rq->curr = NULL;
5399 }
5400 
5401 static void
5402 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5403 {
5404 	/*
5405 	 * Update run-time statistics of the 'current'.
5406 	 */
5407 	update_curr(cfs_rq);
5408 
5409 	/*
5410 	 * Ensure that runnable average is periodically updated.
5411 	 */
5412 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5413 	update_cfs_group(curr);
5414 
5415 #ifdef CONFIG_SCHED_HRTICK
5416 	/*
5417 	 * queued ticks are scheduled to match the slice, so don't bother
5418 	 * validating it and just reschedule.
5419 	 */
5420 	if (queued) {
5421 		resched_curr(rq_of(cfs_rq));
5422 		return;
5423 	}
5424 	/*
5425 	 * don't let the period tick interfere with the hrtick preemption
5426 	 */
5427 	if (!sched_feat(DOUBLE_TICK) &&
5428 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5429 		return;
5430 #endif
5431 }
5432 
5433 
5434 /**************************************************
5435  * CFS bandwidth control machinery
5436  */
5437 
5438 #ifdef CONFIG_CFS_BANDWIDTH
5439 
5440 #ifdef CONFIG_JUMP_LABEL
5441 static struct static_key __cfs_bandwidth_used;
5442 
5443 static inline bool cfs_bandwidth_used(void)
5444 {
5445 	return static_key_false(&__cfs_bandwidth_used);
5446 }
5447 
5448 void cfs_bandwidth_usage_inc(void)
5449 {
5450 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5451 }
5452 
5453 void cfs_bandwidth_usage_dec(void)
5454 {
5455 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5456 }
5457 #else /* CONFIG_JUMP_LABEL */
5458 static bool cfs_bandwidth_used(void)
5459 {
5460 	return true;
5461 }
5462 
5463 void cfs_bandwidth_usage_inc(void) {}
5464 void cfs_bandwidth_usage_dec(void) {}
5465 #endif /* CONFIG_JUMP_LABEL */
5466 
5467 /*
5468  * default period for cfs group bandwidth.
5469  * default: 0.1s, units: nanoseconds
5470  */
5471 static inline u64 default_cfs_period(void)
5472 {
5473 	return 100000000ULL;
5474 }
5475 
5476 static inline u64 sched_cfs_bandwidth_slice(void)
5477 {
5478 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5479 }
5480 
5481 /*
5482  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5483  * directly instead of rq->clock to avoid adding additional synchronization
5484  * around rq->lock.
5485  *
5486  * requires cfs_b->lock
5487  */
5488 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5489 {
5490 	s64 runtime;
5491 
5492 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5493 		return;
5494 
5495 	cfs_b->runtime += cfs_b->quota;
5496 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5497 	if (runtime > 0) {
5498 		cfs_b->burst_time += runtime;
5499 		cfs_b->nr_burst++;
5500 	}
5501 
5502 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5503 	cfs_b->runtime_snap = cfs_b->runtime;
5504 }
5505 
5506 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5507 {
5508 	return &tg->cfs_bandwidth;
5509 }
5510 
5511 /* returns 0 on failure to allocate runtime */
5512 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5513 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5514 {
5515 	u64 min_amount, amount = 0;
5516 
5517 	lockdep_assert_held(&cfs_b->lock);
5518 
5519 	/* note: this is a positive sum as runtime_remaining <= 0 */
5520 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5521 
5522 	if (cfs_b->quota == RUNTIME_INF)
5523 		amount = min_amount;
5524 	else {
5525 		start_cfs_bandwidth(cfs_b);
5526 
5527 		if (cfs_b->runtime > 0) {
5528 			amount = min(cfs_b->runtime, min_amount);
5529 			cfs_b->runtime -= amount;
5530 			cfs_b->idle = 0;
5531 		}
5532 	}
5533 
5534 	cfs_rq->runtime_remaining += amount;
5535 
5536 	return cfs_rq->runtime_remaining > 0;
5537 }
5538 
5539 /* returns 0 on failure to allocate runtime */
5540 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5541 {
5542 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5543 	int ret;
5544 
5545 	raw_spin_lock(&cfs_b->lock);
5546 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5547 	raw_spin_unlock(&cfs_b->lock);
5548 
5549 	return ret;
5550 }
5551 
5552 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5553 {
5554 	/* dock delta_exec before expiring quota (as it could span periods) */
5555 	cfs_rq->runtime_remaining -= delta_exec;
5556 
5557 	if (likely(cfs_rq->runtime_remaining > 0))
5558 		return;
5559 
5560 	if (cfs_rq->throttled)
5561 		return;
5562 	/*
5563 	 * if we're unable to extend our runtime we resched so that the active
5564 	 * hierarchy can be throttled
5565 	 */
5566 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5567 		resched_curr(rq_of(cfs_rq));
5568 }
5569 
5570 static __always_inline
5571 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5572 {
5573 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5574 		return;
5575 
5576 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5577 }
5578 
5579 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5580 {
5581 	return cfs_bandwidth_used() && cfs_rq->throttled;
5582 }
5583 
5584 /* check whether cfs_rq, or any parent, is throttled */
5585 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5586 {
5587 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5588 }
5589 
5590 /*
5591  * Ensure that neither of the group entities corresponding to src_cpu or
5592  * dest_cpu are members of a throttled hierarchy when performing group
5593  * load-balance operations.
5594  */
5595 static inline int throttled_lb_pair(struct task_group *tg,
5596 				    int src_cpu, int dest_cpu)
5597 {
5598 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5599 
5600 	src_cfs_rq = tg->cfs_rq[src_cpu];
5601 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5602 
5603 	return throttled_hierarchy(src_cfs_rq) ||
5604 	       throttled_hierarchy(dest_cfs_rq);
5605 }
5606 
5607 static int tg_unthrottle_up(struct task_group *tg, void *data)
5608 {
5609 	struct rq *rq = data;
5610 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5611 
5612 	cfs_rq->throttle_count--;
5613 	if (!cfs_rq->throttle_count) {
5614 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5615 					     cfs_rq->throttled_clock_pelt;
5616 
5617 		/* Add cfs_rq with load or one or more already running entities to the list */
5618 		if (!cfs_rq_is_decayed(cfs_rq))
5619 			list_add_leaf_cfs_rq(cfs_rq);
5620 
5621 		if (cfs_rq->throttled_clock_self) {
5622 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5623 
5624 			cfs_rq->throttled_clock_self = 0;
5625 
5626 			if (SCHED_WARN_ON((s64)delta < 0))
5627 				delta = 0;
5628 
5629 			cfs_rq->throttled_clock_self_time += delta;
5630 		}
5631 	}
5632 
5633 	return 0;
5634 }
5635 
5636 static int tg_throttle_down(struct task_group *tg, void *data)
5637 {
5638 	struct rq *rq = data;
5639 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5640 
5641 	/* group is entering throttled state, stop time */
5642 	if (!cfs_rq->throttle_count) {
5643 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5644 		list_del_leaf_cfs_rq(cfs_rq);
5645 
5646 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5647 		if (cfs_rq->nr_running)
5648 			cfs_rq->throttled_clock_self = rq_clock(rq);
5649 	}
5650 	cfs_rq->throttle_count++;
5651 
5652 	return 0;
5653 }
5654 
5655 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5656 {
5657 	struct rq *rq = rq_of(cfs_rq);
5658 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5659 	struct sched_entity *se;
5660 	long task_delta, idle_task_delta, dequeue = 1;
5661 
5662 	raw_spin_lock(&cfs_b->lock);
5663 	/* This will start the period timer if necessary */
5664 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5665 		/*
5666 		 * We have raced with bandwidth becoming available, and if we
5667 		 * actually throttled the timer might not unthrottle us for an
5668 		 * entire period. We additionally needed to make sure that any
5669 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5670 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5671 		 * for 1ns of runtime rather than just check cfs_b.
5672 		 */
5673 		dequeue = 0;
5674 	} else {
5675 		list_add_tail_rcu(&cfs_rq->throttled_list,
5676 				  &cfs_b->throttled_cfs_rq);
5677 	}
5678 	raw_spin_unlock(&cfs_b->lock);
5679 
5680 	if (!dequeue)
5681 		return false;  /* Throttle no longer required. */
5682 
5683 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5684 
5685 	/* freeze hierarchy runnable averages while throttled */
5686 	rcu_read_lock();
5687 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5688 	rcu_read_unlock();
5689 
5690 	task_delta = cfs_rq->h_nr_running;
5691 	idle_task_delta = cfs_rq->idle_h_nr_running;
5692 	for_each_sched_entity(se) {
5693 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5694 		/* throttled entity or throttle-on-deactivate */
5695 		if (!se->on_rq)
5696 			goto done;
5697 
5698 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5699 
5700 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5701 			idle_task_delta = cfs_rq->h_nr_running;
5702 
5703 		qcfs_rq->h_nr_running -= task_delta;
5704 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5705 
5706 		if (qcfs_rq->load.weight) {
5707 			/* Avoid re-evaluating load for this entity: */
5708 			se = parent_entity(se);
5709 			break;
5710 		}
5711 	}
5712 
5713 	for_each_sched_entity(se) {
5714 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5715 		/* throttled entity or throttle-on-deactivate */
5716 		if (!se->on_rq)
5717 			goto done;
5718 
5719 		update_load_avg(qcfs_rq, se, 0);
5720 		se_update_runnable(se);
5721 
5722 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5723 			idle_task_delta = cfs_rq->h_nr_running;
5724 
5725 		qcfs_rq->h_nr_running -= task_delta;
5726 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5727 	}
5728 
5729 	/* At this point se is NULL and we are at root level*/
5730 	sub_nr_running(rq, task_delta);
5731 
5732 done:
5733 	/*
5734 	 * Note: distribution will already see us throttled via the
5735 	 * throttled-list.  rq->lock protects completion.
5736 	 */
5737 	cfs_rq->throttled = 1;
5738 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5739 	if (cfs_rq->nr_running)
5740 		cfs_rq->throttled_clock = rq_clock(rq);
5741 	return true;
5742 }
5743 
5744 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5745 {
5746 	struct rq *rq = rq_of(cfs_rq);
5747 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5748 	struct sched_entity *se;
5749 	long task_delta, idle_task_delta;
5750 
5751 	se = cfs_rq->tg->se[cpu_of(rq)];
5752 
5753 	cfs_rq->throttled = 0;
5754 
5755 	update_rq_clock(rq);
5756 
5757 	raw_spin_lock(&cfs_b->lock);
5758 	if (cfs_rq->throttled_clock) {
5759 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5760 		cfs_rq->throttled_clock = 0;
5761 	}
5762 	list_del_rcu(&cfs_rq->throttled_list);
5763 	raw_spin_unlock(&cfs_b->lock);
5764 
5765 	/* update hierarchical throttle state */
5766 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5767 
5768 	if (!cfs_rq->load.weight) {
5769 		if (!cfs_rq->on_list)
5770 			return;
5771 		/*
5772 		 * Nothing to run but something to decay (on_list)?
5773 		 * Complete the branch.
5774 		 */
5775 		for_each_sched_entity(se) {
5776 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5777 				break;
5778 		}
5779 		goto unthrottle_throttle;
5780 	}
5781 
5782 	task_delta = cfs_rq->h_nr_running;
5783 	idle_task_delta = cfs_rq->idle_h_nr_running;
5784 	for_each_sched_entity(se) {
5785 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5786 
5787 		if (se->on_rq)
5788 			break;
5789 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5790 
5791 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5792 			idle_task_delta = cfs_rq->h_nr_running;
5793 
5794 		qcfs_rq->h_nr_running += task_delta;
5795 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5796 
5797 		/* end evaluation on encountering a throttled cfs_rq */
5798 		if (cfs_rq_throttled(qcfs_rq))
5799 			goto unthrottle_throttle;
5800 	}
5801 
5802 	for_each_sched_entity(se) {
5803 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5804 
5805 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5806 		se_update_runnable(se);
5807 
5808 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5809 			idle_task_delta = cfs_rq->h_nr_running;
5810 
5811 		qcfs_rq->h_nr_running += task_delta;
5812 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5813 
5814 		/* end evaluation on encountering a throttled cfs_rq */
5815 		if (cfs_rq_throttled(qcfs_rq))
5816 			goto unthrottle_throttle;
5817 	}
5818 
5819 	/* At this point se is NULL and we are at root level*/
5820 	add_nr_running(rq, task_delta);
5821 
5822 unthrottle_throttle:
5823 	assert_list_leaf_cfs_rq(rq);
5824 
5825 	/* Determine whether we need to wake up potentially idle CPU: */
5826 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5827 		resched_curr(rq);
5828 }
5829 
5830 #ifdef CONFIG_SMP
5831 static void __cfsb_csd_unthrottle(void *arg)
5832 {
5833 	struct cfs_rq *cursor, *tmp;
5834 	struct rq *rq = arg;
5835 	struct rq_flags rf;
5836 
5837 	rq_lock(rq, &rf);
5838 
5839 	/*
5840 	 * Iterating over the list can trigger several call to
5841 	 * update_rq_clock() in unthrottle_cfs_rq().
5842 	 * Do it once and skip the potential next ones.
5843 	 */
5844 	update_rq_clock(rq);
5845 	rq_clock_start_loop_update(rq);
5846 
5847 	/*
5848 	 * Since we hold rq lock we're safe from concurrent manipulation of
5849 	 * the CSD list. However, this RCU critical section annotates the
5850 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5851 	 * race with group being freed in the window between removing it
5852 	 * from the list and advancing to the next entry in the list.
5853 	 */
5854 	rcu_read_lock();
5855 
5856 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5857 				 throttled_csd_list) {
5858 		list_del_init(&cursor->throttled_csd_list);
5859 
5860 		if (cfs_rq_throttled(cursor))
5861 			unthrottle_cfs_rq(cursor);
5862 	}
5863 
5864 	rcu_read_unlock();
5865 
5866 	rq_clock_stop_loop_update(rq);
5867 	rq_unlock(rq, &rf);
5868 }
5869 
5870 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5871 {
5872 	struct rq *rq = rq_of(cfs_rq);
5873 	bool first;
5874 
5875 	if (rq == this_rq()) {
5876 		unthrottle_cfs_rq(cfs_rq);
5877 		return;
5878 	}
5879 
5880 	/* Already enqueued */
5881 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5882 		return;
5883 
5884 	first = list_empty(&rq->cfsb_csd_list);
5885 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5886 	if (first)
5887 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5888 }
5889 #else
5890 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5891 {
5892 	unthrottle_cfs_rq(cfs_rq);
5893 }
5894 #endif
5895 
5896 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5897 {
5898 	lockdep_assert_rq_held(rq_of(cfs_rq));
5899 
5900 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
5901 	    cfs_rq->runtime_remaining <= 0))
5902 		return;
5903 
5904 	__unthrottle_cfs_rq_async(cfs_rq);
5905 }
5906 
5907 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5908 {
5909 	struct cfs_rq *local_unthrottle = NULL;
5910 	int this_cpu = smp_processor_id();
5911 	u64 runtime, remaining = 1;
5912 	bool throttled = false;
5913 	struct cfs_rq *cfs_rq;
5914 	struct rq_flags rf;
5915 	struct rq *rq;
5916 
5917 	rcu_read_lock();
5918 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5919 				throttled_list) {
5920 		rq = rq_of(cfs_rq);
5921 
5922 		if (!remaining) {
5923 			throttled = true;
5924 			break;
5925 		}
5926 
5927 		rq_lock_irqsave(rq, &rf);
5928 		if (!cfs_rq_throttled(cfs_rq))
5929 			goto next;
5930 
5931 #ifdef CONFIG_SMP
5932 		/* Already queued for async unthrottle */
5933 		if (!list_empty(&cfs_rq->throttled_csd_list))
5934 			goto next;
5935 #endif
5936 
5937 		/* By the above checks, this should never be true */
5938 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5939 
5940 		raw_spin_lock(&cfs_b->lock);
5941 		runtime = -cfs_rq->runtime_remaining + 1;
5942 		if (runtime > cfs_b->runtime)
5943 			runtime = cfs_b->runtime;
5944 		cfs_b->runtime -= runtime;
5945 		remaining = cfs_b->runtime;
5946 		raw_spin_unlock(&cfs_b->lock);
5947 
5948 		cfs_rq->runtime_remaining += runtime;
5949 
5950 		/* we check whether we're throttled above */
5951 		if (cfs_rq->runtime_remaining > 0) {
5952 			if (cpu_of(rq) != this_cpu ||
5953 			    SCHED_WARN_ON(local_unthrottle))
5954 				unthrottle_cfs_rq_async(cfs_rq);
5955 			else
5956 				local_unthrottle = cfs_rq;
5957 		} else {
5958 			throttled = true;
5959 		}
5960 
5961 next:
5962 		rq_unlock_irqrestore(rq, &rf);
5963 	}
5964 	rcu_read_unlock();
5965 
5966 	if (local_unthrottle) {
5967 		rq = cpu_rq(this_cpu);
5968 		rq_lock_irqsave(rq, &rf);
5969 		if (cfs_rq_throttled(local_unthrottle))
5970 			unthrottle_cfs_rq(local_unthrottle);
5971 		rq_unlock_irqrestore(rq, &rf);
5972 	}
5973 
5974 	return throttled;
5975 }
5976 
5977 /*
5978  * Responsible for refilling a task_group's bandwidth and unthrottling its
5979  * cfs_rqs as appropriate. If there has been no activity within the last
5980  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5981  * used to track this state.
5982  */
5983 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5984 {
5985 	int throttled;
5986 
5987 	/* no need to continue the timer with no bandwidth constraint */
5988 	if (cfs_b->quota == RUNTIME_INF)
5989 		goto out_deactivate;
5990 
5991 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5992 	cfs_b->nr_periods += overrun;
5993 
5994 	/* Refill extra burst quota even if cfs_b->idle */
5995 	__refill_cfs_bandwidth_runtime(cfs_b);
5996 
5997 	/*
5998 	 * idle depends on !throttled (for the case of a large deficit), and if
5999 	 * we're going inactive then everything else can be deferred
6000 	 */
6001 	if (cfs_b->idle && !throttled)
6002 		goto out_deactivate;
6003 
6004 	if (!throttled) {
6005 		/* mark as potentially idle for the upcoming period */
6006 		cfs_b->idle = 1;
6007 		return 0;
6008 	}
6009 
6010 	/* account preceding periods in which throttling occurred */
6011 	cfs_b->nr_throttled += overrun;
6012 
6013 	/*
6014 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6015 	 */
6016 	while (throttled && cfs_b->runtime > 0) {
6017 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6018 		/* we can't nest cfs_b->lock while distributing bandwidth */
6019 		throttled = distribute_cfs_runtime(cfs_b);
6020 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6021 	}
6022 
6023 	/*
6024 	 * While we are ensured activity in the period following an
6025 	 * unthrottle, this also covers the case in which the new bandwidth is
6026 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6027 	 * timer to remain active while there are any throttled entities.)
6028 	 */
6029 	cfs_b->idle = 0;
6030 
6031 	return 0;
6032 
6033 out_deactivate:
6034 	return 1;
6035 }
6036 
6037 /* a cfs_rq won't donate quota below this amount */
6038 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6039 /* minimum remaining period time to redistribute slack quota */
6040 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6041 /* how long we wait to gather additional slack before distributing */
6042 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6043 
6044 /*
6045  * Are we near the end of the current quota period?
6046  *
6047  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6048  * hrtimer base being cleared by hrtimer_start. In the case of
6049  * migrate_hrtimers, base is never cleared, so we are fine.
6050  */
6051 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6052 {
6053 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6054 	s64 remaining;
6055 
6056 	/* if the call-back is running a quota refresh is already occurring */
6057 	if (hrtimer_callback_running(refresh_timer))
6058 		return 1;
6059 
6060 	/* is a quota refresh about to occur? */
6061 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6062 	if (remaining < (s64)min_expire)
6063 		return 1;
6064 
6065 	return 0;
6066 }
6067 
6068 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6069 {
6070 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6071 
6072 	/* if there's a quota refresh soon don't bother with slack */
6073 	if (runtime_refresh_within(cfs_b, min_left))
6074 		return;
6075 
6076 	/* don't push forwards an existing deferred unthrottle */
6077 	if (cfs_b->slack_started)
6078 		return;
6079 	cfs_b->slack_started = true;
6080 
6081 	hrtimer_start(&cfs_b->slack_timer,
6082 			ns_to_ktime(cfs_bandwidth_slack_period),
6083 			HRTIMER_MODE_REL);
6084 }
6085 
6086 /* we know any runtime found here is valid as update_curr() precedes return */
6087 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6088 {
6089 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6090 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6091 
6092 	if (slack_runtime <= 0)
6093 		return;
6094 
6095 	raw_spin_lock(&cfs_b->lock);
6096 	if (cfs_b->quota != RUNTIME_INF) {
6097 		cfs_b->runtime += slack_runtime;
6098 
6099 		/* we are under rq->lock, defer unthrottling using a timer */
6100 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6101 		    !list_empty(&cfs_b->throttled_cfs_rq))
6102 			start_cfs_slack_bandwidth(cfs_b);
6103 	}
6104 	raw_spin_unlock(&cfs_b->lock);
6105 
6106 	/* even if it's not valid for return we don't want to try again */
6107 	cfs_rq->runtime_remaining -= slack_runtime;
6108 }
6109 
6110 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6111 {
6112 	if (!cfs_bandwidth_used())
6113 		return;
6114 
6115 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6116 		return;
6117 
6118 	__return_cfs_rq_runtime(cfs_rq);
6119 }
6120 
6121 /*
6122  * This is done with a timer (instead of inline with bandwidth return) since
6123  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6124  */
6125 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6126 {
6127 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6128 	unsigned long flags;
6129 
6130 	/* confirm we're still not at a refresh boundary */
6131 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6132 	cfs_b->slack_started = false;
6133 
6134 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6135 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6136 		return;
6137 	}
6138 
6139 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6140 		runtime = cfs_b->runtime;
6141 
6142 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6143 
6144 	if (!runtime)
6145 		return;
6146 
6147 	distribute_cfs_runtime(cfs_b);
6148 }
6149 
6150 /*
6151  * When a group wakes up we want to make sure that its quota is not already
6152  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6153  * runtime as update_curr() throttling can not trigger until it's on-rq.
6154  */
6155 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6156 {
6157 	if (!cfs_bandwidth_used())
6158 		return;
6159 
6160 	/* an active group must be handled by the update_curr()->put() path */
6161 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6162 		return;
6163 
6164 	/* ensure the group is not already throttled */
6165 	if (cfs_rq_throttled(cfs_rq))
6166 		return;
6167 
6168 	/* update runtime allocation */
6169 	account_cfs_rq_runtime(cfs_rq, 0);
6170 	if (cfs_rq->runtime_remaining <= 0)
6171 		throttle_cfs_rq(cfs_rq);
6172 }
6173 
6174 static void sync_throttle(struct task_group *tg, int cpu)
6175 {
6176 	struct cfs_rq *pcfs_rq, *cfs_rq;
6177 
6178 	if (!cfs_bandwidth_used())
6179 		return;
6180 
6181 	if (!tg->parent)
6182 		return;
6183 
6184 	cfs_rq = tg->cfs_rq[cpu];
6185 	pcfs_rq = tg->parent->cfs_rq[cpu];
6186 
6187 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6188 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6189 }
6190 
6191 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6192 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6193 {
6194 	if (!cfs_bandwidth_used())
6195 		return false;
6196 
6197 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6198 		return false;
6199 
6200 	/*
6201 	 * it's possible for a throttled entity to be forced into a running
6202 	 * state (e.g. set_curr_task), in this case we're finished.
6203 	 */
6204 	if (cfs_rq_throttled(cfs_rq))
6205 		return true;
6206 
6207 	return throttle_cfs_rq(cfs_rq);
6208 }
6209 
6210 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6211 {
6212 	struct cfs_bandwidth *cfs_b =
6213 		container_of(timer, struct cfs_bandwidth, slack_timer);
6214 
6215 	do_sched_cfs_slack_timer(cfs_b);
6216 
6217 	return HRTIMER_NORESTART;
6218 }
6219 
6220 extern const u64 max_cfs_quota_period;
6221 
6222 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6223 {
6224 	struct cfs_bandwidth *cfs_b =
6225 		container_of(timer, struct cfs_bandwidth, period_timer);
6226 	unsigned long flags;
6227 	int overrun;
6228 	int idle = 0;
6229 	int count = 0;
6230 
6231 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6232 	for (;;) {
6233 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6234 		if (!overrun)
6235 			break;
6236 
6237 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6238 
6239 		if (++count > 3) {
6240 			u64 new, old = ktime_to_ns(cfs_b->period);
6241 
6242 			/*
6243 			 * Grow period by a factor of 2 to avoid losing precision.
6244 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6245 			 * to fail.
6246 			 */
6247 			new = old * 2;
6248 			if (new < max_cfs_quota_period) {
6249 				cfs_b->period = ns_to_ktime(new);
6250 				cfs_b->quota *= 2;
6251 				cfs_b->burst *= 2;
6252 
6253 				pr_warn_ratelimited(
6254 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6255 					smp_processor_id(),
6256 					div_u64(new, NSEC_PER_USEC),
6257 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6258 			} else {
6259 				pr_warn_ratelimited(
6260 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6261 					smp_processor_id(),
6262 					div_u64(old, NSEC_PER_USEC),
6263 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6264 			}
6265 
6266 			/* reset count so we don't come right back in here */
6267 			count = 0;
6268 		}
6269 	}
6270 	if (idle)
6271 		cfs_b->period_active = 0;
6272 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6273 
6274 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6275 }
6276 
6277 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6278 {
6279 	raw_spin_lock_init(&cfs_b->lock);
6280 	cfs_b->runtime = 0;
6281 	cfs_b->quota = RUNTIME_INF;
6282 	cfs_b->period = ns_to_ktime(default_cfs_period());
6283 	cfs_b->burst = 0;
6284 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6285 
6286 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6287 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6288 	cfs_b->period_timer.function = sched_cfs_period_timer;
6289 
6290 	/* Add a random offset so that timers interleave */
6291 	hrtimer_set_expires(&cfs_b->period_timer,
6292 			    get_random_u32_below(cfs_b->period));
6293 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6294 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6295 	cfs_b->slack_started = false;
6296 }
6297 
6298 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6299 {
6300 	cfs_rq->runtime_enabled = 0;
6301 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6302 #ifdef CONFIG_SMP
6303 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6304 #endif
6305 }
6306 
6307 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6308 {
6309 	lockdep_assert_held(&cfs_b->lock);
6310 
6311 	if (cfs_b->period_active)
6312 		return;
6313 
6314 	cfs_b->period_active = 1;
6315 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6316 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6317 }
6318 
6319 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6320 {
6321 	int __maybe_unused i;
6322 
6323 	/* init_cfs_bandwidth() was not called */
6324 	if (!cfs_b->throttled_cfs_rq.next)
6325 		return;
6326 
6327 	hrtimer_cancel(&cfs_b->period_timer);
6328 	hrtimer_cancel(&cfs_b->slack_timer);
6329 
6330 	/*
6331 	 * It is possible that we still have some cfs_rq's pending on a CSD
6332 	 * list, though this race is very rare. In order for this to occur, we
6333 	 * must have raced with the last task leaving the group while there
6334 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6335 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6336 	 * we can simply flush all pending CSD work inline here. We're
6337 	 * guaranteed at this point that no additional cfs_rq of this group can
6338 	 * join a CSD list.
6339 	 */
6340 #ifdef CONFIG_SMP
6341 	for_each_possible_cpu(i) {
6342 		struct rq *rq = cpu_rq(i);
6343 		unsigned long flags;
6344 
6345 		if (list_empty(&rq->cfsb_csd_list))
6346 			continue;
6347 
6348 		local_irq_save(flags);
6349 		__cfsb_csd_unthrottle(rq);
6350 		local_irq_restore(flags);
6351 	}
6352 #endif
6353 }
6354 
6355 /*
6356  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6357  *
6358  * The race is harmless, since modifying bandwidth settings of unhooked group
6359  * bits doesn't do much.
6360  */
6361 
6362 /* cpu online callback */
6363 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6364 {
6365 	struct task_group *tg;
6366 
6367 	lockdep_assert_rq_held(rq);
6368 
6369 	rcu_read_lock();
6370 	list_for_each_entry_rcu(tg, &task_groups, list) {
6371 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6372 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6373 
6374 		raw_spin_lock(&cfs_b->lock);
6375 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6376 		raw_spin_unlock(&cfs_b->lock);
6377 	}
6378 	rcu_read_unlock();
6379 }
6380 
6381 /* cpu offline callback */
6382 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6383 {
6384 	struct task_group *tg;
6385 
6386 	lockdep_assert_rq_held(rq);
6387 
6388 	/*
6389 	 * The rq clock has already been updated in the
6390 	 * set_rq_offline(), so we should skip updating
6391 	 * the rq clock again in unthrottle_cfs_rq().
6392 	 */
6393 	rq_clock_start_loop_update(rq);
6394 
6395 	rcu_read_lock();
6396 	list_for_each_entry_rcu(tg, &task_groups, list) {
6397 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6398 
6399 		if (!cfs_rq->runtime_enabled)
6400 			continue;
6401 
6402 		/*
6403 		 * clock_task is not advancing so we just need to make sure
6404 		 * there's some valid quota amount
6405 		 */
6406 		cfs_rq->runtime_remaining = 1;
6407 		/*
6408 		 * Offline rq is schedulable till CPU is completely disabled
6409 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6410 		 */
6411 		cfs_rq->runtime_enabled = 0;
6412 
6413 		if (cfs_rq_throttled(cfs_rq))
6414 			unthrottle_cfs_rq(cfs_rq);
6415 	}
6416 	rcu_read_unlock();
6417 
6418 	rq_clock_stop_loop_update(rq);
6419 }
6420 
6421 bool cfs_task_bw_constrained(struct task_struct *p)
6422 {
6423 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6424 
6425 	if (!cfs_bandwidth_used())
6426 		return false;
6427 
6428 	if (cfs_rq->runtime_enabled ||
6429 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6430 		return true;
6431 
6432 	return false;
6433 }
6434 
6435 #ifdef CONFIG_NO_HZ_FULL
6436 /* called from pick_next_task_fair() */
6437 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6438 {
6439 	int cpu = cpu_of(rq);
6440 
6441 	if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6442 		return;
6443 
6444 	if (!tick_nohz_full_cpu(cpu))
6445 		return;
6446 
6447 	if (rq->nr_running != 1)
6448 		return;
6449 
6450 	/*
6451 	 *  We know there is only one task runnable and we've just picked it. The
6452 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6453 	 *  be otherwise able to stop the tick. Just need to check if we are using
6454 	 *  bandwidth control.
6455 	 */
6456 	if (cfs_task_bw_constrained(p))
6457 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6458 }
6459 #endif
6460 
6461 #else /* CONFIG_CFS_BANDWIDTH */
6462 
6463 static inline bool cfs_bandwidth_used(void)
6464 {
6465 	return false;
6466 }
6467 
6468 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6469 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6470 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6471 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6472 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6473 
6474 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6475 {
6476 	return 0;
6477 }
6478 
6479 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6480 {
6481 	return 0;
6482 }
6483 
6484 static inline int throttled_lb_pair(struct task_group *tg,
6485 				    int src_cpu, int dest_cpu)
6486 {
6487 	return 0;
6488 }
6489 
6490 #ifdef CONFIG_FAIR_GROUP_SCHED
6491 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6492 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6493 #endif
6494 
6495 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6496 {
6497 	return NULL;
6498 }
6499 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6500 static inline void update_runtime_enabled(struct rq *rq) {}
6501 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6502 #ifdef CONFIG_CGROUP_SCHED
6503 bool cfs_task_bw_constrained(struct task_struct *p)
6504 {
6505 	return false;
6506 }
6507 #endif
6508 #endif /* CONFIG_CFS_BANDWIDTH */
6509 
6510 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6511 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6512 #endif
6513 
6514 /**************************************************
6515  * CFS operations on tasks:
6516  */
6517 
6518 #ifdef CONFIG_SCHED_HRTICK
6519 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6520 {
6521 	struct sched_entity *se = &p->se;
6522 
6523 	SCHED_WARN_ON(task_rq(p) != rq);
6524 
6525 	if (rq->cfs.h_nr_running > 1) {
6526 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6527 		u64 slice = se->slice;
6528 		s64 delta = slice - ran;
6529 
6530 		if (delta < 0) {
6531 			if (task_current(rq, p))
6532 				resched_curr(rq);
6533 			return;
6534 		}
6535 		hrtick_start(rq, delta);
6536 	}
6537 }
6538 
6539 /*
6540  * called from enqueue/dequeue and updates the hrtick when the
6541  * current task is from our class and nr_running is low enough
6542  * to matter.
6543  */
6544 static void hrtick_update(struct rq *rq)
6545 {
6546 	struct task_struct *curr = rq->curr;
6547 
6548 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6549 		return;
6550 
6551 	hrtick_start_fair(rq, curr);
6552 }
6553 #else /* !CONFIG_SCHED_HRTICK */
6554 static inline void
6555 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6556 {
6557 }
6558 
6559 static inline void hrtick_update(struct rq *rq)
6560 {
6561 }
6562 #endif
6563 
6564 #ifdef CONFIG_SMP
6565 static inline bool cpu_overutilized(int cpu)
6566 {
6567 	unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6568 	unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6569 
6570 	/* Return true only if the utilization doesn't fit CPU's capacity */
6571 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6572 }
6573 
6574 static inline void update_overutilized_status(struct rq *rq)
6575 {
6576 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6577 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6578 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6579 	}
6580 }
6581 #else
6582 static inline void update_overutilized_status(struct rq *rq) { }
6583 #endif
6584 
6585 /* Runqueue only has SCHED_IDLE tasks enqueued */
6586 static int sched_idle_rq(struct rq *rq)
6587 {
6588 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6589 			rq->nr_running);
6590 }
6591 
6592 #ifdef CONFIG_SMP
6593 static int sched_idle_cpu(int cpu)
6594 {
6595 	return sched_idle_rq(cpu_rq(cpu));
6596 }
6597 #endif
6598 
6599 /*
6600  * The enqueue_task method is called before nr_running is
6601  * increased. Here we update the fair scheduling stats and
6602  * then put the task into the rbtree:
6603  */
6604 static void
6605 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6606 {
6607 	struct cfs_rq *cfs_rq;
6608 	struct sched_entity *se = &p->se;
6609 	int idle_h_nr_running = task_has_idle_policy(p);
6610 	int task_new = !(flags & ENQUEUE_WAKEUP);
6611 
6612 	/*
6613 	 * The code below (indirectly) updates schedutil which looks at
6614 	 * the cfs_rq utilization to select a frequency.
6615 	 * Let's add the task's estimated utilization to the cfs_rq's
6616 	 * estimated utilization, before we update schedutil.
6617 	 */
6618 	util_est_enqueue(&rq->cfs, p);
6619 
6620 	/*
6621 	 * If in_iowait is set, the code below may not trigger any cpufreq
6622 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6623 	 * passed.
6624 	 */
6625 	if (p->in_iowait)
6626 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6627 
6628 	for_each_sched_entity(se) {
6629 		if (se->on_rq)
6630 			break;
6631 		cfs_rq = cfs_rq_of(se);
6632 		enqueue_entity(cfs_rq, se, flags);
6633 
6634 		cfs_rq->h_nr_running++;
6635 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6636 
6637 		if (cfs_rq_is_idle(cfs_rq))
6638 			idle_h_nr_running = 1;
6639 
6640 		/* end evaluation on encountering a throttled cfs_rq */
6641 		if (cfs_rq_throttled(cfs_rq))
6642 			goto enqueue_throttle;
6643 
6644 		flags = ENQUEUE_WAKEUP;
6645 	}
6646 
6647 	for_each_sched_entity(se) {
6648 		cfs_rq = cfs_rq_of(se);
6649 
6650 		update_load_avg(cfs_rq, se, UPDATE_TG);
6651 		se_update_runnable(se);
6652 		update_cfs_group(se);
6653 
6654 		cfs_rq->h_nr_running++;
6655 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6656 
6657 		if (cfs_rq_is_idle(cfs_rq))
6658 			idle_h_nr_running = 1;
6659 
6660 		/* end evaluation on encountering a throttled cfs_rq */
6661 		if (cfs_rq_throttled(cfs_rq))
6662 			goto enqueue_throttle;
6663 	}
6664 
6665 	/* At this point se is NULL and we are at root level*/
6666 	add_nr_running(rq, 1);
6667 
6668 	/*
6669 	 * Since new tasks are assigned an initial util_avg equal to
6670 	 * half of the spare capacity of their CPU, tiny tasks have the
6671 	 * ability to cross the overutilized threshold, which will
6672 	 * result in the load balancer ruining all the task placement
6673 	 * done by EAS. As a way to mitigate that effect, do not account
6674 	 * for the first enqueue operation of new tasks during the
6675 	 * overutilized flag detection.
6676 	 *
6677 	 * A better way of solving this problem would be to wait for
6678 	 * the PELT signals of tasks to converge before taking them
6679 	 * into account, but that is not straightforward to implement,
6680 	 * and the following generally works well enough in practice.
6681 	 */
6682 	if (!task_new)
6683 		update_overutilized_status(rq);
6684 
6685 enqueue_throttle:
6686 	assert_list_leaf_cfs_rq(rq);
6687 
6688 	hrtick_update(rq);
6689 }
6690 
6691 static void set_next_buddy(struct sched_entity *se);
6692 
6693 /*
6694  * The dequeue_task method is called before nr_running is
6695  * decreased. We remove the task from the rbtree and
6696  * update the fair scheduling stats:
6697  */
6698 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6699 {
6700 	struct cfs_rq *cfs_rq;
6701 	struct sched_entity *se = &p->se;
6702 	int task_sleep = flags & DEQUEUE_SLEEP;
6703 	int idle_h_nr_running = task_has_idle_policy(p);
6704 	bool was_sched_idle = sched_idle_rq(rq);
6705 
6706 	util_est_dequeue(&rq->cfs, p);
6707 
6708 	for_each_sched_entity(se) {
6709 		cfs_rq = cfs_rq_of(se);
6710 		dequeue_entity(cfs_rq, se, flags);
6711 
6712 		cfs_rq->h_nr_running--;
6713 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6714 
6715 		if (cfs_rq_is_idle(cfs_rq))
6716 			idle_h_nr_running = 1;
6717 
6718 		/* end evaluation on encountering a throttled cfs_rq */
6719 		if (cfs_rq_throttled(cfs_rq))
6720 			goto dequeue_throttle;
6721 
6722 		/* Don't dequeue parent if it has other entities besides us */
6723 		if (cfs_rq->load.weight) {
6724 			/* Avoid re-evaluating load for this entity: */
6725 			se = parent_entity(se);
6726 			/*
6727 			 * Bias pick_next to pick a task from this cfs_rq, as
6728 			 * p is sleeping when it is within its sched_slice.
6729 			 */
6730 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6731 				set_next_buddy(se);
6732 			break;
6733 		}
6734 		flags |= DEQUEUE_SLEEP;
6735 	}
6736 
6737 	for_each_sched_entity(se) {
6738 		cfs_rq = cfs_rq_of(se);
6739 
6740 		update_load_avg(cfs_rq, se, UPDATE_TG);
6741 		se_update_runnable(se);
6742 		update_cfs_group(se);
6743 
6744 		cfs_rq->h_nr_running--;
6745 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6746 
6747 		if (cfs_rq_is_idle(cfs_rq))
6748 			idle_h_nr_running = 1;
6749 
6750 		/* end evaluation on encountering a throttled cfs_rq */
6751 		if (cfs_rq_throttled(cfs_rq))
6752 			goto dequeue_throttle;
6753 
6754 	}
6755 
6756 	/* At this point se is NULL and we are at root level*/
6757 	sub_nr_running(rq, 1);
6758 
6759 	/* balance early to pull high priority tasks */
6760 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6761 		rq->next_balance = jiffies;
6762 
6763 dequeue_throttle:
6764 	util_est_update(&rq->cfs, p, task_sleep);
6765 	hrtick_update(rq);
6766 }
6767 
6768 #ifdef CONFIG_SMP
6769 
6770 /* Working cpumask for: load_balance, load_balance_newidle. */
6771 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6772 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6773 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6774 
6775 #ifdef CONFIG_NO_HZ_COMMON
6776 
6777 static struct {
6778 	cpumask_var_t idle_cpus_mask;
6779 	atomic_t nr_cpus;
6780 	int has_blocked;		/* Idle CPUS has blocked load */
6781 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6782 	unsigned long next_balance;     /* in jiffy units */
6783 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6784 } nohz ____cacheline_aligned;
6785 
6786 #endif /* CONFIG_NO_HZ_COMMON */
6787 
6788 static unsigned long cpu_load(struct rq *rq)
6789 {
6790 	return cfs_rq_load_avg(&rq->cfs);
6791 }
6792 
6793 /*
6794  * cpu_load_without - compute CPU load without any contributions from *p
6795  * @cpu: the CPU which load is requested
6796  * @p: the task which load should be discounted
6797  *
6798  * The load of a CPU is defined by the load of tasks currently enqueued on that
6799  * CPU as well as tasks which are currently sleeping after an execution on that
6800  * CPU.
6801  *
6802  * This method returns the load of the specified CPU by discounting the load of
6803  * the specified task, whenever the task is currently contributing to the CPU
6804  * load.
6805  */
6806 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6807 {
6808 	struct cfs_rq *cfs_rq;
6809 	unsigned int load;
6810 
6811 	/* Task has no contribution or is new */
6812 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6813 		return cpu_load(rq);
6814 
6815 	cfs_rq = &rq->cfs;
6816 	load = READ_ONCE(cfs_rq->avg.load_avg);
6817 
6818 	/* Discount task's util from CPU's util */
6819 	lsub_positive(&load, task_h_load(p));
6820 
6821 	return load;
6822 }
6823 
6824 static unsigned long cpu_runnable(struct rq *rq)
6825 {
6826 	return cfs_rq_runnable_avg(&rq->cfs);
6827 }
6828 
6829 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6830 {
6831 	struct cfs_rq *cfs_rq;
6832 	unsigned int runnable;
6833 
6834 	/* Task has no contribution or is new */
6835 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6836 		return cpu_runnable(rq);
6837 
6838 	cfs_rq = &rq->cfs;
6839 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6840 
6841 	/* Discount task's runnable from CPU's runnable */
6842 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6843 
6844 	return runnable;
6845 }
6846 
6847 static unsigned long capacity_of(int cpu)
6848 {
6849 	return cpu_rq(cpu)->cpu_capacity;
6850 }
6851 
6852 static void record_wakee(struct task_struct *p)
6853 {
6854 	/*
6855 	 * Only decay a single time; tasks that have less then 1 wakeup per
6856 	 * jiffy will not have built up many flips.
6857 	 */
6858 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6859 		current->wakee_flips >>= 1;
6860 		current->wakee_flip_decay_ts = jiffies;
6861 	}
6862 
6863 	if (current->last_wakee != p) {
6864 		current->last_wakee = p;
6865 		current->wakee_flips++;
6866 	}
6867 }
6868 
6869 /*
6870  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6871  *
6872  * A waker of many should wake a different task than the one last awakened
6873  * at a frequency roughly N times higher than one of its wakees.
6874  *
6875  * In order to determine whether we should let the load spread vs consolidating
6876  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6877  * partner, and a factor of lls_size higher frequency in the other.
6878  *
6879  * With both conditions met, we can be relatively sure that the relationship is
6880  * non-monogamous, with partner count exceeding socket size.
6881  *
6882  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6883  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6884  * socket size.
6885  */
6886 static int wake_wide(struct task_struct *p)
6887 {
6888 	unsigned int master = current->wakee_flips;
6889 	unsigned int slave = p->wakee_flips;
6890 	int factor = __this_cpu_read(sd_llc_size);
6891 
6892 	if (master < slave)
6893 		swap(master, slave);
6894 	if (slave < factor || master < slave * factor)
6895 		return 0;
6896 	return 1;
6897 }
6898 
6899 /*
6900  * The purpose of wake_affine() is to quickly determine on which CPU we can run
6901  * soonest. For the purpose of speed we only consider the waking and previous
6902  * CPU.
6903  *
6904  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6905  *			cache-affine and is (or	will be) idle.
6906  *
6907  * wake_affine_weight() - considers the weight to reflect the average
6908  *			  scheduling latency of the CPUs. This seems to work
6909  *			  for the overloaded case.
6910  */
6911 static int
6912 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6913 {
6914 	/*
6915 	 * If this_cpu is idle, it implies the wakeup is from interrupt
6916 	 * context. Only allow the move if cache is shared. Otherwise an
6917 	 * interrupt intensive workload could force all tasks onto one
6918 	 * node depending on the IO topology or IRQ affinity settings.
6919 	 *
6920 	 * If the prev_cpu is idle and cache affine then avoid a migration.
6921 	 * There is no guarantee that the cache hot data from an interrupt
6922 	 * is more important than cache hot data on the prev_cpu and from
6923 	 * a cpufreq perspective, it's better to have higher utilisation
6924 	 * on one CPU.
6925 	 */
6926 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6927 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6928 
6929 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
6930 		return this_cpu;
6931 
6932 	if (available_idle_cpu(prev_cpu))
6933 		return prev_cpu;
6934 
6935 	return nr_cpumask_bits;
6936 }
6937 
6938 static int
6939 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6940 		   int this_cpu, int prev_cpu, int sync)
6941 {
6942 	s64 this_eff_load, prev_eff_load;
6943 	unsigned long task_load;
6944 
6945 	this_eff_load = cpu_load(cpu_rq(this_cpu));
6946 
6947 	if (sync) {
6948 		unsigned long current_load = task_h_load(current);
6949 
6950 		if (current_load > this_eff_load)
6951 			return this_cpu;
6952 
6953 		this_eff_load -= current_load;
6954 	}
6955 
6956 	task_load = task_h_load(p);
6957 
6958 	this_eff_load += task_load;
6959 	if (sched_feat(WA_BIAS))
6960 		this_eff_load *= 100;
6961 	this_eff_load *= capacity_of(prev_cpu);
6962 
6963 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6964 	prev_eff_load -= task_load;
6965 	if (sched_feat(WA_BIAS))
6966 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6967 	prev_eff_load *= capacity_of(this_cpu);
6968 
6969 	/*
6970 	 * If sync, adjust the weight of prev_eff_load such that if
6971 	 * prev_eff == this_eff that select_idle_sibling() will consider
6972 	 * stacking the wakee on top of the waker if no other CPU is
6973 	 * idle.
6974 	 */
6975 	if (sync)
6976 		prev_eff_load += 1;
6977 
6978 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6979 }
6980 
6981 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6982 		       int this_cpu, int prev_cpu, int sync)
6983 {
6984 	int target = nr_cpumask_bits;
6985 
6986 	if (sched_feat(WA_IDLE))
6987 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
6988 
6989 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6990 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6991 
6992 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6993 	if (target != this_cpu)
6994 		return prev_cpu;
6995 
6996 	schedstat_inc(sd->ttwu_move_affine);
6997 	schedstat_inc(p->stats.nr_wakeups_affine);
6998 	return target;
6999 }
7000 
7001 static struct sched_group *
7002 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7003 
7004 /*
7005  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
7006  */
7007 static int
7008 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7009 {
7010 	unsigned long load, min_load = ULONG_MAX;
7011 	unsigned int min_exit_latency = UINT_MAX;
7012 	u64 latest_idle_timestamp = 0;
7013 	int least_loaded_cpu = this_cpu;
7014 	int shallowest_idle_cpu = -1;
7015 	int i;
7016 
7017 	/* Check if we have any choice: */
7018 	if (group->group_weight == 1)
7019 		return cpumask_first(sched_group_span(group));
7020 
7021 	/* Traverse only the allowed CPUs */
7022 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7023 		struct rq *rq = cpu_rq(i);
7024 
7025 		if (!sched_core_cookie_match(rq, p))
7026 			continue;
7027 
7028 		if (sched_idle_cpu(i))
7029 			return i;
7030 
7031 		if (available_idle_cpu(i)) {
7032 			struct cpuidle_state *idle = idle_get_state(rq);
7033 			if (idle && idle->exit_latency < min_exit_latency) {
7034 				/*
7035 				 * We give priority to a CPU whose idle state
7036 				 * has the smallest exit latency irrespective
7037 				 * of any idle timestamp.
7038 				 */
7039 				min_exit_latency = idle->exit_latency;
7040 				latest_idle_timestamp = rq->idle_stamp;
7041 				shallowest_idle_cpu = i;
7042 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7043 				   rq->idle_stamp > latest_idle_timestamp) {
7044 				/*
7045 				 * If equal or no active idle state, then
7046 				 * the most recently idled CPU might have
7047 				 * a warmer cache.
7048 				 */
7049 				latest_idle_timestamp = rq->idle_stamp;
7050 				shallowest_idle_cpu = i;
7051 			}
7052 		} else if (shallowest_idle_cpu == -1) {
7053 			load = cpu_load(cpu_rq(i));
7054 			if (load < min_load) {
7055 				min_load = load;
7056 				least_loaded_cpu = i;
7057 			}
7058 		}
7059 	}
7060 
7061 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7062 }
7063 
7064 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
7065 				  int cpu, int prev_cpu, int sd_flag)
7066 {
7067 	int new_cpu = cpu;
7068 
7069 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7070 		return prev_cpu;
7071 
7072 	/*
7073 	 * We need task's util for cpu_util_without, sync it up to
7074 	 * prev_cpu's last_update_time.
7075 	 */
7076 	if (!(sd_flag & SD_BALANCE_FORK))
7077 		sync_entity_load_avg(&p->se);
7078 
7079 	while (sd) {
7080 		struct sched_group *group;
7081 		struct sched_domain *tmp;
7082 		int weight;
7083 
7084 		if (!(sd->flags & sd_flag)) {
7085 			sd = sd->child;
7086 			continue;
7087 		}
7088 
7089 		group = find_idlest_group(sd, p, cpu);
7090 		if (!group) {
7091 			sd = sd->child;
7092 			continue;
7093 		}
7094 
7095 		new_cpu = find_idlest_group_cpu(group, p, cpu);
7096 		if (new_cpu == cpu) {
7097 			/* Now try balancing at a lower domain level of 'cpu': */
7098 			sd = sd->child;
7099 			continue;
7100 		}
7101 
7102 		/* Now try balancing at a lower domain level of 'new_cpu': */
7103 		cpu = new_cpu;
7104 		weight = sd->span_weight;
7105 		sd = NULL;
7106 		for_each_domain(cpu, tmp) {
7107 			if (weight <= tmp->span_weight)
7108 				break;
7109 			if (tmp->flags & sd_flag)
7110 				sd = tmp;
7111 		}
7112 	}
7113 
7114 	return new_cpu;
7115 }
7116 
7117 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7118 {
7119 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7120 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7121 		return cpu;
7122 
7123 	return -1;
7124 }
7125 
7126 #ifdef CONFIG_SCHED_SMT
7127 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7128 EXPORT_SYMBOL_GPL(sched_smt_present);
7129 
7130 static inline void set_idle_cores(int cpu, int val)
7131 {
7132 	struct sched_domain_shared *sds;
7133 
7134 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7135 	if (sds)
7136 		WRITE_ONCE(sds->has_idle_cores, val);
7137 }
7138 
7139 static inline bool test_idle_cores(int cpu)
7140 {
7141 	struct sched_domain_shared *sds;
7142 
7143 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7144 	if (sds)
7145 		return READ_ONCE(sds->has_idle_cores);
7146 
7147 	return false;
7148 }
7149 
7150 /*
7151  * Scans the local SMT mask to see if the entire core is idle, and records this
7152  * information in sd_llc_shared->has_idle_cores.
7153  *
7154  * Since SMT siblings share all cache levels, inspecting this limited remote
7155  * state should be fairly cheap.
7156  */
7157 void __update_idle_core(struct rq *rq)
7158 {
7159 	int core = cpu_of(rq);
7160 	int cpu;
7161 
7162 	rcu_read_lock();
7163 	if (test_idle_cores(core))
7164 		goto unlock;
7165 
7166 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7167 		if (cpu == core)
7168 			continue;
7169 
7170 		if (!available_idle_cpu(cpu))
7171 			goto unlock;
7172 	}
7173 
7174 	set_idle_cores(core, 1);
7175 unlock:
7176 	rcu_read_unlock();
7177 }
7178 
7179 /*
7180  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7181  * there are no idle cores left in the system; tracked through
7182  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7183  */
7184 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7185 {
7186 	bool idle = true;
7187 	int cpu;
7188 
7189 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7190 		if (!available_idle_cpu(cpu)) {
7191 			idle = false;
7192 			if (*idle_cpu == -1) {
7193 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7194 					*idle_cpu = cpu;
7195 					break;
7196 				}
7197 				continue;
7198 			}
7199 			break;
7200 		}
7201 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7202 			*idle_cpu = cpu;
7203 	}
7204 
7205 	if (idle)
7206 		return core;
7207 
7208 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7209 	return -1;
7210 }
7211 
7212 /*
7213  * Scan the local SMT mask for idle CPUs.
7214  */
7215 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7216 {
7217 	int cpu;
7218 
7219 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7220 		if (cpu == target)
7221 			continue;
7222 		/*
7223 		 * Check if the CPU is in the LLC scheduling domain of @target.
7224 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7225 		 */
7226 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7227 			continue;
7228 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7229 			return cpu;
7230 	}
7231 
7232 	return -1;
7233 }
7234 
7235 #else /* CONFIG_SCHED_SMT */
7236 
7237 static inline void set_idle_cores(int cpu, int val)
7238 {
7239 }
7240 
7241 static inline bool test_idle_cores(int cpu)
7242 {
7243 	return false;
7244 }
7245 
7246 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7247 {
7248 	return __select_idle_cpu(core, p);
7249 }
7250 
7251 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7252 {
7253 	return -1;
7254 }
7255 
7256 #endif /* CONFIG_SCHED_SMT */
7257 
7258 /*
7259  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7260  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7261  * average idle time for this rq (as found in rq->avg_idle).
7262  */
7263 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7264 {
7265 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7266 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7267 	struct sched_domain_shared *sd_share;
7268 	struct rq *this_rq = this_rq();
7269 	int this = smp_processor_id();
7270 	struct sched_domain *this_sd = NULL;
7271 	u64 time = 0;
7272 
7273 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7274 
7275 	if (sched_feat(SIS_PROP) && !has_idle_core) {
7276 		u64 avg_cost, avg_idle, span_avg;
7277 		unsigned long now = jiffies;
7278 
7279 		this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
7280 		if (!this_sd)
7281 			return -1;
7282 
7283 		/*
7284 		 * If we're busy, the assumption that the last idle period
7285 		 * predicts the future is flawed; age away the remaining
7286 		 * predicted idle time.
7287 		 */
7288 		if (unlikely(this_rq->wake_stamp < now)) {
7289 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
7290 				this_rq->wake_stamp++;
7291 				this_rq->wake_avg_idle >>= 1;
7292 			}
7293 		}
7294 
7295 		avg_idle = this_rq->wake_avg_idle;
7296 		avg_cost = this_sd->avg_scan_cost + 1;
7297 
7298 		span_avg = sd->span_weight * avg_idle;
7299 		if (span_avg > 4*avg_cost)
7300 			nr = div_u64(span_avg, avg_cost);
7301 		else
7302 			nr = 4;
7303 
7304 		time = cpu_clock(this);
7305 	}
7306 
7307 	if (sched_feat(SIS_UTIL)) {
7308 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7309 		if (sd_share) {
7310 			/* because !--nr is the condition to stop scan */
7311 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7312 			/* overloaded LLC is unlikely to have idle cpu/core */
7313 			if (nr == 1)
7314 				return -1;
7315 		}
7316 	}
7317 
7318 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7319 		if (has_idle_core) {
7320 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7321 			if ((unsigned int)i < nr_cpumask_bits)
7322 				return i;
7323 
7324 		} else {
7325 			if (!--nr)
7326 				return -1;
7327 			idle_cpu = __select_idle_cpu(cpu, p);
7328 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7329 				break;
7330 		}
7331 	}
7332 
7333 	if (has_idle_core)
7334 		set_idle_cores(target, false);
7335 
7336 	if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
7337 		time = cpu_clock(this) - time;
7338 
7339 		/*
7340 		 * Account for the scan cost of wakeups against the average
7341 		 * idle time.
7342 		 */
7343 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
7344 
7345 		update_avg(&this_sd->avg_scan_cost, time);
7346 	}
7347 
7348 	return idle_cpu;
7349 }
7350 
7351 /*
7352  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7353  * the task fits. If no CPU is big enough, but there are idle ones, try to
7354  * maximize capacity.
7355  */
7356 static int
7357 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7358 {
7359 	unsigned long task_util, util_min, util_max, best_cap = 0;
7360 	int fits, best_fits = 0;
7361 	int cpu, best_cpu = -1;
7362 	struct cpumask *cpus;
7363 
7364 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7365 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7366 
7367 	task_util = task_util_est(p);
7368 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7369 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7370 
7371 	for_each_cpu_wrap(cpu, cpus, target) {
7372 		unsigned long cpu_cap = capacity_of(cpu);
7373 
7374 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7375 			continue;
7376 
7377 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7378 
7379 		/* This CPU fits with all requirements */
7380 		if (fits > 0)
7381 			return cpu;
7382 		/*
7383 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7384 		 * Look for the CPU with best capacity.
7385 		 */
7386 		else if (fits < 0)
7387 			cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
7388 
7389 		/*
7390 		 * First, select CPU which fits better (-1 being better than 0).
7391 		 * Then, select the one with best capacity at same level.
7392 		 */
7393 		if ((fits < best_fits) ||
7394 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7395 			best_cap = cpu_cap;
7396 			best_cpu = cpu;
7397 			best_fits = fits;
7398 		}
7399 	}
7400 
7401 	return best_cpu;
7402 }
7403 
7404 static inline bool asym_fits_cpu(unsigned long util,
7405 				 unsigned long util_min,
7406 				 unsigned long util_max,
7407 				 int cpu)
7408 {
7409 	if (sched_asym_cpucap_active())
7410 		/*
7411 		 * Return true only if the cpu fully fits the task requirements
7412 		 * which include the utilization and the performance hints.
7413 		 */
7414 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7415 
7416 	return true;
7417 }
7418 
7419 /*
7420  * Try and locate an idle core/thread in the LLC cache domain.
7421  */
7422 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7423 {
7424 	bool has_idle_core = false;
7425 	struct sched_domain *sd;
7426 	unsigned long task_util, util_min, util_max;
7427 	int i, recent_used_cpu;
7428 
7429 	/*
7430 	 * On asymmetric system, update task utilization because we will check
7431 	 * that the task fits with cpu's capacity.
7432 	 */
7433 	if (sched_asym_cpucap_active()) {
7434 		sync_entity_load_avg(&p->se);
7435 		task_util = task_util_est(p);
7436 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7437 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7438 	}
7439 
7440 	/*
7441 	 * per-cpu select_rq_mask usage
7442 	 */
7443 	lockdep_assert_irqs_disabled();
7444 
7445 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7446 	    asym_fits_cpu(task_util, util_min, util_max, target))
7447 		return target;
7448 
7449 	/*
7450 	 * If the previous CPU is cache affine and idle, don't be stupid:
7451 	 */
7452 	if (prev != target && cpus_share_cache(prev, target) &&
7453 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7454 	    asym_fits_cpu(task_util, util_min, util_max, prev))
7455 		return prev;
7456 
7457 	/*
7458 	 * Allow a per-cpu kthread to stack with the wakee if the
7459 	 * kworker thread and the tasks previous CPUs are the same.
7460 	 * The assumption is that the wakee queued work for the
7461 	 * per-cpu kthread that is now complete and the wakeup is
7462 	 * essentially a sync wakeup. An obvious example of this
7463 	 * pattern is IO completions.
7464 	 */
7465 	if (is_per_cpu_kthread(current) &&
7466 	    in_task() &&
7467 	    prev == smp_processor_id() &&
7468 	    this_rq()->nr_running <= 1 &&
7469 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7470 		return prev;
7471 	}
7472 
7473 	/* Check a recently used CPU as a potential idle candidate: */
7474 	recent_used_cpu = p->recent_used_cpu;
7475 	p->recent_used_cpu = prev;
7476 	if (recent_used_cpu != prev &&
7477 	    recent_used_cpu != target &&
7478 	    cpus_share_cache(recent_used_cpu, target) &&
7479 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7480 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7481 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7482 		return recent_used_cpu;
7483 	}
7484 
7485 	/*
7486 	 * For asymmetric CPU capacity systems, our domain of interest is
7487 	 * sd_asym_cpucapacity rather than sd_llc.
7488 	 */
7489 	if (sched_asym_cpucap_active()) {
7490 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7491 		/*
7492 		 * On an asymmetric CPU capacity system where an exclusive
7493 		 * cpuset defines a symmetric island (i.e. one unique
7494 		 * capacity_orig value through the cpuset), the key will be set
7495 		 * but the CPUs within that cpuset will not have a domain with
7496 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7497 		 * capacity path.
7498 		 */
7499 		if (sd) {
7500 			i = select_idle_capacity(p, sd, target);
7501 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7502 		}
7503 	}
7504 
7505 	sd = rcu_dereference(per_cpu(sd_llc, target));
7506 	if (!sd)
7507 		return target;
7508 
7509 	if (sched_smt_active()) {
7510 		has_idle_core = test_idle_cores(target);
7511 
7512 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7513 			i = select_idle_smt(p, sd, prev);
7514 			if ((unsigned int)i < nr_cpumask_bits)
7515 				return i;
7516 		}
7517 	}
7518 
7519 	i = select_idle_cpu(p, sd, has_idle_core, target);
7520 	if ((unsigned)i < nr_cpumask_bits)
7521 		return i;
7522 
7523 	return target;
7524 }
7525 
7526 /**
7527  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7528  * @cpu: the CPU to get the utilization for
7529  * @p: task for which the CPU utilization should be predicted or NULL
7530  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7531  * @boost: 1 to enable boosting, otherwise 0
7532  *
7533  * The unit of the return value must be the same as the one of CPU capacity
7534  * so that CPU utilization can be compared with CPU capacity.
7535  *
7536  * CPU utilization is the sum of running time of runnable tasks plus the
7537  * recent utilization of currently non-runnable tasks on that CPU.
7538  * It represents the amount of CPU capacity currently used by CFS tasks in
7539  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7540  * capacity at f_max.
7541  *
7542  * The estimated CPU utilization is defined as the maximum between CPU
7543  * utilization and sum of the estimated utilization of the currently
7544  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7545  * previously-executed tasks, which helps better deduce how busy a CPU will
7546  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7547  * of such a task would be significantly decayed at this point of time.
7548  *
7549  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7550  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7551  * utilization. Boosting is implemented in cpu_util() so that internal
7552  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7553  * latter via cpu_util_cfs_boost().
7554  *
7555  * CPU utilization can be higher than the current CPU capacity
7556  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7557  * of rounding errors as well as task migrations or wakeups of new tasks.
7558  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7559  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7560  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7561  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7562  * though since this is useful for predicting the CPU capacity required
7563  * after task migrations (scheduler-driven DVFS).
7564  *
7565  * Return: (Boosted) (estimated) utilization for the specified CPU.
7566  */
7567 static unsigned long
7568 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7569 {
7570 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7571 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7572 	unsigned long runnable;
7573 
7574 	if (boost) {
7575 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7576 		util = max(util, runnable);
7577 	}
7578 
7579 	/*
7580 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7581 	 * contribution. If @p migrates from another CPU to @cpu add its
7582 	 * contribution. In all the other cases @cpu is not impacted by the
7583 	 * migration so its util_avg is already correct.
7584 	 */
7585 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7586 		lsub_positive(&util, task_util(p));
7587 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7588 		util += task_util(p);
7589 
7590 	if (sched_feat(UTIL_EST)) {
7591 		unsigned long util_est;
7592 
7593 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
7594 
7595 		/*
7596 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7597 		 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
7598 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7599 		 * has been enqueued.
7600 		 *
7601 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7602 		 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
7603 		 * Remove it to "simulate" cpu_util without @p's contribution.
7604 		 *
7605 		 * Despite the task_on_rq_queued(@p) check there is still a
7606 		 * small window for a possible race when an exec
7607 		 * select_task_rq_fair() races with LB's detach_task().
7608 		 *
7609 		 *   detach_task()
7610 		 *     deactivate_task()
7611 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7612 		 *       -------------------------------- A
7613 		 *       dequeue_task()                    \
7614 		 *         dequeue_task_fair()              + Race Time
7615 		 *           util_est_dequeue()            /
7616 		 *       -------------------------------- B
7617 		 *
7618 		 * The additional check "current == p" is required to further
7619 		 * reduce the race window.
7620 		 */
7621 		if (dst_cpu == cpu)
7622 			util_est += _task_util_est(p);
7623 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7624 			lsub_positive(&util_est, _task_util_est(p));
7625 
7626 		util = max(util, util_est);
7627 	}
7628 
7629 	return min(util, capacity_orig_of(cpu));
7630 }
7631 
7632 unsigned long cpu_util_cfs(int cpu)
7633 {
7634 	return cpu_util(cpu, NULL, -1, 0);
7635 }
7636 
7637 unsigned long cpu_util_cfs_boost(int cpu)
7638 {
7639 	return cpu_util(cpu, NULL, -1, 1);
7640 }
7641 
7642 /*
7643  * cpu_util_without: compute cpu utilization without any contributions from *p
7644  * @cpu: the CPU which utilization is requested
7645  * @p: the task which utilization should be discounted
7646  *
7647  * The utilization of a CPU is defined by the utilization of tasks currently
7648  * enqueued on that CPU as well as tasks which are currently sleeping after an
7649  * execution on that CPU.
7650  *
7651  * This method returns the utilization of the specified CPU by discounting the
7652  * utilization of the specified task, whenever the task is currently
7653  * contributing to the CPU utilization.
7654  */
7655 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7656 {
7657 	/* Task has no contribution or is new */
7658 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7659 		p = NULL;
7660 
7661 	return cpu_util(cpu, p, -1, 0);
7662 }
7663 
7664 /*
7665  * energy_env - Utilization landscape for energy estimation.
7666  * @task_busy_time: Utilization contribution by the task for which we test the
7667  *                  placement. Given by eenv_task_busy_time().
7668  * @pd_busy_time:   Utilization of the whole perf domain without the task
7669  *                  contribution. Given by eenv_pd_busy_time().
7670  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7671  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7672  */
7673 struct energy_env {
7674 	unsigned long task_busy_time;
7675 	unsigned long pd_busy_time;
7676 	unsigned long cpu_cap;
7677 	unsigned long pd_cap;
7678 };
7679 
7680 /*
7681  * Compute the task busy time for compute_energy(). This time cannot be
7682  * injected directly into effective_cpu_util() because of the IRQ scaling.
7683  * The latter only makes sense with the most recent CPUs where the task has
7684  * run.
7685  */
7686 static inline void eenv_task_busy_time(struct energy_env *eenv,
7687 				       struct task_struct *p, int prev_cpu)
7688 {
7689 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7690 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7691 
7692 	if (unlikely(irq >= max_cap))
7693 		busy_time = max_cap;
7694 	else
7695 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7696 
7697 	eenv->task_busy_time = busy_time;
7698 }
7699 
7700 /*
7701  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7702  * utilization for each @pd_cpus, it however doesn't take into account
7703  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7704  * scale the EM reported power consumption at the (eventually clamped)
7705  * cpu_capacity.
7706  *
7707  * The contribution of the task @p for which we want to estimate the
7708  * energy cost is removed (by cpu_util()) and must be calculated
7709  * separately (see eenv_task_busy_time). This ensures:
7710  *
7711  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7712  *     the task on.
7713  *
7714  *   - A fair comparison between CPUs as the task contribution (task_util())
7715  *     will always be the same no matter which CPU utilization we rely on
7716  *     (util_avg or util_est).
7717  *
7718  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7719  * exceed @eenv->pd_cap.
7720  */
7721 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7722 				     struct cpumask *pd_cpus,
7723 				     struct task_struct *p)
7724 {
7725 	unsigned long busy_time = 0;
7726 	int cpu;
7727 
7728 	for_each_cpu(cpu, pd_cpus) {
7729 		unsigned long util = cpu_util(cpu, p, -1, 0);
7730 
7731 		busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7732 	}
7733 
7734 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7735 }
7736 
7737 /*
7738  * Compute the maximum utilization for compute_energy() when the task @p
7739  * is placed on the cpu @dst_cpu.
7740  *
7741  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7742  * exceed @eenv->cpu_cap.
7743  */
7744 static inline unsigned long
7745 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7746 		 struct task_struct *p, int dst_cpu)
7747 {
7748 	unsigned long max_util = 0;
7749 	int cpu;
7750 
7751 	for_each_cpu(cpu, pd_cpus) {
7752 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7753 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7754 		unsigned long eff_util;
7755 
7756 		/*
7757 		 * Performance domain frequency: utilization clamping
7758 		 * must be considered since it affects the selection
7759 		 * of the performance domain frequency.
7760 		 * NOTE: in case RT tasks are running, by default the
7761 		 * FREQUENCY_UTIL's utilization can be max OPP.
7762 		 */
7763 		eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7764 		max_util = max(max_util, eff_util);
7765 	}
7766 
7767 	return min(max_util, eenv->cpu_cap);
7768 }
7769 
7770 /*
7771  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7772  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7773  * contribution is ignored.
7774  */
7775 static inline unsigned long
7776 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7777 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7778 {
7779 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7780 	unsigned long busy_time = eenv->pd_busy_time;
7781 
7782 	if (dst_cpu >= 0)
7783 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7784 
7785 	return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7786 }
7787 
7788 /*
7789  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7790  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7791  * spare capacity in each performance domain and uses it as a potential
7792  * candidate to execute the task. Then, it uses the Energy Model to figure
7793  * out which of the CPU candidates is the most energy-efficient.
7794  *
7795  * The rationale for this heuristic is as follows. In a performance domain,
7796  * all the most energy efficient CPU candidates (according to the Energy
7797  * Model) are those for which we'll request a low frequency. When there are
7798  * several CPUs for which the frequency request will be the same, we don't
7799  * have enough data to break the tie between them, because the Energy Model
7800  * only includes active power costs. With this model, if we assume that
7801  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7802  * the maximum spare capacity in a performance domain is guaranteed to be among
7803  * the best candidates of the performance domain.
7804  *
7805  * In practice, it could be preferable from an energy standpoint to pack
7806  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7807  * but that could also hurt our chances to go cluster idle, and we have no
7808  * ways to tell with the current Energy Model if this is actually a good
7809  * idea or not. So, find_energy_efficient_cpu() basically favors
7810  * cluster-packing, and spreading inside a cluster. That should at least be
7811  * a good thing for latency, and this is consistent with the idea that most
7812  * of the energy savings of EAS come from the asymmetry of the system, and
7813  * not so much from breaking the tie between identical CPUs. That's also the
7814  * reason why EAS is enabled in the topology code only for systems where
7815  * SD_ASYM_CPUCAPACITY is set.
7816  *
7817  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7818  * they don't have any useful utilization data yet and it's not possible to
7819  * forecast their impact on energy consumption. Consequently, they will be
7820  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7821  * to be energy-inefficient in some use-cases. The alternative would be to
7822  * bias new tasks towards specific types of CPUs first, or to try to infer
7823  * their util_avg from the parent task, but those heuristics could hurt
7824  * other use-cases too. So, until someone finds a better way to solve this,
7825  * let's keep things simple by re-using the existing slow path.
7826  */
7827 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7828 {
7829 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7830 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7831 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7832 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7833 	struct root_domain *rd = this_rq()->rd;
7834 	int cpu, best_energy_cpu, target = -1;
7835 	int prev_fits = -1, best_fits = -1;
7836 	unsigned long best_thermal_cap = 0;
7837 	unsigned long prev_thermal_cap = 0;
7838 	struct sched_domain *sd;
7839 	struct perf_domain *pd;
7840 	struct energy_env eenv;
7841 
7842 	rcu_read_lock();
7843 	pd = rcu_dereference(rd->pd);
7844 	if (!pd || READ_ONCE(rd->overutilized))
7845 		goto unlock;
7846 
7847 	/*
7848 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7849 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7850 	 */
7851 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7852 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7853 		sd = sd->parent;
7854 	if (!sd)
7855 		goto unlock;
7856 
7857 	target = prev_cpu;
7858 
7859 	sync_entity_load_avg(&p->se);
7860 	if (!task_util_est(p) && p_util_min == 0)
7861 		goto unlock;
7862 
7863 	eenv_task_busy_time(&eenv, p, prev_cpu);
7864 
7865 	for (; pd; pd = pd->next) {
7866 		unsigned long util_min = p_util_min, util_max = p_util_max;
7867 		unsigned long cpu_cap, cpu_thermal_cap, util;
7868 		long prev_spare_cap = -1, max_spare_cap = -1;
7869 		unsigned long rq_util_min, rq_util_max;
7870 		unsigned long cur_delta, base_energy;
7871 		int max_spare_cap_cpu = -1;
7872 		int fits, max_fits = -1;
7873 
7874 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7875 
7876 		if (cpumask_empty(cpus))
7877 			continue;
7878 
7879 		/* Account thermal pressure for the energy estimation */
7880 		cpu = cpumask_first(cpus);
7881 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7882 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7883 
7884 		eenv.cpu_cap = cpu_thermal_cap;
7885 		eenv.pd_cap = 0;
7886 
7887 		for_each_cpu(cpu, cpus) {
7888 			struct rq *rq = cpu_rq(cpu);
7889 
7890 			eenv.pd_cap += cpu_thermal_cap;
7891 
7892 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7893 				continue;
7894 
7895 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7896 				continue;
7897 
7898 			util = cpu_util(cpu, p, cpu, 0);
7899 			cpu_cap = capacity_of(cpu);
7900 
7901 			/*
7902 			 * Skip CPUs that cannot satisfy the capacity request.
7903 			 * IOW, placing the task there would make the CPU
7904 			 * overutilized. Take uclamp into account to see how
7905 			 * much capacity we can get out of the CPU; this is
7906 			 * aligned with sched_cpu_util().
7907 			 */
7908 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
7909 				/*
7910 				 * Open code uclamp_rq_util_with() except for
7911 				 * the clamp() part. Ie: apply max aggregation
7912 				 * only. util_fits_cpu() logic requires to
7913 				 * operate on non clamped util but must use the
7914 				 * max-aggregated uclamp_{min, max}.
7915 				 */
7916 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
7917 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
7918 
7919 				util_min = max(rq_util_min, p_util_min);
7920 				util_max = max(rq_util_max, p_util_max);
7921 			}
7922 
7923 			fits = util_fits_cpu(util, util_min, util_max, cpu);
7924 			if (!fits)
7925 				continue;
7926 
7927 			lsub_positive(&cpu_cap, util);
7928 
7929 			if (cpu == prev_cpu) {
7930 				/* Always use prev_cpu as a candidate. */
7931 				prev_spare_cap = cpu_cap;
7932 				prev_fits = fits;
7933 			} else if ((fits > max_fits) ||
7934 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
7935 				/*
7936 				 * Find the CPU with the maximum spare capacity
7937 				 * among the remaining CPUs in the performance
7938 				 * domain.
7939 				 */
7940 				max_spare_cap = cpu_cap;
7941 				max_spare_cap_cpu = cpu;
7942 				max_fits = fits;
7943 			}
7944 		}
7945 
7946 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
7947 			continue;
7948 
7949 		eenv_pd_busy_time(&eenv, cpus, p);
7950 		/* Compute the 'base' energy of the pd, without @p */
7951 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
7952 
7953 		/* Evaluate the energy impact of using prev_cpu. */
7954 		if (prev_spare_cap > -1) {
7955 			prev_delta = compute_energy(&eenv, pd, cpus, p,
7956 						    prev_cpu);
7957 			/* CPU utilization has changed */
7958 			if (prev_delta < base_energy)
7959 				goto unlock;
7960 			prev_delta -= base_energy;
7961 			prev_thermal_cap = cpu_thermal_cap;
7962 			best_delta = min(best_delta, prev_delta);
7963 		}
7964 
7965 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
7966 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
7967 			/* Current best energy cpu fits better */
7968 			if (max_fits < best_fits)
7969 				continue;
7970 
7971 			/*
7972 			 * Both don't fit performance hint (i.e. uclamp_min)
7973 			 * but best energy cpu has better capacity.
7974 			 */
7975 			if ((max_fits < 0) &&
7976 			    (cpu_thermal_cap <= best_thermal_cap))
7977 				continue;
7978 
7979 			cur_delta = compute_energy(&eenv, pd, cpus, p,
7980 						   max_spare_cap_cpu);
7981 			/* CPU utilization has changed */
7982 			if (cur_delta < base_energy)
7983 				goto unlock;
7984 			cur_delta -= base_energy;
7985 
7986 			/*
7987 			 * Both fit for the task but best energy cpu has lower
7988 			 * energy impact.
7989 			 */
7990 			if ((max_fits > 0) && (best_fits > 0) &&
7991 			    (cur_delta >= best_delta))
7992 				continue;
7993 
7994 			best_delta = cur_delta;
7995 			best_energy_cpu = max_spare_cap_cpu;
7996 			best_fits = max_fits;
7997 			best_thermal_cap = cpu_thermal_cap;
7998 		}
7999 	}
8000 	rcu_read_unlock();
8001 
8002 	if ((best_fits > prev_fits) ||
8003 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8004 	    ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
8005 		target = best_energy_cpu;
8006 
8007 	return target;
8008 
8009 unlock:
8010 	rcu_read_unlock();
8011 
8012 	return target;
8013 }
8014 
8015 /*
8016  * select_task_rq_fair: Select target runqueue for the waking task in domains
8017  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8018  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8019  *
8020  * Balances load by selecting the idlest CPU in the idlest group, or under
8021  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8022  *
8023  * Returns the target CPU number.
8024  */
8025 static int
8026 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8027 {
8028 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8029 	struct sched_domain *tmp, *sd = NULL;
8030 	int cpu = smp_processor_id();
8031 	int new_cpu = prev_cpu;
8032 	int want_affine = 0;
8033 	/* SD_flags and WF_flags share the first nibble */
8034 	int sd_flag = wake_flags & 0xF;
8035 
8036 	/*
8037 	 * required for stable ->cpus_allowed
8038 	 */
8039 	lockdep_assert_held(&p->pi_lock);
8040 	if (wake_flags & WF_TTWU) {
8041 		record_wakee(p);
8042 
8043 		if ((wake_flags & WF_CURRENT_CPU) &&
8044 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8045 			return cpu;
8046 
8047 		if (sched_energy_enabled()) {
8048 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8049 			if (new_cpu >= 0)
8050 				return new_cpu;
8051 			new_cpu = prev_cpu;
8052 		}
8053 
8054 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8055 	}
8056 
8057 	rcu_read_lock();
8058 	for_each_domain(cpu, tmp) {
8059 		/*
8060 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8061 		 * cpu is a valid SD_WAKE_AFFINE target.
8062 		 */
8063 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8064 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8065 			if (cpu != prev_cpu)
8066 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8067 
8068 			sd = NULL; /* Prefer wake_affine over balance flags */
8069 			break;
8070 		}
8071 
8072 		/*
8073 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8074 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8075 		 * will usually go to the fast path.
8076 		 */
8077 		if (tmp->flags & sd_flag)
8078 			sd = tmp;
8079 		else if (!want_affine)
8080 			break;
8081 	}
8082 
8083 	if (unlikely(sd)) {
8084 		/* Slow path */
8085 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
8086 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8087 		/* Fast path */
8088 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8089 	}
8090 	rcu_read_unlock();
8091 
8092 	return new_cpu;
8093 }
8094 
8095 /*
8096  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8097  * cfs_rq_of(p) references at time of call are still valid and identify the
8098  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8099  */
8100 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8101 {
8102 	struct sched_entity *se = &p->se;
8103 
8104 	if (!task_on_rq_migrating(p)) {
8105 		remove_entity_load_avg(se);
8106 
8107 		/*
8108 		 * Here, the task's PELT values have been updated according to
8109 		 * the current rq's clock. But if that clock hasn't been
8110 		 * updated in a while, a substantial idle time will be missed,
8111 		 * leading to an inflation after wake-up on the new rq.
8112 		 *
8113 		 * Estimate the missing time from the cfs_rq last_update_time
8114 		 * and update sched_avg to improve the PELT continuity after
8115 		 * migration.
8116 		 */
8117 		migrate_se_pelt_lag(se);
8118 	}
8119 
8120 	/* Tell new CPU we are migrated */
8121 	se->avg.last_update_time = 0;
8122 
8123 	update_scan_period(p, new_cpu);
8124 }
8125 
8126 static void task_dead_fair(struct task_struct *p)
8127 {
8128 	remove_entity_load_avg(&p->se);
8129 }
8130 
8131 static int
8132 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8133 {
8134 	if (rq->nr_running)
8135 		return 1;
8136 
8137 	return newidle_balance(rq, rf) != 0;
8138 }
8139 #endif /* CONFIG_SMP */
8140 
8141 static void set_next_buddy(struct sched_entity *se)
8142 {
8143 	for_each_sched_entity(se) {
8144 		if (SCHED_WARN_ON(!se->on_rq))
8145 			return;
8146 		if (se_is_idle(se))
8147 			return;
8148 		cfs_rq_of(se)->next = se;
8149 	}
8150 }
8151 
8152 /*
8153  * Preempt the current task with a newly woken task if needed:
8154  */
8155 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
8156 {
8157 	struct task_struct *curr = rq->curr;
8158 	struct sched_entity *se = &curr->se, *pse = &p->se;
8159 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8160 	int next_buddy_marked = 0;
8161 	int cse_is_idle, pse_is_idle;
8162 
8163 	if (unlikely(se == pse))
8164 		return;
8165 
8166 	/*
8167 	 * This is possible from callers such as attach_tasks(), in which we
8168 	 * unconditionally check_preempt_curr() after an enqueue (which may have
8169 	 * lead to a throttle).  This both saves work and prevents false
8170 	 * next-buddy nomination below.
8171 	 */
8172 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8173 		return;
8174 
8175 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8176 		set_next_buddy(pse);
8177 		next_buddy_marked = 1;
8178 	}
8179 
8180 	/*
8181 	 * We can come here with TIF_NEED_RESCHED already set from new task
8182 	 * wake up path.
8183 	 *
8184 	 * Note: this also catches the edge-case of curr being in a throttled
8185 	 * group (e.g. via set_curr_task), since update_curr() (in the
8186 	 * enqueue of curr) will have resulted in resched being set.  This
8187 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8188 	 * below.
8189 	 */
8190 	if (test_tsk_need_resched(curr))
8191 		return;
8192 
8193 	/* Idle tasks are by definition preempted by non-idle tasks. */
8194 	if (unlikely(task_has_idle_policy(curr)) &&
8195 	    likely(!task_has_idle_policy(p)))
8196 		goto preempt;
8197 
8198 	/*
8199 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8200 	 * is driven by the tick):
8201 	 */
8202 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
8203 		return;
8204 
8205 	find_matching_se(&se, &pse);
8206 	WARN_ON_ONCE(!pse);
8207 
8208 	cse_is_idle = se_is_idle(se);
8209 	pse_is_idle = se_is_idle(pse);
8210 
8211 	/*
8212 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
8213 	 * in the inverse case).
8214 	 */
8215 	if (cse_is_idle && !pse_is_idle)
8216 		goto preempt;
8217 	if (cse_is_idle != pse_is_idle)
8218 		return;
8219 
8220 	cfs_rq = cfs_rq_of(se);
8221 	update_curr(cfs_rq);
8222 
8223 	/*
8224 	 * XXX pick_eevdf(cfs_rq) != se ?
8225 	 */
8226 	if (pick_eevdf(cfs_rq) == pse)
8227 		goto preempt;
8228 
8229 	return;
8230 
8231 preempt:
8232 	resched_curr(rq);
8233 }
8234 
8235 #ifdef CONFIG_SMP
8236 static struct task_struct *pick_task_fair(struct rq *rq)
8237 {
8238 	struct sched_entity *se;
8239 	struct cfs_rq *cfs_rq;
8240 
8241 again:
8242 	cfs_rq = &rq->cfs;
8243 	if (!cfs_rq->nr_running)
8244 		return NULL;
8245 
8246 	do {
8247 		struct sched_entity *curr = cfs_rq->curr;
8248 
8249 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8250 		if (curr) {
8251 			if (curr->on_rq)
8252 				update_curr(cfs_rq);
8253 			else
8254 				curr = NULL;
8255 
8256 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8257 				goto again;
8258 		}
8259 
8260 		se = pick_next_entity(cfs_rq, curr);
8261 		cfs_rq = group_cfs_rq(se);
8262 	} while (cfs_rq);
8263 
8264 	return task_of(se);
8265 }
8266 #endif
8267 
8268 struct task_struct *
8269 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8270 {
8271 	struct cfs_rq *cfs_rq = &rq->cfs;
8272 	struct sched_entity *se;
8273 	struct task_struct *p;
8274 	int new_tasks;
8275 
8276 again:
8277 	if (!sched_fair_runnable(rq))
8278 		goto idle;
8279 
8280 #ifdef CONFIG_FAIR_GROUP_SCHED
8281 	if (!prev || prev->sched_class != &fair_sched_class)
8282 		goto simple;
8283 
8284 	/*
8285 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8286 	 * likely that a next task is from the same cgroup as the current.
8287 	 *
8288 	 * Therefore attempt to avoid putting and setting the entire cgroup
8289 	 * hierarchy, only change the part that actually changes.
8290 	 */
8291 
8292 	do {
8293 		struct sched_entity *curr = cfs_rq->curr;
8294 
8295 		/*
8296 		 * Since we got here without doing put_prev_entity() we also
8297 		 * have to consider cfs_rq->curr. If it is still a runnable
8298 		 * entity, update_curr() will update its vruntime, otherwise
8299 		 * forget we've ever seen it.
8300 		 */
8301 		if (curr) {
8302 			if (curr->on_rq)
8303 				update_curr(cfs_rq);
8304 			else
8305 				curr = NULL;
8306 
8307 			/*
8308 			 * This call to check_cfs_rq_runtime() will do the
8309 			 * throttle and dequeue its entity in the parent(s).
8310 			 * Therefore the nr_running test will indeed
8311 			 * be correct.
8312 			 */
8313 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8314 				cfs_rq = &rq->cfs;
8315 
8316 				if (!cfs_rq->nr_running)
8317 					goto idle;
8318 
8319 				goto simple;
8320 			}
8321 		}
8322 
8323 		se = pick_next_entity(cfs_rq, curr);
8324 		cfs_rq = group_cfs_rq(se);
8325 	} while (cfs_rq);
8326 
8327 	p = task_of(se);
8328 
8329 	/*
8330 	 * Since we haven't yet done put_prev_entity and if the selected task
8331 	 * is a different task than we started out with, try and touch the
8332 	 * least amount of cfs_rqs.
8333 	 */
8334 	if (prev != p) {
8335 		struct sched_entity *pse = &prev->se;
8336 
8337 		while (!(cfs_rq = is_same_group(se, pse))) {
8338 			int se_depth = se->depth;
8339 			int pse_depth = pse->depth;
8340 
8341 			if (se_depth <= pse_depth) {
8342 				put_prev_entity(cfs_rq_of(pse), pse);
8343 				pse = parent_entity(pse);
8344 			}
8345 			if (se_depth >= pse_depth) {
8346 				set_next_entity(cfs_rq_of(se), se);
8347 				se = parent_entity(se);
8348 			}
8349 		}
8350 
8351 		put_prev_entity(cfs_rq, pse);
8352 		set_next_entity(cfs_rq, se);
8353 	}
8354 
8355 	goto done;
8356 simple:
8357 #endif
8358 	if (prev)
8359 		put_prev_task(rq, prev);
8360 
8361 	do {
8362 		se = pick_next_entity(cfs_rq, NULL);
8363 		set_next_entity(cfs_rq, se);
8364 		cfs_rq = group_cfs_rq(se);
8365 	} while (cfs_rq);
8366 
8367 	p = task_of(se);
8368 
8369 done: __maybe_unused;
8370 #ifdef CONFIG_SMP
8371 	/*
8372 	 * Move the next running task to the front of
8373 	 * the list, so our cfs_tasks list becomes MRU
8374 	 * one.
8375 	 */
8376 	list_move(&p->se.group_node, &rq->cfs_tasks);
8377 #endif
8378 
8379 	if (hrtick_enabled_fair(rq))
8380 		hrtick_start_fair(rq, p);
8381 
8382 	update_misfit_status(p, rq);
8383 	sched_fair_update_stop_tick(rq, p);
8384 
8385 	return p;
8386 
8387 idle:
8388 	if (!rf)
8389 		return NULL;
8390 
8391 	new_tasks = newidle_balance(rq, rf);
8392 
8393 	/*
8394 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8395 	 * possible for any higher priority task to appear. In that case we
8396 	 * must re-start the pick_next_entity() loop.
8397 	 */
8398 	if (new_tasks < 0)
8399 		return RETRY_TASK;
8400 
8401 	if (new_tasks > 0)
8402 		goto again;
8403 
8404 	/*
8405 	 * rq is about to be idle, check if we need to update the
8406 	 * lost_idle_time of clock_pelt
8407 	 */
8408 	update_idle_rq_clock_pelt(rq);
8409 
8410 	return NULL;
8411 }
8412 
8413 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8414 {
8415 	return pick_next_task_fair(rq, NULL, NULL);
8416 }
8417 
8418 /*
8419  * Account for a descheduled task:
8420  */
8421 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8422 {
8423 	struct sched_entity *se = &prev->se;
8424 	struct cfs_rq *cfs_rq;
8425 
8426 	for_each_sched_entity(se) {
8427 		cfs_rq = cfs_rq_of(se);
8428 		put_prev_entity(cfs_rq, se);
8429 	}
8430 }
8431 
8432 /*
8433  * sched_yield() is very simple
8434  */
8435 static void yield_task_fair(struct rq *rq)
8436 {
8437 	struct task_struct *curr = rq->curr;
8438 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8439 	struct sched_entity *se = &curr->se;
8440 
8441 	/*
8442 	 * Are we the only task in the tree?
8443 	 */
8444 	if (unlikely(rq->nr_running == 1))
8445 		return;
8446 
8447 	clear_buddies(cfs_rq, se);
8448 
8449 	update_rq_clock(rq);
8450 	/*
8451 	 * Update run-time statistics of the 'current'.
8452 	 */
8453 	update_curr(cfs_rq);
8454 	/*
8455 	 * Tell update_rq_clock() that we've just updated,
8456 	 * so we don't do microscopic update in schedule()
8457 	 * and double the fastpath cost.
8458 	 */
8459 	rq_clock_skip_update(rq);
8460 
8461 	se->deadline += calc_delta_fair(se->slice, se);
8462 }
8463 
8464 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8465 {
8466 	struct sched_entity *se = &p->se;
8467 
8468 	/* throttled hierarchies are not runnable */
8469 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8470 		return false;
8471 
8472 	/* Tell the scheduler that we'd really like pse to run next. */
8473 	set_next_buddy(se);
8474 
8475 	yield_task_fair(rq);
8476 
8477 	return true;
8478 }
8479 
8480 #ifdef CONFIG_SMP
8481 /**************************************************
8482  * Fair scheduling class load-balancing methods.
8483  *
8484  * BASICS
8485  *
8486  * The purpose of load-balancing is to achieve the same basic fairness the
8487  * per-CPU scheduler provides, namely provide a proportional amount of compute
8488  * time to each task. This is expressed in the following equation:
8489  *
8490  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8491  *
8492  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8493  * W_i,0 is defined as:
8494  *
8495  *   W_i,0 = \Sum_j w_i,j                                             (2)
8496  *
8497  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8498  * is derived from the nice value as per sched_prio_to_weight[].
8499  *
8500  * The weight average is an exponential decay average of the instantaneous
8501  * weight:
8502  *
8503  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8504  *
8505  * C_i is the compute capacity of CPU i, typically it is the
8506  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8507  * can also include other factors [XXX].
8508  *
8509  * To achieve this balance we define a measure of imbalance which follows
8510  * directly from (1):
8511  *
8512  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8513  *
8514  * We them move tasks around to minimize the imbalance. In the continuous
8515  * function space it is obvious this converges, in the discrete case we get
8516  * a few fun cases generally called infeasible weight scenarios.
8517  *
8518  * [XXX expand on:
8519  *     - infeasible weights;
8520  *     - local vs global optima in the discrete case. ]
8521  *
8522  *
8523  * SCHED DOMAINS
8524  *
8525  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8526  * for all i,j solution, we create a tree of CPUs that follows the hardware
8527  * topology where each level pairs two lower groups (or better). This results
8528  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8529  * tree to only the first of the previous level and we decrease the frequency
8530  * of load-balance at each level inv. proportional to the number of CPUs in
8531  * the groups.
8532  *
8533  * This yields:
8534  *
8535  *     log_2 n     1     n
8536  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8537  *     i = 0      2^i   2^i
8538  *                               `- size of each group
8539  *         |         |     `- number of CPUs doing load-balance
8540  *         |         `- freq
8541  *         `- sum over all levels
8542  *
8543  * Coupled with a limit on how many tasks we can migrate every balance pass,
8544  * this makes (5) the runtime complexity of the balancer.
8545  *
8546  * An important property here is that each CPU is still (indirectly) connected
8547  * to every other CPU in at most O(log n) steps:
8548  *
8549  * The adjacency matrix of the resulting graph is given by:
8550  *
8551  *             log_2 n
8552  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8553  *             k = 0
8554  *
8555  * And you'll find that:
8556  *
8557  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8558  *
8559  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8560  * The task movement gives a factor of O(m), giving a convergence complexity
8561  * of:
8562  *
8563  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8564  *
8565  *
8566  * WORK CONSERVING
8567  *
8568  * In order to avoid CPUs going idle while there's still work to do, new idle
8569  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8570  * tree itself instead of relying on other CPUs to bring it work.
8571  *
8572  * This adds some complexity to both (5) and (8) but it reduces the total idle
8573  * time.
8574  *
8575  * [XXX more?]
8576  *
8577  *
8578  * CGROUPS
8579  *
8580  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8581  *
8582  *                                s_k,i
8583  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8584  *                                 S_k
8585  *
8586  * Where
8587  *
8588  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8589  *
8590  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8591  *
8592  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8593  * property.
8594  *
8595  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8596  *      rewrite all of this once again.]
8597  */
8598 
8599 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8600 
8601 enum fbq_type { regular, remote, all };
8602 
8603 /*
8604  * 'group_type' describes the group of CPUs at the moment of load balancing.
8605  *
8606  * The enum is ordered by pulling priority, with the group with lowest priority
8607  * first so the group_type can simply be compared when selecting the busiest
8608  * group. See update_sd_pick_busiest().
8609  */
8610 enum group_type {
8611 	/* The group has spare capacity that can be used to run more tasks.  */
8612 	group_has_spare = 0,
8613 	/*
8614 	 * The group is fully used and the tasks don't compete for more CPU
8615 	 * cycles. Nevertheless, some tasks might wait before running.
8616 	 */
8617 	group_fully_busy,
8618 	/*
8619 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8620 	 * more powerful CPU.
8621 	 */
8622 	group_misfit_task,
8623 	/*
8624 	 * Balance SMT group that's fully busy. Can benefit from migration
8625 	 * a task on SMT with busy sibling to another CPU on idle core.
8626 	 */
8627 	group_smt_balance,
8628 	/*
8629 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8630 	 * and the task should be migrated to it instead of running on the
8631 	 * current CPU.
8632 	 */
8633 	group_asym_packing,
8634 	/*
8635 	 * The tasks' affinity constraints previously prevented the scheduler
8636 	 * from balancing the load across the system.
8637 	 */
8638 	group_imbalanced,
8639 	/*
8640 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8641 	 * tasks.
8642 	 */
8643 	group_overloaded
8644 };
8645 
8646 enum migration_type {
8647 	migrate_load = 0,
8648 	migrate_util,
8649 	migrate_task,
8650 	migrate_misfit
8651 };
8652 
8653 #define LBF_ALL_PINNED	0x01
8654 #define LBF_NEED_BREAK	0x02
8655 #define LBF_DST_PINNED  0x04
8656 #define LBF_SOME_PINNED	0x08
8657 #define LBF_ACTIVE_LB	0x10
8658 
8659 struct lb_env {
8660 	struct sched_domain	*sd;
8661 
8662 	struct rq		*src_rq;
8663 	int			src_cpu;
8664 
8665 	int			dst_cpu;
8666 	struct rq		*dst_rq;
8667 
8668 	struct cpumask		*dst_grpmask;
8669 	int			new_dst_cpu;
8670 	enum cpu_idle_type	idle;
8671 	long			imbalance;
8672 	/* The set of CPUs under consideration for load-balancing */
8673 	struct cpumask		*cpus;
8674 
8675 	unsigned int		flags;
8676 
8677 	unsigned int		loop;
8678 	unsigned int		loop_break;
8679 	unsigned int		loop_max;
8680 
8681 	enum fbq_type		fbq_type;
8682 	enum migration_type	migration_type;
8683 	struct list_head	tasks;
8684 };
8685 
8686 /*
8687  * Is this task likely cache-hot:
8688  */
8689 static int task_hot(struct task_struct *p, struct lb_env *env)
8690 {
8691 	s64 delta;
8692 
8693 	lockdep_assert_rq_held(env->src_rq);
8694 
8695 	if (p->sched_class != &fair_sched_class)
8696 		return 0;
8697 
8698 	if (unlikely(task_has_idle_policy(p)))
8699 		return 0;
8700 
8701 	/* SMT siblings share cache */
8702 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8703 		return 0;
8704 
8705 	/*
8706 	 * Buddy candidates are cache hot:
8707 	 */
8708 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8709 	    (&p->se == cfs_rq_of(&p->se)->next))
8710 		return 1;
8711 
8712 	if (sysctl_sched_migration_cost == -1)
8713 		return 1;
8714 
8715 	/*
8716 	 * Don't migrate task if the task's cookie does not match
8717 	 * with the destination CPU's core cookie.
8718 	 */
8719 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8720 		return 1;
8721 
8722 	if (sysctl_sched_migration_cost == 0)
8723 		return 0;
8724 
8725 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8726 
8727 	return delta < (s64)sysctl_sched_migration_cost;
8728 }
8729 
8730 #ifdef CONFIG_NUMA_BALANCING
8731 /*
8732  * Returns 1, if task migration degrades locality
8733  * Returns 0, if task migration improves locality i.e migration preferred.
8734  * Returns -1, if task migration is not affected by locality.
8735  */
8736 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8737 {
8738 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8739 	unsigned long src_weight, dst_weight;
8740 	int src_nid, dst_nid, dist;
8741 
8742 	if (!static_branch_likely(&sched_numa_balancing))
8743 		return -1;
8744 
8745 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8746 		return -1;
8747 
8748 	src_nid = cpu_to_node(env->src_cpu);
8749 	dst_nid = cpu_to_node(env->dst_cpu);
8750 
8751 	if (src_nid == dst_nid)
8752 		return -1;
8753 
8754 	/* Migrating away from the preferred node is always bad. */
8755 	if (src_nid == p->numa_preferred_nid) {
8756 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8757 			return 1;
8758 		else
8759 			return -1;
8760 	}
8761 
8762 	/* Encourage migration to the preferred node. */
8763 	if (dst_nid == p->numa_preferred_nid)
8764 		return 0;
8765 
8766 	/* Leaving a core idle is often worse than degrading locality. */
8767 	if (env->idle == CPU_IDLE)
8768 		return -1;
8769 
8770 	dist = node_distance(src_nid, dst_nid);
8771 	if (numa_group) {
8772 		src_weight = group_weight(p, src_nid, dist);
8773 		dst_weight = group_weight(p, dst_nid, dist);
8774 	} else {
8775 		src_weight = task_weight(p, src_nid, dist);
8776 		dst_weight = task_weight(p, dst_nid, dist);
8777 	}
8778 
8779 	return dst_weight < src_weight;
8780 }
8781 
8782 #else
8783 static inline int migrate_degrades_locality(struct task_struct *p,
8784 					     struct lb_env *env)
8785 {
8786 	return -1;
8787 }
8788 #endif
8789 
8790 /*
8791  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8792  */
8793 static
8794 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8795 {
8796 	int tsk_cache_hot;
8797 
8798 	lockdep_assert_rq_held(env->src_rq);
8799 
8800 	/*
8801 	 * We do not migrate tasks that are:
8802 	 * 1) throttled_lb_pair, or
8803 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8804 	 * 3) running (obviously), or
8805 	 * 4) are cache-hot on their current CPU.
8806 	 */
8807 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8808 		return 0;
8809 
8810 	/* Disregard pcpu kthreads; they are where they need to be. */
8811 	if (kthread_is_per_cpu(p))
8812 		return 0;
8813 
8814 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8815 		int cpu;
8816 
8817 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8818 
8819 		env->flags |= LBF_SOME_PINNED;
8820 
8821 		/*
8822 		 * Remember if this task can be migrated to any other CPU in
8823 		 * our sched_group. We may want to revisit it if we couldn't
8824 		 * meet load balance goals by pulling other tasks on src_cpu.
8825 		 *
8826 		 * Avoid computing new_dst_cpu
8827 		 * - for NEWLY_IDLE
8828 		 * - if we have already computed one in current iteration
8829 		 * - if it's an active balance
8830 		 */
8831 		if (env->idle == CPU_NEWLY_IDLE ||
8832 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8833 			return 0;
8834 
8835 		/* Prevent to re-select dst_cpu via env's CPUs: */
8836 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8837 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8838 				env->flags |= LBF_DST_PINNED;
8839 				env->new_dst_cpu = cpu;
8840 				break;
8841 			}
8842 		}
8843 
8844 		return 0;
8845 	}
8846 
8847 	/* Record that we found at least one task that could run on dst_cpu */
8848 	env->flags &= ~LBF_ALL_PINNED;
8849 
8850 	if (task_on_cpu(env->src_rq, p)) {
8851 		schedstat_inc(p->stats.nr_failed_migrations_running);
8852 		return 0;
8853 	}
8854 
8855 	/*
8856 	 * Aggressive migration if:
8857 	 * 1) active balance
8858 	 * 2) destination numa is preferred
8859 	 * 3) task is cache cold, or
8860 	 * 4) too many balance attempts have failed.
8861 	 */
8862 	if (env->flags & LBF_ACTIVE_LB)
8863 		return 1;
8864 
8865 	tsk_cache_hot = migrate_degrades_locality(p, env);
8866 	if (tsk_cache_hot == -1)
8867 		tsk_cache_hot = task_hot(p, env);
8868 
8869 	if (tsk_cache_hot <= 0 ||
8870 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8871 		if (tsk_cache_hot == 1) {
8872 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8873 			schedstat_inc(p->stats.nr_forced_migrations);
8874 		}
8875 		return 1;
8876 	}
8877 
8878 	schedstat_inc(p->stats.nr_failed_migrations_hot);
8879 	return 0;
8880 }
8881 
8882 /*
8883  * detach_task() -- detach the task for the migration specified in env
8884  */
8885 static void detach_task(struct task_struct *p, struct lb_env *env)
8886 {
8887 	lockdep_assert_rq_held(env->src_rq);
8888 
8889 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8890 	set_task_cpu(p, env->dst_cpu);
8891 }
8892 
8893 /*
8894  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8895  * part of active balancing operations within "domain".
8896  *
8897  * Returns a task if successful and NULL otherwise.
8898  */
8899 static struct task_struct *detach_one_task(struct lb_env *env)
8900 {
8901 	struct task_struct *p;
8902 
8903 	lockdep_assert_rq_held(env->src_rq);
8904 
8905 	list_for_each_entry_reverse(p,
8906 			&env->src_rq->cfs_tasks, se.group_node) {
8907 		if (!can_migrate_task(p, env))
8908 			continue;
8909 
8910 		detach_task(p, env);
8911 
8912 		/*
8913 		 * Right now, this is only the second place where
8914 		 * lb_gained[env->idle] is updated (other is detach_tasks)
8915 		 * so we can safely collect stats here rather than
8916 		 * inside detach_tasks().
8917 		 */
8918 		schedstat_inc(env->sd->lb_gained[env->idle]);
8919 		return p;
8920 	}
8921 	return NULL;
8922 }
8923 
8924 /*
8925  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8926  * busiest_rq, as part of a balancing operation within domain "sd".
8927  *
8928  * Returns number of detached tasks if successful and 0 otherwise.
8929  */
8930 static int detach_tasks(struct lb_env *env)
8931 {
8932 	struct list_head *tasks = &env->src_rq->cfs_tasks;
8933 	unsigned long util, load;
8934 	struct task_struct *p;
8935 	int detached = 0;
8936 
8937 	lockdep_assert_rq_held(env->src_rq);
8938 
8939 	/*
8940 	 * Source run queue has been emptied by another CPU, clear
8941 	 * LBF_ALL_PINNED flag as we will not test any task.
8942 	 */
8943 	if (env->src_rq->nr_running <= 1) {
8944 		env->flags &= ~LBF_ALL_PINNED;
8945 		return 0;
8946 	}
8947 
8948 	if (env->imbalance <= 0)
8949 		return 0;
8950 
8951 	while (!list_empty(tasks)) {
8952 		/*
8953 		 * We don't want to steal all, otherwise we may be treated likewise,
8954 		 * which could at worst lead to a livelock crash.
8955 		 */
8956 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8957 			break;
8958 
8959 		env->loop++;
8960 		/*
8961 		 * We've more or less seen every task there is, call it quits
8962 		 * unless we haven't found any movable task yet.
8963 		 */
8964 		if (env->loop > env->loop_max &&
8965 		    !(env->flags & LBF_ALL_PINNED))
8966 			break;
8967 
8968 		/* take a breather every nr_migrate tasks */
8969 		if (env->loop > env->loop_break) {
8970 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
8971 			env->flags |= LBF_NEED_BREAK;
8972 			break;
8973 		}
8974 
8975 		p = list_last_entry(tasks, struct task_struct, se.group_node);
8976 
8977 		if (!can_migrate_task(p, env))
8978 			goto next;
8979 
8980 		switch (env->migration_type) {
8981 		case migrate_load:
8982 			/*
8983 			 * Depending of the number of CPUs and tasks and the
8984 			 * cgroup hierarchy, task_h_load() can return a null
8985 			 * value. Make sure that env->imbalance decreases
8986 			 * otherwise detach_tasks() will stop only after
8987 			 * detaching up to loop_max tasks.
8988 			 */
8989 			load = max_t(unsigned long, task_h_load(p), 1);
8990 
8991 			if (sched_feat(LB_MIN) &&
8992 			    load < 16 && !env->sd->nr_balance_failed)
8993 				goto next;
8994 
8995 			/*
8996 			 * Make sure that we don't migrate too much load.
8997 			 * Nevertheless, let relax the constraint if
8998 			 * scheduler fails to find a good waiting task to
8999 			 * migrate.
9000 			 */
9001 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9002 				goto next;
9003 
9004 			env->imbalance -= load;
9005 			break;
9006 
9007 		case migrate_util:
9008 			util = task_util_est(p);
9009 
9010 			if (util > env->imbalance)
9011 				goto next;
9012 
9013 			env->imbalance -= util;
9014 			break;
9015 
9016 		case migrate_task:
9017 			env->imbalance--;
9018 			break;
9019 
9020 		case migrate_misfit:
9021 			/* This is not a misfit task */
9022 			if (task_fits_cpu(p, env->src_cpu))
9023 				goto next;
9024 
9025 			env->imbalance = 0;
9026 			break;
9027 		}
9028 
9029 		detach_task(p, env);
9030 		list_add(&p->se.group_node, &env->tasks);
9031 
9032 		detached++;
9033 
9034 #ifdef CONFIG_PREEMPTION
9035 		/*
9036 		 * NEWIDLE balancing is a source of latency, so preemptible
9037 		 * kernels will stop after the first task is detached to minimize
9038 		 * the critical section.
9039 		 */
9040 		if (env->idle == CPU_NEWLY_IDLE)
9041 			break;
9042 #endif
9043 
9044 		/*
9045 		 * We only want to steal up to the prescribed amount of
9046 		 * load/util/tasks.
9047 		 */
9048 		if (env->imbalance <= 0)
9049 			break;
9050 
9051 		continue;
9052 next:
9053 		list_move(&p->se.group_node, tasks);
9054 	}
9055 
9056 	/*
9057 	 * Right now, this is one of only two places we collect this stat
9058 	 * so we can safely collect detach_one_task() stats here rather
9059 	 * than inside detach_one_task().
9060 	 */
9061 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9062 
9063 	return detached;
9064 }
9065 
9066 /*
9067  * attach_task() -- attach the task detached by detach_task() to its new rq.
9068  */
9069 static void attach_task(struct rq *rq, struct task_struct *p)
9070 {
9071 	lockdep_assert_rq_held(rq);
9072 
9073 	WARN_ON_ONCE(task_rq(p) != rq);
9074 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9075 	check_preempt_curr(rq, p, 0);
9076 }
9077 
9078 /*
9079  * attach_one_task() -- attaches the task returned from detach_one_task() to
9080  * its new rq.
9081  */
9082 static void attach_one_task(struct rq *rq, struct task_struct *p)
9083 {
9084 	struct rq_flags rf;
9085 
9086 	rq_lock(rq, &rf);
9087 	update_rq_clock(rq);
9088 	attach_task(rq, p);
9089 	rq_unlock(rq, &rf);
9090 }
9091 
9092 /*
9093  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9094  * new rq.
9095  */
9096 static void attach_tasks(struct lb_env *env)
9097 {
9098 	struct list_head *tasks = &env->tasks;
9099 	struct task_struct *p;
9100 	struct rq_flags rf;
9101 
9102 	rq_lock(env->dst_rq, &rf);
9103 	update_rq_clock(env->dst_rq);
9104 
9105 	while (!list_empty(tasks)) {
9106 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9107 		list_del_init(&p->se.group_node);
9108 
9109 		attach_task(env->dst_rq, p);
9110 	}
9111 
9112 	rq_unlock(env->dst_rq, &rf);
9113 }
9114 
9115 #ifdef CONFIG_NO_HZ_COMMON
9116 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9117 {
9118 	if (cfs_rq->avg.load_avg)
9119 		return true;
9120 
9121 	if (cfs_rq->avg.util_avg)
9122 		return true;
9123 
9124 	return false;
9125 }
9126 
9127 static inline bool others_have_blocked(struct rq *rq)
9128 {
9129 	if (READ_ONCE(rq->avg_rt.util_avg))
9130 		return true;
9131 
9132 	if (READ_ONCE(rq->avg_dl.util_avg))
9133 		return true;
9134 
9135 	if (thermal_load_avg(rq))
9136 		return true;
9137 
9138 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9139 	if (READ_ONCE(rq->avg_irq.util_avg))
9140 		return true;
9141 #endif
9142 
9143 	return false;
9144 }
9145 
9146 static inline void update_blocked_load_tick(struct rq *rq)
9147 {
9148 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9149 }
9150 
9151 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9152 {
9153 	if (!has_blocked)
9154 		rq->has_blocked_load = 0;
9155 }
9156 #else
9157 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9158 static inline bool others_have_blocked(struct rq *rq) { return false; }
9159 static inline void update_blocked_load_tick(struct rq *rq) {}
9160 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9161 #endif
9162 
9163 static bool __update_blocked_others(struct rq *rq, bool *done)
9164 {
9165 	const struct sched_class *curr_class;
9166 	u64 now = rq_clock_pelt(rq);
9167 	unsigned long thermal_pressure;
9168 	bool decayed;
9169 
9170 	/*
9171 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9172 	 * DL and IRQ signals have been updated before updating CFS.
9173 	 */
9174 	curr_class = rq->curr->sched_class;
9175 
9176 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9177 
9178 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9179 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9180 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9181 		  update_irq_load_avg(rq, 0);
9182 
9183 	if (others_have_blocked(rq))
9184 		*done = false;
9185 
9186 	return decayed;
9187 }
9188 
9189 #ifdef CONFIG_FAIR_GROUP_SCHED
9190 
9191 static bool __update_blocked_fair(struct rq *rq, bool *done)
9192 {
9193 	struct cfs_rq *cfs_rq, *pos;
9194 	bool decayed = false;
9195 	int cpu = cpu_of(rq);
9196 
9197 	/*
9198 	 * Iterates the task_group tree in a bottom up fashion, see
9199 	 * list_add_leaf_cfs_rq() for details.
9200 	 */
9201 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9202 		struct sched_entity *se;
9203 
9204 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9205 			update_tg_load_avg(cfs_rq);
9206 
9207 			if (cfs_rq->nr_running == 0)
9208 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9209 
9210 			if (cfs_rq == &rq->cfs)
9211 				decayed = true;
9212 		}
9213 
9214 		/* Propagate pending load changes to the parent, if any: */
9215 		se = cfs_rq->tg->se[cpu];
9216 		if (se && !skip_blocked_update(se))
9217 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9218 
9219 		/*
9220 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9221 		 * decayed cfs_rqs linger on the list.
9222 		 */
9223 		if (cfs_rq_is_decayed(cfs_rq))
9224 			list_del_leaf_cfs_rq(cfs_rq);
9225 
9226 		/* Don't need periodic decay once load/util_avg are null */
9227 		if (cfs_rq_has_blocked(cfs_rq))
9228 			*done = false;
9229 	}
9230 
9231 	return decayed;
9232 }
9233 
9234 /*
9235  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9236  * This needs to be done in a top-down fashion because the load of a child
9237  * group is a fraction of its parents load.
9238  */
9239 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9240 {
9241 	struct rq *rq = rq_of(cfs_rq);
9242 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9243 	unsigned long now = jiffies;
9244 	unsigned long load;
9245 
9246 	if (cfs_rq->last_h_load_update == now)
9247 		return;
9248 
9249 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9250 	for_each_sched_entity(se) {
9251 		cfs_rq = cfs_rq_of(se);
9252 		WRITE_ONCE(cfs_rq->h_load_next, se);
9253 		if (cfs_rq->last_h_load_update == now)
9254 			break;
9255 	}
9256 
9257 	if (!se) {
9258 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9259 		cfs_rq->last_h_load_update = now;
9260 	}
9261 
9262 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9263 		load = cfs_rq->h_load;
9264 		load = div64_ul(load * se->avg.load_avg,
9265 			cfs_rq_load_avg(cfs_rq) + 1);
9266 		cfs_rq = group_cfs_rq(se);
9267 		cfs_rq->h_load = load;
9268 		cfs_rq->last_h_load_update = now;
9269 	}
9270 }
9271 
9272 static unsigned long task_h_load(struct task_struct *p)
9273 {
9274 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9275 
9276 	update_cfs_rq_h_load(cfs_rq);
9277 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9278 			cfs_rq_load_avg(cfs_rq) + 1);
9279 }
9280 #else
9281 static bool __update_blocked_fair(struct rq *rq, bool *done)
9282 {
9283 	struct cfs_rq *cfs_rq = &rq->cfs;
9284 	bool decayed;
9285 
9286 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9287 	if (cfs_rq_has_blocked(cfs_rq))
9288 		*done = false;
9289 
9290 	return decayed;
9291 }
9292 
9293 static unsigned long task_h_load(struct task_struct *p)
9294 {
9295 	return p->se.avg.load_avg;
9296 }
9297 #endif
9298 
9299 static void update_blocked_averages(int cpu)
9300 {
9301 	bool decayed = false, done = true;
9302 	struct rq *rq = cpu_rq(cpu);
9303 	struct rq_flags rf;
9304 
9305 	rq_lock_irqsave(rq, &rf);
9306 	update_blocked_load_tick(rq);
9307 	update_rq_clock(rq);
9308 
9309 	decayed |= __update_blocked_others(rq, &done);
9310 	decayed |= __update_blocked_fair(rq, &done);
9311 
9312 	update_blocked_load_status(rq, !done);
9313 	if (decayed)
9314 		cpufreq_update_util(rq, 0);
9315 	rq_unlock_irqrestore(rq, &rf);
9316 }
9317 
9318 /********** Helpers for find_busiest_group ************************/
9319 
9320 /*
9321  * sg_lb_stats - stats of a sched_group required for load_balancing
9322  */
9323 struct sg_lb_stats {
9324 	unsigned long avg_load; /*Avg load across the CPUs of the group */
9325 	unsigned long group_load; /* Total load over the CPUs of the group */
9326 	unsigned long group_capacity;
9327 	unsigned long group_util; /* Total utilization over the CPUs of the group */
9328 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9329 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
9330 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9331 	unsigned int idle_cpus;
9332 	unsigned int group_weight;
9333 	enum group_type group_type;
9334 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9335 	unsigned int group_smt_balance;  /* Task on busy SMT be moved */
9336 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9337 #ifdef CONFIG_NUMA_BALANCING
9338 	unsigned int nr_numa_running;
9339 	unsigned int nr_preferred_running;
9340 #endif
9341 };
9342 
9343 /*
9344  * sd_lb_stats - Structure to store the statistics of a sched_domain
9345  *		 during load balancing.
9346  */
9347 struct sd_lb_stats {
9348 	struct sched_group *busiest;	/* Busiest group in this sd */
9349 	struct sched_group *local;	/* Local group in this sd */
9350 	unsigned long total_load;	/* Total load of all groups in sd */
9351 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
9352 	unsigned long avg_load;	/* Average load across all groups in sd */
9353 	unsigned int prefer_sibling; /* tasks should go to sibling first */
9354 
9355 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9356 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
9357 };
9358 
9359 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9360 {
9361 	/*
9362 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9363 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9364 	 * We must however set busiest_stat::group_type and
9365 	 * busiest_stat::idle_cpus to the worst busiest group because
9366 	 * update_sd_pick_busiest() reads these before assignment.
9367 	 */
9368 	*sds = (struct sd_lb_stats){
9369 		.busiest = NULL,
9370 		.local = NULL,
9371 		.total_load = 0UL,
9372 		.total_capacity = 0UL,
9373 		.busiest_stat = {
9374 			.idle_cpus = UINT_MAX,
9375 			.group_type = group_has_spare,
9376 		},
9377 	};
9378 }
9379 
9380 static unsigned long scale_rt_capacity(int cpu)
9381 {
9382 	struct rq *rq = cpu_rq(cpu);
9383 	unsigned long max = arch_scale_cpu_capacity(cpu);
9384 	unsigned long used, free;
9385 	unsigned long irq;
9386 
9387 	irq = cpu_util_irq(rq);
9388 
9389 	if (unlikely(irq >= max))
9390 		return 1;
9391 
9392 	/*
9393 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9394 	 * (running and not running) with weights 0 and 1024 respectively.
9395 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
9396 	 * average uses the actual delta max capacity(load).
9397 	 */
9398 	used = READ_ONCE(rq->avg_rt.util_avg);
9399 	used += READ_ONCE(rq->avg_dl.util_avg);
9400 	used += thermal_load_avg(rq);
9401 
9402 	if (unlikely(used >= max))
9403 		return 1;
9404 
9405 	free = max - used;
9406 
9407 	return scale_irq_capacity(free, irq, max);
9408 }
9409 
9410 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9411 {
9412 	unsigned long capacity = scale_rt_capacity(cpu);
9413 	struct sched_group *sdg = sd->groups;
9414 
9415 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
9416 
9417 	if (!capacity)
9418 		capacity = 1;
9419 
9420 	cpu_rq(cpu)->cpu_capacity = capacity;
9421 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9422 
9423 	sdg->sgc->capacity = capacity;
9424 	sdg->sgc->min_capacity = capacity;
9425 	sdg->sgc->max_capacity = capacity;
9426 }
9427 
9428 void update_group_capacity(struct sched_domain *sd, int cpu)
9429 {
9430 	struct sched_domain *child = sd->child;
9431 	struct sched_group *group, *sdg = sd->groups;
9432 	unsigned long capacity, min_capacity, max_capacity;
9433 	unsigned long interval;
9434 
9435 	interval = msecs_to_jiffies(sd->balance_interval);
9436 	interval = clamp(interval, 1UL, max_load_balance_interval);
9437 	sdg->sgc->next_update = jiffies + interval;
9438 
9439 	if (!child) {
9440 		update_cpu_capacity(sd, cpu);
9441 		return;
9442 	}
9443 
9444 	capacity = 0;
9445 	min_capacity = ULONG_MAX;
9446 	max_capacity = 0;
9447 
9448 	if (child->flags & SD_OVERLAP) {
9449 		/*
9450 		 * SD_OVERLAP domains cannot assume that child groups
9451 		 * span the current group.
9452 		 */
9453 
9454 		for_each_cpu(cpu, sched_group_span(sdg)) {
9455 			unsigned long cpu_cap = capacity_of(cpu);
9456 
9457 			capacity += cpu_cap;
9458 			min_capacity = min(cpu_cap, min_capacity);
9459 			max_capacity = max(cpu_cap, max_capacity);
9460 		}
9461 	} else  {
9462 		/*
9463 		 * !SD_OVERLAP domains can assume that child groups
9464 		 * span the current group.
9465 		 */
9466 
9467 		group = child->groups;
9468 		do {
9469 			struct sched_group_capacity *sgc = group->sgc;
9470 
9471 			capacity += sgc->capacity;
9472 			min_capacity = min(sgc->min_capacity, min_capacity);
9473 			max_capacity = max(sgc->max_capacity, max_capacity);
9474 			group = group->next;
9475 		} while (group != child->groups);
9476 	}
9477 
9478 	sdg->sgc->capacity = capacity;
9479 	sdg->sgc->min_capacity = min_capacity;
9480 	sdg->sgc->max_capacity = max_capacity;
9481 }
9482 
9483 /*
9484  * Check whether the capacity of the rq has been noticeably reduced by side
9485  * activity. The imbalance_pct is used for the threshold.
9486  * Return true is the capacity is reduced
9487  */
9488 static inline int
9489 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9490 {
9491 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9492 				(rq->cpu_capacity_orig * 100));
9493 }
9494 
9495 /*
9496  * Check whether a rq has a misfit task and if it looks like we can actually
9497  * help that task: we can migrate the task to a CPU of higher capacity, or
9498  * the task's current CPU is heavily pressured.
9499  */
9500 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9501 {
9502 	return rq->misfit_task_load &&
9503 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
9504 		 check_cpu_capacity(rq, sd));
9505 }
9506 
9507 /*
9508  * Group imbalance indicates (and tries to solve) the problem where balancing
9509  * groups is inadequate due to ->cpus_ptr constraints.
9510  *
9511  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9512  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9513  * Something like:
9514  *
9515  *	{ 0 1 2 3 } { 4 5 6 7 }
9516  *	        *     * * *
9517  *
9518  * If we were to balance group-wise we'd place two tasks in the first group and
9519  * two tasks in the second group. Clearly this is undesired as it will overload
9520  * cpu 3 and leave one of the CPUs in the second group unused.
9521  *
9522  * The current solution to this issue is detecting the skew in the first group
9523  * by noticing the lower domain failed to reach balance and had difficulty
9524  * moving tasks due to affinity constraints.
9525  *
9526  * When this is so detected; this group becomes a candidate for busiest; see
9527  * update_sd_pick_busiest(). And calculate_imbalance() and
9528  * find_busiest_group() avoid some of the usual balance conditions to allow it
9529  * to create an effective group imbalance.
9530  *
9531  * This is a somewhat tricky proposition since the next run might not find the
9532  * group imbalance and decide the groups need to be balanced again. A most
9533  * subtle and fragile situation.
9534  */
9535 
9536 static inline int sg_imbalanced(struct sched_group *group)
9537 {
9538 	return group->sgc->imbalance;
9539 }
9540 
9541 /*
9542  * group_has_capacity returns true if the group has spare capacity that could
9543  * be used by some tasks.
9544  * We consider that a group has spare capacity if the number of task is
9545  * smaller than the number of CPUs or if the utilization is lower than the
9546  * available capacity for CFS tasks.
9547  * For the latter, we use a threshold to stabilize the state, to take into
9548  * account the variance of the tasks' load and to return true if the available
9549  * capacity in meaningful for the load balancer.
9550  * As an example, an available capacity of 1% can appear but it doesn't make
9551  * any benefit for the load balance.
9552  */
9553 static inline bool
9554 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9555 {
9556 	if (sgs->sum_nr_running < sgs->group_weight)
9557 		return true;
9558 
9559 	if ((sgs->group_capacity * imbalance_pct) <
9560 			(sgs->group_runnable * 100))
9561 		return false;
9562 
9563 	if ((sgs->group_capacity * 100) >
9564 			(sgs->group_util * imbalance_pct))
9565 		return true;
9566 
9567 	return false;
9568 }
9569 
9570 /*
9571  *  group_is_overloaded returns true if the group has more tasks than it can
9572  *  handle.
9573  *  group_is_overloaded is not equals to !group_has_capacity because a group
9574  *  with the exact right number of tasks, has no more spare capacity but is not
9575  *  overloaded so both group_has_capacity and group_is_overloaded return
9576  *  false.
9577  */
9578 static inline bool
9579 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9580 {
9581 	if (sgs->sum_nr_running <= sgs->group_weight)
9582 		return false;
9583 
9584 	if ((sgs->group_capacity * 100) <
9585 			(sgs->group_util * imbalance_pct))
9586 		return true;
9587 
9588 	if ((sgs->group_capacity * imbalance_pct) <
9589 			(sgs->group_runnable * 100))
9590 		return true;
9591 
9592 	return false;
9593 }
9594 
9595 static inline enum
9596 group_type group_classify(unsigned int imbalance_pct,
9597 			  struct sched_group *group,
9598 			  struct sg_lb_stats *sgs)
9599 {
9600 	if (group_is_overloaded(imbalance_pct, sgs))
9601 		return group_overloaded;
9602 
9603 	if (sg_imbalanced(group))
9604 		return group_imbalanced;
9605 
9606 	if (sgs->group_asym_packing)
9607 		return group_asym_packing;
9608 
9609 	if (sgs->group_smt_balance)
9610 		return group_smt_balance;
9611 
9612 	if (sgs->group_misfit_task_load)
9613 		return group_misfit_task;
9614 
9615 	if (!group_has_capacity(imbalance_pct, sgs))
9616 		return group_fully_busy;
9617 
9618 	return group_has_spare;
9619 }
9620 
9621 /**
9622  * sched_use_asym_prio - Check whether asym_packing priority must be used
9623  * @sd:		The scheduling domain of the load balancing
9624  * @cpu:	A CPU
9625  *
9626  * Always use CPU priority when balancing load between SMT siblings. When
9627  * balancing load between cores, it is not sufficient that @cpu is idle. Only
9628  * use CPU priority if the whole core is idle.
9629  *
9630  * Returns: True if the priority of @cpu must be followed. False otherwise.
9631  */
9632 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9633 {
9634 	if (!sched_smt_active())
9635 		return true;
9636 
9637 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9638 }
9639 
9640 /**
9641  * sched_asym - Check if the destination CPU can do asym_packing load balance
9642  * @env:	The load balancing environment
9643  * @sds:	Load-balancing data with statistics of the local group
9644  * @sgs:	Load-balancing statistics of the candidate busiest group
9645  * @group:	The candidate busiest group
9646  *
9647  * @env::dst_cpu can do asym_packing if it has higher priority than the
9648  * preferred CPU of @group.
9649  *
9650  * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
9651  * can do asym_packing balance only if all its SMT siblings are idle. Also, it
9652  * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
9653  * imbalances in the number of CPUS are dealt with in find_busiest_group().
9654  *
9655  * If we are balancing load within an SMT core, or at DIE domain level, always
9656  * proceed.
9657  *
9658  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9659  * otherwise.
9660  */
9661 static inline bool
9662 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
9663 	   struct sched_group *group)
9664 {
9665 	/* Ensure that the whole local core is idle, if applicable. */
9666 	if (!sched_use_asym_prio(env->sd, env->dst_cpu))
9667 		return false;
9668 
9669 	/*
9670 	 * CPU priorities does not make sense for SMT cores with more than one
9671 	 * busy sibling.
9672 	 */
9673 	if (group->flags & SD_SHARE_CPUCAPACITY) {
9674 		if (sgs->group_weight - sgs->idle_cpus != 1)
9675 			return false;
9676 	}
9677 
9678 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9679 }
9680 
9681 /* One group has more than one SMT CPU while the other group does not */
9682 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9683 				    struct sched_group *sg2)
9684 {
9685 	if (!sg1 || !sg2)
9686 		return false;
9687 
9688 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9689 		(sg2->flags & SD_SHARE_CPUCAPACITY);
9690 }
9691 
9692 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9693 			       struct sched_group *group)
9694 {
9695 	if (env->idle == CPU_NOT_IDLE)
9696 		return false;
9697 
9698 	/*
9699 	 * For SMT source group, it is better to move a task
9700 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9701 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9702 	 * will not be on.
9703 	 */
9704 	if (group->flags & SD_SHARE_CPUCAPACITY &&
9705 	    sgs->sum_h_nr_running > 1)
9706 		return true;
9707 
9708 	return false;
9709 }
9710 
9711 static inline long sibling_imbalance(struct lb_env *env,
9712 				    struct sd_lb_stats *sds,
9713 				    struct sg_lb_stats *busiest,
9714 				    struct sg_lb_stats *local)
9715 {
9716 	int ncores_busiest, ncores_local;
9717 	long imbalance;
9718 
9719 	if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9720 		return 0;
9721 
9722 	ncores_busiest = sds->busiest->cores;
9723 	ncores_local = sds->local->cores;
9724 
9725 	if (ncores_busiest == ncores_local) {
9726 		imbalance = busiest->sum_nr_running;
9727 		lsub_positive(&imbalance, local->sum_nr_running);
9728 		return imbalance;
9729 	}
9730 
9731 	/* Balance such that nr_running/ncores ratio are same on both groups */
9732 	imbalance = ncores_local * busiest->sum_nr_running;
9733 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9734 	/* Normalize imbalance and do rounding on normalization */
9735 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9736 	imbalance /= ncores_local + ncores_busiest;
9737 
9738 	/* Take advantage of resource in an empty sched group */
9739 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
9740 	    busiest->sum_nr_running > 1)
9741 		imbalance = 2;
9742 
9743 	return imbalance;
9744 }
9745 
9746 static inline bool
9747 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9748 {
9749 	/*
9750 	 * When there is more than 1 task, the group_overloaded case already
9751 	 * takes care of cpu with reduced capacity
9752 	 */
9753 	if (rq->cfs.h_nr_running != 1)
9754 		return false;
9755 
9756 	return check_cpu_capacity(rq, sd);
9757 }
9758 
9759 /**
9760  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9761  * @env: The load balancing environment.
9762  * @sds: Load-balancing data with statistics of the local group.
9763  * @group: sched_group whose statistics are to be updated.
9764  * @sgs: variable to hold the statistics for this group.
9765  * @sg_status: Holds flag indicating the status of the sched_group
9766  */
9767 static inline void update_sg_lb_stats(struct lb_env *env,
9768 				      struct sd_lb_stats *sds,
9769 				      struct sched_group *group,
9770 				      struct sg_lb_stats *sgs,
9771 				      int *sg_status)
9772 {
9773 	int i, nr_running, local_group;
9774 
9775 	memset(sgs, 0, sizeof(*sgs));
9776 
9777 	local_group = group == sds->local;
9778 
9779 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9780 		struct rq *rq = cpu_rq(i);
9781 		unsigned long load = cpu_load(rq);
9782 
9783 		sgs->group_load += load;
9784 		sgs->group_util += cpu_util_cfs(i);
9785 		sgs->group_runnable += cpu_runnable(rq);
9786 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9787 
9788 		nr_running = rq->nr_running;
9789 		sgs->sum_nr_running += nr_running;
9790 
9791 		if (nr_running > 1)
9792 			*sg_status |= SG_OVERLOAD;
9793 
9794 		if (cpu_overutilized(i))
9795 			*sg_status |= SG_OVERUTILIZED;
9796 
9797 #ifdef CONFIG_NUMA_BALANCING
9798 		sgs->nr_numa_running += rq->nr_numa_running;
9799 		sgs->nr_preferred_running += rq->nr_preferred_running;
9800 #endif
9801 		/*
9802 		 * No need to call idle_cpu() if nr_running is not 0
9803 		 */
9804 		if (!nr_running && idle_cpu(i)) {
9805 			sgs->idle_cpus++;
9806 			/* Idle cpu can't have misfit task */
9807 			continue;
9808 		}
9809 
9810 		if (local_group)
9811 			continue;
9812 
9813 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9814 			/* Check for a misfit task on the cpu */
9815 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9816 				sgs->group_misfit_task_load = rq->misfit_task_load;
9817 				*sg_status |= SG_OVERLOAD;
9818 			}
9819 		} else if ((env->idle != CPU_NOT_IDLE) &&
9820 			   sched_reduced_capacity(rq, env->sd)) {
9821 			/* Check for a task running on a CPU with reduced capacity */
9822 			if (sgs->group_misfit_task_load < load)
9823 				sgs->group_misfit_task_load = load;
9824 		}
9825 	}
9826 
9827 	sgs->group_capacity = group->sgc->capacity;
9828 
9829 	sgs->group_weight = group->group_weight;
9830 
9831 	/* Check if dst CPU is idle and preferred to this group */
9832 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9833 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9834 	    sched_asym(env, sds, sgs, group)) {
9835 		sgs->group_asym_packing = 1;
9836 	}
9837 
9838 	/* Check for loaded SMT group to be balanced to dst CPU */
9839 	if (!local_group && smt_balance(env, sgs, group))
9840 		sgs->group_smt_balance = 1;
9841 
9842 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9843 
9844 	/* Computing avg_load makes sense only when group is overloaded */
9845 	if (sgs->group_type == group_overloaded)
9846 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9847 				sgs->group_capacity;
9848 }
9849 
9850 /**
9851  * update_sd_pick_busiest - return 1 on busiest group
9852  * @env: The load balancing environment.
9853  * @sds: sched_domain statistics
9854  * @sg: sched_group candidate to be checked for being the busiest
9855  * @sgs: sched_group statistics
9856  *
9857  * Determine if @sg is a busier group than the previously selected
9858  * busiest group.
9859  *
9860  * Return: %true if @sg is a busier group than the previously selected
9861  * busiest group. %false otherwise.
9862  */
9863 static bool update_sd_pick_busiest(struct lb_env *env,
9864 				   struct sd_lb_stats *sds,
9865 				   struct sched_group *sg,
9866 				   struct sg_lb_stats *sgs)
9867 {
9868 	struct sg_lb_stats *busiest = &sds->busiest_stat;
9869 
9870 	/* Make sure that there is at least one task to pull */
9871 	if (!sgs->sum_h_nr_running)
9872 		return false;
9873 
9874 	/*
9875 	 * Don't try to pull misfit tasks we can't help.
9876 	 * We can use max_capacity here as reduction in capacity on some
9877 	 * CPUs in the group should either be possible to resolve
9878 	 * internally or be covered by avg_load imbalance (eventually).
9879 	 */
9880 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9881 	    (sgs->group_type == group_misfit_task) &&
9882 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9883 	     sds->local_stat.group_type != group_has_spare))
9884 		return false;
9885 
9886 	if (sgs->group_type > busiest->group_type)
9887 		return true;
9888 
9889 	if (sgs->group_type < busiest->group_type)
9890 		return false;
9891 
9892 	/*
9893 	 * The candidate and the current busiest group are the same type of
9894 	 * group. Let check which one is the busiest according to the type.
9895 	 */
9896 
9897 	switch (sgs->group_type) {
9898 	case group_overloaded:
9899 		/* Select the overloaded group with highest avg_load. */
9900 		if (sgs->avg_load <= busiest->avg_load)
9901 			return false;
9902 		break;
9903 
9904 	case group_imbalanced:
9905 		/*
9906 		 * Select the 1st imbalanced group as we don't have any way to
9907 		 * choose one more than another.
9908 		 */
9909 		return false;
9910 
9911 	case group_asym_packing:
9912 		/* Prefer to move from lowest priority CPU's work */
9913 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
9914 			return false;
9915 		break;
9916 
9917 	case group_misfit_task:
9918 		/*
9919 		 * If we have more than one misfit sg go with the biggest
9920 		 * misfit.
9921 		 */
9922 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9923 			return false;
9924 		break;
9925 
9926 	case group_smt_balance:
9927 		/*
9928 		 * Check if we have spare CPUs on either SMT group to
9929 		 * choose has spare or fully busy handling.
9930 		 */
9931 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
9932 			goto has_spare;
9933 
9934 		fallthrough;
9935 
9936 	case group_fully_busy:
9937 		/*
9938 		 * Select the fully busy group with highest avg_load. In
9939 		 * theory, there is no need to pull task from such kind of
9940 		 * group because tasks have all compute capacity that they need
9941 		 * but we can still improve the overall throughput by reducing
9942 		 * contention when accessing shared HW resources.
9943 		 *
9944 		 * XXX for now avg_load is not computed and always 0 so we
9945 		 * select the 1st one, except if @sg is composed of SMT
9946 		 * siblings.
9947 		 */
9948 
9949 		if (sgs->avg_load < busiest->avg_load)
9950 			return false;
9951 
9952 		if (sgs->avg_load == busiest->avg_load) {
9953 			/*
9954 			 * SMT sched groups need more help than non-SMT groups.
9955 			 * If @sg happens to also be SMT, either choice is good.
9956 			 */
9957 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
9958 				return false;
9959 		}
9960 
9961 		break;
9962 
9963 	case group_has_spare:
9964 		/*
9965 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
9966 		 * as we do not want to pull task off SMT core with one task
9967 		 * and make the core idle.
9968 		 */
9969 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
9970 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
9971 				return false;
9972 			else
9973 				return true;
9974 		}
9975 has_spare:
9976 
9977 		/*
9978 		 * Select not overloaded group with lowest number of idle cpus
9979 		 * and highest number of running tasks. We could also compare
9980 		 * the spare capacity which is more stable but it can end up
9981 		 * that the group has less spare capacity but finally more idle
9982 		 * CPUs which means less opportunity to pull tasks.
9983 		 */
9984 		if (sgs->idle_cpus > busiest->idle_cpus)
9985 			return false;
9986 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9987 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
9988 			return false;
9989 
9990 		break;
9991 	}
9992 
9993 	/*
9994 	 * Candidate sg has no more than one task per CPU and has higher
9995 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9996 	 * throughput. Maximize throughput, power/energy consequences are not
9997 	 * considered.
9998 	 */
9999 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10000 	    (sgs->group_type <= group_fully_busy) &&
10001 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10002 		return false;
10003 
10004 	return true;
10005 }
10006 
10007 #ifdef CONFIG_NUMA_BALANCING
10008 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10009 {
10010 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10011 		return regular;
10012 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10013 		return remote;
10014 	return all;
10015 }
10016 
10017 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10018 {
10019 	if (rq->nr_running > rq->nr_numa_running)
10020 		return regular;
10021 	if (rq->nr_running > rq->nr_preferred_running)
10022 		return remote;
10023 	return all;
10024 }
10025 #else
10026 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10027 {
10028 	return all;
10029 }
10030 
10031 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10032 {
10033 	return regular;
10034 }
10035 #endif /* CONFIG_NUMA_BALANCING */
10036 
10037 
10038 struct sg_lb_stats;
10039 
10040 /*
10041  * task_running_on_cpu - return 1 if @p is running on @cpu.
10042  */
10043 
10044 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10045 {
10046 	/* Task has no contribution or is new */
10047 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10048 		return 0;
10049 
10050 	if (task_on_rq_queued(p))
10051 		return 1;
10052 
10053 	return 0;
10054 }
10055 
10056 /**
10057  * idle_cpu_without - would a given CPU be idle without p ?
10058  * @cpu: the processor on which idleness is tested.
10059  * @p: task which should be ignored.
10060  *
10061  * Return: 1 if the CPU would be idle. 0 otherwise.
10062  */
10063 static int idle_cpu_without(int cpu, struct task_struct *p)
10064 {
10065 	struct rq *rq = cpu_rq(cpu);
10066 
10067 	if (rq->curr != rq->idle && rq->curr != p)
10068 		return 0;
10069 
10070 	/*
10071 	 * rq->nr_running can't be used but an updated version without the
10072 	 * impact of p on cpu must be used instead. The updated nr_running
10073 	 * be computed and tested before calling idle_cpu_without().
10074 	 */
10075 
10076 #ifdef CONFIG_SMP
10077 	if (rq->ttwu_pending)
10078 		return 0;
10079 #endif
10080 
10081 	return 1;
10082 }
10083 
10084 /*
10085  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10086  * @sd: The sched_domain level to look for idlest group.
10087  * @group: sched_group whose statistics are to be updated.
10088  * @sgs: variable to hold the statistics for this group.
10089  * @p: The task for which we look for the idlest group/CPU.
10090  */
10091 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10092 					  struct sched_group *group,
10093 					  struct sg_lb_stats *sgs,
10094 					  struct task_struct *p)
10095 {
10096 	int i, nr_running;
10097 
10098 	memset(sgs, 0, sizeof(*sgs));
10099 
10100 	/* Assume that task can't fit any CPU of the group */
10101 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10102 		sgs->group_misfit_task_load = 1;
10103 
10104 	for_each_cpu(i, sched_group_span(group)) {
10105 		struct rq *rq = cpu_rq(i);
10106 		unsigned int local;
10107 
10108 		sgs->group_load += cpu_load_without(rq, p);
10109 		sgs->group_util += cpu_util_without(i, p);
10110 		sgs->group_runnable += cpu_runnable_without(rq, p);
10111 		local = task_running_on_cpu(i, p);
10112 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10113 
10114 		nr_running = rq->nr_running - local;
10115 		sgs->sum_nr_running += nr_running;
10116 
10117 		/*
10118 		 * No need to call idle_cpu_without() if nr_running is not 0
10119 		 */
10120 		if (!nr_running && idle_cpu_without(i, p))
10121 			sgs->idle_cpus++;
10122 
10123 		/* Check if task fits in the CPU */
10124 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10125 		    sgs->group_misfit_task_load &&
10126 		    task_fits_cpu(p, i))
10127 			sgs->group_misfit_task_load = 0;
10128 
10129 	}
10130 
10131 	sgs->group_capacity = group->sgc->capacity;
10132 
10133 	sgs->group_weight = group->group_weight;
10134 
10135 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10136 
10137 	/*
10138 	 * Computing avg_load makes sense only when group is fully busy or
10139 	 * overloaded
10140 	 */
10141 	if (sgs->group_type == group_fully_busy ||
10142 		sgs->group_type == group_overloaded)
10143 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10144 				sgs->group_capacity;
10145 }
10146 
10147 static bool update_pick_idlest(struct sched_group *idlest,
10148 			       struct sg_lb_stats *idlest_sgs,
10149 			       struct sched_group *group,
10150 			       struct sg_lb_stats *sgs)
10151 {
10152 	if (sgs->group_type < idlest_sgs->group_type)
10153 		return true;
10154 
10155 	if (sgs->group_type > idlest_sgs->group_type)
10156 		return false;
10157 
10158 	/*
10159 	 * The candidate and the current idlest group are the same type of
10160 	 * group. Let check which one is the idlest according to the type.
10161 	 */
10162 
10163 	switch (sgs->group_type) {
10164 	case group_overloaded:
10165 	case group_fully_busy:
10166 		/* Select the group with lowest avg_load. */
10167 		if (idlest_sgs->avg_load <= sgs->avg_load)
10168 			return false;
10169 		break;
10170 
10171 	case group_imbalanced:
10172 	case group_asym_packing:
10173 	case group_smt_balance:
10174 		/* Those types are not used in the slow wakeup path */
10175 		return false;
10176 
10177 	case group_misfit_task:
10178 		/* Select group with the highest max capacity */
10179 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10180 			return false;
10181 		break;
10182 
10183 	case group_has_spare:
10184 		/* Select group with most idle CPUs */
10185 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10186 			return false;
10187 
10188 		/* Select group with lowest group_util */
10189 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10190 			idlest_sgs->group_util <= sgs->group_util)
10191 			return false;
10192 
10193 		break;
10194 	}
10195 
10196 	return true;
10197 }
10198 
10199 /*
10200  * find_idlest_group() finds and returns the least busy CPU group within the
10201  * domain.
10202  *
10203  * Assumes p is allowed on at least one CPU in sd.
10204  */
10205 static struct sched_group *
10206 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10207 {
10208 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10209 	struct sg_lb_stats local_sgs, tmp_sgs;
10210 	struct sg_lb_stats *sgs;
10211 	unsigned long imbalance;
10212 	struct sg_lb_stats idlest_sgs = {
10213 			.avg_load = UINT_MAX,
10214 			.group_type = group_overloaded,
10215 	};
10216 
10217 	do {
10218 		int local_group;
10219 
10220 		/* Skip over this group if it has no CPUs allowed */
10221 		if (!cpumask_intersects(sched_group_span(group),
10222 					p->cpus_ptr))
10223 			continue;
10224 
10225 		/* Skip over this group if no cookie matched */
10226 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10227 			continue;
10228 
10229 		local_group = cpumask_test_cpu(this_cpu,
10230 					       sched_group_span(group));
10231 
10232 		if (local_group) {
10233 			sgs = &local_sgs;
10234 			local = group;
10235 		} else {
10236 			sgs = &tmp_sgs;
10237 		}
10238 
10239 		update_sg_wakeup_stats(sd, group, sgs, p);
10240 
10241 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10242 			idlest = group;
10243 			idlest_sgs = *sgs;
10244 		}
10245 
10246 	} while (group = group->next, group != sd->groups);
10247 
10248 
10249 	/* There is no idlest group to push tasks to */
10250 	if (!idlest)
10251 		return NULL;
10252 
10253 	/* The local group has been skipped because of CPU affinity */
10254 	if (!local)
10255 		return idlest;
10256 
10257 	/*
10258 	 * If the local group is idler than the selected idlest group
10259 	 * don't try and push the task.
10260 	 */
10261 	if (local_sgs.group_type < idlest_sgs.group_type)
10262 		return NULL;
10263 
10264 	/*
10265 	 * If the local group is busier than the selected idlest group
10266 	 * try and push the task.
10267 	 */
10268 	if (local_sgs.group_type > idlest_sgs.group_type)
10269 		return idlest;
10270 
10271 	switch (local_sgs.group_type) {
10272 	case group_overloaded:
10273 	case group_fully_busy:
10274 
10275 		/* Calculate allowed imbalance based on load */
10276 		imbalance = scale_load_down(NICE_0_LOAD) *
10277 				(sd->imbalance_pct-100) / 100;
10278 
10279 		/*
10280 		 * When comparing groups across NUMA domains, it's possible for
10281 		 * the local domain to be very lightly loaded relative to the
10282 		 * remote domains but "imbalance" skews the comparison making
10283 		 * remote CPUs look much more favourable. When considering
10284 		 * cross-domain, add imbalance to the load on the remote node
10285 		 * and consider staying local.
10286 		 */
10287 
10288 		if ((sd->flags & SD_NUMA) &&
10289 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10290 			return NULL;
10291 
10292 		/*
10293 		 * If the local group is less loaded than the selected
10294 		 * idlest group don't try and push any tasks.
10295 		 */
10296 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10297 			return NULL;
10298 
10299 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10300 			return NULL;
10301 		break;
10302 
10303 	case group_imbalanced:
10304 	case group_asym_packing:
10305 	case group_smt_balance:
10306 		/* Those type are not used in the slow wakeup path */
10307 		return NULL;
10308 
10309 	case group_misfit_task:
10310 		/* Select group with the highest max capacity */
10311 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10312 			return NULL;
10313 		break;
10314 
10315 	case group_has_spare:
10316 #ifdef CONFIG_NUMA
10317 		if (sd->flags & SD_NUMA) {
10318 			int imb_numa_nr = sd->imb_numa_nr;
10319 #ifdef CONFIG_NUMA_BALANCING
10320 			int idlest_cpu;
10321 			/*
10322 			 * If there is spare capacity at NUMA, try to select
10323 			 * the preferred node
10324 			 */
10325 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10326 				return NULL;
10327 
10328 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10329 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10330 				return idlest;
10331 #endif /* CONFIG_NUMA_BALANCING */
10332 			/*
10333 			 * Otherwise, keep the task close to the wakeup source
10334 			 * and improve locality if the number of running tasks
10335 			 * would remain below threshold where an imbalance is
10336 			 * allowed while accounting for the possibility the
10337 			 * task is pinned to a subset of CPUs. If there is a
10338 			 * real need of migration, periodic load balance will
10339 			 * take care of it.
10340 			 */
10341 			if (p->nr_cpus_allowed != NR_CPUS) {
10342 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10343 
10344 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10345 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10346 			}
10347 
10348 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10349 			if (!adjust_numa_imbalance(imbalance,
10350 						   local_sgs.sum_nr_running + 1,
10351 						   imb_numa_nr)) {
10352 				return NULL;
10353 			}
10354 		}
10355 #endif /* CONFIG_NUMA */
10356 
10357 		/*
10358 		 * Select group with highest number of idle CPUs. We could also
10359 		 * compare the utilization which is more stable but it can end
10360 		 * up that the group has less spare capacity but finally more
10361 		 * idle CPUs which means more opportunity to run task.
10362 		 */
10363 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10364 			return NULL;
10365 		break;
10366 	}
10367 
10368 	return idlest;
10369 }
10370 
10371 static void update_idle_cpu_scan(struct lb_env *env,
10372 				 unsigned long sum_util)
10373 {
10374 	struct sched_domain_shared *sd_share;
10375 	int llc_weight, pct;
10376 	u64 x, y, tmp;
10377 	/*
10378 	 * Update the number of CPUs to scan in LLC domain, which could
10379 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10380 	 * could be expensive because it is within a shared cache line.
10381 	 * So the write of this hint only occurs during periodic load
10382 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10383 	 * can fire way more frequently than the former.
10384 	 */
10385 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10386 		return;
10387 
10388 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10389 	if (env->sd->span_weight != llc_weight)
10390 		return;
10391 
10392 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10393 	if (!sd_share)
10394 		return;
10395 
10396 	/*
10397 	 * The number of CPUs to search drops as sum_util increases, when
10398 	 * sum_util hits 85% or above, the scan stops.
10399 	 * The reason to choose 85% as the threshold is because this is the
10400 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10401 	 *
10402 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10403 	 * and y'= y / SCHED_CAPACITY_SCALE
10404 	 *
10405 	 * x is the ratio of sum_util compared to the CPU capacity:
10406 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10407 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10408 	 * and the number of CPUs to scan is calculated by:
10409 	 *
10410 	 * nr_scan = llc_weight * y'                                    [2]
10411 	 *
10412 	 * When x hits the threshold of overloaded, AKA, when
10413 	 * x = 100 / pct, y drops to 0. According to [1],
10414 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10415 	 *
10416 	 * Scale x by SCHED_CAPACITY_SCALE:
10417 	 * x' = sum_util / llc_weight;                                  [3]
10418 	 *
10419 	 * and finally [1] becomes:
10420 	 * y = SCHED_CAPACITY_SCALE -
10421 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10422 	 *
10423 	 */
10424 	/* equation [3] */
10425 	x = sum_util;
10426 	do_div(x, llc_weight);
10427 
10428 	/* equation [4] */
10429 	pct = env->sd->imbalance_pct;
10430 	tmp = x * x * pct * pct;
10431 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10432 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10433 	y = SCHED_CAPACITY_SCALE - tmp;
10434 
10435 	/* equation [2] */
10436 	y *= llc_weight;
10437 	do_div(y, SCHED_CAPACITY_SCALE);
10438 	if ((int)y != sd_share->nr_idle_scan)
10439 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10440 }
10441 
10442 /**
10443  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10444  * @env: The load balancing environment.
10445  * @sds: variable to hold the statistics for this sched_domain.
10446  */
10447 
10448 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10449 {
10450 	struct sched_group *sg = env->sd->groups;
10451 	struct sg_lb_stats *local = &sds->local_stat;
10452 	struct sg_lb_stats tmp_sgs;
10453 	unsigned long sum_util = 0;
10454 	int sg_status = 0;
10455 
10456 	do {
10457 		struct sg_lb_stats *sgs = &tmp_sgs;
10458 		int local_group;
10459 
10460 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10461 		if (local_group) {
10462 			sds->local = sg;
10463 			sgs = local;
10464 
10465 			if (env->idle != CPU_NEWLY_IDLE ||
10466 			    time_after_eq(jiffies, sg->sgc->next_update))
10467 				update_group_capacity(env->sd, env->dst_cpu);
10468 		}
10469 
10470 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10471 
10472 		if (local_group)
10473 			goto next_group;
10474 
10475 
10476 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10477 			sds->busiest = sg;
10478 			sds->busiest_stat = *sgs;
10479 		}
10480 
10481 next_group:
10482 		/* Now, start updating sd_lb_stats */
10483 		sds->total_load += sgs->group_load;
10484 		sds->total_capacity += sgs->group_capacity;
10485 
10486 		sum_util += sgs->group_util;
10487 		sg = sg->next;
10488 	} while (sg != env->sd->groups);
10489 
10490 	/*
10491 	 * Indicate that the child domain of the busiest group prefers tasks
10492 	 * go to a child's sibling domains first. NB the flags of a sched group
10493 	 * are those of the child domain.
10494 	 */
10495 	if (sds->busiest)
10496 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10497 
10498 
10499 	if (env->sd->flags & SD_NUMA)
10500 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10501 
10502 	if (!env->sd->parent) {
10503 		struct root_domain *rd = env->dst_rq->rd;
10504 
10505 		/* update overload indicator if we are at root domain */
10506 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
10507 
10508 		/* Update over-utilization (tipping point, U >= 0) indicator */
10509 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
10510 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
10511 	} else if (sg_status & SG_OVERUTILIZED) {
10512 		struct root_domain *rd = env->dst_rq->rd;
10513 
10514 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
10515 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
10516 	}
10517 
10518 	update_idle_cpu_scan(env, sum_util);
10519 }
10520 
10521 /**
10522  * calculate_imbalance - Calculate the amount of imbalance present within the
10523  *			 groups of a given sched_domain during load balance.
10524  * @env: load balance environment
10525  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10526  */
10527 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10528 {
10529 	struct sg_lb_stats *local, *busiest;
10530 
10531 	local = &sds->local_stat;
10532 	busiest = &sds->busiest_stat;
10533 
10534 	if (busiest->group_type == group_misfit_task) {
10535 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10536 			/* Set imbalance to allow misfit tasks to be balanced. */
10537 			env->migration_type = migrate_misfit;
10538 			env->imbalance = 1;
10539 		} else {
10540 			/*
10541 			 * Set load imbalance to allow moving task from cpu
10542 			 * with reduced capacity.
10543 			 */
10544 			env->migration_type = migrate_load;
10545 			env->imbalance = busiest->group_misfit_task_load;
10546 		}
10547 		return;
10548 	}
10549 
10550 	if (busiest->group_type == group_asym_packing) {
10551 		/*
10552 		 * In case of asym capacity, we will try to migrate all load to
10553 		 * the preferred CPU.
10554 		 */
10555 		env->migration_type = migrate_task;
10556 		env->imbalance = busiest->sum_h_nr_running;
10557 		return;
10558 	}
10559 
10560 	if (busiest->group_type == group_smt_balance) {
10561 		/* Reduce number of tasks sharing CPU capacity */
10562 		env->migration_type = migrate_task;
10563 		env->imbalance = 1;
10564 		return;
10565 	}
10566 
10567 	if (busiest->group_type == group_imbalanced) {
10568 		/*
10569 		 * In the group_imb case we cannot rely on group-wide averages
10570 		 * to ensure CPU-load equilibrium, try to move any task to fix
10571 		 * the imbalance. The next load balance will take care of
10572 		 * balancing back the system.
10573 		 */
10574 		env->migration_type = migrate_task;
10575 		env->imbalance = 1;
10576 		return;
10577 	}
10578 
10579 	/*
10580 	 * Try to use spare capacity of local group without overloading it or
10581 	 * emptying busiest.
10582 	 */
10583 	if (local->group_type == group_has_spare) {
10584 		if ((busiest->group_type > group_fully_busy) &&
10585 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10586 			/*
10587 			 * If busiest is overloaded, try to fill spare
10588 			 * capacity. This might end up creating spare capacity
10589 			 * in busiest or busiest still being overloaded but
10590 			 * there is no simple way to directly compute the
10591 			 * amount of load to migrate in order to balance the
10592 			 * system.
10593 			 */
10594 			env->migration_type = migrate_util;
10595 			env->imbalance = max(local->group_capacity, local->group_util) -
10596 					 local->group_util;
10597 
10598 			/*
10599 			 * In some cases, the group's utilization is max or even
10600 			 * higher than capacity because of migrations but the
10601 			 * local CPU is (newly) idle. There is at least one
10602 			 * waiting task in this overloaded busiest group. Let's
10603 			 * try to pull it.
10604 			 */
10605 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10606 				env->migration_type = migrate_task;
10607 				env->imbalance = 1;
10608 			}
10609 
10610 			return;
10611 		}
10612 
10613 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10614 			/*
10615 			 * When prefer sibling, evenly spread running tasks on
10616 			 * groups.
10617 			 */
10618 			env->migration_type = migrate_task;
10619 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
10620 		} else {
10621 
10622 			/*
10623 			 * If there is no overload, we just want to even the number of
10624 			 * idle cpus.
10625 			 */
10626 			env->migration_type = migrate_task;
10627 			env->imbalance = max_t(long, 0,
10628 					       (local->idle_cpus - busiest->idle_cpus));
10629 		}
10630 
10631 #ifdef CONFIG_NUMA
10632 		/* Consider allowing a small imbalance between NUMA groups */
10633 		if (env->sd->flags & SD_NUMA) {
10634 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10635 							       local->sum_nr_running + 1,
10636 							       env->sd->imb_numa_nr);
10637 		}
10638 #endif
10639 
10640 		/* Number of tasks to move to restore balance */
10641 		env->imbalance >>= 1;
10642 
10643 		return;
10644 	}
10645 
10646 	/*
10647 	 * Local is fully busy but has to take more load to relieve the
10648 	 * busiest group
10649 	 */
10650 	if (local->group_type < group_overloaded) {
10651 		/*
10652 		 * Local will become overloaded so the avg_load metrics are
10653 		 * finally needed.
10654 		 */
10655 
10656 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10657 				  local->group_capacity;
10658 
10659 		/*
10660 		 * If the local group is more loaded than the selected
10661 		 * busiest group don't try to pull any tasks.
10662 		 */
10663 		if (local->avg_load >= busiest->avg_load) {
10664 			env->imbalance = 0;
10665 			return;
10666 		}
10667 
10668 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10669 				sds->total_capacity;
10670 
10671 		/*
10672 		 * If the local group is more loaded than the average system
10673 		 * load, don't try to pull any tasks.
10674 		 */
10675 		if (local->avg_load >= sds->avg_load) {
10676 			env->imbalance = 0;
10677 			return;
10678 		}
10679 
10680 	}
10681 
10682 	/*
10683 	 * Both group are or will become overloaded and we're trying to get all
10684 	 * the CPUs to the average_load, so we don't want to push ourselves
10685 	 * above the average load, nor do we wish to reduce the max loaded CPU
10686 	 * below the average load. At the same time, we also don't want to
10687 	 * reduce the group load below the group capacity. Thus we look for
10688 	 * the minimum possible imbalance.
10689 	 */
10690 	env->migration_type = migrate_load;
10691 	env->imbalance = min(
10692 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10693 		(sds->avg_load - local->avg_load) * local->group_capacity
10694 	) / SCHED_CAPACITY_SCALE;
10695 }
10696 
10697 /******* find_busiest_group() helpers end here *********************/
10698 
10699 /*
10700  * Decision matrix according to the local and busiest group type:
10701  *
10702  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10703  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10704  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10705  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10706  * asym_packing     force     force      N/A    N/A  force      force
10707  * imbalanced       force     force      N/A    N/A  force      force
10708  * overloaded       force     force      N/A    N/A  force      avg_load
10709  *
10710  * N/A :      Not Applicable because already filtered while updating
10711  *            statistics.
10712  * balanced : The system is balanced for these 2 groups.
10713  * force :    Calculate the imbalance as load migration is probably needed.
10714  * avg_load : Only if imbalance is significant enough.
10715  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10716  *            different in groups.
10717  */
10718 
10719 /**
10720  * find_busiest_group - Returns the busiest group within the sched_domain
10721  * if there is an imbalance.
10722  * @env: The load balancing environment.
10723  *
10724  * Also calculates the amount of runnable load which should be moved
10725  * to restore balance.
10726  *
10727  * Return:	- The busiest group if imbalance exists.
10728  */
10729 static struct sched_group *find_busiest_group(struct lb_env *env)
10730 {
10731 	struct sg_lb_stats *local, *busiest;
10732 	struct sd_lb_stats sds;
10733 
10734 	init_sd_lb_stats(&sds);
10735 
10736 	/*
10737 	 * Compute the various statistics relevant for load balancing at
10738 	 * this level.
10739 	 */
10740 	update_sd_lb_stats(env, &sds);
10741 
10742 	/* There is no busy sibling group to pull tasks from */
10743 	if (!sds.busiest)
10744 		goto out_balanced;
10745 
10746 	busiest = &sds.busiest_stat;
10747 
10748 	/* Misfit tasks should be dealt with regardless of the avg load */
10749 	if (busiest->group_type == group_misfit_task)
10750 		goto force_balance;
10751 
10752 	if (sched_energy_enabled()) {
10753 		struct root_domain *rd = env->dst_rq->rd;
10754 
10755 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10756 			goto out_balanced;
10757 	}
10758 
10759 	/* ASYM feature bypasses nice load balance check */
10760 	if (busiest->group_type == group_asym_packing)
10761 		goto force_balance;
10762 
10763 	/*
10764 	 * If the busiest group is imbalanced the below checks don't
10765 	 * work because they assume all things are equal, which typically
10766 	 * isn't true due to cpus_ptr constraints and the like.
10767 	 */
10768 	if (busiest->group_type == group_imbalanced)
10769 		goto force_balance;
10770 
10771 	local = &sds.local_stat;
10772 	/*
10773 	 * If the local group is busier than the selected busiest group
10774 	 * don't try and pull any tasks.
10775 	 */
10776 	if (local->group_type > busiest->group_type)
10777 		goto out_balanced;
10778 
10779 	/*
10780 	 * When groups are overloaded, use the avg_load to ensure fairness
10781 	 * between tasks.
10782 	 */
10783 	if (local->group_type == group_overloaded) {
10784 		/*
10785 		 * If the local group is more loaded than the selected
10786 		 * busiest group don't try to pull any tasks.
10787 		 */
10788 		if (local->avg_load >= busiest->avg_load)
10789 			goto out_balanced;
10790 
10791 		/* XXX broken for overlapping NUMA groups */
10792 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10793 				sds.total_capacity;
10794 
10795 		/*
10796 		 * Don't pull any tasks if this group is already above the
10797 		 * domain average load.
10798 		 */
10799 		if (local->avg_load >= sds.avg_load)
10800 			goto out_balanced;
10801 
10802 		/*
10803 		 * If the busiest group is more loaded, use imbalance_pct to be
10804 		 * conservative.
10805 		 */
10806 		if (100 * busiest->avg_load <=
10807 				env->sd->imbalance_pct * local->avg_load)
10808 			goto out_balanced;
10809 	}
10810 
10811 	/*
10812 	 * Try to move all excess tasks to a sibling domain of the busiest
10813 	 * group's child domain.
10814 	 */
10815 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10816 	    sibling_imbalance(env, &sds, busiest, local) > 1)
10817 		goto force_balance;
10818 
10819 	if (busiest->group_type != group_overloaded) {
10820 		if (env->idle == CPU_NOT_IDLE) {
10821 			/*
10822 			 * If the busiest group is not overloaded (and as a
10823 			 * result the local one too) but this CPU is already
10824 			 * busy, let another idle CPU try to pull task.
10825 			 */
10826 			goto out_balanced;
10827 		}
10828 
10829 		if (busiest->group_type == group_smt_balance &&
10830 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10831 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
10832 			goto force_balance;
10833 		}
10834 
10835 		if (busiest->group_weight > 1 &&
10836 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
10837 			/*
10838 			 * If the busiest group is not overloaded
10839 			 * and there is no imbalance between this and busiest
10840 			 * group wrt idle CPUs, it is balanced. The imbalance
10841 			 * becomes significant if the diff is greater than 1
10842 			 * otherwise we might end up to just move the imbalance
10843 			 * on another group. Of course this applies only if
10844 			 * there is more than 1 CPU per group.
10845 			 */
10846 			goto out_balanced;
10847 		}
10848 
10849 		if (busiest->sum_h_nr_running == 1) {
10850 			/*
10851 			 * busiest doesn't have any tasks waiting to run
10852 			 */
10853 			goto out_balanced;
10854 		}
10855 	}
10856 
10857 force_balance:
10858 	/* Looks like there is an imbalance. Compute it */
10859 	calculate_imbalance(env, &sds);
10860 	return env->imbalance ? sds.busiest : NULL;
10861 
10862 out_balanced:
10863 	env->imbalance = 0;
10864 	return NULL;
10865 }
10866 
10867 /*
10868  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10869  */
10870 static struct rq *find_busiest_queue(struct lb_env *env,
10871 				     struct sched_group *group)
10872 {
10873 	struct rq *busiest = NULL, *rq;
10874 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10875 	unsigned int busiest_nr = 0;
10876 	int i;
10877 
10878 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10879 		unsigned long capacity, load, util;
10880 		unsigned int nr_running;
10881 		enum fbq_type rt;
10882 
10883 		rq = cpu_rq(i);
10884 		rt = fbq_classify_rq(rq);
10885 
10886 		/*
10887 		 * We classify groups/runqueues into three groups:
10888 		 *  - regular: there are !numa tasks
10889 		 *  - remote:  there are numa tasks that run on the 'wrong' node
10890 		 *  - all:     there is no distinction
10891 		 *
10892 		 * In order to avoid migrating ideally placed numa tasks,
10893 		 * ignore those when there's better options.
10894 		 *
10895 		 * If we ignore the actual busiest queue to migrate another
10896 		 * task, the next balance pass can still reduce the busiest
10897 		 * queue by moving tasks around inside the node.
10898 		 *
10899 		 * If we cannot move enough load due to this classification
10900 		 * the next pass will adjust the group classification and
10901 		 * allow migration of more tasks.
10902 		 *
10903 		 * Both cases only affect the total convergence complexity.
10904 		 */
10905 		if (rt > env->fbq_type)
10906 			continue;
10907 
10908 		nr_running = rq->cfs.h_nr_running;
10909 		if (!nr_running)
10910 			continue;
10911 
10912 		capacity = capacity_of(i);
10913 
10914 		/*
10915 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
10916 		 * eventually lead to active_balancing high->low capacity.
10917 		 * Higher per-CPU capacity is considered better than balancing
10918 		 * average load.
10919 		 */
10920 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
10921 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
10922 		    nr_running == 1)
10923 			continue;
10924 
10925 		/*
10926 		 * Make sure we only pull tasks from a CPU of lower priority
10927 		 * when balancing between SMT siblings.
10928 		 *
10929 		 * If balancing between cores, let lower priority CPUs help
10930 		 * SMT cores with more than one busy sibling.
10931 		 */
10932 		if ((env->sd->flags & SD_ASYM_PACKING) &&
10933 		    sched_use_asym_prio(env->sd, i) &&
10934 		    sched_asym_prefer(i, env->dst_cpu) &&
10935 		    nr_running == 1)
10936 			continue;
10937 
10938 		switch (env->migration_type) {
10939 		case migrate_load:
10940 			/*
10941 			 * When comparing with load imbalance, use cpu_load()
10942 			 * which is not scaled with the CPU capacity.
10943 			 */
10944 			load = cpu_load(rq);
10945 
10946 			if (nr_running == 1 && load > env->imbalance &&
10947 			    !check_cpu_capacity(rq, env->sd))
10948 				break;
10949 
10950 			/*
10951 			 * For the load comparisons with the other CPUs,
10952 			 * consider the cpu_load() scaled with the CPU
10953 			 * capacity, so that the load can be moved away
10954 			 * from the CPU that is potentially running at a
10955 			 * lower capacity.
10956 			 *
10957 			 * Thus we're looking for max(load_i / capacity_i),
10958 			 * crosswise multiplication to rid ourselves of the
10959 			 * division works out to:
10960 			 * load_i * capacity_j > load_j * capacity_i;
10961 			 * where j is our previous maximum.
10962 			 */
10963 			if (load * busiest_capacity > busiest_load * capacity) {
10964 				busiest_load = load;
10965 				busiest_capacity = capacity;
10966 				busiest = rq;
10967 			}
10968 			break;
10969 
10970 		case migrate_util:
10971 			util = cpu_util_cfs_boost(i);
10972 
10973 			/*
10974 			 * Don't try to pull utilization from a CPU with one
10975 			 * running task. Whatever its utilization, we will fail
10976 			 * detach the task.
10977 			 */
10978 			if (nr_running <= 1)
10979 				continue;
10980 
10981 			if (busiest_util < util) {
10982 				busiest_util = util;
10983 				busiest = rq;
10984 			}
10985 			break;
10986 
10987 		case migrate_task:
10988 			if (busiest_nr < nr_running) {
10989 				busiest_nr = nr_running;
10990 				busiest = rq;
10991 			}
10992 			break;
10993 
10994 		case migrate_misfit:
10995 			/*
10996 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
10997 			 * simply seek the "biggest" misfit task.
10998 			 */
10999 			if (rq->misfit_task_load > busiest_load) {
11000 				busiest_load = rq->misfit_task_load;
11001 				busiest = rq;
11002 			}
11003 
11004 			break;
11005 
11006 		}
11007 	}
11008 
11009 	return busiest;
11010 }
11011 
11012 /*
11013  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11014  * so long as it is large enough.
11015  */
11016 #define MAX_PINNED_INTERVAL	512
11017 
11018 static inline bool
11019 asym_active_balance(struct lb_env *env)
11020 {
11021 	/*
11022 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11023 	 * priority CPUs in order to pack all tasks in the highest priority
11024 	 * CPUs. When done between cores, do it only if the whole core if the
11025 	 * whole core is idle.
11026 	 *
11027 	 * If @env::src_cpu is an SMT core with busy siblings, let
11028 	 * the lower priority @env::dst_cpu help it. Do not follow
11029 	 * CPU priority.
11030 	 */
11031 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
11032 	       sched_use_asym_prio(env->sd, env->dst_cpu) &&
11033 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11034 		!sched_use_asym_prio(env->sd, env->src_cpu));
11035 }
11036 
11037 static inline bool
11038 imbalanced_active_balance(struct lb_env *env)
11039 {
11040 	struct sched_domain *sd = env->sd;
11041 
11042 	/*
11043 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11044 	 * distribution of the load on the system but also the even distribution of the
11045 	 * threads on a system with spare capacity
11046 	 */
11047 	if ((env->migration_type == migrate_task) &&
11048 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11049 		return 1;
11050 
11051 	return 0;
11052 }
11053 
11054 static int need_active_balance(struct lb_env *env)
11055 {
11056 	struct sched_domain *sd = env->sd;
11057 
11058 	if (asym_active_balance(env))
11059 		return 1;
11060 
11061 	if (imbalanced_active_balance(env))
11062 		return 1;
11063 
11064 	/*
11065 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11066 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11067 	 * because of other sched_class or IRQs if more capacity stays
11068 	 * available on dst_cpu.
11069 	 */
11070 	if ((env->idle != CPU_NOT_IDLE) &&
11071 	    (env->src_rq->cfs.h_nr_running == 1)) {
11072 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11073 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11074 			return 1;
11075 	}
11076 
11077 	if (env->migration_type == migrate_misfit)
11078 		return 1;
11079 
11080 	return 0;
11081 }
11082 
11083 static int active_load_balance_cpu_stop(void *data);
11084 
11085 static int should_we_balance(struct lb_env *env)
11086 {
11087 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11088 	struct sched_group *sg = env->sd->groups;
11089 	int cpu, idle_smt = -1;
11090 
11091 	/*
11092 	 * Ensure the balancing environment is consistent; can happen
11093 	 * when the softirq triggers 'during' hotplug.
11094 	 */
11095 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11096 		return 0;
11097 
11098 	/*
11099 	 * In the newly idle case, we will allow all the CPUs
11100 	 * to do the newly idle load balance.
11101 	 *
11102 	 * However, we bail out if we already have tasks or a wakeup pending,
11103 	 * to optimize wakeup latency.
11104 	 */
11105 	if (env->idle == CPU_NEWLY_IDLE) {
11106 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11107 			return 0;
11108 		return 1;
11109 	}
11110 
11111 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11112 	/* Try to find first idle CPU */
11113 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11114 		if (!idle_cpu(cpu))
11115 			continue;
11116 
11117 		/*
11118 		 * Don't balance to idle SMT in busy core right away when
11119 		 * balancing cores, but remember the first idle SMT CPU for
11120 		 * later consideration.  Find CPU on an idle core first.
11121 		 */
11122 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11123 			if (idle_smt == -1)
11124 				idle_smt = cpu;
11125 			/*
11126 			 * If the core is not idle, and first SMT sibling which is
11127 			 * idle has been found, then its not needed to check other
11128 			 * SMT siblings for idleness:
11129 			 */
11130 #ifdef CONFIG_SCHED_SMT
11131 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11132 #endif
11133 			continue;
11134 		}
11135 
11136 		/*
11137 		 * Are we the first idle core in a non-SMT domain or higher,
11138 		 * or the first idle CPU in a SMT domain?
11139 		 */
11140 		return cpu == env->dst_cpu;
11141 	}
11142 
11143 	/* Are we the first idle CPU with busy siblings? */
11144 	if (idle_smt != -1)
11145 		return idle_smt == env->dst_cpu;
11146 
11147 	/* Are we the first CPU of this group ? */
11148 	return group_balance_cpu(sg) == env->dst_cpu;
11149 }
11150 
11151 /*
11152  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11153  * tasks if there is an imbalance.
11154  */
11155 static int load_balance(int this_cpu, struct rq *this_rq,
11156 			struct sched_domain *sd, enum cpu_idle_type idle,
11157 			int *continue_balancing)
11158 {
11159 	int ld_moved, cur_ld_moved, active_balance = 0;
11160 	struct sched_domain *sd_parent = sd->parent;
11161 	struct sched_group *group;
11162 	struct rq *busiest;
11163 	struct rq_flags rf;
11164 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11165 	struct lb_env env = {
11166 		.sd		= sd,
11167 		.dst_cpu	= this_cpu,
11168 		.dst_rq		= this_rq,
11169 		.dst_grpmask    = group_balance_mask(sd->groups),
11170 		.idle		= idle,
11171 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11172 		.cpus		= cpus,
11173 		.fbq_type	= all,
11174 		.tasks		= LIST_HEAD_INIT(env.tasks),
11175 	};
11176 
11177 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11178 
11179 	schedstat_inc(sd->lb_count[idle]);
11180 
11181 redo:
11182 	if (!should_we_balance(&env)) {
11183 		*continue_balancing = 0;
11184 		goto out_balanced;
11185 	}
11186 
11187 	group = find_busiest_group(&env);
11188 	if (!group) {
11189 		schedstat_inc(sd->lb_nobusyg[idle]);
11190 		goto out_balanced;
11191 	}
11192 
11193 	busiest = find_busiest_queue(&env, group);
11194 	if (!busiest) {
11195 		schedstat_inc(sd->lb_nobusyq[idle]);
11196 		goto out_balanced;
11197 	}
11198 
11199 	WARN_ON_ONCE(busiest == env.dst_rq);
11200 
11201 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11202 
11203 	env.src_cpu = busiest->cpu;
11204 	env.src_rq = busiest;
11205 
11206 	ld_moved = 0;
11207 	/* Clear this flag as soon as we find a pullable task */
11208 	env.flags |= LBF_ALL_PINNED;
11209 	if (busiest->nr_running > 1) {
11210 		/*
11211 		 * Attempt to move tasks. If find_busiest_group has found
11212 		 * an imbalance but busiest->nr_running <= 1, the group is
11213 		 * still unbalanced. ld_moved simply stays zero, so it is
11214 		 * correctly treated as an imbalance.
11215 		 */
11216 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11217 
11218 more_balance:
11219 		rq_lock_irqsave(busiest, &rf);
11220 		update_rq_clock(busiest);
11221 
11222 		/*
11223 		 * cur_ld_moved - load moved in current iteration
11224 		 * ld_moved     - cumulative load moved across iterations
11225 		 */
11226 		cur_ld_moved = detach_tasks(&env);
11227 
11228 		/*
11229 		 * We've detached some tasks from busiest_rq. Every
11230 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11231 		 * unlock busiest->lock, and we are able to be sure
11232 		 * that nobody can manipulate the tasks in parallel.
11233 		 * See task_rq_lock() family for the details.
11234 		 */
11235 
11236 		rq_unlock(busiest, &rf);
11237 
11238 		if (cur_ld_moved) {
11239 			attach_tasks(&env);
11240 			ld_moved += cur_ld_moved;
11241 		}
11242 
11243 		local_irq_restore(rf.flags);
11244 
11245 		if (env.flags & LBF_NEED_BREAK) {
11246 			env.flags &= ~LBF_NEED_BREAK;
11247 			/* Stop if we tried all running tasks */
11248 			if (env.loop < busiest->nr_running)
11249 				goto more_balance;
11250 		}
11251 
11252 		/*
11253 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11254 		 * us and move them to an alternate dst_cpu in our sched_group
11255 		 * where they can run. The upper limit on how many times we
11256 		 * iterate on same src_cpu is dependent on number of CPUs in our
11257 		 * sched_group.
11258 		 *
11259 		 * This changes load balance semantics a bit on who can move
11260 		 * load to a given_cpu. In addition to the given_cpu itself
11261 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11262 		 * nohz-idle), we now have balance_cpu in a position to move
11263 		 * load to given_cpu. In rare situations, this may cause
11264 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11265 		 * _independently_ and at _same_ time to move some load to
11266 		 * given_cpu) causing excess load to be moved to given_cpu.
11267 		 * This however should not happen so much in practice and
11268 		 * moreover subsequent load balance cycles should correct the
11269 		 * excess load moved.
11270 		 */
11271 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11272 
11273 			/* Prevent to re-select dst_cpu via env's CPUs */
11274 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11275 
11276 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11277 			env.dst_cpu	 = env.new_dst_cpu;
11278 			env.flags	&= ~LBF_DST_PINNED;
11279 			env.loop	 = 0;
11280 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11281 
11282 			/*
11283 			 * Go back to "more_balance" rather than "redo" since we
11284 			 * need to continue with same src_cpu.
11285 			 */
11286 			goto more_balance;
11287 		}
11288 
11289 		/*
11290 		 * We failed to reach balance because of affinity.
11291 		 */
11292 		if (sd_parent) {
11293 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11294 
11295 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11296 				*group_imbalance = 1;
11297 		}
11298 
11299 		/* All tasks on this runqueue were pinned by CPU affinity */
11300 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11301 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11302 			/*
11303 			 * Attempting to continue load balancing at the current
11304 			 * sched_domain level only makes sense if there are
11305 			 * active CPUs remaining as possible busiest CPUs to
11306 			 * pull load from which are not contained within the
11307 			 * destination group that is receiving any migrated
11308 			 * load.
11309 			 */
11310 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11311 				env.loop = 0;
11312 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11313 				goto redo;
11314 			}
11315 			goto out_all_pinned;
11316 		}
11317 	}
11318 
11319 	if (!ld_moved) {
11320 		schedstat_inc(sd->lb_failed[idle]);
11321 		/*
11322 		 * Increment the failure counter only on periodic balance.
11323 		 * We do not want newidle balance, which can be very
11324 		 * frequent, pollute the failure counter causing
11325 		 * excessive cache_hot migrations and active balances.
11326 		 */
11327 		if (idle != CPU_NEWLY_IDLE)
11328 			sd->nr_balance_failed++;
11329 
11330 		if (need_active_balance(&env)) {
11331 			unsigned long flags;
11332 
11333 			raw_spin_rq_lock_irqsave(busiest, flags);
11334 
11335 			/*
11336 			 * Don't kick the active_load_balance_cpu_stop,
11337 			 * if the curr task on busiest CPU can't be
11338 			 * moved to this_cpu:
11339 			 */
11340 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11341 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11342 				goto out_one_pinned;
11343 			}
11344 
11345 			/* Record that we found at least one task that could run on this_cpu */
11346 			env.flags &= ~LBF_ALL_PINNED;
11347 
11348 			/*
11349 			 * ->active_balance synchronizes accesses to
11350 			 * ->active_balance_work.  Once set, it's cleared
11351 			 * only after active load balance is finished.
11352 			 */
11353 			if (!busiest->active_balance) {
11354 				busiest->active_balance = 1;
11355 				busiest->push_cpu = this_cpu;
11356 				active_balance = 1;
11357 			}
11358 
11359 			preempt_disable();
11360 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11361 			if (active_balance) {
11362 				stop_one_cpu_nowait(cpu_of(busiest),
11363 					active_load_balance_cpu_stop, busiest,
11364 					&busiest->active_balance_work);
11365 			}
11366 			preempt_enable();
11367 		}
11368 	} else {
11369 		sd->nr_balance_failed = 0;
11370 	}
11371 
11372 	if (likely(!active_balance) || need_active_balance(&env)) {
11373 		/* We were unbalanced, so reset the balancing interval */
11374 		sd->balance_interval = sd->min_interval;
11375 	}
11376 
11377 	goto out;
11378 
11379 out_balanced:
11380 	/*
11381 	 * We reach balance although we may have faced some affinity
11382 	 * constraints. Clear the imbalance flag only if other tasks got
11383 	 * a chance to move and fix the imbalance.
11384 	 */
11385 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11386 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11387 
11388 		if (*group_imbalance)
11389 			*group_imbalance = 0;
11390 	}
11391 
11392 out_all_pinned:
11393 	/*
11394 	 * We reach balance because all tasks are pinned at this level so
11395 	 * we can't migrate them. Let the imbalance flag set so parent level
11396 	 * can try to migrate them.
11397 	 */
11398 	schedstat_inc(sd->lb_balanced[idle]);
11399 
11400 	sd->nr_balance_failed = 0;
11401 
11402 out_one_pinned:
11403 	ld_moved = 0;
11404 
11405 	/*
11406 	 * newidle_balance() disregards balance intervals, so we could
11407 	 * repeatedly reach this code, which would lead to balance_interval
11408 	 * skyrocketing in a short amount of time. Skip the balance_interval
11409 	 * increase logic to avoid that.
11410 	 */
11411 	if (env.idle == CPU_NEWLY_IDLE)
11412 		goto out;
11413 
11414 	/* tune up the balancing interval */
11415 	if ((env.flags & LBF_ALL_PINNED &&
11416 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11417 	    sd->balance_interval < sd->max_interval)
11418 		sd->balance_interval *= 2;
11419 out:
11420 	return ld_moved;
11421 }
11422 
11423 static inline unsigned long
11424 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11425 {
11426 	unsigned long interval = sd->balance_interval;
11427 
11428 	if (cpu_busy)
11429 		interval *= sd->busy_factor;
11430 
11431 	/* scale ms to jiffies */
11432 	interval = msecs_to_jiffies(interval);
11433 
11434 	/*
11435 	 * Reduce likelihood of busy balancing at higher domains racing with
11436 	 * balancing at lower domains by preventing their balancing periods
11437 	 * from being multiples of each other.
11438 	 */
11439 	if (cpu_busy)
11440 		interval -= 1;
11441 
11442 	interval = clamp(interval, 1UL, max_load_balance_interval);
11443 
11444 	return interval;
11445 }
11446 
11447 static inline void
11448 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11449 {
11450 	unsigned long interval, next;
11451 
11452 	/* used by idle balance, so cpu_busy = 0 */
11453 	interval = get_sd_balance_interval(sd, 0);
11454 	next = sd->last_balance + interval;
11455 
11456 	if (time_after(*next_balance, next))
11457 		*next_balance = next;
11458 }
11459 
11460 /*
11461  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11462  * running tasks off the busiest CPU onto idle CPUs. It requires at
11463  * least 1 task to be running on each physical CPU where possible, and
11464  * avoids physical / logical imbalances.
11465  */
11466 static int active_load_balance_cpu_stop(void *data)
11467 {
11468 	struct rq *busiest_rq = data;
11469 	int busiest_cpu = cpu_of(busiest_rq);
11470 	int target_cpu = busiest_rq->push_cpu;
11471 	struct rq *target_rq = cpu_rq(target_cpu);
11472 	struct sched_domain *sd;
11473 	struct task_struct *p = NULL;
11474 	struct rq_flags rf;
11475 
11476 	rq_lock_irq(busiest_rq, &rf);
11477 	/*
11478 	 * Between queueing the stop-work and running it is a hole in which
11479 	 * CPUs can become inactive. We should not move tasks from or to
11480 	 * inactive CPUs.
11481 	 */
11482 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11483 		goto out_unlock;
11484 
11485 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11486 	if (unlikely(busiest_cpu != smp_processor_id() ||
11487 		     !busiest_rq->active_balance))
11488 		goto out_unlock;
11489 
11490 	/* Is there any task to move? */
11491 	if (busiest_rq->nr_running <= 1)
11492 		goto out_unlock;
11493 
11494 	/*
11495 	 * This condition is "impossible", if it occurs
11496 	 * we need to fix it. Originally reported by
11497 	 * Bjorn Helgaas on a 128-CPU setup.
11498 	 */
11499 	WARN_ON_ONCE(busiest_rq == target_rq);
11500 
11501 	/* Search for an sd spanning us and the target CPU. */
11502 	rcu_read_lock();
11503 	for_each_domain(target_cpu, sd) {
11504 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11505 			break;
11506 	}
11507 
11508 	if (likely(sd)) {
11509 		struct lb_env env = {
11510 			.sd		= sd,
11511 			.dst_cpu	= target_cpu,
11512 			.dst_rq		= target_rq,
11513 			.src_cpu	= busiest_rq->cpu,
11514 			.src_rq		= busiest_rq,
11515 			.idle		= CPU_IDLE,
11516 			.flags		= LBF_ACTIVE_LB,
11517 		};
11518 
11519 		schedstat_inc(sd->alb_count);
11520 		update_rq_clock(busiest_rq);
11521 
11522 		p = detach_one_task(&env);
11523 		if (p) {
11524 			schedstat_inc(sd->alb_pushed);
11525 			/* Active balancing done, reset the failure counter. */
11526 			sd->nr_balance_failed = 0;
11527 		} else {
11528 			schedstat_inc(sd->alb_failed);
11529 		}
11530 	}
11531 	rcu_read_unlock();
11532 out_unlock:
11533 	busiest_rq->active_balance = 0;
11534 	rq_unlock(busiest_rq, &rf);
11535 
11536 	if (p)
11537 		attach_one_task(target_rq, p);
11538 
11539 	local_irq_enable();
11540 
11541 	return 0;
11542 }
11543 
11544 static DEFINE_SPINLOCK(balancing);
11545 
11546 /*
11547  * Scale the max load_balance interval with the number of CPUs in the system.
11548  * This trades load-balance latency on larger machines for less cross talk.
11549  */
11550 void update_max_interval(void)
11551 {
11552 	max_load_balance_interval = HZ*num_online_cpus()/10;
11553 }
11554 
11555 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11556 {
11557 	if (cost > sd->max_newidle_lb_cost) {
11558 		/*
11559 		 * Track max cost of a domain to make sure to not delay the
11560 		 * next wakeup on the CPU.
11561 		 */
11562 		sd->max_newidle_lb_cost = cost;
11563 		sd->last_decay_max_lb_cost = jiffies;
11564 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11565 		/*
11566 		 * Decay the newidle max times by ~1% per second to ensure that
11567 		 * it is not outdated and the current max cost is actually
11568 		 * shorter.
11569 		 */
11570 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11571 		sd->last_decay_max_lb_cost = jiffies;
11572 
11573 		return true;
11574 	}
11575 
11576 	return false;
11577 }
11578 
11579 /*
11580  * It checks each scheduling domain to see if it is due to be balanced,
11581  * and initiates a balancing operation if so.
11582  *
11583  * Balancing parameters are set up in init_sched_domains.
11584  */
11585 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11586 {
11587 	int continue_balancing = 1;
11588 	int cpu = rq->cpu;
11589 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11590 	unsigned long interval;
11591 	struct sched_domain *sd;
11592 	/* Earliest time when we have to do rebalance again */
11593 	unsigned long next_balance = jiffies + 60*HZ;
11594 	int update_next_balance = 0;
11595 	int need_serialize, need_decay = 0;
11596 	u64 max_cost = 0;
11597 
11598 	rcu_read_lock();
11599 	for_each_domain(cpu, sd) {
11600 		/*
11601 		 * Decay the newidle max times here because this is a regular
11602 		 * visit to all the domains.
11603 		 */
11604 		need_decay = update_newidle_cost(sd, 0);
11605 		max_cost += sd->max_newidle_lb_cost;
11606 
11607 		/*
11608 		 * Stop the load balance at this level. There is another
11609 		 * CPU in our sched group which is doing load balancing more
11610 		 * actively.
11611 		 */
11612 		if (!continue_balancing) {
11613 			if (need_decay)
11614 				continue;
11615 			break;
11616 		}
11617 
11618 		interval = get_sd_balance_interval(sd, busy);
11619 
11620 		need_serialize = sd->flags & SD_SERIALIZE;
11621 		if (need_serialize) {
11622 			if (!spin_trylock(&balancing))
11623 				goto out;
11624 		}
11625 
11626 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11627 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11628 				/*
11629 				 * The LBF_DST_PINNED logic could have changed
11630 				 * env->dst_cpu, so we can't know our idle
11631 				 * state even if we migrated tasks. Update it.
11632 				 */
11633 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11634 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11635 			}
11636 			sd->last_balance = jiffies;
11637 			interval = get_sd_balance_interval(sd, busy);
11638 		}
11639 		if (need_serialize)
11640 			spin_unlock(&balancing);
11641 out:
11642 		if (time_after(next_balance, sd->last_balance + interval)) {
11643 			next_balance = sd->last_balance + interval;
11644 			update_next_balance = 1;
11645 		}
11646 	}
11647 	if (need_decay) {
11648 		/*
11649 		 * Ensure the rq-wide value also decays but keep it at a
11650 		 * reasonable floor to avoid funnies with rq->avg_idle.
11651 		 */
11652 		rq->max_idle_balance_cost =
11653 			max((u64)sysctl_sched_migration_cost, max_cost);
11654 	}
11655 	rcu_read_unlock();
11656 
11657 	/*
11658 	 * next_balance will be updated only when there is a need.
11659 	 * When the cpu is attached to null domain for ex, it will not be
11660 	 * updated.
11661 	 */
11662 	if (likely(update_next_balance))
11663 		rq->next_balance = next_balance;
11664 
11665 }
11666 
11667 static inline int on_null_domain(struct rq *rq)
11668 {
11669 	return unlikely(!rcu_dereference_sched(rq->sd));
11670 }
11671 
11672 #ifdef CONFIG_NO_HZ_COMMON
11673 /*
11674  * idle load balancing details
11675  * - When one of the busy CPUs notice that there may be an idle rebalancing
11676  *   needed, they will kick the idle load balancer, which then does idle
11677  *   load balancing for all the idle CPUs.
11678  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
11679  *   anywhere yet.
11680  */
11681 
11682 static inline int find_new_ilb(void)
11683 {
11684 	int ilb;
11685 	const struct cpumask *hk_mask;
11686 
11687 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11688 
11689 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
11690 
11691 		if (ilb == smp_processor_id())
11692 			continue;
11693 
11694 		if (idle_cpu(ilb))
11695 			return ilb;
11696 	}
11697 
11698 	return nr_cpu_ids;
11699 }
11700 
11701 /*
11702  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
11703  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11704  */
11705 static void kick_ilb(unsigned int flags)
11706 {
11707 	int ilb_cpu;
11708 
11709 	/*
11710 	 * Increase nohz.next_balance only when if full ilb is triggered but
11711 	 * not if we only update stats.
11712 	 */
11713 	if (flags & NOHZ_BALANCE_KICK)
11714 		nohz.next_balance = jiffies+1;
11715 
11716 	ilb_cpu = find_new_ilb();
11717 
11718 	if (ilb_cpu >= nr_cpu_ids)
11719 		return;
11720 
11721 	/*
11722 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11723 	 * the first flag owns it; cleared by nohz_csd_func().
11724 	 */
11725 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11726 	if (flags & NOHZ_KICK_MASK)
11727 		return;
11728 
11729 	/*
11730 	 * This way we generate an IPI on the target CPU which
11731 	 * is idle. And the softirq performing nohz idle load balance
11732 	 * will be run before returning from the IPI.
11733 	 */
11734 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11735 }
11736 
11737 /*
11738  * Current decision point for kicking the idle load balancer in the presence
11739  * of idle CPUs in the system.
11740  */
11741 static void nohz_balancer_kick(struct rq *rq)
11742 {
11743 	unsigned long now = jiffies;
11744 	struct sched_domain_shared *sds;
11745 	struct sched_domain *sd;
11746 	int nr_busy, i, cpu = rq->cpu;
11747 	unsigned int flags = 0;
11748 
11749 	if (unlikely(rq->idle_balance))
11750 		return;
11751 
11752 	/*
11753 	 * We may be recently in ticked or tickless idle mode. At the first
11754 	 * busy tick after returning from idle, we will update the busy stats.
11755 	 */
11756 	nohz_balance_exit_idle(rq);
11757 
11758 	/*
11759 	 * None are in tickless mode and hence no need for NOHZ idle load
11760 	 * balancing.
11761 	 */
11762 	if (likely(!atomic_read(&nohz.nr_cpus)))
11763 		return;
11764 
11765 	if (READ_ONCE(nohz.has_blocked) &&
11766 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11767 		flags = NOHZ_STATS_KICK;
11768 
11769 	if (time_before(now, nohz.next_balance))
11770 		goto out;
11771 
11772 	if (rq->nr_running >= 2) {
11773 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11774 		goto out;
11775 	}
11776 
11777 	rcu_read_lock();
11778 
11779 	sd = rcu_dereference(rq->sd);
11780 	if (sd) {
11781 		/*
11782 		 * If there's a CFS task and the current CPU has reduced
11783 		 * capacity; kick the ILB to see if there's a better CPU to run
11784 		 * on.
11785 		 */
11786 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11787 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11788 			goto unlock;
11789 		}
11790 	}
11791 
11792 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11793 	if (sd) {
11794 		/*
11795 		 * When ASYM_PACKING; see if there's a more preferred CPU
11796 		 * currently idle; in which case, kick the ILB to move tasks
11797 		 * around.
11798 		 *
11799 		 * When balancing betwen cores, all the SMT siblings of the
11800 		 * preferred CPU must be idle.
11801 		 */
11802 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11803 			if (sched_use_asym_prio(sd, i) &&
11804 			    sched_asym_prefer(i, cpu)) {
11805 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11806 				goto unlock;
11807 			}
11808 		}
11809 	}
11810 
11811 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11812 	if (sd) {
11813 		/*
11814 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11815 		 * to run the misfit task on.
11816 		 */
11817 		if (check_misfit_status(rq, sd)) {
11818 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11819 			goto unlock;
11820 		}
11821 
11822 		/*
11823 		 * For asymmetric systems, we do not want to nicely balance
11824 		 * cache use, instead we want to embrace asymmetry and only
11825 		 * ensure tasks have enough CPU capacity.
11826 		 *
11827 		 * Skip the LLC logic because it's not relevant in that case.
11828 		 */
11829 		goto unlock;
11830 	}
11831 
11832 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11833 	if (sds) {
11834 		/*
11835 		 * If there is an imbalance between LLC domains (IOW we could
11836 		 * increase the overall cache use), we need some less-loaded LLC
11837 		 * domain to pull some load. Likewise, we may need to spread
11838 		 * load within the current LLC domain (e.g. packed SMT cores but
11839 		 * other CPUs are idle). We can't really know from here how busy
11840 		 * the others are - so just get a nohz balance going if it looks
11841 		 * like this LLC domain has tasks we could move.
11842 		 */
11843 		nr_busy = atomic_read(&sds->nr_busy_cpus);
11844 		if (nr_busy > 1) {
11845 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11846 			goto unlock;
11847 		}
11848 	}
11849 unlock:
11850 	rcu_read_unlock();
11851 out:
11852 	if (READ_ONCE(nohz.needs_update))
11853 		flags |= NOHZ_NEXT_KICK;
11854 
11855 	if (flags)
11856 		kick_ilb(flags);
11857 }
11858 
11859 static void set_cpu_sd_state_busy(int cpu)
11860 {
11861 	struct sched_domain *sd;
11862 
11863 	rcu_read_lock();
11864 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11865 
11866 	if (!sd || !sd->nohz_idle)
11867 		goto unlock;
11868 	sd->nohz_idle = 0;
11869 
11870 	atomic_inc(&sd->shared->nr_busy_cpus);
11871 unlock:
11872 	rcu_read_unlock();
11873 }
11874 
11875 void nohz_balance_exit_idle(struct rq *rq)
11876 {
11877 	SCHED_WARN_ON(rq != this_rq());
11878 
11879 	if (likely(!rq->nohz_tick_stopped))
11880 		return;
11881 
11882 	rq->nohz_tick_stopped = 0;
11883 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11884 	atomic_dec(&nohz.nr_cpus);
11885 
11886 	set_cpu_sd_state_busy(rq->cpu);
11887 }
11888 
11889 static void set_cpu_sd_state_idle(int cpu)
11890 {
11891 	struct sched_domain *sd;
11892 
11893 	rcu_read_lock();
11894 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11895 
11896 	if (!sd || sd->nohz_idle)
11897 		goto unlock;
11898 	sd->nohz_idle = 1;
11899 
11900 	atomic_dec(&sd->shared->nr_busy_cpus);
11901 unlock:
11902 	rcu_read_unlock();
11903 }
11904 
11905 /*
11906  * This routine will record that the CPU is going idle with tick stopped.
11907  * This info will be used in performing idle load balancing in the future.
11908  */
11909 void nohz_balance_enter_idle(int cpu)
11910 {
11911 	struct rq *rq = cpu_rq(cpu);
11912 
11913 	SCHED_WARN_ON(cpu != smp_processor_id());
11914 
11915 	/* If this CPU is going down, then nothing needs to be done: */
11916 	if (!cpu_active(cpu))
11917 		return;
11918 
11919 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
11920 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
11921 		return;
11922 
11923 	/*
11924 	 * Can be set safely without rq->lock held
11925 	 * If a clear happens, it will have evaluated last additions because
11926 	 * rq->lock is held during the check and the clear
11927 	 */
11928 	rq->has_blocked_load = 1;
11929 
11930 	/*
11931 	 * The tick is still stopped but load could have been added in the
11932 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
11933 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
11934 	 * of nohz.has_blocked can only happen after checking the new load
11935 	 */
11936 	if (rq->nohz_tick_stopped)
11937 		goto out;
11938 
11939 	/* If we're a completely isolated CPU, we don't play: */
11940 	if (on_null_domain(rq))
11941 		return;
11942 
11943 	rq->nohz_tick_stopped = 1;
11944 
11945 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11946 	atomic_inc(&nohz.nr_cpus);
11947 
11948 	/*
11949 	 * Ensures that if nohz_idle_balance() fails to observe our
11950 	 * @idle_cpus_mask store, it must observe the @has_blocked
11951 	 * and @needs_update stores.
11952 	 */
11953 	smp_mb__after_atomic();
11954 
11955 	set_cpu_sd_state_idle(cpu);
11956 
11957 	WRITE_ONCE(nohz.needs_update, 1);
11958 out:
11959 	/*
11960 	 * Each time a cpu enter idle, we assume that it has blocked load and
11961 	 * enable the periodic update of the load of idle cpus
11962 	 */
11963 	WRITE_ONCE(nohz.has_blocked, 1);
11964 }
11965 
11966 static bool update_nohz_stats(struct rq *rq)
11967 {
11968 	unsigned int cpu = rq->cpu;
11969 
11970 	if (!rq->has_blocked_load)
11971 		return false;
11972 
11973 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
11974 		return false;
11975 
11976 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
11977 		return true;
11978 
11979 	update_blocked_averages(cpu);
11980 
11981 	return rq->has_blocked_load;
11982 }
11983 
11984 /*
11985  * Internal function that runs load balance for all idle cpus. The load balance
11986  * can be a simple update of blocked load or a complete load balance with
11987  * tasks movement depending of flags.
11988  */
11989 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
11990 {
11991 	/* Earliest time when we have to do rebalance again */
11992 	unsigned long now = jiffies;
11993 	unsigned long next_balance = now + 60*HZ;
11994 	bool has_blocked_load = false;
11995 	int update_next_balance = 0;
11996 	int this_cpu = this_rq->cpu;
11997 	int balance_cpu;
11998 	struct rq *rq;
11999 
12000 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12001 
12002 	/*
12003 	 * We assume there will be no idle load after this update and clear
12004 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12005 	 * set the has_blocked flag and trigger another update of idle load.
12006 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12007 	 * setting the flag, we are sure to not clear the state and not
12008 	 * check the load of an idle cpu.
12009 	 *
12010 	 * Same applies to idle_cpus_mask vs needs_update.
12011 	 */
12012 	if (flags & NOHZ_STATS_KICK)
12013 		WRITE_ONCE(nohz.has_blocked, 0);
12014 	if (flags & NOHZ_NEXT_KICK)
12015 		WRITE_ONCE(nohz.needs_update, 0);
12016 
12017 	/*
12018 	 * Ensures that if we miss the CPU, we must see the has_blocked
12019 	 * store from nohz_balance_enter_idle().
12020 	 */
12021 	smp_mb();
12022 
12023 	/*
12024 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12025 	 * chance for other idle cpu to pull load.
12026 	 */
12027 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12028 		if (!idle_cpu(balance_cpu))
12029 			continue;
12030 
12031 		/*
12032 		 * If this CPU gets work to do, stop the load balancing
12033 		 * work being done for other CPUs. Next load
12034 		 * balancing owner will pick it up.
12035 		 */
12036 		if (need_resched()) {
12037 			if (flags & NOHZ_STATS_KICK)
12038 				has_blocked_load = true;
12039 			if (flags & NOHZ_NEXT_KICK)
12040 				WRITE_ONCE(nohz.needs_update, 1);
12041 			goto abort;
12042 		}
12043 
12044 		rq = cpu_rq(balance_cpu);
12045 
12046 		if (flags & NOHZ_STATS_KICK)
12047 			has_blocked_load |= update_nohz_stats(rq);
12048 
12049 		/*
12050 		 * If time for next balance is due,
12051 		 * do the balance.
12052 		 */
12053 		if (time_after_eq(jiffies, rq->next_balance)) {
12054 			struct rq_flags rf;
12055 
12056 			rq_lock_irqsave(rq, &rf);
12057 			update_rq_clock(rq);
12058 			rq_unlock_irqrestore(rq, &rf);
12059 
12060 			if (flags & NOHZ_BALANCE_KICK)
12061 				rebalance_domains(rq, CPU_IDLE);
12062 		}
12063 
12064 		if (time_after(next_balance, rq->next_balance)) {
12065 			next_balance = rq->next_balance;
12066 			update_next_balance = 1;
12067 		}
12068 	}
12069 
12070 	/*
12071 	 * next_balance will be updated only when there is a need.
12072 	 * When the CPU is attached to null domain for ex, it will not be
12073 	 * updated.
12074 	 */
12075 	if (likely(update_next_balance))
12076 		nohz.next_balance = next_balance;
12077 
12078 	if (flags & NOHZ_STATS_KICK)
12079 		WRITE_ONCE(nohz.next_blocked,
12080 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12081 
12082 abort:
12083 	/* There is still blocked load, enable periodic update */
12084 	if (has_blocked_load)
12085 		WRITE_ONCE(nohz.has_blocked, 1);
12086 }
12087 
12088 /*
12089  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12090  * rebalancing for all the cpus for whom scheduler ticks are stopped.
12091  */
12092 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12093 {
12094 	unsigned int flags = this_rq->nohz_idle_balance;
12095 
12096 	if (!flags)
12097 		return false;
12098 
12099 	this_rq->nohz_idle_balance = 0;
12100 
12101 	if (idle != CPU_IDLE)
12102 		return false;
12103 
12104 	_nohz_idle_balance(this_rq, flags);
12105 
12106 	return true;
12107 }
12108 
12109 /*
12110  * Check if we need to run the ILB for updating blocked load before entering
12111  * idle state.
12112  */
12113 void nohz_run_idle_balance(int cpu)
12114 {
12115 	unsigned int flags;
12116 
12117 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12118 
12119 	/*
12120 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12121 	 * (ie NOHZ_STATS_KICK set) and will do the same.
12122 	 */
12123 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12124 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12125 }
12126 
12127 static void nohz_newidle_balance(struct rq *this_rq)
12128 {
12129 	int this_cpu = this_rq->cpu;
12130 
12131 	/*
12132 	 * This CPU doesn't want to be disturbed by scheduler
12133 	 * housekeeping
12134 	 */
12135 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12136 		return;
12137 
12138 	/* Will wake up very soon. No time for doing anything else*/
12139 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12140 		return;
12141 
12142 	/* Don't need to update blocked load of idle CPUs*/
12143 	if (!READ_ONCE(nohz.has_blocked) ||
12144 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12145 		return;
12146 
12147 	/*
12148 	 * Set the need to trigger ILB in order to update blocked load
12149 	 * before entering idle state.
12150 	 */
12151 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12152 }
12153 
12154 #else /* !CONFIG_NO_HZ_COMMON */
12155 static inline void nohz_balancer_kick(struct rq *rq) { }
12156 
12157 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12158 {
12159 	return false;
12160 }
12161 
12162 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12163 #endif /* CONFIG_NO_HZ_COMMON */
12164 
12165 /*
12166  * newidle_balance is called by schedule() if this_cpu is about to become
12167  * idle. Attempts to pull tasks from other CPUs.
12168  *
12169  * Returns:
12170  *   < 0 - we released the lock and there are !fair tasks present
12171  *     0 - failed, no new tasks
12172  *   > 0 - success, new (fair) tasks present
12173  */
12174 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12175 {
12176 	unsigned long next_balance = jiffies + HZ;
12177 	int this_cpu = this_rq->cpu;
12178 	u64 t0, t1, curr_cost = 0;
12179 	struct sched_domain *sd;
12180 	int pulled_task = 0;
12181 
12182 	update_misfit_status(NULL, this_rq);
12183 
12184 	/*
12185 	 * There is a task waiting to run. No need to search for one.
12186 	 * Return 0; the task will be enqueued when switching to idle.
12187 	 */
12188 	if (this_rq->ttwu_pending)
12189 		return 0;
12190 
12191 	/*
12192 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
12193 	 * measure the duration of idle_balance() as idle time.
12194 	 */
12195 	this_rq->idle_stamp = rq_clock(this_rq);
12196 
12197 	/*
12198 	 * Do not pull tasks towards !active CPUs...
12199 	 */
12200 	if (!cpu_active(this_cpu))
12201 		return 0;
12202 
12203 	/*
12204 	 * This is OK, because current is on_cpu, which avoids it being picked
12205 	 * for load-balance and preemption/IRQs are still disabled avoiding
12206 	 * further scheduler activity on it and we're being very careful to
12207 	 * re-start the picking loop.
12208 	 */
12209 	rq_unpin_lock(this_rq, rf);
12210 
12211 	rcu_read_lock();
12212 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12213 
12214 	if (!READ_ONCE(this_rq->rd->overload) ||
12215 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12216 
12217 		if (sd)
12218 			update_next_balance(sd, &next_balance);
12219 		rcu_read_unlock();
12220 
12221 		goto out;
12222 	}
12223 	rcu_read_unlock();
12224 
12225 	raw_spin_rq_unlock(this_rq);
12226 
12227 	t0 = sched_clock_cpu(this_cpu);
12228 	update_blocked_averages(this_cpu);
12229 
12230 	rcu_read_lock();
12231 	for_each_domain(this_cpu, sd) {
12232 		int continue_balancing = 1;
12233 		u64 domain_cost;
12234 
12235 		update_next_balance(sd, &next_balance);
12236 
12237 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12238 			break;
12239 
12240 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12241 
12242 			pulled_task = load_balance(this_cpu, this_rq,
12243 						   sd, CPU_NEWLY_IDLE,
12244 						   &continue_balancing);
12245 
12246 			t1 = sched_clock_cpu(this_cpu);
12247 			domain_cost = t1 - t0;
12248 			update_newidle_cost(sd, domain_cost);
12249 
12250 			curr_cost += domain_cost;
12251 			t0 = t1;
12252 		}
12253 
12254 		/*
12255 		 * Stop searching for tasks to pull if there are
12256 		 * now runnable tasks on this rq.
12257 		 */
12258 		if (pulled_task || this_rq->nr_running > 0 ||
12259 		    this_rq->ttwu_pending)
12260 			break;
12261 	}
12262 	rcu_read_unlock();
12263 
12264 	raw_spin_rq_lock(this_rq);
12265 
12266 	if (curr_cost > this_rq->max_idle_balance_cost)
12267 		this_rq->max_idle_balance_cost = curr_cost;
12268 
12269 	/*
12270 	 * While browsing the domains, we released the rq lock, a task could
12271 	 * have been enqueued in the meantime. Since we're not going idle,
12272 	 * pretend we pulled a task.
12273 	 */
12274 	if (this_rq->cfs.h_nr_running && !pulled_task)
12275 		pulled_task = 1;
12276 
12277 	/* Is there a task of a high priority class? */
12278 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12279 		pulled_task = -1;
12280 
12281 out:
12282 	/* Move the next balance forward */
12283 	if (time_after(this_rq->next_balance, next_balance))
12284 		this_rq->next_balance = next_balance;
12285 
12286 	if (pulled_task)
12287 		this_rq->idle_stamp = 0;
12288 	else
12289 		nohz_newidle_balance(this_rq);
12290 
12291 	rq_repin_lock(this_rq, rf);
12292 
12293 	return pulled_task;
12294 }
12295 
12296 /*
12297  * run_rebalance_domains is triggered when needed from the scheduler tick.
12298  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12299  */
12300 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12301 {
12302 	struct rq *this_rq = this_rq();
12303 	enum cpu_idle_type idle = this_rq->idle_balance ?
12304 						CPU_IDLE : CPU_NOT_IDLE;
12305 
12306 	/*
12307 	 * If this CPU has a pending nohz_balance_kick, then do the
12308 	 * balancing on behalf of the other idle CPUs whose ticks are
12309 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12310 	 * give the idle CPUs a chance to load balance. Else we may
12311 	 * load balance only within the local sched_domain hierarchy
12312 	 * and abort nohz_idle_balance altogether if we pull some load.
12313 	 */
12314 	if (nohz_idle_balance(this_rq, idle))
12315 		return;
12316 
12317 	/* normal load balance */
12318 	update_blocked_averages(this_rq->cpu);
12319 	rebalance_domains(this_rq, idle);
12320 }
12321 
12322 /*
12323  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12324  */
12325 void trigger_load_balance(struct rq *rq)
12326 {
12327 	/*
12328 	 * Don't need to rebalance while attached to NULL domain or
12329 	 * runqueue CPU is not active
12330 	 */
12331 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12332 		return;
12333 
12334 	if (time_after_eq(jiffies, rq->next_balance))
12335 		raise_softirq(SCHED_SOFTIRQ);
12336 
12337 	nohz_balancer_kick(rq);
12338 }
12339 
12340 static void rq_online_fair(struct rq *rq)
12341 {
12342 	update_sysctl();
12343 
12344 	update_runtime_enabled(rq);
12345 }
12346 
12347 static void rq_offline_fair(struct rq *rq)
12348 {
12349 	update_sysctl();
12350 
12351 	/* Ensure any throttled groups are reachable by pick_next_task */
12352 	unthrottle_offline_cfs_rqs(rq);
12353 }
12354 
12355 #endif /* CONFIG_SMP */
12356 
12357 #ifdef CONFIG_SCHED_CORE
12358 static inline bool
12359 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12360 {
12361 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12362 	u64 slice = se->slice;
12363 
12364 	return (rtime * min_nr_tasks > slice);
12365 }
12366 
12367 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12368 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12369 {
12370 	if (!sched_core_enabled(rq))
12371 		return;
12372 
12373 	/*
12374 	 * If runqueue has only one task which used up its slice and
12375 	 * if the sibling is forced idle, then trigger schedule to
12376 	 * give forced idle task a chance.
12377 	 *
12378 	 * sched_slice() considers only this active rq and it gets the
12379 	 * whole slice. But during force idle, we have siblings acting
12380 	 * like a single runqueue and hence we need to consider runnable
12381 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12382 	 * go through the forced idle rq, but that would be a perf hit.
12383 	 * We can assume that the forced idle CPU has at least
12384 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12385 	 * if we need to give up the CPU.
12386 	 */
12387 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12388 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12389 		resched_curr(rq);
12390 }
12391 
12392 /*
12393  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12394  */
12395 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12396 			 bool forceidle)
12397 {
12398 	for_each_sched_entity(se) {
12399 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12400 
12401 		if (forceidle) {
12402 			if (cfs_rq->forceidle_seq == fi_seq)
12403 				break;
12404 			cfs_rq->forceidle_seq = fi_seq;
12405 		}
12406 
12407 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12408 	}
12409 }
12410 
12411 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12412 {
12413 	struct sched_entity *se = &p->se;
12414 
12415 	if (p->sched_class != &fair_sched_class)
12416 		return;
12417 
12418 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12419 }
12420 
12421 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12422 			bool in_fi)
12423 {
12424 	struct rq *rq = task_rq(a);
12425 	const struct sched_entity *sea = &a->se;
12426 	const struct sched_entity *seb = &b->se;
12427 	struct cfs_rq *cfs_rqa;
12428 	struct cfs_rq *cfs_rqb;
12429 	s64 delta;
12430 
12431 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12432 
12433 #ifdef CONFIG_FAIR_GROUP_SCHED
12434 	/*
12435 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12436 	 * are immediate siblings.
12437 	 */
12438 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12439 		int sea_depth = sea->depth;
12440 		int seb_depth = seb->depth;
12441 
12442 		if (sea_depth >= seb_depth)
12443 			sea = parent_entity(sea);
12444 		if (sea_depth <= seb_depth)
12445 			seb = parent_entity(seb);
12446 	}
12447 
12448 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12449 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12450 
12451 	cfs_rqa = sea->cfs_rq;
12452 	cfs_rqb = seb->cfs_rq;
12453 #else
12454 	cfs_rqa = &task_rq(a)->cfs;
12455 	cfs_rqb = &task_rq(b)->cfs;
12456 #endif
12457 
12458 	/*
12459 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12460 	 * min_vruntime_fi, which would have been updated in prior calls
12461 	 * to se_fi_update().
12462 	 */
12463 	delta = (s64)(sea->vruntime - seb->vruntime) +
12464 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12465 
12466 	return delta > 0;
12467 }
12468 
12469 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12470 {
12471 	struct cfs_rq *cfs_rq;
12472 
12473 #ifdef CONFIG_FAIR_GROUP_SCHED
12474 	cfs_rq = task_group(p)->cfs_rq[cpu];
12475 #else
12476 	cfs_rq = &cpu_rq(cpu)->cfs;
12477 #endif
12478 	return throttled_hierarchy(cfs_rq);
12479 }
12480 #else
12481 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12482 #endif
12483 
12484 /*
12485  * scheduler tick hitting a task of our scheduling class.
12486  *
12487  * NOTE: This function can be called remotely by the tick offload that
12488  * goes along full dynticks. Therefore no local assumption can be made
12489  * and everything must be accessed through the @rq and @curr passed in
12490  * parameters.
12491  */
12492 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12493 {
12494 	struct cfs_rq *cfs_rq;
12495 	struct sched_entity *se = &curr->se;
12496 
12497 	for_each_sched_entity(se) {
12498 		cfs_rq = cfs_rq_of(se);
12499 		entity_tick(cfs_rq, se, queued);
12500 	}
12501 
12502 	if (static_branch_unlikely(&sched_numa_balancing))
12503 		task_tick_numa(rq, curr);
12504 
12505 	update_misfit_status(curr, rq);
12506 	update_overutilized_status(task_rq(curr));
12507 
12508 	task_tick_core(rq, curr);
12509 }
12510 
12511 /*
12512  * called on fork with the child task as argument from the parent's context
12513  *  - child not yet on the tasklist
12514  *  - preemption disabled
12515  */
12516 static void task_fork_fair(struct task_struct *p)
12517 {
12518 	struct sched_entity *se = &p->se, *curr;
12519 	struct cfs_rq *cfs_rq;
12520 	struct rq *rq = this_rq();
12521 	struct rq_flags rf;
12522 
12523 	rq_lock(rq, &rf);
12524 	update_rq_clock(rq);
12525 
12526 	cfs_rq = task_cfs_rq(current);
12527 	curr = cfs_rq->curr;
12528 	if (curr)
12529 		update_curr(cfs_rq);
12530 	place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12531 	rq_unlock(rq, &rf);
12532 }
12533 
12534 /*
12535  * Priority of the task has changed. Check to see if we preempt
12536  * the current task.
12537  */
12538 static void
12539 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12540 {
12541 	if (!task_on_rq_queued(p))
12542 		return;
12543 
12544 	if (rq->cfs.nr_running == 1)
12545 		return;
12546 
12547 	/*
12548 	 * Reschedule if we are currently running on this runqueue and
12549 	 * our priority decreased, or if we are not currently running on
12550 	 * this runqueue and our priority is higher than the current's
12551 	 */
12552 	if (task_current(rq, p)) {
12553 		if (p->prio > oldprio)
12554 			resched_curr(rq);
12555 	} else
12556 		check_preempt_curr(rq, p, 0);
12557 }
12558 
12559 #ifdef CONFIG_FAIR_GROUP_SCHED
12560 /*
12561  * Propagate the changes of the sched_entity across the tg tree to make it
12562  * visible to the root
12563  */
12564 static void propagate_entity_cfs_rq(struct sched_entity *se)
12565 {
12566 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12567 
12568 	if (cfs_rq_throttled(cfs_rq))
12569 		return;
12570 
12571 	if (!throttled_hierarchy(cfs_rq))
12572 		list_add_leaf_cfs_rq(cfs_rq);
12573 
12574 	/* Start to propagate at parent */
12575 	se = se->parent;
12576 
12577 	for_each_sched_entity(se) {
12578 		cfs_rq = cfs_rq_of(se);
12579 
12580 		update_load_avg(cfs_rq, se, UPDATE_TG);
12581 
12582 		if (cfs_rq_throttled(cfs_rq))
12583 			break;
12584 
12585 		if (!throttled_hierarchy(cfs_rq))
12586 			list_add_leaf_cfs_rq(cfs_rq);
12587 	}
12588 }
12589 #else
12590 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12591 #endif
12592 
12593 static void detach_entity_cfs_rq(struct sched_entity *se)
12594 {
12595 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12596 
12597 #ifdef CONFIG_SMP
12598 	/*
12599 	 * In case the task sched_avg hasn't been attached:
12600 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12601 	 * - A task which has been woken up by try_to_wake_up() but is
12602 	 *   waiting for actually being woken up by sched_ttwu_pending().
12603 	 */
12604 	if (!se->avg.last_update_time)
12605 		return;
12606 #endif
12607 
12608 	/* Catch up with the cfs_rq and remove our load when we leave */
12609 	update_load_avg(cfs_rq, se, 0);
12610 	detach_entity_load_avg(cfs_rq, se);
12611 	update_tg_load_avg(cfs_rq);
12612 	propagate_entity_cfs_rq(se);
12613 }
12614 
12615 static void attach_entity_cfs_rq(struct sched_entity *se)
12616 {
12617 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12618 
12619 	/* Synchronize entity with its cfs_rq */
12620 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12621 	attach_entity_load_avg(cfs_rq, se);
12622 	update_tg_load_avg(cfs_rq);
12623 	propagate_entity_cfs_rq(se);
12624 }
12625 
12626 static void detach_task_cfs_rq(struct task_struct *p)
12627 {
12628 	struct sched_entity *se = &p->se;
12629 
12630 	detach_entity_cfs_rq(se);
12631 }
12632 
12633 static void attach_task_cfs_rq(struct task_struct *p)
12634 {
12635 	struct sched_entity *se = &p->se;
12636 
12637 	attach_entity_cfs_rq(se);
12638 }
12639 
12640 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12641 {
12642 	detach_task_cfs_rq(p);
12643 }
12644 
12645 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12646 {
12647 	attach_task_cfs_rq(p);
12648 
12649 	if (task_on_rq_queued(p)) {
12650 		/*
12651 		 * We were most likely switched from sched_rt, so
12652 		 * kick off the schedule if running, otherwise just see
12653 		 * if we can still preempt the current task.
12654 		 */
12655 		if (task_current(rq, p))
12656 			resched_curr(rq);
12657 		else
12658 			check_preempt_curr(rq, p, 0);
12659 	}
12660 }
12661 
12662 /* Account for a task changing its policy or group.
12663  *
12664  * This routine is mostly called to set cfs_rq->curr field when a task
12665  * migrates between groups/classes.
12666  */
12667 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12668 {
12669 	struct sched_entity *se = &p->se;
12670 
12671 #ifdef CONFIG_SMP
12672 	if (task_on_rq_queued(p)) {
12673 		/*
12674 		 * Move the next running task to the front of the list, so our
12675 		 * cfs_tasks list becomes MRU one.
12676 		 */
12677 		list_move(&se->group_node, &rq->cfs_tasks);
12678 	}
12679 #endif
12680 
12681 	for_each_sched_entity(se) {
12682 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12683 
12684 		set_next_entity(cfs_rq, se);
12685 		/* ensure bandwidth has been allocated on our new cfs_rq */
12686 		account_cfs_rq_runtime(cfs_rq, 0);
12687 	}
12688 }
12689 
12690 void init_cfs_rq(struct cfs_rq *cfs_rq)
12691 {
12692 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12693 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12694 #ifdef CONFIG_SMP
12695 	raw_spin_lock_init(&cfs_rq->removed.lock);
12696 #endif
12697 }
12698 
12699 #ifdef CONFIG_FAIR_GROUP_SCHED
12700 static void task_change_group_fair(struct task_struct *p)
12701 {
12702 	/*
12703 	 * We couldn't detach or attach a forked task which
12704 	 * hasn't been woken up by wake_up_new_task().
12705 	 */
12706 	if (READ_ONCE(p->__state) == TASK_NEW)
12707 		return;
12708 
12709 	detach_task_cfs_rq(p);
12710 
12711 #ifdef CONFIG_SMP
12712 	/* Tell se's cfs_rq has been changed -- migrated */
12713 	p->se.avg.last_update_time = 0;
12714 #endif
12715 	set_task_rq(p, task_cpu(p));
12716 	attach_task_cfs_rq(p);
12717 }
12718 
12719 void free_fair_sched_group(struct task_group *tg)
12720 {
12721 	int i;
12722 
12723 	for_each_possible_cpu(i) {
12724 		if (tg->cfs_rq)
12725 			kfree(tg->cfs_rq[i]);
12726 		if (tg->se)
12727 			kfree(tg->se[i]);
12728 	}
12729 
12730 	kfree(tg->cfs_rq);
12731 	kfree(tg->se);
12732 }
12733 
12734 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12735 {
12736 	struct sched_entity *se;
12737 	struct cfs_rq *cfs_rq;
12738 	int i;
12739 
12740 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12741 	if (!tg->cfs_rq)
12742 		goto err;
12743 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12744 	if (!tg->se)
12745 		goto err;
12746 
12747 	tg->shares = NICE_0_LOAD;
12748 
12749 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12750 
12751 	for_each_possible_cpu(i) {
12752 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12753 				      GFP_KERNEL, cpu_to_node(i));
12754 		if (!cfs_rq)
12755 			goto err;
12756 
12757 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12758 				  GFP_KERNEL, cpu_to_node(i));
12759 		if (!se)
12760 			goto err_free_rq;
12761 
12762 		init_cfs_rq(cfs_rq);
12763 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12764 		init_entity_runnable_average(se);
12765 	}
12766 
12767 	return 1;
12768 
12769 err_free_rq:
12770 	kfree(cfs_rq);
12771 err:
12772 	return 0;
12773 }
12774 
12775 void online_fair_sched_group(struct task_group *tg)
12776 {
12777 	struct sched_entity *se;
12778 	struct rq_flags rf;
12779 	struct rq *rq;
12780 	int i;
12781 
12782 	for_each_possible_cpu(i) {
12783 		rq = cpu_rq(i);
12784 		se = tg->se[i];
12785 		rq_lock_irq(rq, &rf);
12786 		update_rq_clock(rq);
12787 		attach_entity_cfs_rq(se);
12788 		sync_throttle(tg, i);
12789 		rq_unlock_irq(rq, &rf);
12790 	}
12791 }
12792 
12793 void unregister_fair_sched_group(struct task_group *tg)
12794 {
12795 	unsigned long flags;
12796 	struct rq *rq;
12797 	int cpu;
12798 
12799 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12800 
12801 	for_each_possible_cpu(cpu) {
12802 		if (tg->se[cpu])
12803 			remove_entity_load_avg(tg->se[cpu]);
12804 
12805 		/*
12806 		 * Only empty task groups can be destroyed; so we can speculatively
12807 		 * check on_list without danger of it being re-added.
12808 		 */
12809 		if (!tg->cfs_rq[cpu]->on_list)
12810 			continue;
12811 
12812 		rq = cpu_rq(cpu);
12813 
12814 		raw_spin_rq_lock_irqsave(rq, flags);
12815 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12816 		raw_spin_rq_unlock_irqrestore(rq, flags);
12817 	}
12818 }
12819 
12820 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12821 			struct sched_entity *se, int cpu,
12822 			struct sched_entity *parent)
12823 {
12824 	struct rq *rq = cpu_rq(cpu);
12825 
12826 	cfs_rq->tg = tg;
12827 	cfs_rq->rq = rq;
12828 	init_cfs_rq_runtime(cfs_rq);
12829 
12830 	tg->cfs_rq[cpu] = cfs_rq;
12831 	tg->se[cpu] = se;
12832 
12833 	/* se could be NULL for root_task_group */
12834 	if (!se)
12835 		return;
12836 
12837 	if (!parent) {
12838 		se->cfs_rq = &rq->cfs;
12839 		se->depth = 0;
12840 	} else {
12841 		se->cfs_rq = parent->my_q;
12842 		se->depth = parent->depth + 1;
12843 	}
12844 
12845 	se->my_q = cfs_rq;
12846 	/* guarantee group entities always have weight */
12847 	update_load_set(&se->load, NICE_0_LOAD);
12848 	se->parent = parent;
12849 }
12850 
12851 static DEFINE_MUTEX(shares_mutex);
12852 
12853 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12854 {
12855 	int i;
12856 
12857 	lockdep_assert_held(&shares_mutex);
12858 
12859 	/*
12860 	 * We can't change the weight of the root cgroup.
12861 	 */
12862 	if (!tg->se[0])
12863 		return -EINVAL;
12864 
12865 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12866 
12867 	if (tg->shares == shares)
12868 		return 0;
12869 
12870 	tg->shares = shares;
12871 	for_each_possible_cpu(i) {
12872 		struct rq *rq = cpu_rq(i);
12873 		struct sched_entity *se = tg->se[i];
12874 		struct rq_flags rf;
12875 
12876 		/* Propagate contribution to hierarchy */
12877 		rq_lock_irqsave(rq, &rf);
12878 		update_rq_clock(rq);
12879 		for_each_sched_entity(se) {
12880 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12881 			update_cfs_group(se);
12882 		}
12883 		rq_unlock_irqrestore(rq, &rf);
12884 	}
12885 
12886 	return 0;
12887 }
12888 
12889 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12890 {
12891 	int ret;
12892 
12893 	mutex_lock(&shares_mutex);
12894 	if (tg_is_idle(tg))
12895 		ret = -EINVAL;
12896 	else
12897 		ret = __sched_group_set_shares(tg, shares);
12898 	mutex_unlock(&shares_mutex);
12899 
12900 	return ret;
12901 }
12902 
12903 int sched_group_set_idle(struct task_group *tg, long idle)
12904 {
12905 	int i;
12906 
12907 	if (tg == &root_task_group)
12908 		return -EINVAL;
12909 
12910 	if (idle < 0 || idle > 1)
12911 		return -EINVAL;
12912 
12913 	mutex_lock(&shares_mutex);
12914 
12915 	if (tg->idle == idle) {
12916 		mutex_unlock(&shares_mutex);
12917 		return 0;
12918 	}
12919 
12920 	tg->idle = idle;
12921 
12922 	for_each_possible_cpu(i) {
12923 		struct rq *rq = cpu_rq(i);
12924 		struct sched_entity *se = tg->se[i];
12925 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
12926 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
12927 		long idle_task_delta;
12928 		struct rq_flags rf;
12929 
12930 		rq_lock_irqsave(rq, &rf);
12931 
12932 		grp_cfs_rq->idle = idle;
12933 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
12934 			goto next_cpu;
12935 
12936 		if (se->on_rq) {
12937 			parent_cfs_rq = cfs_rq_of(se);
12938 			if (cfs_rq_is_idle(grp_cfs_rq))
12939 				parent_cfs_rq->idle_nr_running++;
12940 			else
12941 				parent_cfs_rq->idle_nr_running--;
12942 		}
12943 
12944 		idle_task_delta = grp_cfs_rq->h_nr_running -
12945 				  grp_cfs_rq->idle_h_nr_running;
12946 		if (!cfs_rq_is_idle(grp_cfs_rq))
12947 			idle_task_delta *= -1;
12948 
12949 		for_each_sched_entity(se) {
12950 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
12951 
12952 			if (!se->on_rq)
12953 				break;
12954 
12955 			cfs_rq->idle_h_nr_running += idle_task_delta;
12956 
12957 			/* Already accounted at parent level and above. */
12958 			if (cfs_rq_is_idle(cfs_rq))
12959 				break;
12960 		}
12961 
12962 next_cpu:
12963 		rq_unlock_irqrestore(rq, &rf);
12964 	}
12965 
12966 	/* Idle groups have minimum weight. */
12967 	if (tg_is_idle(tg))
12968 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
12969 	else
12970 		__sched_group_set_shares(tg, NICE_0_LOAD);
12971 
12972 	mutex_unlock(&shares_mutex);
12973 	return 0;
12974 }
12975 
12976 #else /* CONFIG_FAIR_GROUP_SCHED */
12977 
12978 void free_fair_sched_group(struct task_group *tg) { }
12979 
12980 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12981 {
12982 	return 1;
12983 }
12984 
12985 void online_fair_sched_group(struct task_group *tg) { }
12986 
12987 void unregister_fair_sched_group(struct task_group *tg) { }
12988 
12989 #endif /* CONFIG_FAIR_GROUP_SCHED */
12990 
12991 
12992 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
12993 {
12994 	struct sched_entity *se = &task->se;
12995 	unsigned int rr_interval = 0;
12996 
12997 	/*
12998 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
12999 	 * idle runqueue:
13000 	 */
13001 	if (rq->cfs.load.weight)
13002 		rr_interval = NS_TO_JIFFIES(se->slice);
13003 
13004 	return rr_interval;
13005 }
13006 
13007 /*
13008  * All the scheduling class methods:
13009  */
13010 DEFINE_SCHED_CLASS(fair) = {
13011 
13012 	.enqueue_task		= enqueue_task_fair,
13013 	.dequeue_task		= dequeue_task_fair,
13014 	.yield_task		= yield_task_fair,
13015 	.yield_to_task		= yield_to_task_fair,
13016 
13017 	.check_preempt_curr	= check_preempt_wakeup,
13018 
13019 	.pick_next_task		= __pick_next_task_fair,
13020 	.put_prev_task		= put_prev_task_fair,
13021 	.set_next_task          = set_next_task_fair,
13022 
13023 #ifdef CONFIG_SMP
13024 	.balance		= balance_fair,
13025 	.pick_task		= pick_task_fair,
13026 	.select_task_rq		= select_task_rq_fair,
13027 	.migrate_task_rq	= migrate_task_rq_fair,
13028 
13029 	.rq_online		= rq_online_fair,
13030 	.rq_offline		= rq_offline_fair,
13031 
13032 	.task_dead		= task_dead_fair,
13033 	.set_cpus_allowed	= set_cpus_allowed_common,
13034 #endif
13035 
13036 	.task_tick		= task_tick_fair,
13037 	.task_fork		= task_fork_fair,
13038 
13039 	.prio_changed		= prio_changed_fair,
13040 	.switched_from		= switched_from_fair,
13041 	.switched_to		= switched_to_fair,
13042 
13043 	.get_rr_interval	= get_rr_interval_fair,
13044 
13045 	.update_curr		= update_curr_fair,
13046 
13047 #ifdef CONFIG_FAIR_GROUP_SCHED
13048 	.task_change_group	= task_change_group_fair,
13049 #endif
13050 
13051 #ifdef CONFIG_SCHED_CORE
13052 	.task_is_throttled	= task_is_throttled_fair,
13053 #endif
13054 
13055 #ifdef CONFIG_UCLAMP_TASK
13056 	.uclamp_enabled		= 1,
13057 #endif
13058 };
13059 
13060 #ifdef CONFIG_SCHED_DEBUG
13061 void print_cfs_stats(struct seq_file *m, int cpu)
13062 {
13063 	struct cfs_rq *cfs_rq, *pos;
13064 
13065 	rcu_read_lock();
13066 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13067 		print_cfs_rq(m, cpu, cfs_rq);
13068 	rcu_read_unlock();
13069 }
13070 
13071 #ifdef CONFIG_NUMA_BALANCING
13072 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13073 {
13074 	int node;
13075 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13076 	struct numa_group *ng;
13077 
13078 	rcu_read_lock();
13079 	ng = rcu_dereference(p->numa_group);
13080 	for_each_online_node(node) {
13081 		if (p->numa_faults) {
13082 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13083 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13084 		}
13085 		if (ng) {
13086 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13087 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13088 		}
13089 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13090 	}
13091 	rcu_read_unlock();
13092 }
13093 #endif /* CONFIG_NUMA_BALANCING */
13094 #endif /* CONFIG_SCHED_DEBUG */
13095 
13096 __init void init_sched_fair_class(void)
13097 {
13098 #ifdef CONFIG_SMP
13099 	int i;
13100 
13101 	for_each_possible_cpu(i) {
13102 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13103 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13104 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13105 					GFP_KERNEL, cpu_to_node(i));
13106 
13107 #ifdef CONFIG_CFS_BANDWIDTH
13108 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13109 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13110 #endif
13111 	}
13112 
13113 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13114 
13115 #ifdef CONFIG_NO_HZ_COMMON
13116 	nohz.next_balance = jiffies;
13117 	nohz.next_blocked = jiffies;
13118 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13119 #endif
13120 #endif /* SMP */
13121 
13122 }
13123