xref: /openbmc/linux/kernel/sched/fair.c (revision ee7da21a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 /*
26  * Targeted preemption latency for CPU-bound tasks:
27  *
28  * NOTE: this latency value is not the same as the concept of
29  * 'timeslice length' - timeslices in CFS are of variable length
30  * and have no persistent notion like in traditional, time-slice
31  * based scheduling concepts.
32  *
33  * (to see the precise effective timeslice length of your workload,
34  *  run vmstat and monitor the context-switches (cs) field)
35  *
36  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37  */
38 unsigned int sysctl_sched_latency			= 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
40 
41 /*
42  * The initial- and re-scaling of tunables is configurable
43  *
44  * Options are:
45  *
46  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
47  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49  *
50  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51  */
52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53 
54 /*
55  * Minimal preemption granularity for CPU-bound tasks:
56  *
57  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58  */
59 unsigned int sysctl_sched_min_granularity			= 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
61 
62 /*
63  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
64  */
65 static unsigned int sched_nr_latency = 8;
66 
67 /*
68  * After fork, child runs first. If set to 0 (default) then
69  * parent will (try to) run first.
70  */
71 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 
73 /*
74  * SCHED_OTHER wake-up granularity.
75  *
76  * This option delays the preemption effects of decoupled workloads
77  * and reduces their over-scheduling. Synchronous workloads will still
78  * have immediate wakeup/sleep latencies.
79  *
80  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
81  */
82 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
84 
85 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
86 
87 int sched_thermal_decay_shift;
88 static int __init setup_sched_thermal_decay_shift(char *str)
89 {
90 	int _shift = 0;
91 
92 	if (kstrtoint(str, 0, &_shift))
93 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94 
95 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 	return 1;
97 }
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99 
100 #ifdef CONFIG_SMP
101 /*
102  * For asym packing, by default the lower numbered CPU has higher priority.
103  */
104 int __weak arch_asym_cpu_priority(int cpu)
105 {
106 	return -cpu;
107 }
108 
109 /*
110  * The margin used when comparing utilization with CPU capacity.
111  *
112  * (default: ~20%)
113  */
114 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
115 
116 /*
117  * The margin used when comparing CPU capacities.
118  * is 'cap1' noticeably greater than 'cap2'
119  *
120  * (default: ~5%)
121  */
122 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
123 #endif
124 
125 #ifdef CONFIG_CFS_BANDWIDTH
126 /*
127  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
128  * each time a cfs_rq requests quota.
129  *
130  * Note: in the case that the slice exceeds the runtime remaining (either due
131  * to consumption or the quota being specified to be smaller than the slice)
132  * we will always only issue the remaining available time.
133  *
134  * (default: 5 msec, units: microseconds)
135  */
136 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
137 #endif
138 
139 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
140 {
141 	lw->weight += inc;
142 	lw->inv_weight = 0;
143 }
144 
145 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
146 {
147 	lw->weight -= dec;
148 	lw->inv_weight = 0;
149 }
150 
151 static inline void update_load_set(struct load_weight *lw, unsigned long w)
152 {
153 	lw->weight = w;
154 	lw->inv_weight = 0;
155 }
156 
157 /*
158  * Increase the granularity value when there are more CPUs,
159  * because with more CPUs the 'effective latency' as visible
160  * to users decreases. But the relationship is not linear,
161  * so pick a second-best guess by going with the log2 of the
162  * number of CPUs.
163  *
164  * This idea comes from the SD scheduler of Con Kolivas:
165  */
166 static unsigned int get_update_sysctl_factor(void)
167 {
168 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
169 	unsigned int factor;
170 
171 	switch (sysctl_sched_tunable_scaling) {
172 	case SCHED_TUNABLESCALING_NONE:
173 		factor = 1;
174 		break;
175 	case SCHED_TUNABLESCALING_LINEAR:
176 		factor = cpus;
177 		break;
178 	case SCHED_TUNABLESCALING_LOG:
179 	default:
180 		factor = 1 + ilog2(cpus);
181 		break;
182 	}
183 
184 	return factor;
185 }
186 
187 static void update_sysctl(void)
188 {
189 	unsigned int factor = get_update_sysctl_factor();
190 
191 #define SET_SYSCTL(name) \
192 	(sysctl_##name = (factor) * normalized_sysctl_##name)
193 	SET_SYSCTL(sched_min_granularity);
194 	SET_SYSCTL(sched_latency);
195 	SET_SYSCTL(sched_wakeup_granularity);
196 #undef SET_SYSCTL
197 }
198 
199 void __init sched_init_granularity(void)
200 {
201 	update_sysctl();
202 }
203 
204 #define WMULT_CONST	(~0U)
205 #define WMULT_SHIFT	32
206 
207 static void __update_inv_weight(struct load_weight *lw)
208 {
209 	unsigned long w;
210 
211 	if (likely(lw->inv_weight))
212 		return;
213 
214 	w = scale_load_down(lw->weight);
215 
216 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 		lw->inv_weight = 1;
218 	else if (unlikely(!w))
219 		lw->inv_weight = WMULT_CONST;
220 	else
221 		lw->inv_weight = WMULT_CONST / w;
222 }
223 
224 /*
225  * delta_exec * weight / lw.weight
226  *   OR
227  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
228  *
229  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
230  * we're guaranteed shift stays positive because inv_weight is guaranteed to
231  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
232  *
233  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
234  * weight/lw.weight <= 1, and therefore our shift will also be positive.
235  */
236 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
237 {
238 	u64 fact = scale_load_down(weight);
239 	u32 fact_hi = (u32)(fact >> 32);
240 	int shift = WMULT_SHIFT;
241 	int fs;
242 
243 	__update_inv_weight(lw);
244 
245 	if (unlikely(fact_hi)) {
246 		fs = fls(fact_hi);
247 		shift -= fs;
248 		fact >>= fs;
249 	}
250 
251 	fact = mul_u32_u32(fact, lw->inv_weight);
252 
253 	fact_hi = (u32)(fact >> 32);
254 	if (fact_hi) {
255 		fs = fls(fact_hi);
256 		shift -= fs;
257 		fact >>= fs;
258 	}
259 
260 	return mul_u64_u32_shr(delta_exec, fact, shift);
261 }
262 
263 
264 const struct sched_class fair_sched_class;
265 
266 /**************************************************************
267  * CFS operations on generic schedulable entities:
268  */
269 
270 #ifdef CONFIG_FAIR_GROUP_SCHED
271 
272 /* Walk up scheduling entities hierarchy */
273 #define for_each_sched_entity(se) \
274 		for (; se; se = se->parent)
275 
276 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
277 {
278 	if (!path)
279 		return;
280 
281 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
282 		autogroup_path(cfs_rq->tg, path, len);
283 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
284 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
285 	else
286 		strlcpy(path, "(null)", len);
287 }
288 
289 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 {
291 	struct rq *rq = rq_of(cfs_rq);
292 	int cpu = cpu_of(rq);
293 
294 	if (cfs_rq->on_list)
295 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
296 
297 	cfs_rq->on_list = 1;
298 
299 	/*
300 	 * Ensure we either appear before our parent (if already
301 	 * enqueued) or force our parent to appear after us when it is
302 	 * enqueued. The fact that we always enqueue bottom-up
303 	 * reduces this to two cases and a special case for the root
304 	 * cfs_rq. Furthermore, it also means that we will always reset
305 	 * tmp_alone_branch either when the branch is connected
306 	 * to a tree or when we reach the top of the tree
307 	 */
308 	if (cfs_rq->tg->parent &&
309 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
310 		/*
311 		 * If parent is already on the list, we add the child
312 		 * just before. Thanks to circular linked property of
313 		 * the list, this means to put the child at the tail
314 		 * of the list that starts by parent.
315 		 */
316 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
317 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
318 		/*
319 		 * The branch is now connected to its tree so we can
320 		 * reset tmp_alone_branch to the beginning of the
321 		 * list.
322 		 */
323 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
324 		return true;
325 	}
326 
327 	if (!cfs_rq->tg->parent) {
328 		/*
329 		 * cfs rq without parent should be put
330 		 * at the tail of the list.
331 		 */
332 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
333 			&rq->leaf_cfs_rq_list);
334 		/*
335 		 * We have reach the top of a tree so we can reset
336 		 * tmp_alone_branch to the beginning of the list.
337 		 */
338 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
339 		return true;
340 	}
341 
342 	/*
343 	 * The parent has not already been added so we want to
344 	 * make sure that it will be put after us.
345 	 * tmp_alone_branch points to the begin of the branch
346 	 * where we will add parent.
347 	 */
348 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
349 	/*
350 	 * update tmp_alone_branch to points to the new begin
351 	 * of the branch
352 	 */
353 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
354 	return false;
355 }
356 
357 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
358 {
359 	if (cfs_rq->on_list) {
360 		struct rq *rq = rq_of(cfs_rq);
361 
362 		/*
363 		 * With cfs_rq being unthrottled/throttled during an enqueue,
364 		 * it can happen the tmp_alone_branch points the a leaf that
365 		 * we finally want to del. In this case, tmp_alone_branch moves
366 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
367 		 * at the end of the enqueue.
368 		 */
369 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
370 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
371 
372 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
373 		cfs_rq->on_list = 0;
374 	}
375 }
376 
377 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
378 {
379 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
380 }
381 
382 /* Iterate thr' all leaf cfs_rq's on a runqueue */
383 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
384 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
385 				 leaf_cfs_rq_list)
386 
387 /* Do the two (enqueued) entities belong to the same group ? */
388 static inline struct cfs_rq *
389 is_same_group(struct sched_entity *se, struct sched_entity *pse)
390 {
391 	if (se->cfs_rq == pse->cfs_rq)
392 		return se->cfs_rq;
393 
394 	return NULL;
395 }
396 
397 static inline struct sched_entity *parent_entity(struct sched_entity *se)
398 {
399 	return se->parent;
400 }
401 
402 static void
403 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
404 {
405 	int se_depth, pse_depth;
406 
407 	/*
408 	 * preemption test can be made between sibling entities who are in the
409 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
410 	 * both tasks until we find their ancestors who are siblings of common
411 	 * parent.
412 	 */
413 
414 	/* First walk up until both entities are at same depth */
415 	se_depth = (*se)->depth;
416 	pse_depth = (*pse)->depth;
417 
418 	while (se_depth > pse_depth) {
419 		se_depth--;
420 		*se = parent_entity(*se);
421 	}
422 
423 	while (pse_depth > se_depth) {
424 		pse_depth--;
425 		*pse = parent_entity(*pse);
426 	}
427 
428 	while (!is_same_group(*se, *pse)) {
429 		*se = parent_entity(*se);
430 		*pse = parent_entity(*pse);
431 	}
432 }
433 
434 #else	/* !CONFIG_FAIR_GROUP_SCHED */
435 
436 #define for_each_sched_entity(se) \
437 		for (; se; se = NULL)
438 
439 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
440 {
441 	if (path)
442 		strlcpy(path, "(null)", len);
443 }
444 
445 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
446 {
447 	return true;
448 }
449 
450 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
451 {
452 }
453 
454 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
455 {
456 }
457 
458 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
459 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
460 
461 static inline struct sched_entity *parent_entity(struct sched_entity *se)
462 {
463 	return NULL;
464 }
465 
466 static inline void
467 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
468 {
469 }
470 
471 #endif	/* CONFIG_FAIR_GROUP_SCHED */
472 
473 static __always_inline
474 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
475 
476 /**************************************************************
477  * Scheduling class tree data structure manipulation methods:
478  */
479 
480 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
481 {
482 	s64 delta = (s64)(vruntime - max_vruntime);
483 	if (delta > 0)
484 		max_vruntime = vruntime;
485 
486 	return max_vruntime;
487 }
488 
489 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
490 {
491 	s64 delta = (s64)(vruntime - min_vruntime);
492 	if (delta < 0)
493 		min_vruntime = vruntime;
494 
495 	return min_vruntime;
496 }
497 
498 static inline bool entity_before(struct sched_entity *a,
499 				struct sched_entity *b)
500 {
501 	return (s64)(a->vruntime - b->vruntime) < 0;
502 }
503 
504 #define __node_2_se(node) \
505 	rb_entry((node), struct sched_entity, run_node)
506 
507 static void update_min_vruntime(struct cfs_rq *cfs_rq)
508 {
509 	struct sched_entity *curr = cfs_rq->curr;
510 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
511 
512 	u64 vruntime = cfs_rq->min_vruntime;
513 
514 	if (curr) {
515 		if (curr->on_rq)
516 			vruntime = curr->vruntime;
517 		else
518 			curr = NULL;
519 	}
520 
521 	if (leftmost) { /* non-empty tree */
522 		struct sched_entity *se = __node_2_se(leftmost);
523 
524 		if (!curr)
525 			vruntime = se->vruntime;
526 		else
527 			vruntime = min_vruntime(vruntime, se->vruntime);
528 	}
529 
530 	/* ensure we never gain time by being placed backwards. */
531 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
532 #ifndef CONFIG_64BIT
533 	smp_wmb();
534 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
535 #endif
536 }
537 
538 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
539 {
540 	return entity_before(__node_2_se(a), __node_2_se(b));
541 }
542 
543 /*
544  * Enqueue an entity into the rb-tree:
545  */
546 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
547 {
548 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
549 }
550 
551 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
552 {
553 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
554 }
555 
556 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
557 {
558 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
559 
560 	if (!left)
561 		return NULL;
562 
563 	return __node_2_se(left);
564 }
565 
566 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
567 {
568 	struct rb_node *next = rb_next(&se->run_node);
569 
570 	if (!next)
571 		return NULL;
572 
573 	return __node_2_se(next);
574 }
575 
576 #ifdef CONFIG_SCHED_DEBUG
577 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
578 {
579 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
580 
581 	if (!last)
582 		return NULL;
583 
584 	return __node_2_se(last);
585 }
586 
587 /**************************************************************
588  * Scheduling class statistics methods:
589  */
590 
591 int sched_update_scaling(void)
592 {
593 	unsigned int factor = get_update_sysctl_factor();
594 
595 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
596 					sysctl_sched_min_granularity);
597 
598 #define WRT_SYSCTL(name) \
599 	(normalized_sysctl_##name = sysctl_##name / (factor))
600 	WRT_SYSCTL(sched_min_granularity);
601 	WRT_SYSCTL(sched_latency);
602 	WRT_SYSCTL(sched_wakeup_granularity);
603 #undef WRT_SYSCTL
604 
605 	return 0;
606 }
607 #endif
608 
609 /*
610  * delta /= w
611  */
612 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
613 {
614 	if (unlikely(se->load.weight != NICE_0_LOAD))
615 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
616 
617 	return delta;
618 }
619 
620 /*
621  * The idea is to set a period in which each task runs once.
622  *
623  * When there are too many tasks (sched_nr_latency) we have to stretch
624  * this period because otherwise the slices get too small.
625  *
626  * p = (nr <= nl) ? l : l*nr/nl
627  */
628 static u64 __sched_period(unsigned long nr_running)
629 {
630 	if (unlikely(nr_running > sched_nr_latency))
631 		return nr_running * sysctl_sched_min_granularity;
632 	else
633 		return sysctl_sched_latency;
634 }
635 
636 /*
637  * We calculate the wall-time slice from the period by taking a part
638  * proportional to the weight.
639  *
640  * s = p*P[w/rw]
641  */
642 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
643 {
644 	unsigned int nr_running = cfs_rq->nr_running;
645 	u64 slice;
646 
647 	if (sched_feat(ALT_PERIOD))
648 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
649 
650 	slice = __sched_period(nr_running + !se->on_rq);
651 
652 	for_each_sched_entity(se) {
653 		struct load_weight *load;
654 		struct load_weight lw;
655 
656 		cfs_rq = cfs_rq_of(se);
657 		load = &cfs_rq->load;
658 
659 		if (unlikely(!se->on_rq)) {
660 			lw = cfs_rq->load;
661 
662 			update_load_add(&lw, se->load.weight);
663 			load = &lw;
664 		}
665 		slice = __calc_delta(slice, se->load.weight, load);
666 	}
667 
668 	if (sched_feat(BASE_SLICE))
669 		slice = max(slice, (u64)sysctl_sched_min_granularity);
670 
671 	return slice;
672 }
673 
674 /*
675  * We calculate the vruntime slice of a to-be-inserted task.
676  *
677  * vs = s/w
678  */
679 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
680 {
681 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
682 }
683 
684 #include "pelt.h"
685 #ifdef CONFIG_SMP
686 
687 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
688 static unsigned long task_h_load(struct task_struct *p);
689 static unsigned long capacity_of(int cpu);
690 
691 /* Give new sched_entity start runnable values to heavy its load in infant time */
692 void init_entity_runnable_average(struct sched_entity *se)
693 {
694 	struct sched_avg *sa = &se->avg;
695 
696 	memset(sa, 0, sizeof(*sa));
697 
698 	/*
699 	 * Tasks are initialized with full load to be seen as heavy tasks until
700 	 * they get a chance to stabilize to their real load level.
701 	 * Group entities are initialized with zero load to reflect the fact that
702 	 * nothing has been attached to the task group yet.
703 	 */
704 	if (entity_is_task(se))
705 		sa->load_avg = scale_load_down(se->load.weight);
706 
707 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
708 }
709 
710 static void attach_entity_cfs_rq(struct sched_entity *se);
711 
712 /*
713  * With new tasks being created, their initial util_avgs are extrapolated
714  * based on the cfs_rq's current util_avg:
715  *
716  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
717  *
718  * However, in many cases, the above util_avg does not give a desired
719  * value. Moreover, the sum of the util_avgs may be divergent, such
720  * as when the series is a harmonic series.
721  *
722  * To solve this problem, we also cap the util_avg of successive tasks to
723  * only 1/2 of the left utilization budget:
724  *
725  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
726  *
727  * where n denotes the nth task and cpu_scale the CPU capacity.
728  *
729  * For example, for a CPU with 1024 of capacity, a simplest series from
730  * the beginning would be like:
731  *
732  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
733  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
734  *
735  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
736  * if util_avg > util_avg_cap.
737  */
738 void post_init_entity_util_avg(struct task_struct *p)
739 {
740 	struct sched_entity *se = &p->se;
741 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
742 	struct sched_avg *sa = &se->avg;
743 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
744 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
745 
746 	if (cap > 0) {
747 		if (cfs_rq->avg.util_avg != 0) {
748 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
749 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
750 
751 			if (sa->util_avg > cap)
752 				sa->util_avg = cap;
753 		} else {
754 			sa->util_avg = cap;
755 		}
756 	}
757 
758 	sa->runnable_avg = sa->util_avg;
759 
760 	if (p->sched_class != &fair_sched_class) {
761 		/*
762 		 * For !fair tasks do:
763 		 *
764 		update_cfs_rq_load_avg(now, cfs_rq);
765 		attach_entity_load_avg(cfs_rq, se);
766 		switched_from_fair(rq, p);
767 		 *
768 		 * such that the next switched_to_fair() has the
769 		 * expected state.
770 		 */
771 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
772 		return;
773 	}
774 
775 	attach_entity_cfs_rq(se);
776 }
777 
778 #else /* !CONFIG_SMP */
779 void init_entity_runnable_average(struct sched_entity *se)
780 {
781 }
782 void post_init_entity_util_avg(struct task_struct *p)
783 {
784 }
785 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
786 {
787 }
788 #endif /* CONFIG_SMP */
789 
790 /*
791  * Update the current task's runtime statistics.
792  */
793 static void update_curr(struct cfs_rq *cfs_rq)
794 {
795 	struct sched_entity *curr = cfs_rq->curr;
796 	u64 now = rq_clock_task(rq_of(cfs_rq));
797 	u64 delta_exec;
798 
799 	if (unlikely(!curr))
800 		return;
801 
802 	delta_exec = now - curr->exec_start;
803 	if (unlikely((s64)delta_exec <= 0))
804 		return;
805 
806 	curr->exec_start = now;
807 
808 	schedstat_set(curr->statistics.exec_max,
809 		      max(delta_exec, curr->statistics.exec_max));
810 
811 	curr->sum_exec_runtime += delta_exec;
812 	schedstat_add(cfs_rq->exec_clock, delta_exec);
813 
814 	curr->vruntime += calc_delta_fair(delta_exec, curr);
815 	update_min_vruntime(cfs_rq);
816 
817 	if (entity_is_task(curr)) {
818 		struct task_struct *curtask = task_of(curr);
819 
820 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
821 		cgroup_account_cputime(curtask, delta_exec);
822 		account_group_exec_runtime(curtask, delta_exec);
823 	}
824 
825 	account_cfs_rq_runtime(cfs_rq, delta_exec);
826 }
827 
828 static void update_curr_fair(struct rq *rq)
829 {
830 	update_curr(cfs_rq_of(&rq->curr->se));
831 }
832 
833 static inline void
834 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
835 {
836 	u64 wait_start, prev_wait_start;
837 
838 	if (!schedstat_enabled())
839 		return;
840 
841 	wait_start = rq_clock(rq_of(cfs_rq));
842 	prev_wait_start = schedstat_val(se->statistics.wait_start);
843 
844 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
845 	    likely(wait_start > prev_wait_start))
846 		wait_start -= prev_wait_start;
847 
848 	__schedstat_set(se->statistics.wait_start, wait_start);
849 }
850 
851 static inline void
852 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
853 {
854 	struct task_struct *p;
855 	u64 delta;
856 
857 	if (!schedstat_enabled())
858 		return;
859 
860 	/*
861 	 * When the sched_schedstat changes from 0 to 1, some sched se
862 	 * maybe already in the runqueue, the se->statistics.wait_start
863 	 * will be 0.So it will let the delta wrong. We need to avoid this
864 	 * scenario.
865 	 */
866 	if (unlikely(!schedstat_val(se->statistics.wait_start)))
867 		return;
868 
869 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
870 
871 	if (entity_is_task(se)) {
872 		p = task_of(se);
873 		if (task_on_rq_migrating(p)) {
874 			/*
875 			 * Preserve migrating task's wait time so wait_start
876 			 * time stamp can be adjusted to accumulate wait time
877 			 * prior to migration.
878 			 */
879 			__schedstat_set(se->statistics.wait_start, delta);
880 			return;
881 		}
882 		trace_sched_stat_wait(p, delta);
883 	}
884 
885 	__schedstat_set(se->statistics.wait_max,
886 		      max(schedstat_val(se->statistics.wait_max), delta));
887 	__schedstat_inc(se->statistics.wait_count);
888 	__schedstat_add(se->statistics.wait_sum, delta);
889 	__schedstat_set(se->statistics.wait_start, 0);
890 }
891 
892 static inline void
893 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 {
895 	struct task_struct *tsk = NULL;
896 	u64 sleep_start, block_start;
897 
898 	if (!schedstat_enabled())
899 		return;
900 
901 	sleep_start = schedstat_val(se->statistics.sleep_start);
902 	block_start = schedstat_val(se->statistics.block_start);
903 
904 	if (entity_is_task(se))
905 		tsk = task_of(se);
906 
907 	if (sleep_start) {
908 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
909 
910 		if ((s64)delta < 0)
911 			delta = 0;
912 
913 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
914 			__schedstat_set(se->statistics.sleep_max, delta);
915 
916 		__schedstat_set(se->statistics.sleep_start, 0);
917 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
918 
919 		if (tsk) {
920 			account_scheduler_latency(tsk, delta >> 10, 1);
921 			trace_sched_stat_sleep(tsk, delta);
922 		}
923 	}
924 	if (block_start) {
925 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
926 
927 		if ((s64)delta < 0)
928 			delta = 0;
929 
930 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
931 			__schedstat_set(se->statistics.block_max, delta);
932 
933 		__schedstat_set(se->statistics.block_start, 0);
934 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
935 
936 		if (tsk) {
937 			if (tsk->in_iowait) {
938 				__schedstat_add(se->statistics.iowait_sum, delta);
939 				__schedstat_inc(se->statistics.iowait_count);
940 				trace_sched_stat_iowait(tsk, delta);
941 			}
942 
943 			trace_sched_stat_blocked(tsk, delta);
944 
945 			/*
946 			 * Blocking time is in units of nanosecs, so shift by
947 			 * 20 to get a milliseconds-range estimation of the
948 			 * amount of time that the task spent sleeping:
949 			 */
950 			if (unlikely(prof_on == SLEEP_PROFILING)) {
951 				profile_hits(SLEEP_PROFILING,
952 						(void *)get_wchan(tsk),
953 						delta >> 20);
954 			}
955 			account_scheduler_latency(tsk, delta >> 10, 0);
956 		}
957 	}
958 }
959 
960 /*
961  * Task is being enqueued - update stats:
962  */
963 static inline void
964 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
965 {
966 	if (!schedstat_enabled())
967 		return;
968 
969 	/*
970 	 * Are we enqueueing a waiting task? (for current tasks
971 	 * a dequeue/enqueue event is a NOP)
972 	 */
973 	if (se != cfs_rq->curr)
974 		update_stats_wait_start(cfs_rq, se);
975 
976 	if (flags & ENQUEUE_WAKEUP)
977 		update_stats_enqueue_sleeper(cfs_rq, se);
978 }
979 
980 static inline void
981 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
982 {
983 
984 	if (!schedstat_enabled())
985 		return;
986 
987 	/*
988 	 * Mark the end of the wait period if dequeueing a
989 	 * waiting task:
990 	 */
991 	if (se != cfs_rq->curr)
992 		update_stats_wait_end(cfs_rq, se);
993 
994 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
995 		struct task_struct *tsk = task_of(se);
996 		unsigned int state;
997 
998 		/* XXX racy against TTWU */
999 		state = READ_ONCE(tsk->__state);
1000 		if (state & TASK_INTERRUPTIBLE)
1001 			__schedstat_set(se->statistics.sleep_start,
1002 				      rq_clock(rq_of(cfs_rq)));
1003 		if (state & TASK_UNINTERRUPTIBLE)
1004 			__schedstat_set(se->statistics.block_start,
1005 				      rq_clock(rq_of(cfs_rq)));
1006 	}
1007 }
1008 
1009 /*
1010  * We are picking a new current task - update its stats:
1011  */
1012 static inline void
1013 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1014 {
1015 	/*
1016 	 * We are starting a new run period:
1017 	 */
1018 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1019 }
1020 
1021 /**************************************************
1022  * Scheduling class queueing methods:
1023  */
1024 
1025 #ifdef CONFIG_NUMA_BALANCING
1026 /*
1027  * Approximate time to scan a full NUMA task in ms. The task scan period is
1028  * calculated based on the tasks virtual memory size and
1029  * numa_balancing_scan_size.
1030  */
1031 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1032 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1033 
1034 /* Portion of address space to scan in MB */
1035 unsigned int sysctl_numa_balancing_scan_size = 256;
1036 
1037 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1038 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1039 
1040 struct numa_group {
1041 	refcount_t refcount;
1042 
1043 	spinlock_t lock; /* nr_tasks, tasks */
1044 	int nr_tasks;
1045 	pid_t gid;
1046 	int active_nodes;
1047 
1048 	struct rcu_head rcu;
1049 	unsigned long total_faults;
1050 	unsigned long max_faults_cpu;
1051 	/*
1052 	 * Faults_cpu is used to decide whether memory should move
1053 	 * towards the CPU. As a consequence, these stats are weighted
1054 	 * more by CPU use than by memory faults.
1055 	 */
1056 	unsigned long *faults_cpu;
1057 	unsigned long faults[];
1058 };
1059 
1060 /*
1061  * For functions that can be called in multiple contexts that permit reading
1062  * ->numa_group (see struct task_struct for locking rules).
1063  */
1064 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1065 {
1066 	return rcu_dereference_check(p->numa_group, p == current ||
1067 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1068 }
1069 
1070 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1071 {
1072 	return rcu_dereference_protected(p->numa_group, p == current);
1073 }
1074 
1075 static inline unsigned long group_faults_priv(struct numa_group *ng);
1076 static inline unsigned long group_faults_shared(struct numa_group *ng);
1077 
1078 static unsigned int task_nr_scan_windows(struct task_struct *p)
1079 {
1080 	unsigned long rss = 0;
1081 	unsigned long nr_scan_pages;
1082 
1083 	/*
1084 	 * Calculations based on RSS as non-present and empty pages are skipped
1085 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1086 	 * on resident pages
1087 	 */
1088 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1089 	rss = get_mm_rss(p->mm);
1090 	if (!rss)
1091 		rss = nr_scan_pages;
1092 
1093 	rss = round_up(rss, nr_scan_pages);
1094 	return rss / nr_scan_pages;
1095 }
1096 
1097 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1098 #define MAX_SCAN_WINDOW 2560
1099 
1100 static unsigned int task_scan_min(struct task_struct *p)
1101 {
1102 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1103 	unsigned int scan, floor;
1104 	unsigned int windows = 1;
1105 
1106 	if (scan_size < MAX_SCAN_WINDOW)
1107 		windows = MAX_SCAN_WINDOW / scan_size;
1108 	floor = 1000 / windows;
1109 
1110 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1111 	return max_t(unsigned int, floor, scan);
1112 }
1113 
1114 static unsigned int task_scan_start(struct task_struct *p)
1115 {
1116 	unsigned long smin = task_scan_min(p);
1117 	unsigned long period = smin;
1118 	struct numa_group *ng;
1119 
1120 	/* Scale the maximum scan period with the amount of shared memory. */
1121 	rcu_read_lock();
1122 	ng = rcu_dereference(p->numa_group);
1123 	if (ng) {
1124 		unsigned long shared = group_faults_shared(ng);
1125 		unsigned long private = group_faults_priv(ng);
1126 
1127 		period *= refcount_read(&ng->refcount);
1128 		period *= shared + 1;
1129 		period /= private + shared + 1;
1130 	}
1131 	rcu_read_unlock();
1132 
1133 	return max(smin, period);
1134 }
1135 
1136 static unsigned int task_scan_max(struct task_struct *p)
1137 {
1138 	unsigned long smin = task_scan_min(p);
1139 	unsigned long smax;
1140 	struct numa_group *ng;
1141 
1142 	/* Watch for min being lower than max due to floor calculations */
1143 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1144 
1145 	/* Scale the maximum scan period with the amount of shared memory. */
1146 	ng = deref_curr_numa_group(p);
1147 	if (ng) {
1148 		unsigned long shared = group_faults_shared(ng);
1149 		unsigned long private = group_faults_priv(ng);
1150 		unsigned long period = smax;
1151 
1152 		period *= refcount_read(&ng->refcount);
1153 		period *= shared + 1;
1154 		period /= private + shared + 1;
1155 
1156 		smax = max(smax, period);
1157 	}
1158 
1159 	return max(smin, smax);
1160 }
1161 
1162 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1163 {
1164 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1165 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1166 }
1167 
1168 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1169 {
1170 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1171 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1172 }
1173 
1174 /* Shared or private faults. */
1175 #define NR_NUMA_HINT_FAULT_TYPES 2
1176 
1177 /* Memory and CPU locality */
1178 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1179 
1180 /* Averaged statistics, and temporary buffers. */
1181 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1182 
1183 pid_t task_numa_group_id(struct task_struct *p)
1184 {
1185 	struct numa_group *ng;
1186 	pid_t gid = 0;
1187 
1188 	rcu_read_lock();
1189 	ng = rcu_dereference(p->numa_group);
1190 	if (ng)
1191 		gid = ng->gid;
1192 	rcu_read_unlock();
1193 
1194 	return gid;
1195 }
1196 
1197 /*
1198  * The averaged statistics, shared & private, memory & CPU,
1199  * occupy the first half of the array. The second half of the
1200  * array is for current counters, which are averaged into the
1201  * first set by task_numa_placement.
1202  */
1203 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1204 {
1205 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1206 }
1207 
1208 static inline unsigned long task_faults(struct task_struct *p, int nid)
1209 {
1210 	if (!p->numa_faults)
1211 		return 0;
1212 
1213 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1214 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1215 }
1216 
1217 static inline unsigned long group_faults(struct task_struct *p, int nid)
1218 {
1219 	struct numa_group *ng = deref_task_numa_group(p);
1220 
1221 	if (!ng)
1222 		return 0;
1223 
1224 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1225 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1226 }
1227 
1228 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1229 {
1230 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1231 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1232 }
1233 
1234 static inline unsigned long group_faults_priv(struct numa_group *ng)
1235 {
1236 	unsigned long faults = 0;
1237 	int node;
1238 
1239 	for_each_online_node(node) {
1240 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1241 	}
1242 
1243 	return faults;
1244 }
1245 
1246 static inline unsigned long group_faults_shared(struct numa_group *ng)
1247 {
1248 	unsigned long faults = 0;
1249 	int node;
1250 
1251 	for_each_online_node(node) {
1252 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1253 	}
1254 
1255 	return faults;
1256 }
1257 
1258 /*
1259  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1260  * considered part of a numa group's pseudo-interleaving set. Migrations
1261  * between these nodes are slowed down, to allow things to settle down.
1262  */
1263 #define ACTIVE_NODE_FRACTION 3
1264 
1265 static bool numa_is_active_node(int nid, struct numa_group *ng)
1266 {
1267 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1268 }
1269 
1270 /* Handle placement on systems where not all nodes are directly connected. */
1271 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1272 					int maxdist, bool task)
1273 {
1274 	unsigned long score = 0;
1275 	int node;
1276 
1277 	/*
1278 	 * All nodes are directly connected, and the same distance
1279 	 * from each other. No need for fancy placement algorithms.
1280 	 */
1281 	if (sched_numa_topology_type == NUMA_DIRECT)
1282 		return 0;
1283 
1284 	/*
1285 	 * This code is called for each node, introducing N^2 complexity,
1286 	 * which should be ok given the number of nodes rarely exceeds 8.
1287 	 */
1288 	for_each_online_node(node) {
1289 		unsigned long faults;
1290 		int dist = node_distance(nid, node);
1291 
1292 		/*
1293 		 * The furthest away nodes in the system are not interesting
1294 		 * for placement; nid was already counted.
1295 		 */
1296 		if (dist == sched_max_numa_distance || node == nid)
1297 			continue;
1298 
1299 		/*
1300 		 * On systems with a backplane NUMA topology, compare groups
1301 		 * of nodes, and move tasks towards the group with the most
1302 		 * memory accesses. When comparing two nodes at distance
1303 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1304 		 * of each group. Skip other nodes.
1305 		 */
1306 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1307 					dist >= maxdist)
1308 			continue;
1309 
1310 		/* Add up the faults from nearby nodes. */
1311 		if (task)
1312 			faults = task_faults(p, node);
1313 		else
1314 			faults = group_faults(p, node);
1315 
1316 		/*
1317 		 * On systems with a glueless mesh NUMA topology, there are
1318 		 * no fixed "groups of nodes". Instead, nodes that are not
1319 		 * directly connected bounce traffic through intermediate
1320 		 * nodes; a numa_group can occupy any set of nodes.
1321 		 * The further away a node is, the less the faults count.
1322 		 * This seems to result in good task placement.
1323 		 */
1324 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1325 			faults *= (sched_max_numa_distance - dist);
1326 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1327 		}
1328 
1329 		score += faults;
1330 	}
1331 
1332 	return score;
1333 }
1334 
1335 /*
1336  * These return the fraction of accesses done by a particular task, or
1337  * task group, on a particular numa node.  The group weight is given a
1338  * larger multiplier, in order to group tasks together that are almost
1339  * evenly spread out between numa nodes.
1340  */
1341 static inline unsigned long task_weight(struct task_struct *p, int nid,
1342 					int dist)
1343 {
1344 	unsigned long faults, total_faults;
1345 
1346 	if (!p->numa_faults)
1347 		return 0;
1348 
1349 	total_faults = p->total_numa_faults;
1350 
1351 	if (!total_faults)
1352 		return 0;
1353 
1354 	faults = task_faults(p, nid);
1355 	faults += score_nearby_nodes(p, nid, dist, true);
1356 
1357 	return 1000 * faults / total_faults;
1358 }
1359 
1360 static inline unsigned long group_weight(struct task_struct *p, int nid,
1361 					 int dist)
1362 {
1363 	struct numa_group *ng = deref_task_numa_group(p);
1364 	unsigned long faults, total_faults;
1365 
1366 	if (!ng)
1367 		return 0;
1368 
1369 	total_faults = ng->total_faults;
1370 
1371 	if (!total_faults)
1372 		return 0;
1373 
1374 	faults = group_faults(p, nid);
1375 	faults += score_nearby_nodes(p, nid, dist, false);
1376 
1377 	return 1000 * faults / total_faults;
1378 }
1379 
1380 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1381 				int src_nid, int dst_cpu)
1382 {
1383 	struct numa_group *ng = deref_curr_numa_group(p);
1384 	int dst_nid = cpu_to_node(dst_cpu);
1385 	int last_cpupid, this_cpupid;
1386 
1387 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1388 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1389 
1390 	/*
1391 	 * Allow first faults or private faults to migrate immediately early in
1392 	 * the lifetime of a task. The magic number 4 is based on waiting for
1393 	 * two full passes of the "multi-stage node selection" test that is
1394 	 * executed below.
1395 	 */
1396 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1397 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1398 		return true;
1399 
1400 	/*
1401 	 * Multi-stage node selection is used in conjunction with a periodic
1402 	 * migration fault to build a temporal task<->page relation. By using
1403 	 * a two-stage filter we remove short/unlikely relations.
1404 	 *
1405 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1406 	 * a task's usage of a particular page (n_p) per total usage of this
1407 	 * page (n_t) (in a given time-span) to a probability.
1408 	 *
1409 	 * Our periodic faults will sample this probability and getting the
1410 	 * same result twice in a row, given these samples are fully
1411 	 * independent, is then given by P(n)^2, provided our sample period
1412 	 * is sufficiently short compared to the usage pattern.
1413 	 *
1414 	 * This quadric squishes small probabilities, making it less likely we
1415 	 * act on an unlikely task<->page relation.
1416 	 */
1417 	if (!cpupid_pid_unset(last_cpupid) &&
1418 				cpupid_to_nid(last_cpupid) != dst_nid)
1419 		return false;
1420 
1421 	/* Always allow migrate on private faults */
1422 	if (cpupid_match_pid(p, last_cpupid))
1423 		return true;
1424 
1425 	/* A shared fault, but p->numa_group has not been set up yet. */
1426 	if (!ng)
1427 		return true;
1428 
1429 	/*
1430 	 * Destination node is much more heavily used than the source
1431 	 * node? Allow migration.
1432 	 */
1433 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1434 					ACTIVE_NODE_FRACTION)
1435 		return true;
1436 
1437 	/*
1438 	 * Distribute memory according to CPU & memory use on each node,
1439 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1440 	 *
1441 	 * faults_cpu(dst)   3   faults_cpu(src)
1442 	 * --------------- * - > ---------------
1443 	 * faults_mem(dst)   4   faults_mem(src)
1444 	 */
1445 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1446 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1447 }
1448 
1449 /*
1450  * 'numa_type' describes the node at the moment of load balancing.
1451  */
1452 enum numa_type {
1453 	/* The node has spare capacity that can be used to run more tasks.  */
1454 	node_has_spare = 0,
1455 	/*
1456 	 * The node is fully used and the tasks don't compete for more CPU
1457 	 * cycles. Nevertheless, some tasks might wait before running.
1458 	 */
1459 	node_fully_busy,
1460 	/*
1461 	 * The node is overloaded and can't provide expected CPU cycles to all
1462 	 * tasks.
1463 	 */
1464 	node_overloaded
1465 };
1466 
1467 /* Cached statistics for all CPUs within a node */
1468 struct numa_stats {
1469 	unsigned long load;
1470 	unsigned long runnable;
1471 	unsigned long util;
1472 	/* Total compute capacity of CPUs on a node */
1473 	unsigned long compute_capacity;
1474 	unsigned int nr_running;
1475 	unsigned int weight;
1476 	enum numa_type node_type;
1477 	int idle_cpu;
1478 };
1479 
1480 static inline bool is_core_idle(int cpu)
1481 {
1482 #ifdef CONFIG_SCHED_SMT
1483 	int sibling;
1484 
1485 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1486 		if (cpu == sibling)
1487 			continue;
1488 
1489 		if (!idle_cpu(cpu))
1490 			return false;
1491 	}
1492 #endif
1493 
1494 	return true;
1495 }
1496 
1497 struct task_numa_env {
1498 	struct task_struct *p;
1499 
1500 	int src_cpu, src_nid;
1501 	int dst_cpu, dst_nid;
1502 
1503 	struct numa_stats src_stats, dst_stats;
1504 
1505 	int imbalance_pct;
1506 	int dist;
1507 
1508 	struct task_struct *best_task;
1509 	long best_imp;
1510 	int best_cpu;
1511 };
1512 
1513 static unsigned long cpu_load(struct rq *rq);
1514 static unsigned long cpu_runnable(struct rq *rq);
1515 static unsigned long cpu_util(int cpu);
1516 static inline long adjust_numa_imbalance(int imbalance,
1517 					int dst_running, int dst_weight);
1518 
1519 static inline enum
1520 numa_type numa_classify(unsigned int imbalance_pct,
1521 			 struct numa_stats *ns)
1522 {
1523 	if ((ns->nr_running > ns->weight) &&
1524 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1525 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1526 		return node_overloaded;
1527 
1528 	if ((ns->nr_running < ns->weight) ||
1529 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1530 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1531 		return node_has_spare;
1532 
1533 	return node_fully_busy;
1534 }
1535 
1536 #ifdef CONFIG_SCHED_SMT
1537 /* Forward declarations of select_idle_sibling helpers */
1538 static inline bool test_idle_cores(int cpu, bool def);
1539 static inline int numa_idle_core(int idle_core, int cpu)
1540 {
1541 	if (!static_branch_likely(&sched_smt_present) ||
1542 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1543 		return idle_core;
1544 
1545 	/*
1546 	 * Prefer cores instead of packing HT siblings
1547 	 * and triggering future load balancing.
1548 	 */
1549 	if (is_core_idle(cpu))
1550 		idle_core = cpu;
1551 
1552 	return idle_core;
1553 }
1554 #else
1555 static inline int numa_idle_core(int idle_core, int cpu)
1556 {
1557 	return idle_core;
1558 }
1559 #endif
1560 
1561 /*
1562  * Gather all necessary information to make NUMA balancing placement
1563  * decisions that are compatible with standard load balancer. This
1564  * borrows code and logic from update_sg_lb_stats but sharing a
1565  * common implementation is impractical.
1566  */
1567 static void update_numa_stats(struct task_numa_env *env,
1568 			      struct numa_stats *ns, int nid,
1569 			      bool find_idle)
1570 {
1571 	int cpu, idle_core = -1;
1572 
1573 	memset(ns, 0, sizeof(*ns));
1574 	ns->idle_cpu = -1;
1575 
1576 	rcu_read_lock();
1577 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1578 		struct rq *rq = cpu_rq(cpu);
1579 
1580 		ns->load += cpu_load(rq);
1581 		ns->runnable += cpu_runnable(rq);
1582 		ns->util += cpu_util(cpu);
1583 		ns->nr_running += rq->cfs.h_nr_running;
1584 		ns->compute_capacity += capacity_of(cpu);
1585 
1586 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1587 			if (READ_ONCE(rq->numa_migrate_on) ||
1588 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1589 				continue;
1590 
1591 			if (ns->idle_cpu == -1)
1592 				ns->idle_cpu = cpu;
1593 
1594 			idle_core = numa_idle_core(idle_core, cpu);
1595 		}
1596 	}
1597 	rcu_read_unlock();
1598 
1599 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1600 
1601 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1602 
1603 	if (idle_core >= 0)
1604 		ns->idle_cpu = idle_core;
1605 }
1606 
1607 static void task_numa_assign(struct task_numa_env *env,
1608 			     struct task_struct *p, long imp)
1609 {
1610 	struct rq *rq = cpu_rq(env->dst_cpu);
1611 
1612 	/* Check if run-queue part of active NUMA balance. */
1613 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1614 		int cpu;
1615 		int start = env->dst_cpu;
1616 
1617 		/* Find alternative idle CPU. */
1618 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1619 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1620 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1621 				continue;
1622 			}
1623 
1624 			env->dst_cpu = cpu;
1625 			rq = cpu_rq(env->dst_cpu);
1626 			if (!xchg(&rq->numa_migrate_on, 1))
1627 				goto assign;
1628 		}
1629 
1630 		/* Failed to find an alternative idle CPU */
1631 		return;
1632 	}
1633 
1634 assign:
1635 	/*
1636 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1637 	 * found a better CPU to move/swap.
1638 	 */
1639 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1640 		rq = cpu_rq(env->best_cpu);
1641 		WRITE_ONCE(rq->numa_migrate_on, 0);
1642 	}
1643 
1644 	if (env->best_task)
1645 		put_task_struct(env->best_task);
1646 	if (p)
1647 		get_task_struct(p);
1648 
1649 	env->best_task = p;
1650 	env->best_imp = imp;
1651 	env->best_cpu = env->dst_cpu;
1652 }
1653 
1654 static bool load_too_imbalanced(long src_load, long dst_load,
1655 				struct task_numa_env *env)
1656 {
1657 	long imb, old_imb;
1658 	long orig_src_load, orig_dst_load;
1659 	long src_capacity, dst_capacity;
1660 
1661 	/*
1662 	 * The load is corrected for the CPU capacity available on each node.
1663 	 *
1664 	 * src_load        dst_load
1665 	 * ------------ vs ---------
1666 	 * src_capacity    dst_capacity
1667 	 */
1668 	src_capacity = env->src_stats.compute_capacity;
1669 	dst_capacity = env->dst_stats.compute_capacity;
1670 
1671 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1672 
1673 	orig_src_load = env->src_stats.load;
1674 	orig_dst_load = env->dst_stats.load;
1675 
1676 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1677 
1678 	/* Would this change make things worse? */
1679 	return (imb > old_imb);
1680 }
1681 
1682 /*
1683  * Maximum NUMA importance can be 1998 (2*999);
1684  * SMALLIMP @ 30 would be close to 1998/64.
1685  * Used to deter task migration.
1686  */
1687 #define SMALLIMP	30
1688 
1689 /*
1690  * This checks if the overall compute and NUMA accesses of the system would
1691  * be improved if the source tasks was migrated to the target dst_cpu taking
1692  * into account that it might be best if task running on the dst_cpu should
1693  * be exchanged with the source task
1694  */
1695 static bool task_numa_compare(struct task_numa_env *env,
1696 			      long taskimp, long groupimp, bool maymove)
1697 {
1698 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1699 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1700 	long imp = p_ng ? groupimp : taskimp;
1701 	struct task_struct *cur;
1702 	long src_load, dst_load;
1703 	int dist = env->dist;
1704 	long moveimp = imp;
1705 	long load;
1706 	bool stopsearch = false;
1707 
1708 	if (READ_ONCE(dst_rq->numa_migrate_on))
1709 		return false;
1710 
1711 	rcu_read_lock();
1712 	cur = rcu_dereference(dst_rq->curr);
1713 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1714 		cur = NULL;
1715 
1716 	/*
1717 	 * Because we have preemption enabled we can get migrated around and
1718 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1719 	 */
1720 	if (cur == env->p) {
1721 		stopsearch = true;
1722 		goto unlock;
1723 	}
1724 
1725 	if (!cur) {
1726 		if (maymove && moveimp >= env->best_imp)
1727 			goto assign;
1728 		else
1729 			goto unlock;
1730 	}
1731 
1732 	/* Skip this swap candidate if cannot move to the source cpu. */
1733 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1734 		goto unlock;
1735 
1736 	/*
1737 	 * Skip this swap candidate if it is not moving to its preferred
1738 	 * node and the best task is.
1739 	 */
1740 	if (env->best_task &&
1741 	    env->best_task->numa_preferred_nid == env->src_nid &&
1742 	    cur->numa_preferred_nid != env->src_nid) {
1743 		goto unlock;
1744 	}
1745 
1746 	/*
1747 	 * "imp" is the fault differential for the source task between the
1748 	 * source and destination node. Calculate the total differential for
1749 	 * the source task and potential destination task. The more negative
1750 	 * the value is, the more remote accesses that would be expected to
1751 	 * be incurred if the tasks were swapped.
1752 	 *
1753 	 * If dst and source tasks are in the same NUMA group, or not
1754 	 * in any group then look only at task weights.
1755 	 */
1756 	cur_ng = rcu_dereference(cur->numa_group);
1757 	if (cur_ng == p_ng) {
1758 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1759 		      task_weight(cur, env->dst_nid, dist);
1760 		/*
1761 		 * Add some hysteresis to prevent swapping the
1762 		 * tasks within a group over tiny differences.
1763 		 */
1764 		if (cur_ng)
1765 			imp -= imp / 16;
1766 	} else {
1767 		/*
1768 		 * Compare the group weights. If a task is all by itself
1769 		 * (not part of a group), use the task weight instead.
1770 		 */
1771 		if (cur_ng && p_ng)
1772 			imp += group_weight(cur, env->src_nid, dist) -
1773 			       group_weight(cur, env->dst_nid, dist);
1774 		else
1775 			imp += task_weight(cur, env->src_nid, dist) -
1776 			       task_weight(cur, env->dst_nid, dist);
1777 	}
1778 
1779 	/* Discourage picking a task already on its preferred node */
1780 	if (cur->numa_preferred_nid == env->dst_nid)
1781 		imp -= imp / 16;
1782 
1783 	/*
1784 	 * Encourage picking a task that moves to its preferred node.
1785 	 * This potentially makes imp larger than it's maximum of
1786 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1787 	 * case, it does not matter.
1788 	 */
1789 	if (cur->numa_preferred_nid == env->src_nid)
1790 		imp += imp / 8;
1791 
1792 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1793 		imp = moveimp;
1794 		cur = NULL;
1795 		goto assign;
1796 	}
1797 
1798 	/*
1799 	 * Prefer swapping with a task moving to its preferred node over a
1800 	 * task that is not.
1801 	 */
1802 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1803 	    env->best_task->numa_preferred_nid != env->src_nid) {
1804 		goto assign;
1805 	}
1806 
1807 	/*
1808 	 * If the NUMA importance is less than SMALLIMP,
1809 	 * task migration might only result in ping pong
1810 	 * of tasks and also hurt performance due to cache
1811 	 * misses.
1812 	 */
1813 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1814 		goto unlock;
1815 
1816 	/*
1817 	 * In the overloaded case, try and keep the load balanced.
1818 	 */
1819 	load = task_h_load(env->p) - task_h_load(cur);
1820 	if (!load)
1821 		goto assign;
1822 
1823 	dst_load = env->dst_stats.load + load;
1824 	src_load = env->src_stats.load - load;
1825 
1826 	if (load_too_imbalanced(src_load, dst_load, env))
1827 		goto unlock;
1828 
1829 assign:
1830 	/* Evaluate an idle CPU for a task numa move. */
1831 	if (!cur) {
1832 		int cpu = env->dst_stats.idle_cpu;
1833 
1834 		/* Nothing cached so current CPU went idle since the search. */
1835 		if (cpu < 0)
1836 			cpu = env->dst_cpu;
1837 
1838 		/*
1839 		 * If the CPU is no longer truly idle and the previous best CPU
1840 		 * is, keep using it.
1841 		 */
1842 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1843 		    idle_cpu(env->best_cpu)) {
1844 			cpu = env->best_cpu;
1845 		}
1846 
1847 		env->dst_cpu = cpu;
1848 	}
1849 
1850 	task_numa_assign(env, cur, imp);
1851 
1852 	/*
1853 	 * If a move to idle is allowed because there is capacity or load
1854 	 * balance improves then stop the search. While a better swap
1855 	 * candidate may exist, a search is not free.
1856 	 */
1857 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1858 		stopsearch = true;
1859 
1860 	/*
1861 	 * If a swap candidate must be identified and the current best task
1862 	 * moves its preferred node then stop the search.
1863 	 */
1864 	if (!maymove && env->best_task &&
1865 	    env->best_task->numa_preferred_nid == env->src_nid) {
1866 		stopsearch = true;
1867 	}
1868 unlock:
1869 	rcu_read_unlock();
1870 
1871 	return stopsearch;
1872 }
1873 
1874 static void task_numa_find_cpu(struct task_numa_env *env,
1875 				long taskimp, long groupimp)
1876 {
1877 	bool maymove = false;
1878 	int cpu;
1879 
1880 	/*
1881 	 * If dst node has spare capacity, then check if there is an
1882 	 * imbalance that would be overruled by the load balancer.
1883 	 */
1884 	if (env->dst_stats.node_type == node_has_spare) {
1885 		unsigned int imbalance;
1886 		int src_running, dst_running;
1887 
1888 		/*
1889 		 * Would movement cause an imbalance? Note that if src has
1890 		 * more running tasks that the imbalance is ignored as the
1891 		 * move improves the imbalance from the perspective of the
1892 		 * CPU load balancer.
1893 		 * */
1894 		src_running = env->src_stats.nr_running - 1;
1895 		dst_running = env->dst_stats.nr_running + 1;
1896 		imbalance = max(0, dst_running - src_running);
1897 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
1898 							env->dst_stats.weight);
1899 
1900 		/* Use idle CPU if there is no imbalance */
1901 		if (!imbalance) {
1902 			maymove = true;
1903 			if (env->dst_stats.idle_cpu >= 0) {
1904 				env->dst_cpu = env->dst_stats.idle_cpu;
1905 				task_numa_assign(env, NULL, 0);
1906 				return;
1907 			}
1908 		}
1909 	} else {
1910 		long src_load, dst_load, load;
1911 		/*
1912 		 * If the improvement from just moving env->p direction is better
1913 		 * than swapping tasks around, check if a move is possible.
1914 		 */
1915 		load = task_h_load(env->p);
1916 		dst_load = env->dst_stats.load + load;
1917 		src_load = env->src_stats.load - load;
1918 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1919 	}
1920 
1921 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1922 		/* Skip this CPU if the source task cannot migrate */
1923 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1924 			continue;
1925 
1926 		env->dst_cpu = cpu;
1927 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1928 			break;
1929 	}
1930 }
1931 
1932 static int task_numa_migrate(struct task_struct *p)
1933 {
1934 	struct task_numa_env env = {
1935 		.p = p,
1936 
1937 		.src_cpu = task_cpu(p),
1938 		.src_nid = task_node(p),
1939 
1940 		.imbalance_pct = 112,
1941 
1942 		.best_task = NULL,
1943 		.best_imp = 0,
1944 		.best_cpu = -1,
1945 	};
1946 	unsigned long taskweight, groupweight;
1947 	struct sched_domain *sd;
1948 	long taskimp, groupimp;
1949 	struct numa_group *ng;
1950 	struct rq *best_rq;
1951 	int nid, ret, dist;
1952 
1953 	/*
1954 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1955 	 * imbalance and would be the first to start moving tasks about.
1956 	 *
1957 	 * And we want to avoid any moving of tasks about, as that would create
1958 	 * random movement of tasks -- counter the numa conditions we're trying
1959 	 * to satisfy here.
1960 	 */
1961 	rcu_read_lock();
1962 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1963 	if (sd)
1964 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1965 	rcu_read_unlock();
1966 
1967 	/*
1968 	 * Cpusets can break the scheduler domain tree into smaller
1969 	 * balance domains, some of which do not cross NUMA boundaries.
1970 	 * Tasks that are "trapped" in such domains cannot be migrated
1971 	 * elsewhere, so there is no point in (re)trying.
1972 	 */
1973 	if (unlikely(!sd)) {
1974 		sched_setnuma(p, task_node(p));
1975 		return -EINVAL;
1976 	}
1977 
1978 	env.dst_nid = p->numa_preferred_nid;
1979 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1980 	taskweight = task_weight(p, env.src_nid, dist);
1981 	groupweight = group_weight(p, env.src_nid, dist);
1982 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
1983 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1984 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1985 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
1986 
1987 	/* Try to find a spot on the preferred nid. */
1988 	task_numa_find_cpu(&env, taskimp, groupimp);
1989 
1990 	/*
1991 	 * Look at other nodes in these cases:
1992 	 * - there is no space available on the preferred_nid
1993 	 * - the task is part of a numa_group that is interleaved across
1994 	 *   multiple NUMA nodes; in order to better consolidate the group,
1995 	 *   we need to check other locations.
1996 	 */
1997 	ng = deref_curr_numa_group(p);
1998 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
1999 		for_each_online_node(nid) {
2000 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2001 				continue;
2002 
2003 			dist = node_distance(env.src_nid, env.dst_nid);
2004 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2005 						dist != env.dist) {
2006 				taskweight = task_weight(p, env.src_nid, dist);
2007 				groupweight = group_weight(p, env.src_nid, dist);
2008 			}
2009 
2010 			/* Only consider nodes where both task and groups benefit */
2011 			taskimp = task_weight(p, nid, dist) - taskweight;
2012 			groupimp = group_weight(p, nid, dist) - groupweight;
2013 			if (taskimp < 0 && groupimp < 0)
2014 				continue;
2015 
2016 			env.dist = dist;
2017 			env.dst_nid = nid;
2018 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2019 			task_numa_find_cpu(&env, taskimp, groupimp);
2020 		}
2021 	}
2022 
2023 	/*
2024 	 * If the task is part of a workload that spans multiple NUMA nodes,
2025 	 * and is migrating into one of the workload's active nodes, remember
2026 	 * this node as the task's preferred numa node, so the workload can
2027 	 * settle down.
2028 	 * A task that migrated to a second choice node will be better off
2029 	 * trying for a better one later. Do not set the preferred node here.
2030 	 */
2031 	if (ng) {
2032 		if (env.best_cpu == -1)
2033 			nid = env.src_nid;
2034 		else
2035 			nid = cpu_to_node(env.best_cpu);
2036 
2037 		if (nid != p->numa_preferred_nid)
2038 			sched_setnuma(p, nid);
2039 	}
2040 
2041 	/* No better CPU than the current one was found. */
2042 	if (env.best_cpu == -1) {
2043 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2044 		return -EAGAIN;
2045 	}
2046 
2047 	best_rq = cpu_rq(env.best_cpu);
2048 	if (env.best_task == NULL) {
2049 		ret = migrate_task_to(p, env.best_cpu);
2050 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2051 		if (ret != 0)
2052 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2053 		return ret;
2054 	}
2055 
2056 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2057 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2058 
2059 	if (ret != 0)
2060 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2061 	put_task_struct(env.best_task);
2062 	return ret;
2063 }
2064 
2065 /* Attempt to migrate a task to a CPU on the preferred node. */
2066 static void numa_migrate_preferred(struct task_struct *p)
2067 {
2068 	unsigned long interval = HZ;
2069 
2070 	/* This task has no NUMA fault statistics yet */
2071 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2072 		return;
2073 
2074 	/* Periodically retry migrating the task to the preferred node */
2075 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2076 	p->numa_migrate_retry = jiffies + interval;
2077 
2078 	/* Success if task is already running on preferred CPU */
2079 	if (task_node(p) == p->numa_preferred_nid)
2080 		return;
2081 
2082 	/* Otherwise, try migrate to a CPU on the preferred node */
2083 	task_numa_migrate(p);
2084 }
2085 
2086 /*
2087  * Find out how many nodes on the workload is actively running on. Do this by
2088  * tracking the nodes from which NUMA hinting faults are triggered. This can
2089  * be different from the set of nodes where the workload's memory is currently
2090  * located.
2091  */
2092 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2093 {
2094 	unsigned long faults, max_faults = 0;
2095 	int nid, active_nodes = 0;
2096 
2097 	for_each_online_node(nid) {
2098 		faults = group_faults_cpu(numa_group, nid);
2099 		if (faults > max_faults)
2100 			max_faults = faults;
2101 	}
2102 
2103 	for_each_online_node(nid) {
2104 		faults = group_faults_cpu(numa_group, nid);
2105 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2106 			active_nodes++;
2107 	}
2108 
2109 	numa_group->max_faults_cpu = max_faults;
2110 	numa_group->active_nodes = active_nodes;
2111 }
2112 
2113 /*
2114  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2115  * increments. The more local the fault statistics are, the higher the scan
2116  * period will be for the next scan window. If local/(local+remote) ratio is
2117  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2118  * the scan period will decrease. Aim for 70% local accesses.
2119  */
2120 #define NUMA_PERIOD_SLOTS 10
2121 #define NUMA_PERIOD_THRESHOLD 7
2122 
2123 /*
2124  * Increase the scan period (slow down scanning) if the majority of
2125  * our memory is already on our local node, or if the majority of
2126  * the page accesses are shared with other processes.
2127  * Otherwise, decrease the scan period.
2128  */
2129 static void update_task_scan_period(struct task_struct *p,
2130 			unsigned long shared, unsigned long private)
2131 {
2132 	unsigned int period_slot;
2133 	int lr_ratio, ps_ratio;
2134 	int diff;
2135 
2136 	unsigned long remote = p->numa_faults_locality[0];
2137 	unsigned long local = p->numa_faults_locality[1];
2138 
2139 	/*
2140 	 * If there were no record hinting faults then either the task is
2141 	 * completely idle or all activity is areas that are not of interest
2142 	 * to automatic numa balancing. Related to that, if there were failed
2143 	 * migration then it implies we are migrating too quickly or the local
2144 	 * node is overloaded. In either case, scan slower
2145 	 */
2146 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2147 		p->numa_scan_period = min(p->numa_scan_period_max,
2148 			p->numa_scan_period << 1);
2149 
2150 		p->mm->numa_next_scan = jiffies +
2151 			msecs_to_jiffies(p->numa_scan_period);
2152 
2153 		return;
2154 	}
2155 
2156 	/*
2157 	 * Prepare to scale scan period relative to the current period.
2158 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2159 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2160 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2161 	 */
2162 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2163 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2164 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2165 
2166 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2167 		/*
2168 		 * Most memory accesses are local. There is no need to
2169 		 * do fast NUMA scanning, since memory is already local.
2170 		 */
2171 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2172 		if (!slot)
2173 			slot = 1;
2174 		diff = slot * period_slot;
2175 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2176 		/*
2177 		 * Most memory accesses are shared with other tasks.
2178 		 * There is no point in continuing fast NUMA scanning,
2179 		 * since other tasks may just move the memory elsewhere.
2180 		 */
2181 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2182 		if (!slot)
2183 			slot = 1;
2184 		diff = slot * period_slot;
2185 	} else {
2186 		/*
2187 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2188 		 * yet they are not on the local NUMA node. Speed up
2189 		 * NUMA scanning to get the memory moved over.
2190 		 */
2191 		int ratio = max(lr_ratio, ps_ratio);
2192 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2193 	}
2194 
2195 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2196 			task_scan_min(p), task_scan_max(p));
2197 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2198 }
2199 
2200 /*
2201  * Get the fraction of time the task has been running since the last
2202  * NUMA placement cycle. The scheduler keeps similar statistics, but
2203  * decays those on a 32ms period, which is orders of magnitude off
2204  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2205  * stats only if the task is so new there are no NUMA statistics yet.
2206  */
2207 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2208 {
2209 	u64 runtime, delta, now;
2210 	/* Use the start of this time slice to avoid calculations. */
2211 	now = p->se.exec_start;
2212 	runtime = p->se.sum_exec_runtime;
2213 
2214 	if (p->last_task_numa_placement) {
2215 		delta = runtime - p->last_sum_exec_runtime;
2216 		*period = now - p->last_task_numa_placement;
2217 
2218 		/* Avoid time going backwards, prevent potential divide error: */
2219 		if (unlikely((s64)*period < 0))
2220 			*period = 0;
2221 	} else {
2222 		delta = p->se.avg.load_sum;
2223 		*period = LOAD_AVG_MAX;
2224 	}
2225 
2226 	p->last_sum_exec_runtime = runtime;
2227 	p->last_task_numa_placement = now;
2228 
2229 	return delta;
2230 }
2231 
2232 /*
2233  * Determine the preferred nid for a task in a numa_group. This needs to
2234  * be done in a way that produces consistent results with group_weight,
2235  * otherwise workloads might not converge.
2236  */
2237 static int preferred_group_nid(struct task_struct *p, int nid)
2238 {
2239 	nodemask_t nodes;
2240 	int dist;
2241 
2242 	/* Direct connections between all NUMA nodes. */
2243 	if (sched_numa_topology_type == NUMA_DIRECT)
2244 		return nid;
2245 
2246 	/*
2247 	 * On a system with glueless mesh NUMA topology, group_weight
2248 	 * scores nodes according to the number of NUMA hinting faults on
2249 	 * both the node itself, and on nearby nodes.
2250 	 */
2251 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2252 		unsigned long score, max_score = 0;
2253 		int node, max_node = nid;
2254 
2255 		dist = sched_max_numa_distance;
2256 
2257 		for_each_online_node(node) {
2258 			score = group_weight(p, node, dist);
2259 			if (score > max_score) {
2260 				max_score = score;
2261 				max_node = node;
2262 			}
2263 		}
2264 		return max_node;
2265 	}
2266 
2267 	/*
2268 	 * Finding the preferred nid in a system with NUMA backplane
2269 	 * interconnect topology is more involved. The goal is to locate
2270 	 * tasks from numa_groups near each other in the system, and
2271 	 * untangle workloads from different sides of the system. This requires
2272 	 * searching down the hierarchy of node groups, recursively searching
2273 	 * inside the highest scoring group of nodes. The nodemask tricks
2274 	 * keep the complexity of the search down.
2275 	 */
2276 	nodes = node_online_map;
2277 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2278 		unsigned long max_faults = 0;
2279 		nodemask_t max_group = NODE_MASK_NONE;
2280 		int a, b;
2281 
2282 		/* Are there nodes at this distance from each other? */
2283 		if (!find_numa_distance(dist))
2284 			continue;
2285 
2286 		for_each_node_mask(a, nodes) {
2287 			unsigned long faults = 0;
2288 			nodemask_t this_group;
2289 			nodes_clear(this_group);
2290 
2291 			/* Sum group's NUMA faults; includes a==b case. */
2292 			for_each_node_mask(b, nodes) {
2293 				if (node_distance(a, b) < dist) {
2294 					faults += group_faults(p, b);
2295 					node_set(b, this_group);
2296 					node_clear(b, nodes);
2297 				}
2298 			}
2299 
2300 			/* Remember the top group. */
2301 			if (faults > max_faults) {
2302 				max_faults = faults;
2303 				max_group = this_group;
2304 				/*
2305 				 * subtle: at the smallest distance there is
2306 				 * just one node left in each "group", the
2307 				 * winner is the preferred nid.
2308 				 */
2309 				nid = a;
2310 			}
2311 		}
2312 		/* Next round, evaluate the nodes within max_group. */
2313 		if (!max_faults)
2314 			break;
2315 		nodes = max_group;
2316 	}
2317 	return nid;
2318 }
2319 
2320 static void task_numa_placement(struct task_struct *p)
2321 {
2322 	int seq, nid, max_nid = NUMA_NO_NODE;
2323 	unsigned long max_faults = 0;
2324 	unsigned long fault_types[2] = { 0, 0 };
2325 	unsigned long total_faults;
2326 	u64 runtime, period;
2327 	spinlock_t *group_lock = NULL;
2328 	struct numa_group *ng;
2329 
2330 	/*
2331 	 * The p->mm->numa_scan_seq field gets updated without
2332 	 * exclusive access. Use READ_ONCE() here to ensure
2333 	 * that the field is read in a single access:
2334 	 */
2335 	seq = READ_ONCE(p->mm->numa_scan_seq);
2336 	if (p->numa_scan_seq == seq)
2337 		return;
2338 	p->numa_scan_seq = seq;
2339 	p->numa_scan_period_max = task_scan_max(p);
2340 
2341 	total_faults = p->numa_faults_locality[0] +
2342 		       p->numa_faults_locality[1];
2343 	runtime = numa_get_avg_runtime(p, &period);
2344 
2345 	/* If the task is part of a group prevent parallel updates to group stats */
2346 	ng = deref_curr_numa_group(p);
2347 	if (ng) {
2348 		group_lock = &ng->lock;
2349 		spin_lock_irq(group_lock);
2350 	}
2351 
2352 	/* Find the node with the highest number of faults */
2353 	for_each_online_node(nid) {
2354 		/* Keep track of the offsets in numa_faults array */
2355 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2356 		unsigned long faults = 0, group_faults = 0;
2357 		int priv;
2358 
2359 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2360 			long diff, f_diff, f_weight;
2361 
2362 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2363 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2364 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2365 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2366 
2367 			/* Decay existing window, copy faults since last scan */
2368 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2369 			fault_types[priv] += p->numa_faults[membuf_idx];
2370 			p->numa_faults[membuf_idx] = 0;
2371 
2372 			/*
2373 			 * Normalize the faults_from, so all tasks in a group
2374 			 * count according to CPU use, instead of by the raw
2375 			 * number of faults. Tasks with little runtime have
2376 			 * little over-all impact on throughput, and thus their
2377 			 * faults are less important.
2378 			 */
2379 			f_weight = div64_u64(runtime << 16, period + 1);
2380 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2381 				   (total_faults + 1);
2382 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2383 			p->numa_faults[cpubuf_idx] = 0;
2384 
2385 			p->numa_faults[mem_idx] += diff;
2386 			p->numa_faults[cpu_idx] += f_diff;
2387 			faults += p->numa_faults[mem_idx];
2388 			p->total_numa_faults += diff;
2389 			if (ng) {
2390 				/*
2391 				 * safe because we can only change our own group
2392 				 *
2393 				 * mem_idx represents the offset for a given
2394 				 * nid and priv in a specific region because it
2395 				 * is at the beginning of the numa_faults array.
2396 				 */
2397 				ng->faults[mem_idx] += diff;
2398 				ng->faults_cpu[mem_idx] += f_diff;
2399 				ng->total_faults += diff;
2400 				group_faults += ng->faults[mem_idx];
2401 			}
2402 		}
2403 
2404 		if (!ng) {
2405 			if (faults > max_faults) {
2406 				max_faults = faults;
2407 				max_nid = nid;
2408 			}
2409 		} else if (group_faults > max_faults) {
2410 			max_faults = group_faults;
2411 			max_nid = nid;
2412 		}
2413 	}
2414 
2415 	if (ng) {
2416 		numa_group_count_active_nodes(ng);
2417 		spin_unlock_irq(group_lock);
2418 		max_nid = preferred_group_nid(p, max_nid);
2419 	}
2420 
2421 	if (max_faults) {
2422 		/* Set the new preferred node */
2423 		if (max_nid != p->numa_preferred_nid)
2424 			sched_setnuma(p, max_nid);
2425 	}
2426 
2427 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2428 }
2429 
2430 static inline int get_numa_group(struct numa_group *grp)
2431 {
2432 	return refcount_inc_not_zero(&grp->refcount);
2433 }
2434 
2435 static inline void put_numa_group(struct numa_group *grp)
2436 {
2437 	if (refcount_dec_and_test(&grp->refcount))
2438 		kfree_rcu(grp, rcu);
2439 }
2440 
2441 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2442 			int *priv)
2443 {
2444 	struct numa_group *grp, *my_grp;
2445 	struct task_struct *tsk;
2446 	bool join = false;
2447 	int cpu = cpupid_to_cpu(cpupid);
2448 	int i;
2449 
2450 	if (unlikely(!deref_curr_numa_group(p))) {
2451 		unsigned int size = sizeof(struct numa_group) +
2452 				    4*nr_node_ids*sizeof(unsigned long);
2453 
2454 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2455 		if (!grp)
2456 			return;
2457 
2458 		refcount_set(&grp->refcount, 1);
2459 		grp->active_nodes = 1;
2460 		grp->max_faults_cpu = 0;
2461 		spin_lock_init(&grp->lock);
2462 		grp->gid = p->pid;
2463 		/* Second half of the array tracks nids where faults happen */
2464 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2465 						nr_node_ids;
2466 
2467 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2468 			grp->faults[i] = p->numa_faults[i];
2469 
2470 		grp->total_faults = p->total_numa_faults;
2471 
2472 		grp->nr_tasks++;
2473 		rcu_assign_pointer(p->numa_group, grp);
2474 	}
2475 
2476 	rcu_read_lock();
2477 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2478 
2479 	if (!cpupid_match_pid(tsk, cpupid))
2480 		goto no_join;
2481 
2482 	grp = rcu_dereference(tsk->numa_group);
2483 	if (!grp)
2484 		goto no_join;
2485 
2486 	my_grp = deref_curr_numa_group(p);
2487 	if (grp == my_grp)
2488 		goto no_join;
2489 
2490 	/*
2491 	 * Only join the other group if its bigger; if we're the bigger group,
2492 	 * the other task will join us.
2493 	 */
2494 	if (my_grp->nr_tasks > grp->nr_tasks)
2495 		goto no_join;
2496 
2497 	/*
2498 	 * Tie-break on the grp address.
2499 	 */
2500 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2501 		goto no_join;
2502 
2503 	/* Always join threads in the same process. */
2504 	if (tsk->mm == current->mm)
2505 		join = true;
2506 
2507 	/* Simple filter to avoid false positives due to PID collisions */
2508 	if (flags & TNF_SHARED)
2509 		join = true;
2510 
2511 	/* Update priv based on whether false sharing was detected */
2512 	*priv = !join;
2513 
2514 	if (join && !get_numa_group(grp))
2515 		goto no_join;
2516 
2517 	rcu_read_unlock();
2518 
2519 	if (!join)
2520 		return;
2521 
2522 	BUG_ON(irqs_disabled());
2523 	double_lock_irq(&my_grp->lock, &grp->lock);
2524 
2525 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2526 		my_grp->faults[i] -= p->numa_faults[i];
2527 		grp->faults[i] += p->numa_faults[i];
2528 	}
2529 	my_grp->total_faults -= p->total_numa_faults;
2530 	grp->total_faults += p->total_numa_faults;
2531 
2532 	my_grp->nr_tasks--;
2533 	grp->nr_tasks++;
2534 
2535 	spin_unlock(&my_grp->lock);
2536 	spin_unlock_irq(&grp->lock);
2537 
2538 	rcu_assign_pointer(p->numa_group, grp);
2539 
2540 	put_numa_group(my_grp);
2541 	return;
2542 
2543 no_join:
2544 	rcu_read_unlock();
2545 	return;
2546 }
2547 
2548 /*
2549  * Get rid of NUMA statistics associated with a task (either current or dead).
2550  * If @final is set, the task is dead and has reached refcount zero, so we can
2551  * safely free all relevant data structures. Otherwise, there might be
2552  * concurrent reads from places like load balancing and procfs, and we should
2553  * reset the data back to default state without freeing ->numa_faults.
2554  */
2555 void task_numa_free(struct task_struct *p, bool final)
2556 {
2557 	/* safe: p either is current or is being freed by current */
2558 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2559 	unsigned long *numa_faults = p->numa_faults;
2560 	unsigned long flags;
2561 	int i;
2562 
2563 	if (!numa_faults)
2564 		return;
2565 
2566 	if (grp) {
2567 		spin_lock_irqsave(&grp->lock, flags);
2568 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2569 			grp->faults[i] -= p->numa_faults[i];
2570 		grp->total_faults -= p->total_numa_faults;
2571 
2572 		grp->nr_tasks--;
2573 		spin_unlock_irqrestore(&grp->lock, flags);
2574 		RCU_INIT_POINTER(p->numa_group, NULL);
2575 		put_numa_group(grp);
2576 	}
2577 
2578 	if (final) {
2579 		p->numa_faults = NULL;
2580 		kfree(numa_faults);
2581 	} else {
2582 		p->total_numa_faults = 0;
2583 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2584 			numa_faults[i] = 0;
2585 	}
2586 }
2587 
2588 /*
2589  * Got a PROT_NONE fault for a page on @node.
2590  */
2591 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2592 {
2593 	struct task_struct *p = current;
2594 	bool migrated = flags & TNF_MIGRATED;
2595 	int cpu_node = task_node(current);
2596 	int local = !!(flags & TNF_FAULT_LOCAL);
2597 	struct numa_group *ng;
2598 	int priv;
2599 
2600 	if (!static_branch_likely(&sched_numa_balancing))
2601 		return;
2602 
2603 	/* for example, ksmd faulting in a user's mm */
2604 	if (!p->mm)
2605 		return;
2606 
2607 	/* Allocate buffer to track faults on a per-node basis */
2608 	if (unlikely(!p->numa_faults)) {
2609 		int size = sizeof(*p->numa_faults) *
2610 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2611 
2612 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2613 		if (!p->numa_faults)
2614 			return;
2615 
2616 		p->total_numa_faults = 0;
2617 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2618 	}
2619 
2620 	/*
2621 	 * First accesses are treated as private, otherwise consider accesses
2622 	 * to be private if the accessing pid has not changed
2623 	 */
2624 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2625 		priv = 1;
2626 	} else {
2627 		priv = cpupid_match_pid(p, last_cpupid);
2628 		if (!priv && !(flags & TNF_NO_GROUP))
2629 			task_numa_group(p, last_cpupid, flags, &priv);
2630 	}
2631 
2632 	/*
2633 	 * If a workload spans multiple NUMA nodes, a shared fault that
2634 	 * occurs wholly within the set of nodes that the workload is
2635 	 * actively using should be counted as local. This allows the
2636 	 * scan rate to slow down when a workload has settled down.
2637 	 */
2638 	ng = deref_curr_numa_group(p);
2639 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2640 				numa_is_active_node(cpu_node, ng) &&
2641 				numa_is_active_node(mem_node, ng))
2642 		local = 1;
2643 
2644 	/*
2645 	 * Retry to migrate task to preferred node periodically, in case it
2646 	 * previously failed, or the scheduler moved us.
2647 	 */
2648 	if (time_after(jiffies, p->numa_migrate_retry)) {
2649 		task_numa_placement(p);
2650 		numa_migrate_preferred(p);
2651 	}
2652 
2653 	if (migrated)
2654 		p->numa_pages_migrated += pages;
2655 	if (flags & TNF_MIGRATE_FAIL)
2656 		p->numa_faults_locality[2] += pages;
2657 
2658 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2659 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2660 	p->numa_faults_locality[local] += pages;
2661 }
2662 
2663 static void reset_ptenuma_scan(struct task_struct *p)
2664 {
2665 	/*
2666 	 * We only did a read acquisition of the mmap sem, so
2667 	 * p->mm->numa_scan_seq is written to without exclusive access
2668 	 * and the update is not guaranteed to be atomic. That's not
2669 	 * much of an issue though, since this is just used for
2670 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2671 	 * expensive, to avoid any form of compiler optimizations:
2672 	 */
2673 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2674 	p->mm->numa_scan_offset = 0;
2675 }
2676 
2677 /*
2678  * The expensive part of numa migration is done from task_work context.
2679  * Triggered from task_tick_numa().
2680  */
2681 static void task_numa_work(struct callback_head *work)
2682 {
2683 	unsigned long migrate, next_scan, now = jiffies;
2684 	struct task_struct *p = current;
2685 	struct mm_struct *mm = p->mm;
2686 	u64 runtime = p->se.sum_exec_runtime;
2687 	struct vm_area_struct *vma;
2688 	unsigned long start, end;
2689 	unsigned long nr_pte_updates = 0;
2690 	long pages, virtpages;
2691 
2692 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2693 
2694 	work->next = work;
2695 	/*
2696 	 * Who cares about NUMA placement when they're dying.
2697 	 *
2698 	 * NOTE: make sure not to dereference p->mm before this check,
2699 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2700 	 * without p->mm even though we still had it when we enqueued this
2701 	 * work.
2702 	 */
2703 	if (p->flags & PF_EXITING)
2704 		return;
2705 
2706 	if (!mm->numa_next_scan) {
2707 		mm->numa_next_scan = now +
2708 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2709 	}
2710 
2711 	/*
2712 	 * Enforce maximal scan/migration frequency..
2713 	 */
2714 	migrate = mm->numa_next_scan;
2715 	if (time_before(now, migrate))
2716 		return;
2717 
2718 	if (p->numa_scan_period == 0) {
2719 		p->numa_scan_period_max = task_scan_max(p);
2720 		p->numa_scan_period = task_scan_start(p);
2721 	}
2722 
2723 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2724 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2725 		return;
2726 
2727 	/*
2728 	 * Delay this task enough that another task of this mm will likely win
2729 	 * the next time around.
2730 	 */
2731 	p->node_stamp += 2 * TICK_NSEC;
2732 
2733 	start = mm->numa_scan_offset;
2734 	pages = sysctl_numa_balancing_scan_size;
2735 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2736 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2737 	if (!pages)
2738 		return;
2739 
2740 
2741 	if (!mmap_read_trylock(mm))
2742 		return;
2743 	vma = find_vma(mm, start);
2744 	if (!vma) {
2745 		reset_ptenuma_scan(p);
2746 		start = 0;
2747 		vma = mm->mmap;
2748 	}
2749 	for (; vma; vma = vma->vm_next) {
2750 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2751 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2752 			continue;
2753 		}
2754 
2755 		/*
2756 		 * Shared library pages mapped by multiple processes are not
2757 		 * migrated as it is expected they are cache replicated. Avoid
2758 		 * hinting faults in read-only file-backed mappings or the vdso
2759 		 * as migrating the pages will be of marginal benefit.
2760 		 */
2761 		if (!vma->vm_mm ||
2762 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2763 			continue;
2764 
2765 		/*
2766 		 * Skip inaccessible VMAs to avoid any confusion between
2767 		 * PROT_NONE and NUMA hinting ptes
2768 		 */
2769 		if (!vma_is_accessible(vma))
2770 			continue;
2771 
2772 		do {
2773 			start = max(start, vma->vm_start);
2774 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2775 			end = min(end, vma->vm_end);
2776 			nr_pte_updates = change_prot_numa(vma, start, end);
2777 
2778 			/*
2779 			 * Try to scan sysctl_numa_balancing_size worth of
2780 			 * hpages that have at least one present PTE that
2781 			 * is not already pte-numa. If the VMA contains
2782 			 * areas that are unused or already full of prot_numa
2783 			 * PTEs, scan up to virtpages, to skip through those
2784 			 * areas faster.
2785 			 */
2786 			if (nr_pte_updates)
2787 				pages -= (end - start) >> PAGE_SHIFT;
2788 			virtpages -= (end - start) >> PAGE_SHIFT;
2789 
2790 			start = end;
2791 			if (pages <= 0 || virtpages <= 0)
2792 				goto out;
2793 
2794 			cond_resched();
2795 		} while (end != vma->vm_end);
2796 	}
2797 
2798 out:
2799 	/*
2800 	 * It is possible to reach the end of the VMA list but the last few
2801 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2802 	 * would find the !migratable VMA on the next scan but not reset the
2803 	 * scanner to the start so check it now.
2804 	 */
2805 	if (vma)
2806 		mm->numa_scan_offset = start;
2807 	else
2808 		reset_ptenuma_scan(p);
2809 	mmap_read_unlock(mm);
2810 
2811 	/*
2812 	 * Make sure tasks use at least 32x as much time to run other code
2813 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2814 	 * Usually update_task_scan_period slows down scanning enough; on an
2815 	 * overloaded system we need to limit overhead on a per task basis.
2816 	 */
2817 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2818 		u64 diff = p->se.sum_exec_runtime - runtime;
2819 		p->node_stamp += 32 * diff;
2820 	}
2821 }
2822 
2823 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2824 {
2825 	int mm_users = 0;
2826 	struct mm_struct *mm = p->mm;
2827 
2828 	if (mm) {
2829 		mm_users = atomic_read(&mm->mm_users);
2830 		if (mm_users == 1) {
2831 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2832 			mm->numa_scan_seq = 0;
2833 		}
2834 	}
2835 	p->node_stamp			= 0;
2836 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2837 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2838 	/* Protect against double add, see task_tick_numa and task_numa_work */
2839 	p->numa_work.next		= &p->numa_work;
2840 	p->numa_faults			= NULL;
2841 	RCU_INIT_POINTER(p->numa_group, NULL);
2842 	p->last_task_numa_placement	= 0;
2843 	p->last_sum_exec_runtime	= 0;
2844 
2845 	init_task_work(&p->numa_work, task_numa_work);
2846 
2847 	/* New address space, reset the preferred nid */
2848 	if (!(clone_flags & CLONE_VM)) {
2849 		p->numa_preferred_nid = NUMA_NO_NODE;
2850 		return;
2851 	}
2852 
2853 	/*
2854 	 * New thread, keep existing numa_preferred_nid which should be copied
2855 	 * already by arch_dup_task_struct but stagger when scans start.
2856 	 */
2857 	if (mm) {
2858 		unsigned int delay;
2859 
2860 		delay = min_t(unsigned int, task_scan_max(current),
2861 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2862 		delay += 2 * TICK_NSEC;
2863 		p->node_stamp = delay;
2864 	}
2865 }
2866 
2867 /*
2868  * Drive the periodic memory faults..
2869  */
2870 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2871 {
2872 	struct callback_head *work = &curr->numa_work;
2873 	u64 period, now;
2874 
2875 	/*
2876 	 * We don't care about NUMA placement if we don't have memory.
2877 	 */
2878 	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2879 		return;
2880 
2881 	/*
2882 	 * Using runtime rather than walltime has the dual advantage that
2883 	 * we (mostly) drive the selection from busy threads and that the
2884 	 * task needs to have done some actual work before we bother with
2885 	 * NUMA placement.
2886 	 */
2887 	now = curr->se.sum_exec_runtime;
2888 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2889 
2890 	if (now > curr->node_stamp + period) {
2891 		if (!curr->node_stamp)
2892 			curr->numa_scan_period = task_scan_start(curr);
2893 		curr->node_stamp += period;
2894 
2895 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2896 			task_work_add(curr, work, TWA_RESUME);
2897 	}
2898 }
2899 
2900 static void update_scan_period(struct task_struct *p, int new_cpu)
2901 {
2902 	int src_nid = cpu_to_node(task_cpu(p));
2903 	int dst_nid = cpu_to_node(new_cpu);
2904 
2905 	if (!static_branch_likely(&sched_numa_balancing))
2906 		return;
2907 
2908 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2909 		return;
2910 
2911 	if (src_nid == dst_nid)
2912 		return;
2913 
2914 	/*
2915 	 * Allow resets if faults have been trapped before one scan
2916 	 * has completed. This is most likely due to a new task that
2917 	 * is pulled cross-node due to wakeups or load balancing.
2918 	 */
2919 	if (p->numa_scan_seq) {
2920 		/*
2921 		 * Avoid scan adjustments if moving to the preferred
2922 		 * node or if the task was not previously running on
2923 		 * the preferred node.
2924 		 */
2925 		if (dst_nid == p->numa_preferred_nid ||
2926 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2927 			src_nid != p->numa_preferred_nid))
2928 			return;
2929 	}
2930 
2931 	p->numa_scan_period = task_scan_start(p);
2932 }
2933 
2934 #else
2935 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2936 {
2937 }
2938 
2939 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2940 {
2941 }
2942 
2943 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2944 {
2945 }
2946 
2947 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2948 {
2949 }
2950 
2951 #endif /* CONFIG_NUMA_BALANCING */
2952 
2953 static void
2954 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2955 {
2956 	update_load_add(&cfs_rq->load, se->load.weight);
2957 #ifdef CONFIG_SMP
2958 	if (entity_is_task(se)) {
2959 		struct rq *rq = rq_of(cfs_rq);
2960 
2961 		account_numa_enqueue(rq, task_of(se));
2962 		list_add(&se->group_node, &rq->cfs_tasks);
2963 	}
2964 #endif
2965 	cfs_rq->nr_running++;
2966 }
2967 
2968 static void
2969 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2970 {
2971 	update_load_sub(&cfs_rq->load, se->load.weight);
2972 #ifdef CONFIG_SMP
2973 	if (entity_is_task(se)) {
2974 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2975 		list_del_init(&se->group_node);
2976 	}
2977 #endif
2978 	cfs_rq->nr_running--;
2979 }
2980 
2981 /*
2982  * Signed add and clamp on underflow.
2983  *
2984  * Explicitly do a load-store to ensure the intermediate value never hits
2985  * memory. This allows lockless observations without ever seeing the negative
2986  * values.
2987  */
2988 #define add_positive(_ptr, _val) do {                           \
2989 	typeof(_ptr) ptr = (_ptr);                              \
2990 	typeof(_val) val = (_val);                              \
2991 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2992 								\
2993 	res = var + val;                                        \
2994 								\
2995 	if (val < 0 && res > var)                               \
2996 		res = 0;                                        \
2997 								\
2998 	WRITE_ONCE(*ptr, res);                                  \
2999 } while (0)
3000 
3001 /*
3002  * Unsigned subtract and clamp on underflow.
3003  *
3004  * Explicitly do a load-store to ensure the intermediate value never hits
3005  * memory. This allows lockless observations without ever seeing the negative
3006  * values.
3007  */
3008 #define sub_positive(_ptr, _val) do {				\
3009 	typeof(_ptr) ptr = (_ptr);				\
3010 	typeof(*ptr) val = (_val);				\
3011 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3012 	res = var - val;					\
3013 	if (res > var)						\
3014 		res = 0;					\
3015 	WRITE_ONCE(*ptr, res);					\
3016 } while (0)
3017 
3018 /*
3019  * Remove and clamp on negative, from a local variable.
3020  *
3021  * A variant of sub_positive(), which does not use explicit load-store
3022  * and is thus optimized for local variable updates.
3023  */
3024 #define lsub_positive(_ptr, _val) do {				\
3025 	typeof(_ptr) ptr = (_ptr);				\
3026 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3027 } while (0)
3028 
3029 #ifdef CONFIG_SMP
3030 static inline void
3031 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3032 {
3033 	cfs_rq->avg.load_avg += se->avg.load_avg;
3034 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3035 }
3036 
3037 static inline void
3038 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3039 {
3040 	u32 divider = get_pelt_divider(&se->avg);
3041 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3042 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3043 }
3044 #else
3045 static inline void
3046 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3047 static inline void
3048 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3049 #endif
3050 
3051 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3052 			    unsigned long weight)
3053 {
3054 	if (se->on_rq) {
3055 		/* commit outstanding execution time */
3056 		if (cfs_rq->curr == se)
3057 			update_curr(cfs_rq);
3058 		update_load_sub(&cfs_rq->load, se->load.weight);
3059 	}
3060 	dequeue_load_avg(cfs_rq, se);
3061 
3062 	update_load_set(&se->load, weight);
3063 
3064 #ifdef CONFIG_SMP
3065 	do {
3066 		u32 divider = get_pelt_divider(&se->avg);
3067 
3068 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3069 	} while (0);
3070 #endif
3071 
3072 	enqueue_load_avg(cfs_rq, se);
3073 	if (se->on_rq)
3074 		update_load_add(&cfs_rq->load, se->load.weight);
3075 
3076 }
3077 
3078 void reweight_task(struct task_struct *p, int prio)
3079 {
3080 	struct sched_entity *se = &p->se;
3081 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3082 	struct load_weight *load = &se->load;
3083 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3084 
3085 	reweight_entity(cfs_rq, se, weight);
3086 	load->inv_weight = sched_prio_to_wmult[prio];
3087 }
3088 
3089 #ifdef CONFIG_FAIR_GROUP_SCHED
3090 #ifdef CONFIG_SMP
3091 /*
3092  * All this does is approximate the hierarchical proportion which includes that
3093  * global sum we all love to hate.
3094  *
3095  * That is, the weight of a group entity, is the proportional share of the
3096  * group weight based on the group runqueue weights. That is:
3097  *
3098  *                     tg->weight * grq->load.weight
3099  *   ge->load.weight = -----------------------------               (1)
3100  *                       \Sum grq->load.weight
3101  *
3102  * Now, because computing that sum is prohibitively expensive to compute (been
3103  * there, done that) we approximate it with this average stuff. The average
3104  * moves slower and therefore the approximation is cheaper and more stable.
3105  *
3106  * So instead of the above, we substitute:
3107  *
3108  *   grq->load.weight -> grq->avg.load_avg                         (2)
3109  *
3110  * which yields the following:
3111  *
3112  *                     tg->weight * grq->avg.load_avg
3113  *   ge->load.weight = ------------------------------              (3)
3114  *                             tg->load_avg
3115  *
3116  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3117  *
3118  * That is shares_avg, and it is right (given the approximation (2)).
3119  *
3120  * The problem with it is that because the average is slow -- it was designed
3121  * to be exactly that of course -- this leads to transients in boundary
3122  * conditions. In specific, the case where the group was idle and we start the
3123  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3124  * yielding bad latency etc..
3125  *
3126  * Now, in that special case (1) reduces to:
3127  *
3128  *                     tg->weight * grq->load.weight
3129  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3130  *                         grp->load.weight
3131  *
3132  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3133  *
3134  * So what we do is modify our approximation (3) to approach (4) in the (near)
3135  * UP case, like:
3136  *
3137  *   ge->load.weight =
3138  *
3139  *              tg->weight * grq->load.weight
3140  *     ---------------------------------------------------         (5)
3141  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3142  *
3143  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3144  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3145  *
3146  *
3147  *                     tg->weight * grq->load.weight
3148  *   ge->load.weight = -----------------------------		   (6)
3149  *                             tg_load_avg'
3150  *
3151  * Where:
3152  *
3153  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3154  *                  max(grq->load.weight, grq->avg.load_avg)
3155  *
3156  * And that is shares_weight and is icky. In the (near) UP case it approaches
3157  * (4) while in the normal case it approaches (3). It consistently
3158  * overestimates the ge->load.weight and therefore:
3159  *
3160  *   \Sum ge->load.weight >= tg->weight
3161  *
3162  * hence icky!
3163  */
3164 static long calc_group_shares(struct cfs_rq *cfs_rq)
3165 {
3166 	long tg_weight, tg_shares, load, shares;
3167 	struct task_group *tg = cfs_rq->tg;
3168 
3169 	tg_shares = READ_ONCE(tg->shares);
3170 
3171 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3172 
3173 	tg_weight = atomic_long_read(&tg->load_avg);
3174 
3175 	/* Ensure tg_weight >= load */
3176 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3177 	tg_weight += load;
3178 
3179 	shares = (tg_shares * load);
3180 	if (tg_weight)
3181 		shares /= tg_weight;
3182 
3183 	/*
3184 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3185 	 * of a group with small tg->shares value. It is a floor value which is
3186 	 * assigned as a minimum load.weight to the sched_entity representing
3187 	 * the group on a CPU.
3188 	 *
3189 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3190 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3191 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3192 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3193 	 * instead of 0.
3194 	 */
3195 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3196 }
3197 #endif /* CONFIG_SMP */
3198 
3199 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3200 
3201 /*
3202  * Recomputes the group entity based on the current state of its group
3203  * runqueue.
3204  */
3205 static void update_cfs_group(struct sched_entity *se)
3206 {
3207 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3208 	long shares;
3209 
3210 	if (!gcfs_rq)
3211 		return;
3212 
3213 	if (throttled_hierarchy(gcfs_rq))
3214 		return;
3215 
3216 #ifndef CONFIG_SMP
3217 	shares = READ_ONCE(gcfs_rq->tg->shares);
3218 
3219 	if (likely(se->load.weight == shares))
3220 		return;
3221 #else
3222 	shares   = calc_group_shares(gcfs_rq);
3223 #endif
3224 
3225 	reweight_entity(cfs_rq_of(se), se, shares);
3226 }
3227 
3228 #else /* CONFIG_FAIR_GROUP_SCHED */
3229 static inline void update_cfs_group(struct sched_entity *se)
3230 {
3231 }
3232 #endif /* CONFIG_FAIR_GROUP_SCHED */
3233 
3234 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3235 {
3236 	struct rq *rq = rq_of(cfs_rq);
3237 
3238 	if (&rq->cfs == cfs_rq) {
3239 		/*
3240 		 * There are a few boundary cases this might miss but it should
3241 		 * get called often enough that that should (hopefully) not be
3242 		 * a real problem.
3243 		 *
3244 		 * It will not get called when we go idle, because the idle
3245 		 * thread is a different class (!fair), nor will the utilization
3246 		 * number include things like RT tasks.
3247 		 *
3248 		 * As is, the util number is not freq-invariant (we'd have to
3249 		 * implement arch_scale_freq_capacity() for that).
3250 		 *
3251 		 * See cpu_util().
3252 		 */
3253 		cpufreq_update_util(rq, flags);
3254 	}
3255 }
3256 
3257 #ifdef CONFIG_SMP
3258 #ifdef CONFIG_FAIR_GROUP_SCHED
3259 /*
3260  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3261  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3262  * bottom-up, we only have to test whether the cfs_rq before us on the list
3263  * is our child.
3264  * If cfs_rq is not on the list, test whether a child needs its to be added to
3265  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3266  */
3267 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3268 {
3269 	struct cfs_rq *prev_cfs_rq;
3270 	struct list_head *prev;
3271 
3272 	if (cfs_rq->on_list) {
3273 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3274 	} else {
3275 		struct rq *rq = rq_of(cfs_rq);
3276 
3277 		prev = rq->tmp_alone_branch;
3278 	}
3279 
3280 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3281 
3282 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3283 }
3284 
3285 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3286 {
3287 	if (cfs_rq->load.weight)
3288 		return false;
3289 
3290 	if (cfs_rq->avg.load_sum)
3291 		return false;
3292 
3293 	if (cfs_rq->avg.util_sum)
3294 		return false;
3295 
3296 	if (cfs_rq->avg.runnable_sum)
3297 		return false;
3298 
3299 	if (child_cfs_rq_on_list(cfs_rq))
3300 		return false;
3301 
3302 	/*
3303 	 * _avg must be null when _sum are null because _avg = _sum / divider
3304 	 * Make sure that rounding and/or propagation of PELT values never
3305 	 * break this.
3306 	 */
3307 	SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3308 		      cfs_rq->avg.util_avg ||
3309 		      cfs_rq->avg.runnable_avg);
3310 
3311 	return true;
3312 }
3313 
3314 /**
3315  * update_tg_load_avg - update the tg's load avg
3316  * @cfs_rq: the cfs_rq whose avg changed
3317  *
3318  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3319  * However, because tg->load_avg is a global value there are performance
3320  * considerations.
3321  *
3322  * In order to avoid having to look at the other cfs_rq's, we use a
3323  * differential update where we store the last value we propagated. This in
3324  * turn allows skipping updates if the differential is 'small'.
3325  *
3326  * Updating tg's load_avg is necessary before update_cfs_share().
3327  */
3328 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3329 {
3330 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3331 
3332 	/*
3333 	 * No need to update load_avg for root_task_group as it is not used.
3334 	 */
3335 	if (cfs_rq->tg == &root_task_group)
3336 		return;
3337 
3338 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3339 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3340 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3341 	}
3342 }
3343 
3344 /*
3345  * Called within set_task_rq() right before setting a task's CPU. The
3346  * caller only guarantees p->pi_lock is held; no other assumptions,
3347  * including the state of rq->lock, should be made.
3348  */
3349 void set_task_rq_fair(struct sched_entity *se,
3350 		      struct cfs_rq *prev, struct cfs_rq *next)
3351 {
3352 	u64 p_last_update_time;
3353 	u64 n_last_update_time;
3354 
3355 	if (!sched_feat(ATTACH_AGE_LOAD))
3356 		return;
3357 
3358 	/*
3359 	 * We are supposed to update the task to "current" time, then its up to
3360 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3361 	 * getting what current time is, so simply throw away the out-of-date
3362 	 * time. This will result in the wakee task is less decayed, but giving
3363 	 * the wakee more load sounds not bad.
3364 	 */
3365 	if (!(se->avg.last_update_time && prev))
3366 		return;
3367 
3368 #ifndef CONFIG_64BIT
3369 	{
3370 		u64 p_last_update_time_copy;
3371 		u64 n_last_update_time_copy;
3372 
3373 		do {
3374 			p_last_update_time_copy = prev->load_last_update_time_copy;
3375 			n_last_update_time_copy = next->load_last_update_time_copy;
3376 
3377 			smp_rmb();
3378 
3379 			p_last_update_time = prev->avg.last_update_time;
3380 			n_last_update_time = next->avg.last_update_time;
3381 
3382 		} while (p_last_update_time != p_last_update_time_copy ||
3383 			 n_last_update_time != n_last_update_time_copy);
3384 	}
3385 #else
3386 	p_last_update_time = prev->avg.last_update_time;
3387 	n_last_update_time = next->avg.last_update_time;
3388 #endif
3389 	__update_load_avg_blocked_se(p_last_update_time, se);
3390 	se->avg.last_update_time = n_last_update_time;
3391 }
3392 
3393 
3394 /*
3395  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3396  * propagate its contribution. The key to this propagation is the invariant
3397  * that for each group:
3398  *
3399  *   ge->avg == grq->avg						(1)
3400  *
3401  * _IFF_ we look at the pure running and runnable sums. Because they
3402  * represent the very same entity, just at different points in the hierarchy.
3403  *
3404  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3405  * and simply copies the running/runnable sum over (but still wrong, because
3406  * the group entity and group rq do not have their PELT windows aligned).
3407  *
3408  * However, update_tg_cfs_load() is more complex. So we have:
3409  *
3410  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3411  *
3412  * And since, like util, the runnable part should be directly transferable,
3413  * the following would _appear_ to be the straight forward approach:
3414  *
3415  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3416  *
3417  * And per (1) we have:
3418  *
3419  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3420  *
3421  * Which gives:
3422  *
3423  *                      ge->load.weight * grq->avg.load_avg
3424  *   ge->avg.load_avg = -----------------------------------		(4)
3425  *                               grq->load.weight
3426  *
3427  * Except that is wrong!
3428  *
3429  * Because while for entities historical weight is not important and we
3430  * really only care about our future and therefore can consider a pure
3431  * runnable sum, runqueues can NOT do this.
3432  *
3433  * We specifically want runqueues to have a load_avg that includes
3434  * historical weights. Those represent the blocked load, the load we expect
3435  * to (shortly) return to us. This only works by keeping the weights as
3436  * integral part of the sum. We therefore cannot decompose as per (3).
3437  *
3438  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3439  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3440  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3441  * runnable section of these tasks overlap (or not). If they were to perfectly
3442  * align the rq as a whole would be runnable 2/3 of the time. If however we
3443  * always have at least 1 runnable task, the rq as a whole is always runnable.
3444  *
3445  * So we'll have to approximate.. :/
3446  *
3447  * Given the constraint:
3448  *
3449  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3450  *
3451  * We can construct a rule that adds runnable to a rq by assuming minimal
3452  * overlap.
3453  *
3454  * On removal, we'll assume each task is equally runnable; which yields:
3455  *
3456  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3457  *
3458  * XXX: only do this for the part of runnable > running ?
3459  *
3460  */
3461 
3462 static inline void
3463 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3464 {
3465 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3466 	u32 divider;
3467 
3468 	/* Nothing to update */
3469 	if (!delta)
3470 		return;
3471 
3472 	/*
3473 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3474 	 * See ___update_load_avg() for details.
3475 	 */
3476 	divider = get_pelt_divider(&cfs_rq->avg);
3477 
3478 	/* Set new sched_entity's utilization */
3479 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3480 	se->avg.util_sum = se->avg.util_avg * divider;
3481 
3482 	/* Update parent cfs_rq utilization */
3483 	add_positive(&cfs_rq->avg.util_avg, delta);
3484 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3485 }
3486 
3487 static inline void
3488 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3489 {
3490 	long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3491 	u32 divider;
3492 
3493 	/* Nothing to update */
3494 	if (!delta)
3495 		return;
3496 
3497 	/*
3498 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3499 	 * See ___update_load_avg() for details.
3500 	 */
3501 	divider = get_pelt_divider(&cfs_rq->avg);
3502 
3503 	/* Set new sched_entity's runnable */
3504 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3505 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3506 
3507 	/* Update parent cfs_rq runnable */
3508 	add_positive(&cfs_rq->avg.runnable_avg, delta);
3509 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3510 }
3511 
3512 static inline void
3513 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3514 {
3515 	long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3516 	unsigned long load_avg;
3517 	u64 load_sum = 0;
3518 	u32 divider;
3519 
3520 	if (!runnable_sum)
3521 		return;
3522 
3523 	gcfs_rq->prop_runnable_sum = 0;
3524 
3525 	/*
3526 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3527 	 * See ___update_load_avg() for details.
3528 	 */
3529 	divider = get_pelt_divider(&cfs_rq->avg);
3530 
3531 	if (runnable_sum >= 0) {
3532 		/*
3533 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3534 		 * the CPU is saturated running == runnable.
3535 		 */
3536 		runnable_sum += se->avg.load_sum;
3537 		runnable_sum = min_t(long, runnable_sum, divider);
3538 	} else {
3539 		/*
3540 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3541 		 * assuming all tasks are equally runnable.
3542 		 */
3543 		if (scale_load_down(gcfs_rq->load.weight)) {
3544 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3545 				scale_load_down(gcfs_rq->load.weight));
3546 		}
3547 
3548 		/* But make sure to not inflate se's runnable */
3549 		runnable_sum = min(se->avg.load_sum, load_sum);
3550 	}
3551 
3552 	/*
3553 	 * runnable_sum can't be lower than running_sum
3554 	 * Rescale running sum to be in the same range as runnable sum
3555 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3556 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3557 	 */
3558 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3559 	runnable_sum = max(runnable_sum, running_sum);
3560 
3561 	load_sum = (s64)se_weight(se) * runnable_sum;
3562 	load_avg = div_s64(load_sum, divider);
3563 
3564 	se->avg.load_sum = runnable_sum;
3565 
3566 	delta = load_avg - se->avg.load_avg;
3567 	if (!delta)
3568 		return;
3569 
3570 	se->avg.load_avg = load_avg;
3571 
3572 	add_positive(&cfs_rq->avg.load_avg, delta);
3573 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3574 }
3575 
3576 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3577 {
3578 	cfs_rq->propagate = 1;
3579 	cfs_rq->prop_runnable_sum += runnable_sum;
3580 }
3581 
3582 /* Update task and its cfs_rq load average */
3583 static inline int propagate_entity_load_avg(struct sched_entity *se)
3584 {
3585 	struct cfs_rq *cfs_rq, *gcfs_rq;
3586 
3587 	if (entity_is_task(se))
3588 		return 0;
3589 
3590 	gcfs_rq = group_cfs_rq(se);
3591 	if (!gcfs_rq->propagate)
3592 		return 0;
3593 
3594 	gcfs_rq->propagate = 0;
3595 
3596 	cfs_rq = cfs_rq_of(se);
3597 
3598 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3599 
3600 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3601 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3602 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3603 
3604 	trace_pelt_cfs_tp(cfs_rq);
3605 	trace_pelt_se_tp(se);
3606 
3607 	return 1;
3608 }
3609 
3610 /*
3611  * Check if we need to update the load and the utilization of a blocked
3612  * group_entity:
3613  */
3614 static inline bool skip_blocked_update(struct sched_entity *se)
3615 {
3616 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3617 
3618 	/*
3619 	 * If sched_entity still have not zero load or utilization, we have to
3620 	 * decay it:
3621 	 */
3622 	if (se->avg.load_avg || se->avg.util_avg)
3623 		return false;
3624 
3625 	/*
3626 	 * If there is a pending propagation, we have to update the load and
3627 	 * the utilization of the sched_entity:
3628 	 */
3629 	if (gcfs_rq->propagate)
3630 		return false;
3631 
3632 	/*
3633 	 * Otherwise, the load and the utilization of the sched_entity is
3634 	 * already zero and there is no pending propagation, so it will be a
3635 	 * waste of time to try to decay it:
3636 	 */
3637 	return true;
3638 }
3639 
3640 #else /* CONFIG_FAIR_GROUP_SCHED */
3641 
3642 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3643 
3644 static inline int propagate_entity_load_avg(struct sched_entity *se)
3645 {
3646 	return 0;
3647 }
3648 
3649 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3650 
3651 #endif /* CONFIG_FAIR_GROUP_SCHED */
3652 
3653 /**
3654  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3655  * @now: current time, as per cfs_rq_clock_pelt()
3656  * @cfs_rq: cfs_rq to update
3657  *
3658  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3659  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3660  * post_init_entity_util_avg().
3661  *
3662  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3663  *
3664  * Returns true if the load decayed or we removed load.
3665  *
3666  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3667  * call update_tg_load_avg() when this function returns true.
3668  */
3669 static inline int
3670 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3671 {
3672 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3673 	struct sched_avg *sa = &cfs_rq->avg;
3674 	int decayed = 0;
3675 
3676 	if (cfs_rq->removed.nr) {
3677 		unsigned long r;
3678 		u32 divider = get_pelt_divider(&cfs_rq->avg);
3679 
3680 		raw_spin_lock(&cfs_rq->removed.lock);
3681 		swap(cfs_rq->removed.util_avg, removed_util);
3682 		swap(cfs_rq->removed.load_avg, removed_load);
3683 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3684 		cfs_rq->removed.nr = 0;
3685 		raw_spin_unlock(&cfs_rq->removed.lock);
3686 
3687 		r = removed_load;
3688 		sub_positive(&sa->load_avg, r);
3689 		sa->load_sum = sa->load_avg * divider;
3690 
3691 		r = removed_util;
3692 		sub_positive(&sa->util_avg, r);
3693 		sa->util_sum = sa->util_avg * divider;
3694 
3695 		r = removed_runnable;
3696 		sub_positive(&sa->runnable_avg, r);
3697 		sa->runnable_sum = sa->runnable_avg * divider;
3698 
3699 		/*
3700 		 * removed_runnable is the unweighted version of removed_load so we
3701 		 * can use it to estimate removed_load_sum.
3702 		 */
3703 		add_tg_cfs_propagate(cfs_rq,
3704 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3705 
3706 		decayed = 1;
3707 	}
3708 
3709 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3710 
3711 #ifndef CONFIG_64BIT
3712 	smp_wmb();
3713 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3714 #endif
3715 
3716 	return decayed;
3717 }
3718 
3719 /**
3720  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3721  * @cfs_rq: cfs_rq to attach to
3722  * @se: sched_entity to attach
3723  *
3724  * Must call update_cfs_rq_load_avg() before this, since we rely on
3725  * cfs_rq->avg.last_update_time being current.
3726  */
3727 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3728 {
3729 	/*
3730 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3731 	 * See ___update_load_avg() for details.
3732 	 */
3733 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3734 
3735 	/*
3736 	 * When we attach the @se to the @cfs_rq, we must align the decay
3737 	 * window because without that, really weird and wonderful things can
3738 	 * happen.
3739 	 *
3740 	 * XXX illustrate
3741 	 */
3742 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3743 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3744 
3745 	/*
3746 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3747 	 * period_contrib. This isn't strictly correct, but since we're
3748 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3749 	 * _sum a little.
3750 	 */
3751 	se->avg.util_sum = se->avg.util_avg * divider;
3752 
3753 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3754 
3755 	se->avg.load_sum = divider;
3756 	if (se_weight(se)) {
3757 		se->avg.load_sum =
3758 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3759 	}
3760 
3761 	enqueue_load_avg(cfs_rq, se);
3762 	cfs_rq->avg.util_avg += se->avg.util_avg;
3763 	cfs_rq->avg.util_sum += se->avg.util_sum;
3764 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3765 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3766 
3767 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3768 
3769 	cfs_rq_util_change(cfs_rq, 0);
3770 
3771 	trace_pelt_cfs_tp(cfs_rq);
3772 }
3773 
3774 /**
3775  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3776  * @cfs_rq: cfs_rq to detach from
3777  * @se: sched_entity to detach
3778  *
3779  * Must call update_cfs_rq_load_avg() before this, since we rely on
3780  * cfs_rq->avg.last_update_time being current.
3781  */
3782 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3783 {
3784 	/*
3785 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3786 	 * See ___update_load_avg() for details.
3787 	 */
3788 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3789 
3790 	dequeue_load_avg(cfs_rq, se);
3791 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3792 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3793 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3794 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3795 
3796 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3797 
3798 	cfs_rq_util_change(cfs_rq, 0);
3799 
3800 	trace_pelt_cfs_tp(cfs_rq);
3801 }
3802 
3803 /*
3804  * Optional action to be done while updating the load average
3805  */
3806 #define UPDATE_TG	0x1
3807 #define SKIP_AGE_LOAD	0x2
3808 #define DO_ATTACH	0x4
3809 
3810 /* Update task and its cfs_rq load average */
3811 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3812 {
3813 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3814 	int decayed;
3815 
3816 	/*
3817 	 * Track task load average for carrying it to new CPU after migrated, and
3818 	 * track group sched_entity load average for task_h_load calc in migration
3819 	 */
3820 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3821 		__update_load_avg_se(now, cfs_rq, se);
3822 
3823 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3824 	decayed |= propagate_entity_load_avg(se);
3825 
3826 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3827 
3828 		/*
3829 		 * DO_ATTACH means we're here from enqueue_entity().
3830 		 * !last_update_time means we've passed through
3831 		 * migrate_task_rq_fair() indicating we migrated.
3832 		 *
3833 		 * IOW we're enqueueing a task on a new CPU.
3834 		 */
3835 		attach_entity_load_avg(cfs_rq, se);
3836 		update_tg_load_avg(cfs_rq);
3837 
3838 	} else if (decayed) {
3839 		cfs_rq_util_change(cfs_rq, 0);
3840 
3841 		if (flags & UPDATE_TG)
3842 			update_tg_load_avg(cfs_rq);
3843 	}
3844 }
3845 
3846 #ifndef CONFIG_64BIT
3847 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3848 {
3849 	u64 last_update_time_copy;
3850 	u64 last_update_time;
3851 
3852 	do {
3853 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3854 		smp_rmb();
3855 		last_update_time = cfs_rq->avg.last_update_time;
3856 	} while (last_update_time != last_update_time_copy);
3857 
3858 	return last_update_time;
3859 }
3860 #else
3861 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3862 {
3863 	return cfs_rq->avg.last_update_time;
3864 }
3865 #endif
3866 
3867 /*
3868  * Synchronize entity load avg of dequeued entity without locking
3869  * the previous rq.
3870  */
3871 static void sync_entity_load_avg(struct sched_entity *se)
3872 {
3873 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3874 	u64 last_update_time;
3875 
3876 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3877 	__update_load_avg_blocked_se(last_update_time, se);
3878 }
3879 
3880 /*
3881  * Task first catches up with cfs_rq, and then subtract
3882  * itself from the cfs_rq (task must be off the queue now).
3883  */
3884 static void remove_entity_load_avg(struct sched_entity *se)
3885 {
3886 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3887 	unsigned long flags;
3888 
3889 	/*
3890 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3891 	 * post_init_entity_util_avg() which will have added things to the
3892 	 * cfs_rq, so we can remove unconditionally.
3893 	 */
3894 
3895 	sync_entity_load_avg(se);
3896 
3897 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3898 	++cfs_rq->removed.nr;
3899 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3900 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3901 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
3902 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3903 }
3904 
3905 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3906 {
3907 	return cfs_rq->avg.runnable_avg;
3908 }
3909 
3910 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3911 {
3912 	return cfs_rq->avg.load_avg;
3913 }
3914 
3915 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3916 
3917 static inline unsigned long task_util(struct task_struct *p)
3918 {
3919 	return READ_ONCE(p->se.avg.util_avg);
3920 }
3921 
3922 static inline unsigned long _task_util_est(struct task_struct *p)
3923 {
3924 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3925 
3926 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
3927 }
3928 
3929 static inline unsigned long task_util_est(struct task_struct *p)
3930 {
3931 	return max(task_util(p), _task_util_est(p));
3932 }
3933 
3934 #ifdef CONFIG_UCLAMP_TASK
3935 static inline unsigned long uclamp_task_util(struct task_struct *p)
3936 {
3937 	return clamp(task_util_est(p),
3938 		     uclamp_eff_value(p, UCLAMP_MIN),
3939 		     uclamp_eff_value(p, UCLAMP_MAX));
3940 }
3941 #else
3942 static inline unsigned long uclamp_task_util(struct task_struct *p)
3943 {
3944 	return task_util_est(p);
3945 }
3946 #endif
3947 
3948 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3949 				    struct task_struct *p)
3950 {
3951 	unsigned int enqueued;
3952 
3953 	if (!sched_feat(UTIL_EST))
3954 		return;
3955 
3956 	/* Update root cfs_rq's estimated utilization */
3957 	enqueued  = cfs_rq->avg.util_est.enqueued;
3958 	enqueued += _task_util_est(p);
3959 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3960 
3961 	trace_sched_util_est_cfs_tp(cfs_rq);
3962 }
3963 
3964 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3965 				    struct task_struct *p)
3966 {
3967 	unsigned int enqueued;
3968 
3969 	if (!sched_feat(UTIL_EST))
3970 		return;
3971 
3972 	/* Update root cfs_rq's estimated utilization */
3973 	enqueued  = cfs_rq->avg.util_est.enqueued;
3974 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
3975 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3976 
3977 	trace_sched_util_est_cfs_tp(cfs_rq);
3978 }
3979 
3980 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
3981 
3982 /*
3983  * Check if a (signed) value is within a specified (unsigned) margin,
3984  * based on the observation that:
3985  *
3986  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3987  *
3988  * NOTE: this only works when value + margin < INT_MAX.
3989  */
3990 static inline bool within_margin(int value, int margin)
3991 {
3992 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3993 }
3994 
3995 static inline void util_est_update(struct cfs_rq *cfs_rq,
3996 				   struct task_struct *p,
3997 				   bool task_sleep)
3998 {
3999 	long last_ewma_diff, last_enqueued_diff;
4000 	struct util_est ue;
4001 
4002 	if (!sched_feat(UTIL_EST))
4003 		return;
4004 
4005 	/*
4006 	 * Skip update of task's estimated utilization when the task has not
4007 	 * yet completed an activation, e.g. being migrated.
4008 	 */
4009 	if (!task_sleep)
4010 		return;
4011 
4012 	/*
4013 	 * If the PELT values haven't changed since enqueue time,
4014 	 * skip the util_est update.
4015 	 */
4016 	ue = p->se.avg.util_est;
4017 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4018 		return;
4019 
4020 	last_enqueued_diff = ue.enqueued;
4021 
4022 	/*
4023 	 * Reset EWMA on utilization increases, the moving average is used only
4024 	 * to smooth utilization decreases.
4025 	 */
4026 	ue.enqueued = task_util(p);
4027 	if (sched_feat(UTIL_EST_FASTUP)) {
4028 		if (ue.ewma < ue.enqueued) {
4029 			ue.ewma = ue.enqueued;
4030 			goto done;
4031 		}
4032 	}
4033 
4034 	/*
4035 	 * Skip update of task's estimated utilization when its members are
4036 	 * already ~1% close to its last activation value.
4037 	 */
4038 	last_ewma_diff = ue.enqueued - ue.ewma;
4039 	last_enqueued_diff -= ue.enqueued;
4040 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4041 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4042 			goto done;
4043 
4044 		return;
4045 	}
4046 
4047 	/*
4048 	 * To avoid overestimation of actual task utilization, skip updates if
4049 	 * we cannot grant there is idle time in this CPU.
4050 	 */
4051 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4052 		return;
4053 
4054 	/*
4055 	 * Update Task's estimated utilization
4056 	 *
4057 	 * When *p completes an activation we can consolidate another sample
4058 	 * of the task size. This is done by storing the current PELT value
4059 	 * as ue.enqueued and by using this value to update the Exponential
4060 	 * Weighted Moving Average (EWMA):
4061 	 *
4062 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4063 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4064 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4065 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4066 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4067 	 *
4068 	 * Where 'w' is the weight of new samples, which is configured to be
4069 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4070 	 */
4071 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4072 	ue.ewma  += last_ewma_diff;
4073 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4074 done:
4075 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4076 	WRITE_ONCE(p->se.avg.util_est, ue);
4077 
4078 	trace_sched_util_est_se_tp(&p->se);
4079 }
4080 
4081 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4082 {
4083 	return fits_capacity(uclamp_task_util(p), capacity);
4084 }
4085 
4086 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4087 {
4088 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4089 		return;
4090 
4091 	if (!p || p->nr_cpus_allowed == 1) {
4092 		rq->misfit_task_load = 0;
4093 		return;
4094 	}
4095 
4096 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4097 		rq->misfit_task_load = 0;
4098 		return;
4099 	}
4100 
4101 	/*
4102 	 * Make sure that misfit_task_load will not be null even if
4103 	 * task_h_load() returns 0.
4104 	 */
4105 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4106 }
4107 
4108 #else /* CONFIG_SMP */
4109 
4110 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4111 {
4112 	return true;
4113 }
4114 
4115 #define UPDATE_TG	0x0
4116 #define SKIP_AGE_LOAD	0x0
4117 #define DO_ATTACH	0x0
4118 
4119 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4120 {
4121 	cfs_rq_util_change(cfs_rq, 0);
4122 }
4123 
4124 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4125 
4126 static inline void
4127 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4128 static inline void
4129 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4130 
4131 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4132 {
4133 	return 0;
4134 }
4135 
4136 static inline void
4137 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4138 
4139 static inline void
4140 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4141 
4142 static inline void
4143 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4144 		bool task_sleep) {}
4145 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4146 
4147 #endif /* CONFIG_SMP */
4148 
4149 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4150 {
4151 #ifdef CONFIG_SCHED_DEBUG
4152 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4153 
4154 	if (d < 0)
4155 		d = -d;
4156 
4157 	if (d > 3*sysctl_sched_latency)
4158 		schedstat_inc(cfs_rq->nr_spread_over);
4159 #endif
4160 }
4161 
4162 static void
4163 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4164 {
4165 	u64 vruntime = cfs_rq->min_vruntime;
4166 
4167 	/*
4168 	 * The 'current' period is already promised to the current tasks,
4169 	 * however the extra weight of the new task will slow them down a
4170 	 * little, place the new task so that it fits in the slot that
4171 	 * stays open at the end.
4172 	 */
4173 	if (initial && sched_feat(START_DEBIT))
4174 		vruntime += sched_vslice(cfs_rq, se);
4175 
4176 	/* sleeps up to a single latency don't count. */
4177 	if (!initial) {
4178 		unsigned long thresh = sysctl_sched_latency;
4179 
4180 		/*
4181 		 * Halve their sleep time's effect, to allow
4182 		 * for a gentler effect of sleepers:
4183 		 */
4184 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4185 			thresh >>= 1;
4186 
4187 		vruntime -= thresh;
4188 	}
4189 
4190 	/* ensure we never gain time by being placed backwards. */
4191 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4192 }
4193 
4194 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4195 
4196 static inline void check_schedstat_required(void)
4197 {
4198 #ifdef CONFIG_SCHEDSTATS
4199 	if (schedstat_enabled())
4200 		return;
4201 
4202 	/* Force schedstat enabled if a dependent tracepoint is active */
4203 	if (trace_sched_stat_wait_enabled()    ||
4204 			trace_sched_stat_sleep_enabled()   ||
4205 			trace_sched_stat_iowait_enabled()  ||
4206 			trace_sched_stat_blocked_enabled() ||
4207 			trace_sched_stat_runtime_enabled())  {
4208 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4209 			     "stat_blocked and stat_runtime require the "
4210 			     "kernel parameter schedstats=enable or "
4211 			     "kernel.sched_schedstats=1\n");
4212 	}
4213 #endif
4214 }
4215 
4216 static inline bool cfs_bandwidth_used(void);
4217 
4218 /*
4219  * MIGRATION
4220  *
4221  *	dequeue
4222  *	  update_curr()
4223  *	    update_min_vruntime()
4224  *	  vruntime -= min_vruntime
4225  *
4226  *	enqueue
4227  *	  update_curr()
4228  *	    update_min_vruntime()
4229  *	  vruntime += min_vruntime
4230  *
4231  * this way the vruntime transition between RQs is done when both
4232  * min_vruntime are up-to-date.
4233  *
4234  * WAKEUP (remote)
4235  *
4236  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4237  *	  vruntime -= min_vruntime
4238  *
4239  *	enqueue
4240  *	  update_curr()
4241  *	    update_min_vruntime()
4242  *	  vruntime += min_vruntime
4243  *
4244  * this way we don't have the most up-to-date min_vruntime on the originating
4245  * CPU and an up-to-date min_vruntime on the destination CPU.
4246  */
4247 
4248 static void
4249 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4250 {
4251 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4252 	bool curr = cfs_rq->curr == se;
4253 
4254 	/*
4255 	 * If we're the current task, we must renormalise before calling
4256 	 * update_curr().
4257 	 */
4258 	if (renorm && curr)
4259 		se->vruntime += cfs_rq->min_vruntime;
4260 
4261 	update_curr(cfs_rq);
4262 
4263 	/*
4264 	 * Otherwise, renormalise after, such that we're placed at the current
4265 	 * moment in time, instead of some random moment in the past. Being
4266 	 * placed in the past could significantly boost this task to the
4267 	 * fairness detriment of existing tasks.
4268 	 */
4269 	if (renorm && !curr)
4270 		se->vruntime += cfs_rq->min_vruntime;
4271 
4272 	/*
4273 	 * When enqueuing a sched_entity, we must:
4274 	 *   - Update loads to have both entity and cfs_rq synced with now.
4275 	 *   - Add its load to cfs_rq->runnable_avg
4276 	 *   - For group_entity, update its weight to reflect the new share of
4277 	 *     its group cfs_rq
4278 	 *   - Add its new weight to cfs_rq->load.weight
4279 	 */
4280 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4281 	se_update_runnable(se);
4282 	update_cfs_group(se);
4283 	account_entity_enqueue(cfs_rq, se);
4284 
4285 	if (flags & ENQUEUE_WAKEUP)
4286 		place_entity(cfs_rq, se, 0);
4287 
4288 	check_schedstat_required();
4289 	update_stats_enqueue(cfs_rq, se, flags);
4290 	check_spread(cfs_rq, se);
4291 	if (!curr)
4292 		__enqueue_entity(cfs_rq, se);
4293 	se->on_rq = 1;
4294 
4295 	/*
4296 	 * When bandwidth control is enabled, cfs might have been removed
4297 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4298 	 * add it unconditionally.
4299 	 */
4300 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4301 		list_add_leaf_cfs_rq(cfs_rq);
4302 
4303 	if (cfs_rq->nr_running == 1)
4304 		check_enqueue_throttle(cfs_rq);
4305 }
4306 
4307 static void __clear_buddies_last(struct sched_entity *se)
4308 {
4309 	for_each_sched_entity(se) {
4310 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4311 		if (cfs_rq->last != se)
4312 			break;
4313 
4314 		cfs_rq->last = NULL;
4315 	}
4316 }
4317 
4318 static void __clear_buddies_next(struct sched_entity *se)
4319 {
4320 	for_each_sched_entity(se) {
4321 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4322 		if (cfs_rq->next != se)
4323 			break;
4324 
4325 		cfs_rq->next = NULL;
4326 	}
4327 }
4328 
4329 static void __clear_buddies_skip(struct sched_entity *se)
4330 {
4331 	for_each_sched_entity(se) {
4332 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4333 		if (cfs_rq->skip != se)
4334 			break;
4335 
4336 		cfs_rq->skip = NULL;
4337 	}
4338 }
4339 
4340 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4341 {
4342 	if (cfs_rq->last == se)
4343 		__clear_buddies_last(se);
4344 
4345 	if (cfs_rq->next == se)
4346 		__clear_buddies_next(se);
4347 
4348 	if (cfs_rq->skip == se)
4349 		__clear_buddies_skip(se);
4350 }
4351 
4352 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4353 
4354 static void
4355 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4356 {
4357 	/*
4358 	 * Update run-time statistics of the 'current'.
4359 	 */
4360 	update_curr(cfs_rq);
4361 
4362 	/*
4363 	 * When dequeuing a sched_entity, we must:
4364 	 *   - Update loads to have both entity and cfs_rq synced with now.
4365 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4366 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4367 	 *   - For group entity, update its weight to reflect the new share
4368 	 *     of its group cfs_rq.
4369 	 */
4370 	update_load_avg(cfs_rq, se, UPDATE_TG);
4371 	se_update_runnable(se);
4372 
4373 	update_stats_dequeue(cfs_rq, se, flags);
4374 
4375 	clear_buddies(cfs_rq, se);
4376 
4377 	if (se != cfs_rq->curr)
4378 		__dequeue_entity(cfs_rq, se);
4379 	se->on_rq = 0;
4380 	account_entity_dequeue(cfs_rq, se);
4381 
4382 	/*
4383 	 * Normalize after update_curr(); which will also have moved
4384 	 * min_vruntime if @se is the one holding it back. But before doing
4385 	 * update_min_vruntime() again, which will discount @se's position and
4386 	 * can move min_vruntime forward still more.
4387 	 */
4388 	if (!(flags & DEQUEUE_SLEEP))
4389 		se->vruntime -= cfs_rq->min_vruntime;
4390 
4391 	/* return excess runtime on last dequeue */
4392 	return_cfs_rq_runtime(cfs_rq);
4393 
4394 	update_cfs_group(se);
4395 
4396 	/*
4397 	 * Now advance min_vruntime if @se was the entity holding it back,
4398 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4399 	 * put back on, and if we advance min_vruntime, we'll be placed back
4400 	 * further than we started -- ie. we'll be penalized.
4401 	 */
4402 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4403 		update_min_vruntime(cfs_rq);
4404 }
4405 
4406 /*
4407  * Preempt the current task with a newly woken task if needed:
4408  */
4409 static void
4410 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4411 {
4412 	unsigned long ideal_runtime, delta_exec;
4413 	struct sched_entity *se;
4414 	s64 delta;
4415 
4416 	ideal_runtime = sched_slice(cfs_rq, curr);
4417 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4418 	if (delta_exec > ideal_runtime) {
4419 		resched_curr(rq_of(cfs_rq));
4420 		/*
4421 		 * The current task ran long enough, ensure it doesn't get
4422 		 * re-elected due to buddy favours.
4423 		 */
4424 		clear_buddies(cfs_rq, curr);
4425 		return;
4426 	}
4427 
4428 	/*
4429 	 * Ensure that a task that missed wakeup preemption by a
4430 	 * narrow margin doesn't have to wait for a full slice.
4431 	 * This also mitigates buddy induced latencies under load.
4432 	 */
4433 	if (delta_exec < sysctl_sched_min_granularity)
4434 		return;
4435 
4436 	se = __pick_first_entity(cfs_rq);
4437 	delta = curr->vruntime - se->vruntime;
4438 
4439 	if (delta < 0)
4440 		return;
4441 
4442 	if (delta > ideal_runtime)
4443 		resched_curr(rq_of(cfs_rq));
4444 }
4445 
4446 static void
4447 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4448 {
4449 	clear_buddies(cfs_rq, se);
4450 
4451 	/* 'current' is not kept within the tree. */
4452 	if (se->on_rq) {
4453 		/*
4454 		 * Any task has to be enqueued before it get to execute on
4455 		 * a CPU. So account for the time it spent waiting on the
4456 		 * runqueue.
4457 		 */
4458 		update_stats_wait_end(cfs_rq, se);
4459 		__dequeue_entity(cfs_rq, se);
4460 		update_load_avg(cfs_rq, se, UPDATE_TG);
4461 	}
4462 
4463 	update_stats_curr_start(cfs_rq, se);
4464 	cfs_rq->curr = se;
4465 
4466 	/*
4467 	 * Track our maximum slice length, if the CPU's load is at
4468 	 * least twice that of our own weight (i.e. dont track it
4469 	 * when there are only lesser-weight tasks around):
4470 	 */
4471 	if (schedstat_enabled() &&
4472 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4473 		schedstat_set(se->statistics.slice_max,
4474 			max((u64)schedstat_val(se->statistics.slice_max),
4475 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4476 	}
4477 
4478 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4479 }
4480 
4481 static int
4482 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4483 
4484 /*
4485  * Pick the next process, keeping these things in mind, in this order:
4486  * 1) keep things fair between processes/task groups
4487  * 2) pick the "next" process, since someone really wants that to run
4488  * 3) pick the "last" process, for cache locality
4489  * 4) do not run the "skip" process, if something else is available
4490  */
4491 static struct sched_entity *
4492 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4493 {
4494 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4495 	struct sched_entity *se;
4496 
4497 	/*
4498 	 * If curr is set we have to see if its left of the leftmost entity
4499 	 * still in the tree, provided there was anything in the tree at all.
4500 	 */
4501 	if (!left || (curr && entity_before(curr, left)))
4502 		left = curr;
4503 
4504 	se = left; /* ideally we run the leftmost entity */
4505 
4506 	/*
4507 	 * Avoid running the skip buddy, if running something else can
4508 	 * be done without getting too unfair.
4509 	 */
4510 	if (cfs_rq->skip && cfs_rq->skip == se) {
4511 		struct sched_entity *second;
4512 
4513 		if (se == curr) {
4514 			second = __pick_first_entity(cfs_rq);
4515 		} else {
4516 			second = __pick_next_entity(se);
4517 			if (!second || (curr && entity_before(curr, second)))
4518 				second = curr;
4519 		}
4520 
4521 		if (second && wakeup_preempt_entity(second, left) < 1)
4522 			se = second;
4523 	}
4524 
4525 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4526 		/*
4527 		 * Someone really wants this to run. If it's not unfair, run it.
4528 		 */
4529 		se = cfs_rq->next;
4530 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4531 		/*
4532 		 * Prefer last buddy, try to return the CPU to a preempted task.
4533 		 */
4534 		se = cfs_rq->last;
4535 	}
4536 
4537 	return se;
4538 }
4539 
4540 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4541 
4542 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4543 {
4544 	/*
4545 	 * If still on the runqueue then deactivate_task()
4546 	 * was not called and update_curr() has to be done:
4547 	 */
4548 	if (prev->on_rq)
4549 		update_curr(cfs_rq);
4550 
4551 	/* throttle cfs_rqs exceeding runtime */
4552 	check_cfs_rq_runtime(cfs_rq);
4553 
4554 	check_spread(cfs_rq, prev);
4555 
4556 	if (prev->on_rq) {
4557 		update_stats_wait_start(cfs_rq, prev);
4558 		/* Put 'current' back into the tree. */
4559 		__enqueue_entity(cfs_rq, prev);
4560 		/* in !on_rq case, update occurred at dequeue */
4561 		update_load_avg(cfs_rq, prev, 0);
4562 	}
4563 	cfs_rq->curr = NULL;
4564 }
4565 
4566 static void
4567 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4568 {
4569 	/*
4570 	 * Update run-time statistics of the 'current'.
4571 	 */
4572 	update_curr(cfs_rq);
4573 
4574 	/*
4575 	 * Ensure that runnable average is periodically updated.
4576 	 */
4577 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4578 	update_cfs_group(curr);
4579 
4580 #ifdef CONFIG_SCHED_HRTICK
4581 	/*
4582 	 * queued ticks are scheduled to match the slice, so don't bother
4583 	 * validating it and just reschedule.
4584 	 */
4585 	if (queued) {
4586 		resched_curr(rq_of(cfs_rq));
4587 		return;
4588 	}
4589 	/*
4590 	 * don't let the period tick interfere with the hrtick preemption
4591 	 */
4592 	if (!sched_feat(DOUBLE_TICK) &&
4593 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4594 		return;
4595 #endif
4596 
4597 	if (cfs_rq->nr_running > 1)
4598 		check_preempt_tick(cfs_rq, curr);
4599 }
4600 
4601 
4602 /**************************************************
4603  * CFS bandwidth control machinery
4604  */
4605 
4606 #ifdef CONFIG_CFS_BANDWIDTH
4607 
4608 #ifdef CONFIG_JUMP_LABEL
4609 static struct static_key __cfs_bandwidth_used;
4610 
4611 static inline bool cfs_bandwidth_used(void)
4612 {
4613 	return static_key_false(&__cfs_bandwidth_used);
4614 }
4615 
4616 void cfs_bandwidth_usage_inc(void)
4617 {
4618 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4619 }
4620 
4621 void cfs_bandwidth_usage_dec(void)
4622 {
4623 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4624 }
4625 #else /* CONFIG_JUMP_LABEL */
4626 static bool cfs_bandwidth_used(void)
4627 {
4628 	return true;
4629 }
4630 
4631 void cfs_bandwidth_usage_inc(void) {}
4632 void cfs_bandwidth_usage_dec(void) {}
4633 #endif /* CONFIG_JUMP_LABEL */
4634 
4635 /*
4636  * default period for cfs group bandwidth.
4637  * default: 0.1s, units: nanoseconds
4638  */
4639 static inline u64 default_cfs_period(void)
4640 {
4641 	return 100000000ULL;
4642 }
4643 
4644 static inline u64 sched_cfs_bandwidth_slice(void)
4645 {
4646 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4647 }
4648 
4649 /*
4650  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4651  * directly instead of rq->clock to avoid adding additional synchronization
4652  * around rq->lock.
4653  *
4654  * requires cfs_b->lock
4655  */
4656 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4657 {
4658 	if (unlikely(cfs_b->quota == RUNTIME_INF))
4659 		return;
4660 
4661 	cfs_b->runtime += cfs_b->quota;
4662 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4663 }
4664 
4665 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4666 {
4667 	return &tg->cfs_bandwidth;
4668 }
4669 
4670 /* returns 0 on failure to allocate runtime */
4671 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4672 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4673 {
4674 	u64 min_amount, amount = 0;
4675 
4676 	lockdep_assert_held(&cfs_b->lock);
4677 
4678 	/* note: this is a positive sum as runtime_remaining <= 0 */
4679 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4680 
4681 	if (cfs_b->quota == RUNTIME_INF)
4682 		amount = min_amount;
4683 	else {
4684 		start_cfs_bandwidth(cfs_b);
4685 
4686 		if (cfs_b->runtime > 0) {
4687 			amount = min(cfs_b->runtime, min_amount);
4688 			cfs_b->runtime -= amount;
4689 			cfs_b->idle = 0;
4690 		}
4691 	}
4692 
4693 	cfs_rq->runtime_remaining += amount;
4694 
4695 	return cfs_rq->runtime_remaining > 0;
4696 }
4697 
4698 /* returns 0 on failure to allocate runtime */
4699 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4700 {
4701 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4702 	int ret;
4703 
4704 	raw_spin_lock(&cfs_b->lock);
4705 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4706 	raw_spin_unlock(&cfs_b->lock);
4707 
4708 	return ret;
4709 }
4710 
4711 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4712 {
4713 	/* dock delta_exec before expiring quota (as it could span periods) */
4714 	cfs_rq->runtime_remaining -= delta_exec;
4715 
4716 	if (likely(cfs_rq->runtime_remaining > 0))
4717 		return;
4718 
4719 	if (cfs_rq->throttled)
4720 		return;
4721 	/*
4722 	 * if we're unable to extend our runtime we resched so that the active
4723 	 * hierarchy can be throttled
4724 	 */
4725 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4726 		resched_curr(rq_of(cfs_rq));
4727 }
4728 
4729 static __always_inline
4730 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4731 {
4732 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4733 		return;
4734 
4735 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4736 }
4737 
4738 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4739 {
4740 	return cfs_bandwidth_used() && cfs_rq->throttled;
4741 }
4742 
4743 /* check whether cfs_rq, or any parent, is throttled */
4744 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4745 {
4746 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4747 }
4748 
4749 /*
4750  * Ensure that neither of the group entities corresponding to src_cpu or
4751  * dest_cpu are members of a throttled hierarchy when performing group
4752  * load-balance operations.
4753  */
4754 static inline int throttled_lb_pair(struct task_group *tg,
4755 				    int src_cpu, int dest_cpu)
4756 {
4757 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4758 
4759 	src_cfs_rq = tg->cfs_rq[src_cpu];
4760 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4761 
4762 	return throttled_hierarchy(src_cfs_rq) ||
4763 	       throttled_hierarchy(dest_cfs_rq);
4764 }
4765 
4766 static int tg_unthrottle_up(struct task_group *tg, void *data)
4767 {
4768 	struct rq *rq = data;
4769 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4770 
4771 	cfs_rq->throttle_count--;
4772 	if (!cfs_rq->throttle_count) {
4773 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4774 					     cfs_rq->throttled_clock_task;
4775 
4776 		/* Add cfs_rq with load or one or more already running entities to the list */
4777 		if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
4778 			list_add_leaf_cfs_rq(cfs_rq);
4779 	}
4780 
4781 	return 0;
4782 }
4783 
4784 static int tg_throttle_down(struct task_group *tg, void *data)
4785 {
4786 	struct rq *rq = data;
4787 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4788 
4789 	/* group is entering throttled state, stop time */
4790 	if (!cfs_rq->throttle_count) {
4791 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4792 		list_del_leaf_cfs_rq(cfs_rq);
4793 	}
4794 	cfs_rq->throttle_count++;
4795 
4796 	return 0;
4797 }
4798 
4799 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4800 {
4801 	struct rq *rq = rq_of(cfs_rq);
4802 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4803 	struct sched_entity *se;
4804 	long task_delta, idle_task_delta, dequeue = 1;
4805 
4806 	raw_spin_lock(&cfs_b->lock);
4807 	/* This will start the period timer if necessary */
4808 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4809 		/*
4810 		 * We have raced with bandwidth becoming available, and if we
4811 		 * actually throttled the timer might not unthrottle us for an
4812 		 * entire period. We additionally needed to make sure that any
4813 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4814 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4815 		 * for 1ns of runtime rather than just check cfs_b.
4816 		 */
4817 		dequeue = 0;
4818 	} else {
4819 		list_add_tail_rcu(&cfs_rq->throttled_list,
4820 				  &cfs_b->throttled_cfs_rq);
4821 	}
4822 	raw_spin_unlock(&cfs_b->lock);
4823 
4824 	if (!dequeue)
4825 		return false;  /* Throttle no longer required. */
4826 
4827 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4828 
4829 	/* freeze hierarchy runnable averages while throttled */
4830 	rcu_read_lock();
4831 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4832 	rcu_read_unlock();
4833 
4834 	task_delta = cfs_rq->h_nr_running;
4835 	idle_task_delta = cfs_rq->idle_h_nr_running;
4836 	for_each_sched_entity(se) {
4837 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4838 		/* throttled entity or throttle-on-deactivate */
4839 		if (!se->on_rq)
4840 			goto done;
4841 
4842 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4843 
4844 		qcfs_rq->h_nr_running -= task_delta;
4845 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4846 
4847 		if (qcfs_rq->load.weight) {
4848 			/* Avoid re-evaluating load for this entity: */
4849 			se = parent_entity(se);
4850 			break;
4851 		}
4852 	}
4853 
4854 	for_each_sched_entity(se) {
4855 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4856 		/* throttled entity or throttle-on-deactivate */
4857 		if (!se->on_rq)
4858 			goto done;
4859 
4860 		update_load_avg(qcfs_rq, se, 0);
4861 		se_update_runnable(se);
4862 
4863 		qcfs_rq->h_nr_running -= task_delta;
4864 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4865 	}
4866 
4867 	/* At this point se is NULL and we are at root level*/
4868 	sub_nr_running(rq, task_delta);
4869 
4870 done:
4871 	/*
4872 	 * Note: distribution will already see us throttled via the
4873 	 * throttled-list.  rq->lock protects completion.
4874 	 */
4875 	cfs_rq->throttled = 1;
4876 	cfs_rq->throttled_clock = rq_clock(rq);
4877 	return true;
4878 }
4879 
4880 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4881 {
4882 	struct rq *rq = rq_of(cfs_rq);
4883 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4884 	struct sched_entity *se;
4885 	long task_delta, idle_task_delta;
4886 
4887 	se = cfs_rq->tg->se[cpu_of(rq)];
4888 
4889 	cfs_rq->throttled = 0;
4890 
4891 	update_rq_clock(rq);
4892 
4893 	raw_spin_lock(&cfs_b->lock);
4894 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4895 	list_del_rcu(&cfs_rq->throttled_list);
4896 	raw_spin_unlock(&cfs_b->lock);
4897 
4898 	/* update hierarchical throttle state */
4899 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4900 
4901 	if (!cfs_rq->load.weight)
4902 		return;
4903 
4904 	task_delta = cfs_rq->h_nr_running;
4905 	idle_task_delta = cfs_rq->idle_h_nr_running;
4906 	for_each_sched_entity(se) {
4907 		if (se->on_rq)
4908 			break;
4909 		cfs_rq = cfs_rq_of(se);
4910 		enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4911 
4912 		cfs_rq->h_nr_running += task_delta;
4913 		cfs_rq->idle_h_nr_running += idle_task_delta;
4914 
4915 		/* end evaluation on encountering a throttled cfs_rq */
4916 		if (cfs_rq_throttled(cfs_rq))
4917 			goto unthrottle_throttle;
4918 	}
4919 
4920 	for_each_sched_entity(se) {
4921 		cfs_rq = cfs_rq_of(se);
4922 
4923 		update_load_avg(cfs_rq, se, UPDATE_TG);
4924 		se_update_runnable(se);
4925 
4926 		cfs_rq->h_nr_running += task_delta;
4927 		cfs_rq->idle_h_nr_running += idle_task_delta;
4928 
4929 
4930 		/* end evaluation on encountering a throttled cfs_rq */
4931 		if (cfs_rq_throttled(cfs_rq))
4932 			goto unthrottle_throttle;
4933 
4934 		/*
4935 		 * One parent has been throttled and cfs_rq removed from the
4936 		 * list. Add it back to not break the leaf list.
4937 		 */
4938 		if (throttled_hierarchy(cfs_rq))
4939 			list_add_leaf_cfs_rq(cfs_rq);
4940 	}
4941 
4942 	/* At this point se is NULL and we are at root level*/
4943 	add_nr_running(rq, task_delta);
4944 
4945 unthrottle_throttle:
4946 	/*
4947 	 * The cfs_rq_throttled() breaks in the above iteration can result in
4948 	 * incomplete leaf list maintenance, resulting in triggering the
4949 	 * assertion below.
4950 	 */
4951 	for_each_sched_entity(se) {
4952 		cfs_rq = cfs_rq_of(se);
4953 
4954 		if (list_add_leaf_cfs_rq(cfs_rq))
4955 			break;
4956 	}
4957 
4958 	assert_list_leaf_cfs_rq(rq);
4959 
4960 	/* Determine whether we need to wake up potentially idle CPU: */
4961 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4962 		resched_curr(rq);
4963 }
4964 
4965 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4966 {
4967 	struct cfs_rq *cfs_rq;
4968 	u64 runtime, remaining = 1;
4969 
4970 	rcu_read_lock();
4971 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4972 				throttled_list) {
4973 		struct rq *rq = rq_of(cfs_rq);
4974 		struct rq_flags rf;
4975 
4976 		rq_lock_irqsave(rq, &rf);
4977 		if (!cfs_rq_throttled(cfs_rq))
4978 			goto next;
4979 
4980 		/* By the above check, this should never be true */
4981 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4982 
4983 		raw_spin_lock(&cfs_b->lock);
4984 		runtime = -cfs_rq->runtime_remaining + 1;
4985 		if (runtime > cfs_b->runtime)
4986 			runtime = cfs_b->runtime;
4987 		cfs_b->runtime -= runtime;
4988 		remaining = cfs_b->runtime;
4989 		raw_spin_unlock(&cfs_b->lock);
4990 
4991 		cfs_rq->runtime_remaining += runtime;
4992 
4993 		/* we check whether we're throttled above */
4994 		if (cfs_rq->runtime_remaining > 0)
4995 			unthrottle_cfs_rq(cfs_rq);
4996 
4997 next:
4998 		rq_unlock_irqrestore(rq, &rf);
4999 
5000 		if (!remaining)
5001 			break;
5002 	}
5003 	rcu_read_unlock();
5004 }
5005 
5006 /*
5007  * Responsible for refilling a task_group's bandwidth and unthrottling its
5008  * cfs_rqs as appropriate. If there has been no activity within the last
5009  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5010  * used to track this state.
5011  */
5012 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5013 {
5014 	int throttled;
5015 
5016 	/* no need to continue the timer with no bandwidth constraint */
5017 	if (cfs_b->quota == RUNTIME_INF)
5018 		goto out_deactivate;
5019 
5020 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5021 	cfs_b->nr_periods += overrun;
5022 
5023 	/* Refill extra burst quota even if cfs_b->idle */
5024 	__refill_cfs_bandwidth_runtime(cfs_b);
5025 
5026 	/*
5027 	 * idle depends on !throttled (for the case of a large deficit), and if
5028 	 * we're going inactive then everything else can be deferred
5029 	 */
5030 	if (cfs_b->idle && !throttled)
5031 		goto out_deactivate;
5032 
5033 	if (!throttled) {
5034 		/* mark as potentially idle for the upcoming period */
5035 		cfs_b->idle = 1;
5036 		return 0;
5037 	}
5038 
5039 	/* account preceding periods in which throttling occurred */
5040 	cfs_b->nr_throttled += overrun;
5041 
5042 	/*
5043 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5044 	 */
5045 	while (throttled && cfs_b->runtime > 0) {
5046 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5047 		/* we can't nest cfs_b->lock while distributing bandwidth */
5048 		distribute_cfs_runtime(cfs_b);
5049 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5050 
5051 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5052 	}
5053 
5054 	/*
5055 	 * While we are ensured activity in the period following an
5056 	 * unthrottle, this also covers the case in which the new bandwidth is
5057 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5058 	 * timer to remain active while there are any throttled entities.)
5059 	 */
5060 	cfs_b->idle = 0;
5061 
5062 	return 0;
5063 
5064 out_deactivate:
5065 	return 1;
5066 }
5067 
5068 /* a cfs_rq won't donate quota below this amount */
5069 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5070 /* minimum remaining period time to redistribute slack quota */
5071 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5072 /* how long we wait to gather additional slack before distributing */
5073 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5074 
5075 /*
5076  * Are we near the end of the current quota period?
5077  *
5078  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5079  * hrtimer base being cleared by hrtimer_start. In the case of
5080  * migrate_hrtimers, base is never cleared, so we are fine.
5081  */
5082 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5083 {
5084 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5085 	s64 remaining;
5086 
5087 	/* if the call-back is running a quota refresh is already occurring */
5088 	if (hrtimer_callback_running(refresh_timer))
5089 		return 1;
5090 
5091 	/* is a quota refresh about to occur? */
5092 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5093 	if (remaining < (s64)min_expire)
5094 		return 1;
5095 
5096 	return 0;
5097 }
5098 
5099 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5100 {
5101 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5102 
5103 	/* if there's a quota refresh soon don't bother with slack */
5104 	if (runtime_refresh_within(cfs_b, min_left))
5105 		return;
5106 
5107 	/* don't push forwards an existing deferred unthrottle */
5108 	if (cfs_b->slack_started)
5109 		return;
5110 	cfs_b->slack_started = true;
5111 
5112 	hrtimer_start(&cfs_b->slack_timer,
5113 			ns_to_ktime(cfs_bandwidth_slack_period),
5114 			HRTIMER_MODE_REL);
5115 }
5116 
5117 /* we know any runtime found here is valid as update_curr() precedes return */
5118 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5119 {
5120 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5121 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5122 
5123 	if (slack_runtime <= 0)
5124 		return;
5125 
5126 	raw_spin_lock(&cfs_b->lock);
5127 	if (cfs_b->quota != RUNTIME_INF) {
5128 		cfs_b->runtime += slack_runtime;
5129 
5130 		/* we are under rq->lock, defer unthrottling using a timer */
5131 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5132 		    !list_empty(&cfs_b->throttled_cfs_rq))
5133 			start_cfs_slack_bandwidth(cfs_b);
5134 	}
5135 	raw_spin_unlock(&cfs_b->lock);
5136 
5137 	/* even if it's not valid for return we don't want to try again */
5138 	cfs_rq->runtime_remaining -= slack_runtime;
5139 }
5140 
5141 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5142 {
5143 	if (!cfs_bandwidth_used())
5144 		return;
5145 
5146 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5147 		return;
5148 
5149 	__return_cfs_rq_runtime(cfs_rq);
5150 }
5151 
5152 /*
5153  * This is done with a timer (instead of inline with bandwidth return) since
5154  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5155  */
5156 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5157 {
5158 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5159 	unsigned long flags;
5160 
5161 	/* confirm we're still not at a refresh boundary */
5162 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5163 	cfs_b->slack_started = false;
5164 
5165 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5166 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5167 		return;
5168 	}
5169 
5170 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5171 		runtime = cfs_b->runtime;
5172 
5173 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5174 
5175 	if (!runtime)
5176 		return;
5177 
5178 	distribute_cfs_runtime(cfs_b);
5179 }
5180 
5181 /*
5182  * When a group wakes up we want to make sure that its quota is not already
5183  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5184  * runtime as update_curr() throttling can not trigger until it's on-rq.
5185  */
5186 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5187 {
5188 	if (!cfs_bandwidth_used())
5189 		return;
5190 
5191 	/* an active group must be handled by the update_curr()->put() path */
5192 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5193 		return;
5194 
5195 	/* ensure the group is not already throttled */
5196 	if (cfs_rq_throttled(cfs_rq))
5197 		return;
5198 
5199 	/* update runtime allocation */
5200 	account_cfs_rq_runtime(cfs_rq, 0);
5201 	if (cfs_rq->runtime_remaining <= 0)
5202 		throttle_cfs_rq(cfs_rq);
5203 }
5204 
5205 static void sync_throttle(struct task_group *tg, int cpu)
5206 {
5207 	struct cfs_rq *pcfs_rq, *cfs_rq;
5208 
5209 	if (!cfs_bandwidth_used())
5210 		return;
5211 
5212 	if (!tg->parent)
5213 		return;
5214 
5215 	cfs_rq = tg->cfs_rq[cpu];
5216 	pcfs_rq = tg->parent->cfs_rq[cpu];
5217 
5218 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5219 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5220 }
5221 
5222 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5223 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5224 {
5225 	if (!cfs_bandwidth_used())
5226 		return false;
5227 
5228 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5229 		return false;
5230 
5231 	/*
5232 	 * it's possible for a throttled entity to be forced into a running
5233 	 * state (e.g. set_curr_task), in this case we're finished.
5234 	 */
5235 	if (cfs_rq_throttled(cfs_rq))
5236 		return true;
5237 
5238 	return throttle_cfs_rq(cfs_rq);
5239 }
5240 
5241 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5242 {
5243 	struct cfs_bandwidth *cfs_b =
5244 		container_of(timer, struct cfs_bandwidth, slack_timer);
5245 
5246 	do_sched_cfs_slack_timer(cfs_b);
5247 
5248 	return HRTIMER_NORESTART;
5249 }
5250 
5251 extern const u64 max_cfs_quota_period;
5252 
5253 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5254 {
5255 	struct cfs_bandwidth *cfs_b =
5256 		container_of(timer, struct cfs_bandwidth, period_timer);
5257 	unsigned long flags;
5258 	int overrun;
5259 	int idle = 0;
5260 	int count = 0;
5261 
5262 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5263 	for (;;) {
5264 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5265 		if (!overrun)
5266 			break;
5267 
5268 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5269 
5270 		if (++count > 3) {
5271 			u64 new, old = ktime_to_ns(cfs_b->period);
5272 
5273 			/*
5274 			 * Grow period by a factor of 2 to avoid losing precision.
5275 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5276 			 * to fail.
5277 			 */
5278 			new = old * 2;
5279 			if (new < max_cfs_quota_period) {
5280 				cfs_b->period = ns_to_ktime(new);
5281 				cfs_b->quota *= 2;
5282 				cfs_b->burst *= 2;
5283 
5284 				pr_warn_ratelimited(
5285 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5286 					smp_processor_id(),
5287 					div_u64(new, NSEC_PER_USEC),
5288 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5289 			} else {
5290 				pr_warn_ratelimited(
5291 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5292 					smp_processor_id(),
5293 					div_u64(old, NSEC_PER_USEC),
5294 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5295 			}
5296 
5297 			/* reset count so we don't come right back in here */
5298 			count = 0;
5299 		}
5300 	}
5301 	if (idle)
5302 		cfs_b->period_active = 0;
5303 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5304 
5305 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5306 }
5307 
5308 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5309 {
5310 	raw_spin_lock_init(&cfs_b->lock);
5311 	cfs_b->runtime = 0;
5312 	cfs_b->quota = RUNTIME_INF;
5313 	cfs_b->period = ns_to_ktime(default_cfs_period());
5314 	cfs_b->burst = 0;
5315 
5316 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5317 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5318 	cfs_b->period_timer.function = sched_cfs_period_timer;
5319 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5320 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5321 	cfs_b->slack_started = false;
5322 }
5323 
5324 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5325 {
5326 	cfs_rq->runtime_enabled = 0;
5327 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5328 }
5329 
5330 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5331 {
5332 	lockdep_assert_held(&cfs_b->lock);
5333 
5334 	if (cfs_b->period_active)
5335 		return;
5336 
5337 	cfs_b->period_active = 1;
5338 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5339 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5340 }
5341 
5342 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5343 {
5344 	/* init_cfs_bandwidth() was not called */
5345 	if (!cfs_b->throttled_cfs_rq.next)
5346 		return;
5347 
5348 	hrtimer_cancel(&cfs_b->period_timer);
5349 	hrtimer_cancel(&cfs_b->slack_timer);
5350 }
5351 
5352 /*
5353  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5354  *
5355  * The race is harmless, since modifying bandwidth settings of unhooked group
5356  * bits doesn't do much.
5357  */
5358 
5359 /* cpu online callback */
5360 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5361 {
5362 	struct task_group *tg;
5363 
5364 	lockdep_assert_rq_held(rq);
5365 
5366 	rcu_read_lock();
5367 	list_for_each_entry_rcu(tg, &task_groups, list) {
5368 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5369 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5370 
5371 		raw_spin_lock(&cfs_b->lock);
5372 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5373 		raw_spin_unlock(&cfs_b->lock);
5374 	}
5375 	rcu_read_unlock();
5376 }
5377 
5378 /* cpu offline callback */
5379 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5380 {
5381 	struct task_group *tg;
5382 
5383 	lockdep_assert_rq_held(rq);
5384 
5385 	rcu_read_lock();
5386 	list_for_each_entry_rcu(tg, &task_groups, list) {
5387 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5388 
5389 		if (!cfs_rq->runtime_enabled)
5390 			continue;
5391 
5392 		/*
5393 		 * clock_task is not advancing so we just need to make sure
5394 		 * there's some valid quota amount
5395 		 */
5396 		cfs_rq->runtime_remaining = 1;
5397 		/*
5398 		 * Offline rq is schedulable till CPU is completely disabled
5399 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5400 		 */
5401 		cfs_rq->runtime_enabled = 0;
5402 
5403 		if (cfs_rq_throttled(cfs_rq))
5404 			unthrottle_cfs_rq(cfs_rq);
5405 	}
5406 	rcu_read_unlock();
5407 }
5408 
5409 #else /* CONFIG_CFS_BANDWIDTH */
5410 
5411 static inline bool cfs_bandwidth_used(void)
5412 {
5413 	return false;
5414 }
5415 
5416 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5417 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5418 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5419 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5420 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5421 
5422 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5423 {
5424 	return 0;
5425 }
5426 
5427 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5428 {
5429 	return 0;
5430 }
5431 
5432 static inline int throttled_lb_pair(struct task_group *tg,
5433 				    int src_cpu, int dest_cpu)
5434 {
5435 	return 0;
5436 }
5437 
5438 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5439 
5440 #ifdef CONFIG_FAIR_GROUP_SCHED
5441 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5442 #endif
5443 
5444 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5445 {
5446 	return NULL;
5447 }
5448 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5449 static inline void update_runtime_enabled(struct rq *rq) {}
5450 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5451 
5452 #endif /* CONFIG_CFS_BANDWIDTH */
5453 
5454 /**************************************************
5455  * CFS operations on tasks:
5456  */
5457 
5458 #ifdef CONFIG_SCHED_HRTICK
5459 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5460 {
5461 	struct sched_entity *se = &p->se;
5462 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5463 
5464 	SCHED_WARN_ON(task_rq(p) != rq);
5465 
5466 	if (rq->cfs.h_nr_running > 1) {
5467 		u64 slice = sched_slice(cfs_rq, se);
5468 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5469 		s64 delta = slice - ran;
5470 
5471 		if (delta < 0) {
5472 			if (task_current(rq, p))
5473 				resched_curr(rq);
5474 			return;
5475 		}
5476 		hrtick_start(rq, delta);
5477 	}
5478 }
5479 
5480 /*
5481  * called from enqueue/dequeue and updates the hrtick when the
5482  * current task is from our class and nr_running is low enough
5483  * to matter.
5484  */
5485 static void hrtick_update(struct rq *rq)
5486 {
5487 	struct task_struct *curr = rq->curr;
5488 
5489 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5490 		return;
5491 
5492 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5493 		hrtick_start_fair(rq, curr);
5494 }
5495 #else /* !CONFIG_SCHED_HRTICK */
5496 static inline void
5497 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5498 {
5499 }
5500 
5501 static inline void hrtick_update(struct rq *rq)
5502 {
5503 }
5504 #endif
5505 
5506 #ifdef CONFIG_SMP
5507 static inline unsigned long cpu_util(int cpu);
5508 
5509 static inline bool cpu_overutilized(int cpu)
5510 {
5511 	return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5512 }
5513 
5514 static inline void update_overutilized_status(struct rq *rq)
5515 {
5516 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5517 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5518 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5519 	}
5520 }
5521 #else
5522 static inline void update_overutilized_status(struct rq *rq) { }
5523 #endif
5524 
5525 /* Runqueue only has SCHED_IDLE tasks enqueued */
5526 static int sched_idle_rq(struct rq *rq)
5527 {
5528 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5529 			rq->nr_running);
5530 }
5531 
5532 #ifdef CONFIG_SMP
5533 static int sched_idle_cpu(int cpu)
5534 {
5535 	return sched_idle_rq(cpu_rq(cpu));
5536 }
5537 #endif
5538 
5539 /*
5540  * The enqueue_task method is called before nr_running is
5541  * increased. Here we update the fair scheduling stats and
5542  * then put the task into the rbtree:
5543  */
5544 static void
5545 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5546 {
5547 	struct cfs_rq *cfs_rq;
5548 	struct sched_entity *se = &p->se;
5549 	int idle_h_nr_running = task_has_idle_policy(p);
5550 	int task_new = !(flags & ENQUEUE_WAKEUP);
5551 
5552 	/*
5553 	 * The code below (indirectly) updates schedutil which looks at
5554 	 * the cfs_rq utilization to select a frequency.
5555 	 * Let's add the task's estimated utilization to the cfs_rq's
5556 	 * estimated utilization, before we update schedutil.
5557 	 */
5558 	util_est_enqueue(&rq->cfs, p);
5559 
5560 	/*
5561 	 * If in_iowait is set, the code below may not trigger any cpufreq
5562 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5563 	 * passed.
5564 	 */
5565 	if (p->in_iowait)
5566 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5567 
5568 	for_each_sched_entity(se) {
5569 		if (se->on_rq)
5570 			break;
5571 		cfs_rq = cfs_rq_of(se);
5572 		enqueue_entity(cfs_rq, se, flags);
5573 
5574 		cfs_rq->h_nr_running++;
5575 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5576 
5577 		/* end evaluation on encountering a throttled cfs_rq */
5578 		if (cfs_rq_throttled(cfs_rq))
5579 			goto enqueue_throttle;
5580 
5581 		flags = ENQUEUE_WAKEUP;
5582 	}
5583 
5584 	for_each_sched_entity(se) {
5585 		cfs_rq = cfs_rq_of(se);
5586 
5587 		update_load_avg(cfs_rq, se, UPDATE_TG);
5588 		se_update_runnable(se);
5589 		update_cfs_group(se);
5590 
5591 		cfs_rq->h_nr_running++;
5592 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5593 
5594 		/* end evaluation on encountering a throttled cfs_rq */
5595 		if (cfs_rq_throttled(cfs_rq))
5596 			goto enqueue_throttle;
5597 
5598                /*
5599                 * One parent has been throttled and cfs_rq removed from the
5600                 * list. Add it back to not break the leaf list.
5601                 */
5602                if (throttled_hierarchy(cfs_rq))
5603                        list_add_leaf_cfs_rq(cfs_rq);
5604 	}
5605 
5606 	/* At this point se is NULL and we are at root level*/
5607 	add_nr_running(rq, 1);
5608 
5609 	/*
5610 	 * Since new tasks are assigned an initial util_avg equal to
5611 	 * half of the spare capacity of their CPU, tiny tasks have the
5612 	 * ability to cross the overutilized threshold, which will
5613 	 * result in the load balancer ruining all the task placement
5614 	 * done by EAS. As a way to mitigate that effect, do not account
5615 	 * for the first enqueue operation of new tasks during the
5616 	 * overutilized flag detection.
5617 	 *
5618 	 * A better way of solving this problem would be to wait for
5619 	 * the PELT signals of tasks to converge before taking them
5620 	 * into account, but that is not straightforward to implement,
5621 	 * and the following generally works well enough in practice.
5622 	 */
5623 	if (!task_new)
5624 		update_overutilized_status(rq);
5625 
5626 enqueue_throttle:
5627 	if (cfs_bandwidth_used()) {
5628 		/*
5629 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5630 		 * breaks in the above iteration can result in incomplete
5631 		 * leaf list maintenance, resulting in triggering the assertion
5632 		 * below.
5633 		 */
5634 		for_each_sched_entity(se) {
5635 			cfs_rq = cfs_rq_of(se);
5636 
5637 			if (list_add_leaf_cfs_rq(cfs_rq))
5638 				break;
5639 		}
5640 	}
5641 
5642 	assert_list_leaf_cfs_rq(rq);
5643 
5644 	hrtick_update(rq);
5645 }
5646 
5647 static void set_next_buddy(struct sched_entity *se);
5648 
5649 /*
5650  * The dequeue_task method is called before nr_running is
5651  * decreased. We remove the task from the rbtree and
5652  * update the fair scheduling stats:
5653  */
5654 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5655 {
5656 	struct cfs_rq *cfs_rq;
5657 	struct sched_entity *se = &p->se;
5658 	int task_sleep = flags & DEQUEUE_SLEEP;
5659 	int idle_h_nr_running = task_has_idle_policy(p);
5660 	bool was_sched_idle = sched_idle_rq(rq);
5661 
5662 	util_est_dequeue(&rq->cfs, p);
5663 
5664 	for_each_sched_entity(se) {
5665 		cfs_rq = cfs_rq_of(se);
5666 		dequeue_entity(cfs_rq, se, flags);
5667 
5668 		cfs_rq->h_nr_running--;
5669 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5670 
5671 		/* end evaluation on encountering a throttled cfs_rq */
5672 		if (cfs_rq_throttled(cfs_rq))
5673 			goto dequeue_throttle;
5674 
5675 		/* Don't dequeue parent if it has other entities besides us */
5676 		if (cfs_rq->load.weight) {
5677 			/* Avoid re-evaluating load for this entity: */
5678 			se = parent_entity(se);
5679 			/*
5680 			 * Bias pick_next to pick a task from this cfs_rq, as
5681 			 * p is sleeping when it is within its sched_slice.
5682 			 */
5683 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5684 				set_next_buddy(se);
5685 			break;
5686 		}
5687 		flags |= DEQUEUE_SLEEP;
5688 	}
5689 
5690 	for_each_sched_entity(se) {
5691 		cfs_rq = cfs_rq_of(se);
5692 
5693 		update_load_avg(cfs_rq, se, UPDATE_TG);
5694 		se_update_runnable(se);
5695 		update_cfs_group(se);
5696 
5697 		cfs_rq->h_nr_running--;
5698 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5699 
5700 		/* end evaluation on encountering a throttled cfs_rq */
5701 		if (cfs_rq_throttled(cfs_rq))
5702 			goto dequeue_throttle;
5703 
5704 	}
5705 
5706 	/* At this point se is NULL and we are at root level*/
5707 	sub_nr_running(rq, 1);
5708 
5709 	/* balance early to pull high priority tasks */
5710 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5711 		rq->next_balance = jiffies;
5712 
5713 dequeue_throttle:
5714 	util_est_update(&rq->cfs, p, task_sleep);
5715 	hrtick_update(rq);
5716 }
5717 
5718 #ifdef CONFIG_SMP
5719 
5720 /* Working cpumask for: load_balance, load_balance_newidle. */
5721 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5722 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5723 
5724 #ifdef CONFIG_NO_HZ_COMMON
5725 
5726 static struct {
5727 	cpumask_var_t idle_cpus_mask;
5728 	atomic_t nr_cpus;
5729 	int has_blocked;		/* Idle CPUS has blocked load */
5730 	unsigned long next_balance;     /* in jiffy units */
5731 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5732 } nohz ____cacheline_aligned;
5733 
5734 #endif /* CONFIG_NO_HZ_COMMON */
5735 
5736 static unsigned long cpu_load(struct rq *rq)
5737 {
5738 	return cfs_rq_load_avg(&rq->cfs);
5739 }
5740 
5741 /*
5742  * cpu_load_without - compute CPU load without any contributions from *p
5743  * @cpu: the CPU which load is requested
5744  * @p: the task which load should be discounted
5745  *
5746  * The load of a CPU is defined by the load of tasks currently enqueued on that
5747  * CPU as well as tasks which are currently sleeping after an execution on that
5748  * CPU.
5749  *
5750  * This method returns the load of the specified CPU by discounting the load of
5751  * the specified task, whenever the task is currently contributing to the CPU
5752  * load.
5753  */
5754 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5755 {
5756 	struct cfs_rq *cfs_rq;
5757 	unsigned int load;
5758 
5759 	/* Task has no contribution or is new */
5760 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5761 		return cpu_load(rq);
5762 
5763 	cfs_rq = &rq->cfs;
5764 	load = READ_ONCE(cfs_rq->avg.load_avg);
5765 
5766 	/* Discount task's util from CPU's util */
5767 	lsub_positive(&load, task_h_load(p));
5768 
5769 	return load;
5770 }
5771 
5772 static unsigned long cpu_runnable(struct rq *rq)
5773 {
5774 	return cfs_rq_runnable_avg(&rq->cfs);
5775 }
5776 
5777 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5778 {
5779 	struct cfs_rq *cfs_rq;
5780 	unsigned int runnable;
5781 
5782 	/* Task has no contribution or is new */
5783 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5784 		return cpu_runnable(rq);
5785 
5786 	cfs_rq = &rq->cfs;
5787 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5788 
5789 	/* Discount task's runnable from CPU's runnable */
5790 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5791 
5792 	return runnable;
5793 }
5794 
5795 static unsigned long capacity_of(int cpu)
5796 {
5797 	return cpu_rq(cpu)->cpu_capacity;
5798 }
5799 
5800 static void record_wakee(struct task_struct *p)
5801 {
5802 	/*
5803 	 * Only decay a single time; tasks that have less then 1 wakeup per
5804 	 * jiffy will not have built up many flips.
5805 	 */
5806 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5807 		current->wakee_flips >>= 1;
5808 		current->wakee_flip_decay_ts = jiffies;
5809 	}
5810 
5811 	if (current->last_wakee != p) {
5812 		current->last_wakee = p;
5813 		current->wakee_flips++;
5814 	}
5815 }
5816 
5817 /*
5818  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5819  *
5820  * A waker of many should wake a different task than the one last awakened
5821  * at a frequency roughly N times higher than one of its wakees.
5822  *
5823  * In order to determine whether we should let the load spread vs consolidating
5824  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5825  * partner, and a factor of lls_size higher frequency in the other.
5826  *
5827  * With both conditions met, we can be relatively sure that the relationship is
5828  * non-monogamous, with partner count exceeding socket size.
5829  *
5830  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5831  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5832  * socket size.
5833  */
5834 static int wake_wide(struct task_struct *p)
5835 {
5836 	unsigned int master = current->wakee_flips;
5837 	unsigned int slave = p->wakee_flips;
5838 	int factor = __this_cpu_read(sd_llc_size);
5839 
5840 	if (master < slave)
5841 		swap(master, slave);
5842 	if (slave < factor || master < slave * factor)
5843 		return 0;
5844 	return 1;
5845 }
5846 
5847 /*
5848  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5849  * soonest. For the purpose of speed we only consider the waking and previous
5850  * CPU.
5851  *
5852  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5853  *			cache-affine and is (or	will be) idle.
5854  *
5855  * wake_affine_weight() - considers the weight to reflect the average
5856  *			  scheduling latency of the CPUs. This seems to work
5857  *			  for the overloaded case.
5858  */
5859 static int
5860 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5861 {
5862 	/*
5863 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5864 	 * context. Only allow the move if cache is shared. Otherwise an
5865 	 * interrupt intensive workload could force all tasks onto one
5866 	 * node depending on the IO topology or IRQ affinity settings.
5867 	 *
5868 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5869 	 * There is no guarantee that the cache hot data from an interrupt
5870 	 * is more important than cache hot data on the prev_cpu and from
5871 	 * a cpufreq perspective, it's better to have higher utilisation
5872 	 * on one CPU.
5873 	 */
5874 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5875 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5876 
5877 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5878 		return this_cpu;
5879 
5880 	if (available_idle_cpu(prev_cpu))
5881 		return prev_cpu;
5882 
5883 	return nr_cpumask_bits;
5884 }
5885 
5886 static int
5887 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5888 		   int this_cpu, int prev_cpu, int sync)
5889 {
5890 	s64 this_eff_load, prev_eff_load;
5891 	unsigned long task_load;
5892 
5893 	this_eff_load = cpu_load(cpu_rq(this_cpu));
5894 
5895 	if (sync) {
5896 		unsigned long current_load = task_h_load(current);
5897 
5898 		if (current_load > this_eff_load)
5899 			return this_cpu;
5900 
5901 		this_eff_load -= current_load;
5902 	}
5903 
5904 	task_load = task_h_load(p);
5905 
5906 	this_eff_load += task_load;
5907 	if (sched_feat(WA_BIAS))
5908 		this_eff_load *= 100;
5909 	this_eff_load *= capacity_of(prev_cpu);
5910 
5911 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5912 	prev_eff_load -= task_load;
5913 	if (sched_feat(WA_BIAS))
5914 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5915 	prev_eff_load *= capacity_of(this_cpu);
5916 
5917 	/*
5918 	 * If sync, adjust the weight of prev_eff_load such that if
5919 	 * prev_eff == this_eff that select_idle_sibling() will consider
5920 	 * stacking the wakee on top of the waker if no other CPU is
5921 	 * idle.
5922 	 */
5923 	if (sync)
5924 		prev_eff_load += 1;
5925 
5926 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5927 }
5928 
5929 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5930 		       int this_cpu, int prev_cpu, int sync)
5931 {
5932 	int target = nr_cpumask_bits;
5933 
5934 	if (sched_feat(WA_IDLE))
5935 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5936 
5937 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5938 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5939 
5940 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5941 	if (target == nr_cpumask_bits)
5942 		return prev_cpu;
5943 
5944 	schedstat_inc(sd->ttwu_move_affine);
5945 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5946 	return target;
5947 }
5948 
5949 static struct sched_group *
5950 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5951 
5952 /*
5953  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5954  */
5955 static int
5956 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5957 {
5958 	unsigned long load, min_load = ULONG_MAX;
5959 	unsigned int min_exit_latency = UINT_MAX;
5960 	u64 latest_idle_timestamp = 0;
5961 	int least_loaded_cpu = this_cpu;
5962 	int shallowest_idle_cpu = -1;
5963 	int i;
5964 
5965 	/* Check if we have any choice: */
5966 	if (group->group_weight == 1)
5967 		return cpumask_first(sched_group_span(group));
5968 
5969 	/* Traverse only the allowed CPUs */
5970 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5971 		struct rq *rq = cpu_rq(i);
5972 
5973 		if (!sched_core_cookie_match(rq, p))
5974 			continue;
5975 
5976 		if (sched_idle_cpu(i))
5977 			return i;
5978 
5979 		if (available_idle_cpu(i)) {
5980 			struct cpuidle_state *idle = idle_get_state(rq);
5981 			if (idle && idle->exit_latency < min_exit_latency) {
5982 				/*
5983 				 * We give priority to a CPU whose idle state
5984 				 * has the smallest exit latency irrespective
5985 				 * of any idle timestamp.
5986 				 */
5987 				min_exit_latency = idle->exit_latency;
5988 				latest_idle_timestamp = rq->idle_stamp;
5989 				shallowest_idle_cpu = i;
5990 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5991 				   rq->idle_stamp > latest_idle_timestamp) {
5992 				/*
5993 				 * If equal or no active idle state, then
5994 				 * the most recently idled CPU might have
5995 				 * a warmer cache.
5996 				 */
5997 				latest_idle_timestamp = rq->idle_stamp;
5998 				shallowest_idle_cpu = i;
5999 			}
6000 		} else if (shallowest_idle_cpu == -1) {
6001 			load = cpu_load(cpu_rq(i));
6002 			if (load < min_load) {
6003 				min_load = load;
6004 				least_loaded_cpu = i;
6005 			}
6006 		}
6007 	}
6008 
6009 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6010 }
6011 
6012 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6013 				  int cpu, int prev_cpu, int sd_flag)
6014 {
6015 	int new_cpu = cpu;
6016 
6017 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6018 		return prev_cpu;
6019 
6020 	/*
6021 	 * We need task's util for cpu_util_without, sync it up to
6022 	 * prev_cpu's last_update_time.
6023 	 */
6024 	if (!(sd_flag & SD_BALANCE_FORK))
6025 		sync_entity_load_avg(&p->se);
6026 
6027 	while (sd) {
6028 		struct sched_group *group;
6029 		struct sched_domain *tmp;
6030 		int weight;
6031 
6032 		if (!(sd->flags & sd_flag)) {
6033 			sd = sd->child;
6034 			continue;
6035 		}
6036 
6037 		group = find_idlest_group(sd, p, cpu);
6038 		if (!group) {
6039 			sd = sd->child;
6040 			continue;
6041 		}
6042 
6043 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6044 		if (new_cpu == cpu) {
6045 			/* Now try balancing at a lower domain level of 'cpu': */
6046 			sd = sd->child;
6047 			continue;
6048 		}
6049 
6050 		/* Now try balancing at a lower domain level of 'new_cpu': */
6051 		cpu = new_cpu;
6052 		weight = sd->span_weight;
6053 		sd = NULL;
6054 		for_each_domain(cpu, tmp) {
6055 			if (weight <= tmp->span_weight)
6056 				break;
6057 			if (tmp->flags & sd_flag)
6058 				sd = tmp;
6059 		}
6060 	}
6061 
6062 	return new_cpu;
6063 }
6064 
6065 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6066 {
6067 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6068 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
6069 		return cpu;
6070 
6071 	return -1;
6072 }
6073 
6074 #ifdef CONFIG_SCHED_SMT
6075 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6076 EXPORT_SYMBOL_GPL(sched_smt_present);
6077 
6078 static inline void set_idle_cores(int cpu, int val)
6079 {
6080 	struct sched_domain_shared *sds;
6081 
6082 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6083 	if (sds)
6084 		WRITE_ONCE(sds->has_idle_cores, val);
6085 }
6086 
6087 static inline bool test_idle_cores(int cpu, bool def)
6088 {
6089 	struct sched_domain_shared *sds;
6090 
6091 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6092 	if (sds)
6093 		return READ_ONCE(sds->has_idle_cores);
6094 
6095 	return def;
6096 }
6097 
6098 /*
6099  * Scans the local SMT mask to see if the entire core is idle, and records this
6100  * information in sd_llc_shared->has_idle_cores.
6101  *
6102  * Since SMT siblings share all cache levels, inspecting this limited remote
6103  * state should be fairly cheap.
6104  */
6105 void __update_idle_core(struct rq *rq)
6106 {
6107 	int core = cpu_of(rq);
6108 	int cpu;
6109 
6110 	rcu_read_lock();
6111 	if (test_idle_cores(core, true))
6112 		goto unlock;
6113 
6114 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6115 		if (cpu == core)
6116 			continue;
6117 
6118 		if (!available_idle_cpu(cpu))
6119 			goto unlock;
6120 	}
6121 
6122 	set_idle_cores(core, 1);
6123 unlock:
6124 	rcu_read_unlock();
6125 }
6126 
6127 /*
6128  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6129  * there are no idle cores left in the system; tracked through
6130  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6131  */
6132 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6133 {
6134 	bool idle = true;
6135 	int cpu;
6136 
6137 	if (!static_branch_likely(&sched_smt_present))
6138 		return __select_idle_cpu(core, p);
6139 
6140 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6141 		if (!available_idle_cpu(cpu)) {
6142 			idle = false;
6143 			if (*idle_cpu == -1) {
6144 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6145 					*idle_cpu = cpu;
6146 					break;
6147 				}
6148 				continue;
6149 			}
6150 			break;
6151 		}
6152 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6153 			*idle_cpu = cpu;
6154 	}
6155 
6156 	if (idle)
6157 		return core;
6158 
6159 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6160 	return -1;
6161 }
6162 
6163 /*
6164  * Scan the local SMT mask for idle CPUs.
6165  */
6166 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6167 {
6168 	int cpu;
6169 
6170 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6171 		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6172 		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6173 			continue;
6174 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6175 			return cpu;
6176 	}
6177 
6178 	return -1;
6179 }
6180 
6181 #else /* CONFIG_SCHED_SMT */
6182 
6183 static inline void set_idle_cores(int cpu, int val)
6184 {
6185 }
6186 
6187 static inline bool test_idle_cores(int cpu, bool def)
6188 {
6189 	return def;
6190 }
6191 
6192 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6193 {
6194 	return __select_idle_cpu(core, p);
6195 }
6196 
6197 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6198 {
6199 	return -1;
6200 }
6201 
6202 #endif /* CONFIG_SCHED_SMT */
6203 
6204 /*
6205  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6206  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6207  * average idle time for this rq (as found in rq->avg_idle).
6208  */
6209 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6210 {
6211 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6212 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6213 	struct rq *this_rq = this_rq();
6214 	int this = smp_processor_id();
6215 	struct sched_domain *this_sd;
6216 	u64 time = 0;
6217 
6218 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6219 	if (!this_sd)
6220 		return -1;
6221 
6222 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6223 
6224 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6225 		u64 avg_cost, avg_idle, span_avg;
6226 		unsigned long now = jiffies;
6227 
6228 		/*
6229 		 * If we're busy, the assumption that the last idle period
6230 		 * predicts the future is flawed; age away the remaining
6231 		 * predicted idle time.
6232 		 */
6233 		if (unlikely(this_rq->wake_stamp < now)) {
6234 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6235 				this_rq->wake_stamp++;
6236 				this_rq->wake_avg_idle >>= 1;
6237 			}
6238 		}
6239 
6240 		avg_idle = this_rq->wake_avg_idle;
6241 		avg_cost = this_sd->avg_scan_cost + 1;
6242 
6243 		span_avg = sd->span_weight * avg_idle;
6244 		if (span_avg > 4*avg_cost)
6245 			nr = div_u64(span_avg, avg_cost);
6246 		else
6247 			nr = 4;
6248 
6249 		time = cpu_clock(this);
6250 	}
6251 
6252 	for_each_cpu_wrap(cpu, cpus, target) {
6253 		if (has_idle_core) {
6254 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6255 			if ((unsigned int)i < nr_cpumask_bits)
6256 				return i;
6257 
6258 		} else {
6259 			if (!--nr)
6260 				return -1;
6261 			idle_cpu = __select_idle_cpu(cpu, p);
6262 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
6263 				break;
6264 		}
6265 	}
6266 
6267 	if (has_idle_core)
6268 		set_idle_cores(target, false);
6269 
6270 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6271 		time = cpu_clock(this) - time;
6272 
6273 		/*
6274 		 * Account for the scan cost of wakeups against the average
6275 		 * idle time.
6276 		 */
6277 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6278 
6279 		update_avg(&this_sd->avg_scan_cost, time);
6280 	}
6281 
6282 	return idle_cpu;
6283 }
6284 
6285 /*
6286  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6287  * the task fits. If no CPU is big enough, but there are idle ones, try to
6288  * maximize capacity.
6289  */
6290 static int
6291 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6292 {
6293 	unsigned long task_util, best_cap = 0;
6294 	int cpu, best_cpu = -1;
6295 	struct cpumask *cpus;
6296 
6297 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6298 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6299 
6300 	task_util = uclamp_task_util(p);
6301 
6302 	for_each_cpu_wrap(cpu, cpus, target) {
6303 		unsigned long cpu_cap = capacity_of(cpu);
6304 
6305 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6306 			continue;
6307 		if (fits_capacity(task_util, cpu_cap))
6308 			return cpu;
6309 
6310 		if (cpu_cap > best_cap) {
6311 			best_cap = cpu_cap;
6312 			best_cpu = cpu;
6313 		}
6314 	}
6315 
6316 	return best_cpu;
6317 }
6318 
6319 static inline bool asym_fits_capacity(int task_util, int cpu)
6320 {
6321 	if (static_branch_unlikely(&sched_asym_cpucapacity))
6322 		return fits_capacity(task_util, capacity_of(cpu));
6323 
6324 	return true;
6325 }
6326 
6327 /*
6328  * Try and locate an idle core/thread in the LLC cache domain.
6329  */
6330 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6331 {
6332 	bool has_idle_core = false;
6333 	struct sched_domain *sd;
6334 	unsigned long task_util;
6335 	int i, recent_used_cpu;
6336 
6337 	/*
6338 	 * On asymmetric system, update task utilization because we will check
6339 	 * that the task fits with cpu's capacity.
6340 	 */
6341 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6342 		sync_entity_load_avg(&p->se);
6343 		task_util = uclamp_task_util(p);
6344 	}
6345 
6346 	/*
6347 	 * per-cpu select_idle_mask usage
6348 	 */
6349 	lockdep_assert_irqs_disabled();
6350 
6351 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6352 	    asym_fits_capacity(task_util, target))
6353 		return target;
6354 
6355 	/*
6356 	 * If the previous CPU is cache affine and idle, don't be stupid:
6357 	 */
6358 	if (prev != target && cpus_share_cache(prev, target) &&
6359 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6360 	    asym_fits_capacity(task_util, prev))
6361 		return prev;
6362 
6363 	/*
6364 	 * Allow a per-cpu kthread to stack with the wakee if the
6365 	 * kworker thread and the tasks previous CPUs are the same.
6366 	 * The assumption is that the wakee queued work for the
6367 	 * per-cpu kthread that is now complete and the wakeup is
6368 	 * essentially a sync wakeup. An obvious example of this
6369 	 * pattern is IO completions.
6370 	 */
6371 	if (is_per_cpu_kthread(current) &&
6372 	    prev == smp_processor_id() &&
6373 	    this_rq()->nr_running <= 1) {
6374 		return prev;
6375 	}
6376 
6377 	/* Check a recently used CPU as a potential idle candidate: */
6378 	recent_used_cpu = p->recent_used_cpu;
6379 	if (recent_used_cpu != prev &&
6380 	    recent_used_cpu != target &&
6381 	    cpus_share_cache(recent_used_cpu, target) &&
6382 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6383 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6384 	    asym_fits_capacity(task_util, recent_used_cpu)) {
6385 		/*
6386 		 * Replace recent_used_cpu with prev as it is a potential
6387 		 * candidate for the next wake:
6388 		 */
6389 		p->recent_used_cpu = prev;
6390 		return recent_used_cpu;
6391 	}
6392 
6393 	/*
6394 	 * For asymmetric CPU capacity systems, our domain of interest is
6395 	 * sd_asym_cpucapacity rather than sd_llc.
6396 	 */
6397 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6398 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6399 		/*
6400 		 * On an asymmetric CPU capacity system where an exclusive
6401 		 * cpuset defines a symmetric island (i.e. one unique
6402 		 * capacity_orig value through the cpuset), the key will be set
6403 		 * but the CPUs within that cpuset will not have a domain with
6404 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6405 		 * capacity path.
6406 		 */
6407 		if (sd) {
6408 			i = select_idle_capacity(p, sd, target);
6409 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6410 		}
6411 	}
6412 
6413 	sd = rcu_dereference(per_cpu(sd_llc, target));
6414 	if (!sd)
6415 		return target;
6416 
6417 	if (sched_smt_active()) {
6418 		has_idle_core = test_idle_cores(target, false);
6419 
6420 		if (!has_idle_core && cpus_share_cache(prev, target)) {
6421 			i = select_idle_smt(p, sd, prev);
6422 			if ((unsigned int)i < nr_cpumask_bits)
6423 				return i;
6424 		}
6425 	}
6426 
6427 	i = select_idle_cpu(p, sd, has_idle_core, target);
6428 	if ((unsigned)i < nr_cpumask_bits)
6429 		return i;
6430 
6431 	return target;
6432 }
6433 
6434 /**
6435  * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6436  * @cpu: the CPU to get the utilization of
6437  *
6438  * The unit of the return value must be the one of capacity so we can compare
6439  * the utilization with the capacity of the CPU that is available for CFS task
6440  * (ie cpu_capacity).
6441  *
6442  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6443  * recent utilization of currently non-runnable tasks on a CPU. It represents
6444  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6445  * capacity_orig is the cpu_capacity available at the highest frequency
6446  * (arch_scale_freq_capacity()).
6447  * The utilization of a CPU converges towards a sum equal to or less than the
6448  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6449  * the running time on this CPU scaled by capacity_curr.
6450  *
6451  * The estimated utilization of a CPU is defined to be the maximum between its
6452  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6453  * currently RUNNABLE on that CPU.
6454  * This allows to properly represent the expected utilization of a CPU which
6455  * has just got a big task running since a long sleep period. At the same time
6456  * however it preserves the benefits of the "blocked utilization" in
6457  * describing the potential for other tasks waking up on the same CPU.
6458  *
6459  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6460  * higher than capacity_orig because of unfortunate rounding in
6461  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6462  * the average stabilizes with the new running time. We need to check that the
6463  * utilization stays within the range of [0..capacity_orig] and cap it if
6464  * necessary. Without utilization capping, a group could be seen as overloaded
6465  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6466  * available capacity. We allow utilization to overshoot capacity_curr (but not
6467  * capacity_orig) as it useful for predicting the capacity required after task
6468  * migrations (scheduler-driven DVFS).
6469  *
6470  * Return: the (estimated) utilization for the specified CPU
6471  */
6472 static inline unsigned long cpu_util(int cpu)
6473 {
6474 	struct cfs_rq *cfs_rq;
6475 	unsigned int util;
6476 
6477 	cfs_rq = &cpu_rq(cpu)->cfs;
6478 	util = READ_ONCE(cfs_rq->avg.util_avg);
6479 
6480 	if (sched_feat(UTIL_EST))
6481 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6482 
6483 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6484 }
6485 
6486 /*
6487  * cpu_util_without: compute cpu utilization without any contributions from *p
6488  * @cpu: the CPU which utilization is requested
6489  * @p: the task which utilization should be discounted
6490  *
6491  * The utilization of a CPU is defined by the utilization of tasks currently
6492  * enqueued on that CPU as well as tasks which are currently sleeping after an
6493  * execution on that CPU.
6494  *
6495  * This method returns the utilization of the specified CPU by discounting the
6496  * utilization of the specified task, whenever the task is currently
6497  * contributing to the CPU utilization.
6498  */
6499 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6500 {
6501 	struct cfs_rq *cfs_rq;
6502 	unsigned int util;
6503 
6504 	/* Task has no contribution or is new */
6505 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6506 		return cpu_util(cpu);
6507 
6508 	cfs_rq = &cpu_rq(cpu)->cfs;
6509 	util = READ_ONCE(cfs_rq->avg.util_avg);
6510 
6511 	/* Discount task's util from CPU's util */
6512 	lsub_positive(&util, task_util(p));
6513 
6514 	/*
6515 	 * Covered cases:
6516 	 *
6517 	 * a) if *p is the only task sleeping on this CPU, then:
6518 	 *      cpu_util (== task_util) > util_est (== 0)
6519 	 *    and thus we return:
6520 	 *      cpu_util_without = (cpu_util - task_util) = 0
6521 	 *
6522 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6523 	 *    IDLE, then:
6524 	 *      cpu_util >= task_util
6525 	 *      cpu_util > util_est (== 0)
6526 	 *    and thus we discount *p's blocked utilization to return:
6527 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6528 	 *
6529 	 * c) if other tasks are RUNNABLE on that CPU and
6530 	 *      util_est > cpu_util
6531 	 *    then we use util_est since it returns a more restrictive
6532 	 *    estimation of the spare capacity on that CPU, by just
6533 	 *    considering the expected utilization of tasks already
6534 	 *    runnable on that CPU.
6535 	 *
6536 	 * Cases a) and b) are covered by the above code, while case c) is
6537 	 * covered by the following code when estimated utilization is
6538 	 * enabled.
6539 	 */
6540 	if (sched_feat(UTIL_EST)) {
6541 		unsigned int estimated =
6542 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6543 
6544 		/*
6545 		 * Despite the following checks we still have a small window
6546 		 * for a possible race, when an execl's select_task_rq_fair()
6547 		 * races with LB's detach_task():
6548 		 *
6549 		 *   detach_task()
6550 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6551 		 *     ---------------------------------- A
6552 		 *     deactivate_task()                   \
6553 		 *       dequeue_task()                     + RaceTime
6554 		 *         util_est_dequeue()              /
6555 		 *     ---------------------------------- B
6556 		 *
6557 		 * The additional check on "current == p" it's required to
6558 		 * properly fix the execl regression and it helps in further
6559 		 * reducing the chances for the above race.
6560 		 */
6561 		if (unlikely(task_on_rq_queued(p) || current == p))
6562 			lsub_positive(&estimated, _task_util_est(p));
6563 
6564 		util = max(util, estimated);
6565 	}
6566 
6567 	/*
6568 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6569 	 * clamp to the maximum CPU capacity to ensure consistency with
6570 	 * the cpu_util call.
6571 	 */
6572 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6573 }
6574 
6575 /*
6576  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6577  * to @dst_cpu.
6578  */
6579 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6580 {
6581 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6582 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6583 
6584 	/*
6585 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6586 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6587 	 * the other cases, @cpu is not impacted by the migration, so the
6588 	 * util_avg should already be correct.
6589 	 */
6590 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6591 		lsub_positive(&util, task_util(p));
6592 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6593 		util += task_util(p);
6594 
6595 	if (sched_feat(UTIL_EST)) {
6596 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6597 
6598 		/*
6599 		 * During wake-up, the task isn't enqueued yet and doesn't
6600 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6601 		 * so just add it (if needed) to "simulate" what will be
6602 		 * cpu_util() after the task has been enqueued.
6603 		 */
6604 		if (dst_cpu == cpu)
6605 			util_est += _task_util_est(p);
6606 
6607 		util = max(util, util_est);
6608 	}
6609 
6610 	return min(util, capacity_orig_of(cpu));
6611 }
6612 
6613 /*
6614  * compute_energy(): Estimates the energy that @pd would consume if @p was
6615  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6616  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6617  * to compute what would be the energy if we decided to actually migrate that
6618  * task.
6619  */
6620 static long
6621 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6622 {
6623 	struct cpumask *pd_mask = perf_domain_span(pd);
6624 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6625 	unsigned long max_util = 0, sum_util = 0;
6626 	unsigned long _cpu_cap = cpu_cap;
6627 	int cpu;
6628 
6629 	_cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6630 
6631 	/*
6632 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6633 	 * of another rd if they belong to the same pd. So, account for the
6634 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6635 	 * instead of the rd span.
6636 	 *
6637 	 * If an entire pd is outside of the current rd, it will not appear in
6638 	 * its pd list and will not be accounted by compute_energy().
6639 	 */
6640 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6641 		unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6642 		unsigned long cpu_util, util_running = util_freq;
6643 		struct task_struct *tsk = NULL;
6644 
6645 		/*
6646 		 * When @p is placed on @cpu:
6647 		 *
6648 		 * util_running = max(cpu_util, cpu_util_est) +
6649 		 *		  max(task_util, _task_util_est)
6650 		 *
6651 		 * while cpu_util_next is: max(cpu_util + task_util,
6652 		 *			       cpu_util_est + _task_util_est)
6653 		 */
6654 		if (cpu == dst_cpu) {
6655 			tsk = p;
6656 			util_running =
6657 				cpu_util_next(cpu, p, -1) + task_util_est(p);
6658 		}
6659 
6660 		/*
6661 		 * Busy time computation: utilization clamping is not
6662 		 * required since the ratio (sum_util / cpu_capacity)
6663 		 * is already enough to scale the EM reported power
6664 		 * consumption at the (eventually clamped) cpu_capacity.
6665 		 */
6666 		cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6667 					      ENERGY_UTIL, NULL);
6668 
6669 		sum_util += min(cpu_util, _cpu_cap);
6670 
6671 		/*
6672 		 * Performance domain frequency: utilization clamping
6673 		 * must be considered since it affects the selection
6674 		 * of the performance domain frequency.
6675 		 * NOTE: in case RT tasks are running, by default the
6676 		 * FREQUENCY_UTIL's utilization can be max OPP.
6677 		 */
6678 		cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6679 					      FREQUENCY_UTIL, tsk);
6680 		max_util = max(max_util, min(cpu_util, _cpu_cap));
6681 	}
6682 
6683 	return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
6684 }
6685 
6686 /*
6687  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6688  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6689  * spare capacity in each performance domain and uses it as a potential
6690  * candidate to execute the task. Then, it uses the Energy Model to figure
6691  * out which of the CPU candidates is the most energy-efficient.
6692  *
6693  * The rationale for this heuristic is as follows. In a performance domain,
6694  * all the most energy efficient CPU candidates (according to the Energy
6695  * Model) are those for which we'll request a low frequency. When there are
6696  * several CPUs for which the frequency request will be the same, we don't
6697  * have enough data to break the tie between them, because the Energy Model
6698  * only includes active power costs. With this model, if we assume that
6699  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6700  * the maximum spare capacity in a performance domain is guaranteed to be among
6701  * the best candidates of the performance domain.
6702  *
6703  * In practice, it could be preferable from an energy standpoint to pack
6704  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6705  * but that could also hurt our chances to go cluster idle, and we have no
6706  * ways to tell with the current Energy Model if this is actually a good
6707  * idea or not. So, find_energy_efficient_cpu() basically favors
6708  * cluster-packing, and spreading inside a cluster. That should at least be
6709  * a good thing for latency, and this is consistent with the idea that most
6710  * of the energy savings of EAS come from the asymmetry of the system, and
6711  * not so much from breaking the tie between identical CPUs. That's also the
6712  * reason why EAS is enabled in the topology code only for systems where
6713  * SD_ASYM_CPUCAPACITY is set.
6714  *
6715  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6716  * they don't have any useful utilization data yet and it's not possible to
6717  * forecast their impact on energy consumption. Consequently, they will be
6718  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6719  * to be energy-inefficient in some use-cases. The alternative would be to
6720  * bias new tasks towards specific types of CPUs first, or to try to infer
6721  * their util_avg from the parent task, but those heuristics could hurt
6722  * other use-cases too. So, until someone finds a better way to solve this,
6723  * let's keep things simple by re-using the existing slow path.
6724  */
6725 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6726 {
6727 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6728 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6729 	int cpu, best_energy_cpu = prev_cpu, target = -1;
6730 	unsigned long cpu_cap, util, base_energy = 0;
6731 	struct sched_domain *sd;
6732 	struct perf_domain *pd;
6733 
6734 	rcu_read_lock();
6735 	pd = rcu_dereference(rd->pd);
6736 	if (!pd || READ_ONCE(rd->overutilized))
6737 		goto unlock;
6738 
6739 	/*
6740 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6741 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6742 	 */
6743 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6744 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6745 		sd = sd->parent;
6746 	if (!sd)
6747 		goto unlock;
6748 
6749 	target = prev_cpu;
6750 
6751 	sync_entity_load_avg(&p->se);
6752 	if (!task_util_est(p))
6753 		goto unlock;
6754 
6755 	for (; pd; pd = pd->next) {
6756 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6757 		bool compute_prev_delta = false;
6758 		unsigned long base_energy_pd;
6759 		int max_spare_cap_cpu = -1;
6760 
6761 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6762 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6763 				continue;
6764 
6765 			util = cpu_util_next(cpu, p, cpu);
6766 			cpu_cap = capacity_of(cpu);
6767 			spare_cap = cpu_cap;
6768 			lsub_positive(&spare_cap, util);
6769 
6770 			/*
6771 			 * Skip CPUs that cannot satisfy the capacity request.
6772 			 * IOW, placing the task there would make the CPU
6773 			 * overutilized. Take uclamp into account to see how
6774 			 * much capacity we can get out of the CPU; this is
6775 			 * aligned with sched_cpu_util().
6776 			 */
6777 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6778 			if (!fits_capacity(util, cpu_cap))
6779 				continue;
6780 
6781 			if (cpu == prev_cpu) {
6782 				/* Always use prev_cpu as a candidate. */
6783 				compute_prev_delta = true;
6784 			} else if (spare_cap > max_spare_cap) {
6785 				/*
6786 				 * Find the CPU with the maximum spare capacity
6787 				 * in the performance domain.
6788 				 */
6789 				max_spare_cap = spare_cap;
6790 				max_spare_cap_cpu = cpu;
6791 			}
6792 		}
6793 
6794 		if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6795 			continue;
6796 
6797 		/* Compute the 'base' energy of the pd, without @p */
6798 		base_energy_pd = compute_energy(p, -1, pd);
6799 		base_energy += base_energy_pd;
6800 
6801 		/* Evaluate the energy impact of using prev_cpu. */
6802 		if (compute_prev_delta) {
6803 			prev_delta = compute_energy(p, prev_cpu, pd);
6804 			if (prev_delta < base_energy_pd)
6805 				goto unlock;
6806 			prev_delta -= base_energy_pd;
6807 			best_delta = min(best_delta, prev_delta);
6808 		}
6809 
6810 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
6811 		if (max_spare_cap_cpu >= 0) {
6812 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6813 			if (cur_delta < base_energy_pd)
6814 				goto unlock;
6815 			cur_delta -= base_energy_pd;
6816 			if (cur_delta < best_delta) {
6817 				best_delta = cur_delta;
6818 				best_energy_cpu = max_spare_cap_cpu;
6819 			}
6820 		}
6821 	}
6822 	rcu_read_unlock();
6823 
6824 	/*
6825 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6826 	 * least 6% of the energy used by prev_cpu.
6827 	 */
6828 	if ((prev_delta == ULONG_MAX) ||
6829 	    (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6830 		target = best_energy_cpu;
6831 
6832 	return target;
6833 
6834 unlock:
6835 	rcu_read_unlock();
6836 
6837 	return target;
6838 }
6839 
6840 /*
6841  * select_task_rq_fair: Select target runqueue for the waking task in domains
6842  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6843  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6844  *
6845  * Balances load by selecting the idlest CPU in the idlest group, or under
6846  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6847  *
6848  * Returns the target CPU number.
6849  */
6850 static int
6851 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6852 {
6853 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6854 	struct sched_domain *tmp, *sd = NULL;
6855 	int cpu = smp_processor_id();
6856 	int new_cpu = prev_cpu;
6857 	int want_affine = 0;
6858 	/* SD_flags and WF_flags share the first nibble */
6859 	int sd_flag = wake_flags & 0xF;
6860 
6861 	/*
6862 	 * required for stable ->cpus_allowed
6863 	 */
6864 	lockdep_assert_held(&p->pi_lock);
6865 	if (wake_flags & WF_TTWU) {
6866 		record_wakee(p);
6867 
6868 		if (sched_energy_enabled()) {
6869 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6870 			if (new_cpu >= 0)
6871 				return new_cpu;
6872 			new_cpu = prev_cpu;
6873 		}
6874 
6875 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6876 	}
6877 
6878 	rcu_read_lock();
6879 	for_each_domain(cpu, tmp) {
6880 		/*
6881 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6882 		 * cpu is a valid SD_WAKE_AFFINE target.
6883 		 */
6884 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6885 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6886 			if (cpu != prev_cpu)
6887 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6888 
6889 			sd = NULL; /* Prefer wake_affine over balance flags */
6890 			break;
6891 		}
6892 
6893 		if (tmp->flags & sd_flag)
6894 			sd = tmp;
6895 		else if (!want_affine)
6896 			break;
6897 	}
6898 
6899 	if (unlikely(sd)) {
6900 		/* Slow path */
6901 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6902 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
6903 		/* Fast path */
6904 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6905 
6906 		if (want_affine)
6907 			current->recent_used_cpu = cpu;
6908 	}
6909 	rcu_read_unlock();
6910 
6911 	return new_cpu;
6912 }
6913 
6914 static void detach_entity_cfs_rq(struct sched_entity *se);
6915 
6916 /*
6917  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6918  * cfs_rq_of(p) references at time of call are still valid and identify the
6919  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6920  */
6921 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6922 {
6923 	/*
6924 	 * As blocked tasks retain absolute vruntime the migration needs to
6925 	 * deal with this by subtracting the old and adding the new
6926 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6927 	 * the task on the new runqueue.
6928 	 */
6929 	if (READ_ONCE(p->__state) == TASK_WAKING) {
6930 		struct sched_entity *se = &p->se;
6931 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6932 		u64 min_vruntime;
6933 
6934 #ifndef CONFIG_64BIT
6935 		u64 min_vruntime_copy;
6936 
6937 		do {
6938 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6939 			smp_rmb();
6940 			min_vruntime = cfs_rq->min_vruntime;
6941 		} while (min_vruntime != min_vruntime_copy);
6942 #else
6943 		min_vruntime = cfs_rq->min_vruntime;
6944 #endif
6945 
6946 		se->vruntime -= min_vruntime;
6947 	}
6948 
6949 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6950 		/*
6951 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6952 		 * rq->lock and can modify state directly.
6953 		 */
6954 		lockdep_assert_rq_held(task_rq(p));
6955 		detach_entity_cfs_rq(&p->se);
6956 
6957 	} else {
6958 		/*
6959 		 * We are supposed to update the task to "current" time, then
6960 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6961 		 * have difficulty in getting what current time is, so simply
6962 		 * throw away the out-of-date time. This will result in the
6963 		 * wakee task is less decayed, but giving the wakee more load
6964 		 * sounds not bad.
6965 		 */
6966 		remove_entity_load_avg(&p->se);
6967 	}
6968 
6969 	/* Tell new CPU we are migrated */
6970 	p->se.avg.last_update_time = 0;
6971 
6972 	/* We have migrated, no longer consider this task hot */
6973 	p->se.exec_start = 0;
6974 
6975 	update_scan_period(p, new_cpu);
6976 }
6977 
6978 static void task_dead_fair(struct task_struct *p)
6979 {
6980 	remove_entity_load_avg(&p->se);
6981 }
6982 
6983 static int
6984 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6985 {
6986 	if (rq->nr_running)
6987 		return 1;
6988 
6989 	return newidle_balance(rq, rf) != 0;
6990 }
6991 #endif /* CONFIG_SMP */
6992 
6993 static unsigned long wakeup_gran(struct sched_entity *se)
6994 {
6995 	unsigned long gran = sysctl_sched_wakeup_granularity;
6996 
6997 	/*
6998 	 * Since its curr running now, convert the gran from real-time
6999 	 * to virtual-time in his units.
7000 	 *
7001 	 * By using 'se' instead of 'curr' we penalize light tasks, so
7002 	 * they get preempted easier. That is, if 'se' < 'curr' then
7003 	 * the resulting gran will be larger, therefore penalizing the
7004 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7005 	 * be smaller, again penalizing the lighter task.
7006 	 *
7007 	 * This is especially important for buddies when the leftmost
7008 	 * task is higher priority than the buddy.
7009 	 */
7010 	return calc_delta_fair(gran, se);
7011 }
7012 
7013 /*
7014  * Should 'se' preempt 'curr'.
7015  *
7016  *             |s1
7017  *        |s2
7018  *   |s3
7019  *         g
7020  *      |<--->|c
7021  *
7022  *  w(c, s1) = -1
7023  *  w(c, s2) =  0
7024  *  w(c, s3) =  1
7025  *
7026  */
7027 static int
7028 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7029 {
7030 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7031 
7032 	if (vdiff <= 0)
7033 		return -1;
7034 
7035 	gran = wakeup_gran(se);
7036 	if (vdiff > gran)
7037 		return 1;
7038 
7039 	return 0;
7040 }
7041 
7042 static void set_last_buddy(struct sched_entity *se)
7043 {
7044 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
7045 		return;
7046 
7047 	for_each_sched_entity(se) {
7048 		if (SCHED_WARN_ON(!se->on_rq))
7049 			return;
7050 		cfs_rq_of(se)->last = se;
7051 	}
7052 }
7053 
7054 static void set_next_buddy(struct sched_entity *se)
7055 {
7056 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
7057 		return;
7058 
7059 	for_each_sched_entity(se) {
7060 		if (SCHED_WARN_ON(!se->on_rq))
7061 			return;
7062 		cfs_rq_of(se)->next = se;
7063 	}
7064 }
7065 
7066 static void set_skip_buddy(struct sched_entity *se)
7067 {
7068 	for_each_sched_entity(se)
7069 		cfs_rq_of(se)->skip = se;
7070 }
7071 
7072 /*
7073  * Preempt the current task with a newly woken task if needed:
7074  */
7075 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7076 {
7077 	struct task_struct *curr = rq->curr;
7078 	struct sched_entity *se = &curr->se, *pse = &p->se;
7079 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7080 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7081 	int next_buddy_marked = 0;
7082 
7083 	if (unlikely(se == pse))
7084 		return;
7085 
7086 	/*
7087 	 * This is possible from callers such as attach_tasks(), in which we
7088 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7089 	 * lead to a throttle).  This both saves work and prevents false
7090 	 * next-buddy nomination below.
7091 	 */
7092 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7093 		return;
7094 
7095 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7096 		set_next_buddy(pse);
7097 		next_buddy_marked = 1;
7098 	}
7099 
7100 	/*
7101 	 * We can come here with TIF_NEED_RESCHED already set from new task
7102 	 * wake up path.
7103 	 *
7104 	 * Note: this also catches the edge-case of curr being in a throttled
7105 	 * group (e.g. via set_curr_task), since update_curr() (in the
7106 	 * enqueue of curr) will have resulted in resched being set.  This
7107 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7108 	 * below.
7109 	 */
7110 	if (test_tsk_need_resched(curr))
7111 		return;
7112 
7113 	/* Idle tasks are by definition preempted by non-idle tasks. */
7114 	if (unlikely(task_has_idle_policy(curr)) &&
7115 	    likely(!task_has_idle_policy(p)))
7116 		goto preempt;
7117 
7118 	/*
7119 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7120 	 * is driven by the tick):
7121 	 */
7122 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7123 		return;
7124 
7125 	find_matching_se(&se, &pse);
7126 	update_curr(cfs_rq_of(se));
7127 	BUG_ON(!pse);
7128 	if (wakeup_preempt_entity(se, pse) == 1) {
7129 		/*
7130 		 * Bias pick_next to pick the sched entity that is
7131 		 * triggering this preemption.
7132 		 */
7133 		if (!next_buddy_marked)
7134 			set_next_buddy(pse);
7135 		goto preempt;
7136 	}
7137 
7138 	return;
7139 
7140 preempt:
7141 	resched_curr(rq);
7142 	/*
7143 	 * Only set the backward buddy when the current task is still
7144 	 * on the rq. This can happen when a wakeup gets interleaved
7145 	 * with schedule on the ->pre_schedule() or idle_balance()
7146 	 * point, either of which can * drop the rq lock.
7147 	 *
7148 	 * Also, during early boot the idle thread is in the fair class,
7149 	 * for obvious reasons its a bad idea to schedule back to it.
7150 	 */
7151 	if (unlikely(!se->on_rq || curr == rq->idle))
7152 		return;
7153 
7154 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7155 		set_last_buddy(se);
7156 }
7157 
7158 #ifdef CONFIG_SMP
7159 static struct task_struct *pick_task_fair(struct rq *rq)
7160 {
7161 	struct sched_entity *se;
7162 	struct cfs_rq *cfs_rq;
7163 
7164 again:
7165 	cfs_rq = &rq->cfs;
7166 	if (!cfs_rq->nr_running)
7167 		return NULL;
7168 
7169 	do {
7170 		struct sched_entity *curr = cfs_rq->curr;
7171 
7172 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7173 		if (curr) {
7174 			if (curr->on_rq)
7175 				update_curr(cfs_rq);
7176 			else
7177 				curr = NULL;
7178 
7179 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7180 				goto again;
7181 		}
7182 
7183 		se = pick_next_entity(cfs_rq, curr);
7184 		cfs_rq = group_cfs_rq(se);
7185 	} while (cfs_rq);
7186 
7187 	return task_of(se);
7188 }
7189 #endif
7190 
7191 struct task_struct *
7192 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7193 {
7194 	struct cfs_rq *cfs_rq = &rq->cfs;
7195 	struct sched_entity *se;
7196 	struct task_struct *p;
7197 	int new_tasks;
7198 
7199 again:
7200 	if (!sched_fair_runnable(rq))
7201 		goto idle;
7202 
7203 #ifdef CONFIG_FAIR_GROUP_SCHED
7204 	if (!prev || prev->sched_class != &fair_sched_class)
7205 		goto simple;
7206 
7207 	/*
7208 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7209 	 * likely that a next task is from the same cgroup as the current.
7210 	 *
7211 	 * Therefore attempt to avoid putting and setting the entire cgroup
7212 	 * hierarchy, only change the part that actually changes.
7213 	 */
7214 
7215 	do {
7216 		struct sched_entity *curr = cfs_rq->curr;
7217 
7218 		/*
7219 		 * Since we got here without doing put_prev_entity() we also
7220 		 * have to consider cfs_rq->curr. If it is still a runnable
7221 		 * entity, update_curr() will update its vruntime, otherwise
7222 		 * forget we've ever seen it.
7223 		 */
7224 		if (curr) {
7225 			if (curr->on_rq)
7226 				update_curr(cfs_rq);
7227 			else
7228 				curr = NULL;
7229 
7230 			/*
7231 			 * This call to check_cfs_rq_runtime() will do the
7232 			 * throttle and dequeue its entity in the parent(s).
7233 			 * Therefore the nr_running test will indeed
7234 			 * be correct.
7235 			 */
7236 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7237 				cfs_rq = &rq->cfs;
7238 
7239 				if (!cfs_rq->nr_running)
7240 					goto idle;
7241 
7242 				goto simple;
7243 			}
7244 		}
7245 
7246 		se = pick_next_entity(cfs_rq, curr);
7247 		cfs_rq = group_cfs_rq(se);
7248 	} while (cfs_rq);
7249 
7250 	p = task_of(se);
7251 
7252 	/*
7253 	 * Since we haven't yet done put_prev_entity and if the selected task
7254 	 * is a different task than we started out with, try and touch the
7255 	 * least amount of cfs_rqs.
7256 	 */
7257 	if (prev != p) {
7258 		struct sched_entity *pse = &prev->se;
7259 
7260 		while (!(cfs_rq = is_same_group(se, pse))) {
7261 			int se_depth = se->depth;
7262 			int pse_depth = pse->depth;
7263 
7264 			if (se_depth <= pse_depth) {
7265 				put_prev_entity(cfs_rq_of(pse), pse);
7266 				pse = parent_entity(pse);
7267 			}
7268 			if (se_depth >= pse_depth) {
7269 				set_next_entity(cfs_rq_of(se), se);
7270 				se = parent_entity(se);
7271 			}
7272 		}
7273 
7274 		put_prev_entity(cfs_rq, pse);
7275 		set_next_entity(cfs_rq, se);
7276 	}
7277 
7278 	goto done;
7279 simple:
7280 #endif
7281 	if (prev)
7282 		put_prev_task(rq, prev);
7283 
7284 	do {
7285 		se = pick_next_entity(cfs_rq, NULL);
7286 		set_next_entity(cfs_rq, se);
7287 		cfs_rq = group_cfs_rq(se);
7288 	} while (cfs_rq);
7289 
7290 	p = task_of(se);
7291 
7292 done: __maybe_unused;
7293 #ifdef CONFIG_SMP
7294 	/*
7295 	 * Move the next running task to the front of
7296 	 * the list, so our cfs_tasks list becomes MRU
7297 	 * one.
7298 	 */
7299 	list_move(&p->se.group_node, &rq->cfs_tasks);
7300 #endif
7301 
7302 	if (hrtick_enabled_fair(rq))
7303 		hrtick_start_fair(rq, p);
7304 
7305 	update_misfit_status(p, rq);
7306 
7307 	return p;
7308 
7309 idle:
7310 	if (!rf)
7311 		return NULL;
7312 
7313 	new_tasks = newidle_balance(rq, rf);
7314 
7315 	/*
7316 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7317 	 * possible for any higher priority task to appear. In that case we
7318 	 * must re-start the pick_next_entity() loop.
7319 	 */
7320 	if (new_tasks < 0)
7321 		return RETRY_TASK;
7322 
7323 	if (new_tasks > 0)
7324 		goto again;
7325 
7326 	/*
7327 	 * rq is about to be idle, check if we need to update the
7328 	 * lost_idle_time of clock_pelt
7329 	 */
7330 	update_idle_rq_clock_pelt(rq);
7331 
7332 	return NULL;
7333 }
7334 
7335 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7336 {
7337 	return pick_next_task_fair(rq, NULL, NULL);
7338 }
7339 
7340 /*
7341  * Account for a descheduled task:
7342  */
7343 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7344 {
7345 	struct sched_entity *se = &prev->se;
7346 	struct cfs_rq *cfs_rq;
7347 
7348 	for_each_sched_entity(se) {
7349 		cfs_rq = cfs_rq_of(se);
7350 		put_prev_entity(cfs_rq, se);
7351 	}
7352 }
7353 
7354 /*
7355  * sched_yield() is very simple
7356  *
7357  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7358  */
7359 static void yield_task_fair(struct rq *rq)
7360 {
7361 	struct task_struct *curr = rq->curr;
7362 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7363 	struct sched_entity *se = &curr->se;
7364 
7365 	/*
7366 	 * Are we the only task in the tree?
7367 	 */
7368 	if (unlikely(rq->nr_running == 1))
7369 		return;
7370 
7371 	clear_buddies(cfs_rq, se);
7372 
7373 	if (curr->policy != SCHED_BATCH) {
7374 		update_rq_clock(rq);
7375 		/*
7376 		 * Update run-time statistics of the 'current'.
7377 		 */
7378 		update_curr(cfs_rq);
7379 		/*
7380 		 * Tell update_rq_clock() that we've just updated,
7381 		 * so we don't do microscopic update in schedule()
7382 		 * and double the fastpath cost.
7383 		 */
7384 		rq_clock_skip_update(rq);
7385 	}
7386 
7387 	set_skip_buddy(se);
7388 }
7389 
7390 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7391 {
7392 	struct sched_entity *se = &p->se;
7393 
7394 	/* throttled hierarchies are not runnable */
7395 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7396 		return false;
7397 
7398 	/* Tell the scheduler that we'd really like pse to run next. */
7399 	set_next_buddy(se);
7400 
7401 	yield_task_fair(rq);
7402 
7403 	return true;
7404 }
7405 
7406 #ifdef CONFIG_SMP
7407 /**************************************************
7408  * Fair scheduling class load-balancing methods.
7409  *
7410  * BASICS
7411  *
7412  * The purpose of load-balancing is to achieve the same basic fairness the
7413  * per-CPU scheduler provides, namely provide a proportional amount of compute
7414  * time to each task. This is expressed in the following equation:
7415  *
7416  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7417  *
7418  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7419  * W_i,0 is defined as:
7420  *
7421  *   W_i,0 = \Sum_j w_i,j                                             (2)
7422  *
7423  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7424  * is derived from the nice value as per sched_prio_to_weight[].
7425  *
7426  * The weight average is an exponential decay average of the instantaneous
7427  * weight:
7428  *
7429  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7430  *
7431  * C_i is the compute capacity of CPU i, typically it is the
7432  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7433  * can also include other factors [XXX].
7434  *
7435  * To achieve this balance we define a measure of imbalance which follows
7436  * directly from (1):
7437  *
7438  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7439  *
7440  * We them move tasks around to minimize the imbalance. In the continuous
7441  * function space it is obvious this converges, in the discrete case we get
7442  * a few fun cases generally called infeasible weight scenarios.
7443  *
7444  * [XXX expand on:
7445  *     - infeasible weights;
7446  *     - local vs global optima in the discrete case. ]
7447  *
7448  *
7449  * SCHED DOMAINS
7450  *
7451  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7452  * for all i,j solution, we create a tree of CPUs that follows the hardware
7453  * topology where each level pairs two lower groups (or better). This results
7454  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7455  * tree to only the first of the previous level and we decrease the frequency
7456  * of load-balance at each level inv. proportional to the number of CPUs in
7457  * the groups.
7458  *
7459  * This yields:
7460  *
7461  *     log_2 n     1     n
7462  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7463  *     i = 0      2^i   2^i
7464  *                               `- size of each group
7465  *         |         |     `- number of CPUs doing load-balance
7466  *         |         `- freq
7467  *         `- sum over all levels
7468  *
7469  * Coupled with a limit on how many tasks we can migrate every balance pass,
7470  * this makes (5) the runtime complexity of the balancer.
7471  *
7472  * An important property here is that each CPU is still (indirectly) connected
7473  * to every other CPU in at most O(log n) steps:
7474  *
7475  * The adjacency matrix of the resulting graph is given by:
7476  *
7477  *             log_2 n
7478  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7479  *             k = 0
7480  *
7481  * And you'll find that:
7482  *
7483  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7484  *
7485  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7486  * The task movement gives a factor of O(m), giving a convergence complexity
7487  * of:
7488  *
7489  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7490  *
7491  *
7492  * WORK CONSERVING
7493  *
7494  * In order to avoid CPUs going idle while there's still work to do, new idle
7495  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7496  * tree itself instead of relying on other CPUs to bring it work.
7497  *
7498  * This adds some complexity to both (5) and (8) but it reduces the total idle
7499  * time.
7500  *
7501  * [XXX more?]
7502  *
7503  *
7504  * CGROUPS
7505  *
7506  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7507  *
7508  *                                s_k,i
7509  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7510  *                                 S_k
7511  *
7512  * Where
7513  *
7514  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7515  *
7516  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7517  *
7518  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7519  * property.
7520  *
7521  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7522  *      rewrite all of this once again.]
7523  */
7524 
7525 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7526 
7527 enum fbq_type { regular, remote, all };
7528 
7529 /*
7530  * 'group_type' describes the group of CPUs at the moment of load balancing.
7531  *
7532  * The enum is ordered by pulling priority, with the group with lowest priority
7533  * first so the group_type can simply be compared when selecting the busiest
7534  * group. See update_sd_pick_busiest().
7535  */
7536 enum group_type {
7537 	/* The group has spare capacity that can be used to run more tasks.  */
7538 	group_has_spare = 0,
7539 	/*
7540 	 * The group is fully used and the tasks don't compete for more CPU
7541 	 * cycles. Nevertheless, some tasks might wait before running.
7542 	 */
7543 	group_fully_busy,
7544 	/*
7545 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7546 	 * and must be migrated to a more powerful CPU.
7547 	 */
7548 	group_misfit_task,
7549 	/*
7550 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7551 	 * and the task should be migrated to it instead of running on the
7552 	 * current CPU.
7553 	 */
7554 	group_asym_packing,
7555 	/*
7556 	 * The tasks' affinity constraints previously prevented the scheduler
7557 	 * from balancing the load across the system.
7558 	 */
7559 	group_imbalanced,
7560 	/*
7561 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7562 	 * tasks.
7563 	 */
7564 	group_overloaded
7565 };
7566 
7567 enum migration_type {
7568 	migrate_load = 0,
7569 	migrate_util,
7570 	migrate_task,
7571 	migrate_misfit
7572 };
7573 
7574 #define LBF_ALL_PINNED	0x01
7575 #define LBF_NEED_BREAK	0x02
7576 #define LBF_DST_PINNED  0x04
7577 #define LBF_SOME_PINNED	0x08
7578 #define LBF_ACTIVE_LB	0x10
7579 
7580 struct lb_env {
7581 	struct sched_domain	*sd;
7582 
7583 	struct rq		*src_rq;
7584 	int			src_cpu;
7585 
7586 	int			dst_cpu;
7587 	struct rq		*dst_rq;
7588 
7589 	struct cpumask		*dst_grpmask;
7590 	int			new_dst_cpu;
7591 	enum cpu_idle_type	idle;
7592 	long			imbalance;
7593 	/* The set of CPUs under consideration for load-balancing */
7594 	struct cpumask		*cpus;
7595 
7596 	unsigned int		flags;
7597 
7598 	unsigned int		loop;
7599 	unsigned int		loop_break;
7600 	unsigned int		loop_max;
7601 
7602 	enum fbq_type		fbq_type;
7603 	enum migration_type	migration_type;
7604 	struct list_head	tasks;
7605 };
7606 
7607 /*
7608  * Is this task likely cache-hot:
7609  */
7610 static int task_hot(struct task_struct *p, struct lb_env *env)
7611 {
7612 	s64 delta;
7613 
7614 	lockdep_assert_rq_held(env->src_rq);
7615 
7616 	if (p->sched_class != &fair_sched_class)
7617 		return 0;
7618 
7619 	if (unlikely(task_has_idle_policy(p)))
7620 		return 0;
7621 
7622 	/* SMT siblings share cache */
7623 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7624 		return 0;
7625 
7626 	/*
7627 	 * Buddy candidates are cache hot:
7628 	 */
7629 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7630 			(&p->se == cfs_rq_of(&p->se)->next ||
7631 			 &p->se == cfs_rq_of(&p->se)->last))
7632 		return 1;
7633 
7634 	if (sysctl_sched_migration_cost == -1)
7635 		return 1;
7636 
7637 	/*
7638 	 * Don't migrate task if the task's cookie does not match
7639 	 * with the destination CPU's core cookie.
7640 	 */
7641 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7642 		return 1;
7643 
7644 	if (sysctl_sched_migration_cost == 0)
7645 		return 0;
7646 
7647 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7648 
7649 	return delta < (s64)sysctl_sched_migration_cost;
7650 }
7651 
7652 #ifdef CONFIG_NUMA_BALANCING
7653 /*
7654  * Returns 1, if task migration degrades locality
7655  * Returns 0, if task migration improves locality i.e migration preferred.
7656  * Returns -1, if task migration is not affected by locality.
7657  */
7658 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7659 {
7660 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7661 	unsigned long src_weight, dst_weight;
7662 	int src_nid, dst_nid, dist;
7663 
7664 	if (!static_branch_likely(&sched_numa_balancing))
7665 		return -1;
7666 
7667 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7668 		return -1;
7669 
7670 	src_nid = cpu_to_node(env->src_cpu);
7671 	dst_nid = cpu_to_node(env->dst_cpu);
7672 
7673 	if (src_nid == dst_nid)
7674 		return -1;
7675 
7676 	/* Migrating away from the preferred node is always bad. */
7677 	if (src_nid == p->numa_preferred_nid) {
7678 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7679 			return 1;
7680 		else
7681 			return -1;
7682 	}
7683 
7684 	/* Encourage migration to the preferred node. */
7685 	if (dst_nid == p->numa_preferred_nid)
7686 		return 0;
7687 
7688 	/* Leaving a core idle is often worse than degrading locality. */
7689 	if (env->idle == CPU_IDLE)
7690 		return -1;
7691 
7692 	dist = node_distance(src_nid, dst_nid);
7693 	if (numa_group) {
7694 		src_weight = group_weight(p, src_nid, dist);
7695 		dst_weight = group_weight(p, dst_nid, dist);
7696 	} else {
7697 		src_weight = task_weight(p, src_nid, dist);
7698 		dst_weight = task_weight(p, dst_nid, dist);
7699 	}
7700 
7701 	return dst_weight < src_weight;
7702 }
7703 
7704 #else
7705 static inline int migrate_degrades_locality(struct task_struct *p,
7706 					     struct lb_env *env)
7707 {
7708 	return -1;
7709 }
7710 #endif
7711 
7712 /*
7713  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7714  */
7715 static
7716 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7717 {
7718 	int tsk_cache_hot;
7719 
7720 	lockdep_assert_rq_held(env->src_rq);
7721 
7722 	/*
7723 	 * We do not migrate tasks that are:
7724 	 * 1) throttled_lb_pair, or
7725 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7726 	 * 3) running (obviously), or
7727 	 * 4) are cache-hot on their current CPU.
7728 	 */
7729 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7730 		return 0;
7731 
7732 	/* Disregard pcpu kthreads; they are where they need to be. */
7733 	if (kthread_is_per_cpu(p))
7734 		return 0;
7735 
7736 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7737 		int cpu;
7738 
7739 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7740 
7741 		env->flags |= LBF_SOME_PINNED;
7742 
7743 		/*
7744 		 * Remember if this task can be migrated to any other CPU in
7745 		 * our sched_group. We may want to revisit it if we couldn't
7746 		 * meet load balance goals by pulling other tasks on src_cpu.
7747 		 *
7748 		 * Avoid computing new_dst_cpu
7749 		 * - for NEWLY_IDLE
7750 		 * - if we have already computed one in current iteration
7751 		 * - if it's an active balance
7752 		 */
7753 		if (env->idle == CPU_NEWLY_IDLE ||
7754 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7755 			return 0;
7756 
7757 		/* Prevent to re-select dst_cpu via env's CPUs: */
7758 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7759 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7760 				env->flags |= LBF_DST_PINNED;
7761 				env->new_dst_cpu = cpu;
7762 				break;
7763 			}
7764 		}
7765 
7766 		return 0;
7767 	}
7768 
7769 	/* Record that we found at least one task that could run on dst_cpu */
7770 	env->flags &= ~LBF_ALL_PINNED;
7771 
7772 	if (task_running(env->src_rq, p)) {
7773 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7774 		return 0;
7775 	}
7776 
7777 	/*
7778 	 * Aggressive migration if:
7779 	 * 1) active balance
7780 	 * 2) destination numa is preferred
7781 	 * 3) task is cache cold, or
7782 	 * 4) too many balance attempts have failed.
7783 	 */
7784 	if (env->flags & LBF_ACTIVE_LB)
7785 		return 1;
7786 
7787 	tsk_cache_hot = migrate_degrades_locality(p, env);
7788 	if (tsk_cache_hot == -1)
7789 		tsk_cache_hot = task_hot(p, env);
7790 
7791 	if (tsk_cache_hot <= 0 ||
7792 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7793 		if (tsk_cache_hot == 1) {
7794 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7795 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7796 		}
7797 		return 1;
7798 	}
7799 
7800 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7801 	return 0;
7802 }
7803 
7804 /*
7805  * detach_task() -- detach the task for the migration specified in env
7806  */
7807 static void detach_task(struct task_struct *p, struct lb_env *env)
7808 {
7809 	lockdep_assert_rq_held(env->src_rq);
7810 
7811 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7812 	set_task_cpu(p, env->dst_cpu);
7813 }
7814 
7815 /*
7816  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7817  * part of active balancing operations within "domain".
7818  *
7819  * Returns a task if successful and NULL otherwise.
7820  */
7821 static struct task_struct *detach_one_task(struct lb_env *env)
7822 {
7823 	struct task_struct *p;
7824 
7825 	lockdep_assert_rq_held(env->src_rq);
7826 
7827 	list_for_each_entry_reverse(p,
7828 			&env->src_rq->cfs_tasks, se.group_node) {
7829 		if (!can_migrate_task(p, env))
7830 			continue;
7831 
7832 		detach_task(p, env);
7833 
7834 		/*
7835 		 * Right now, this is only the second place where
7836 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7837 		 * so we can safely collect stats here rather than
7838 		 * inside detach_tasks().
7839 		 */
7840 		schedstat_inc(env->sd->lb_gained[env->idle]);
7841 		return p;
7842 	}
7843 	return NULL;
7844 }
7845 
7846 static const unsigned int sched_nr_migrate_break = 32;
7847 
7848 /*
7849  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7850  * busiest_rq, as part of a balancing operation within domain "sd".
7851  *
7852  * Returns number of detached tasks if successful and 0 otherwise.
7853  */
7854 static int detach_tasks(struct lb_env *env)
7855 {
7856 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7857 	unsigned long util, load;
7858 	struct task_struct *p;
7859 	int detached = 0;
7860 
7861 	lockdep_assert_rq_held(env->src_rq);
7862 
7863 	/*
7864 	 * Source run queue has been emptied by another CPU, clear
7865 	 * LBF_ALL_PINNED flag as we will not test any task.
7866 	 */
7867 	if (env->src_rq->nr_running <= 1) {
7868 		env->flags &= ~LBF_ALL_PINNED;
7869 		return 0;
7870 	}
7871 
7872 	if (env->imbalance <= 0)
7873 		return 0;
7874 
7875 	while (!list_empty(tasks)) {
7876 		/*
7877 		 * We don't want to steal all, otherwise we may be treated likewise,
7878 		 * which could at worst lead to a livelock crash.
7879 		 */
7880 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7881 			break;
7882 
7883 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7884 
7885 		env->loop++;
7886 		/* We've more or less seen every task there is, call it quits */
7887 		if (env->loop > env->loop_max)
7888 			break;
7889 
7890 		/* take a breather every nr_migrate tasks */
7891 		if (env->loop > env->loop_break) {
7892 			env->loop_break += sched_nr_migrate_break;
7893 			env->flags |= LBF_NEED_BREAK;
7894 			break;
7895 		}
7896 
7897 		if (!can_migrate_task(p, env))
7898 			goto next;
7899 
7900 		switch (env->migration_type) {
7901 		case migrate_load:
7902 			/*
7903 			 * Depending of the number of CPUs and tasks and the
7904 			 * cgroup hierarchy, task_h_load() can return a null
7905 			 * value. Make sure that env->imbalance decreases
7906 			 * otherwise detach_tasks() will stop only after
7907 			 * detaching up to loop_max tasks.
7908 			 */
7909 			load = max_t(unsigned long, task_h_load(p), 1);
7910 
7911 			if (sched_feat(LB_MIN) &&
7912 			    load < 16 && !env->sd->nr_balance_failed)
7913 				goto next;
7914 
7915 			/*
7916 			 * Make sure that we don't migrate too much load.
7917 			 * Nevertheless, let relax the constraint if
7918 			 * scheduler fails to find a good waiting task to
7919 			 * migrate.
7920 			 */
7921 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7922 				goto next;
7923 
7924 			env->imbalance -= load;
7925 			break;
7926 
7927 		case migrate_util:
7928 			util = task_util_est(p);
7929 
7930 			if (util > env->imbalance)
7931 				goto next;
7932 
7933 			env->imbalance -= util;
7934 			break;
7935 
7936 		case migrate_task:
7937 			env->imbalance--;
7938 			break;
7939 
7940 		case migrate_misfit:
7941 			/* This is not a misfit task */
7942 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7943 				goto next;
7944 
7945 			env->imbalance = 0;
7946 			break;
7947 		}
7948 
7949 		detach_task(p, env);
7950 		list_add(&p->se.group_node, &env->tasks);
7951 
7952 		detached++;
7953 
7954 #ifdef CONFIG_PREEMPTION
7955 		/*
7956 		 * NEWIDLE balancing is a source of latency, so preemptible
7957 		 * kernels will stop after the first task is detached to minimize
7958 		 * the critical section.
7959 		 */
7960 		if (env->idle == CPU_NEWLY_IDLE)
7961 			break;
7962 #endif
7963 
7964 		/*
7965 		 * We only want to steal up to the prescribed amount of
7966 		 * load/util/tasks.
7967 		 */
7968 		if (env->imbalance <= 0)
7969 			break;
7970 
7971 		continue;
7972 next:
7973 		list_move(&p->se.group_node, tasks);
7974 	}
7975 
7976 	/*
7977 	 * Right now, this is one of only two places we collect this stat
7978 	 * so we can safely collect detach_one_task() stats here rather
7979 	 * than inside detach_one_task().
7980 	 */
7981 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7982 
7983 	return detached;
7984 }
7985 
7986 /*
7987  * attach_task() -- attach the task detached by detach_task() to its new rq.
7988  */
7989 static void attach_task(struct rq *rq, struct task_struct *p)
7990 {
7991 	lockdep_assert_rq_held(rq);
7992 
7993 	BUG_ON(task_rq(p) != rq);
7994 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7995 	check_preempt_curr(rq, p, 0);
7996 }
7997 
7998 /*
7999  * attach_one_task() -- attaches the task returned from detach_one_task() to
8000  * its new rq.
8001  */
8002 static void attach_one_task(struct rq *rq, struct task_struct *p)
8003 {
8004 	struct rq_flags rf;
8005 
8006 	rq_lock(rq, &rf);
8007 	update_rq_clock(rq);
8008 	attach_task(rq, p);
8009 	rq_unlock(rq, &rf);
8010 }
8011 
8012 /*
8013  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8014  * new rq.
8015  */
8016 static void attach_tasks(struct lb_env *env)
8017 {
8018 	struct list_head *tasks = &env->tasks;
8019 	struct task_struct *p;
8020 	struct rq_flags rf;
8021 
8022 	rq_lock(env->dst_rq, &rf);
8023 	update_rq_clock(env->dst_rq);
8024 
8025 	while (!list_empty(tasks)) {
8026 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8027 		list_del_init(&p->se.group_node);
8028 
8029 		attach_task(env->dst_rq, p);
8030 	}
8031 
8032 	rq_unlock(env->dst_rq, &rf);
8033 }
8034 
8035 #ifdef CONFIG_NO_HZ_COMMON
8036 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8037 {
8038 	if (cfs_rq->avg.load_avg)
8039 		return true;
8040 
8041 	if (cfs_rq->avg.util_avg)
8042 		return true;
8043 
8044 	return false;
8045 }
8046 
8047 static inline bool others_have_blocked(struct rq *rq)
8048 {
8049 	if (READ_ONCE(rq->avg_rt.util_avg))
8050 		return true;
8051 
8052 	if (READ_ONCE(rq->avg_dl.util_avg))
8053 		return true;
8054 
8055 	if (thermal_load_avg(rq))
8056 		return true;
8057 
8058 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8059 	if (READ_ONCE(rq->avg_irq.util_avg))
8060 		return true;
8061 #endif
8062 
8063 	return false;
8064 }
8065 
8066 static inline void update_blocked_load_tick(struct rq *rq)
8067 {
8068 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8069 }
8070 
8071 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8072 {
8073 	if (!has_blocked)
8074 		rq->has_blocked_load = 0;
8075 }
8076 #else
8077 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8078 static inline bool others_have_blocked(struct rq *rq) { return false; }
8079 static inline void update_blocked_load_tick(struct rq *rq) {}
8080 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8081 #endif
8082 
8083 static bool __update_blocked_others(struct rq *rq, bool *done)
8084 {
8085 	const struct sched_class *curr_class;
8086 	u64 now = rq_clock_pelt(rq);
8087 	unsigned long thermal_pressure;
8088 	bool decayed;
8089 
8090 	/*
8091 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8092 	 * DL and IRQ signals have been updated before updating CFS.
8093 	 */
8094 	curr_class = rq->curr->sched_class;
8095 
8096 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8097 
8098 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8099 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8100 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8101 		  update_irq_load_avg(rq, 0);
8102 
8103 	if (others_have_blocked(rq))
8104 		*done = false;
8105 
8106 	return decayed;
8107 }
8108 
8109 #ifdef CONFIG_FAIR_GROUP_SCHED
8110 
8111 static bool __update_blocked_fair(struct rq *rq, bool *done)
8112 {
8113 	struct cfs_rq *cfs_rq, *pos;
8114 	bool decayed = false;
8115 	int cpu = cpu_of(rq);
8116 
8117 	/*
8118 	 * Iterates the task_group tree in a bottom up fashion, see
8119 	 * list_add_leaf_cfs_rq() for details.
8120 	 */
8121 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8122 		struct sched_entity *se;
8123 
8124 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8125 			update_tg_load_avg(cfs_rq);
8126 
8127 			if (cfs_rq == &rq->cfs)
8128 				decayed = true;
8129 		}
8130 
8131 		/* Propagate pending load changes to the parent, if any: */
8132 		se = cfs_rq->tg->se[cpu];
8133 		if (se && !skip_blocked_update(se))
8134 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8135 
8136 		/*
8137 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8138 		 * decayed cfs_rqs linger on the list.
8139 		 */
8140 		if (cfs_rq_is_decayed(cfs_rq))
8141 			list_del_leaf_cfs_rq(cfs_rq);
8142 
8143 		/* Don't need periodic decay once load/util_avg are null */
8144 		if (cfs_rq_has_blocked(cfs_rq))
8145 			*done = false;
8146 	}
8147 
8148 	return decayed;
8149 }
8150 
8151 /*
8152  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8153  * This needs to be done in a top-down fashion because the load of a child
8154  * group is a fraction of its parents load.
8155  */
8156 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8157 {
8158 	struct rq *rq = rq_of(cfs_rq);
8159 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8160 	unsigned long now = jiffies;
8161 	unsigned long load;
8162 
8163 	if (cfs_rq->last_h_load_update == now)
8164 		return;
8165 
8166 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8167 	for_each_sched_entity(se) {
8168 		cfs_rq = cfs_rq_of(se);
8169 		WRITE_ONCE(cfs_rq->h_load_next, se);
8170 		if (cfs_rq->last_h_load_update == now)
8171 			break;
8172 	}
8173 
8174 	if (!se) {
8175 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8176 		cfs_rq->last_h_load_update = now;
8177 	}
8178 
8179 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8180 		load = cfs_rq->h_load;
8181 		load = div64_ul(load * se->avg.load_avg,
8182 			cfs_rq_load_avg(cfs_rq) + 1);
8183 		cfs_rq = group_cfs_rq(se);
8184 		cfs_rq->h_load = load;
8185 		cfs_rq->last_h_load_update = now;
8186 	}
8187 }
8188 
8189 static unsigned long task_h_load(struct task_struct *p)
8190 {
8191 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8192 
8193 	update_cfs_rq_h_load(cfs_rq);
8194 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8195 			cfs_rq_load_avg(cfs_rq) + 1);
8196 }
8197 #else
8198 static bool __update_blocked_fair(struct rq *rq, bool *done)
8199 {
8200 	struct cfs_rq *cfs_rq = &rq->cfs;
8201 	bool decayed;
8202 
8203 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8204 	if (cfs_rq_has_blocked(cfs_rq))
8205 		*done = false;
8206 
8207 	return decayed;
8208 }
8209 
8210 static unsigned long task_h_load(struct task_struct *p)
8211 {
8212 	return p->se.avg.load_avg;
8213 }
8214 #endif
8215 
8216 static void update_blocked_averages(int cpu)
8217 {
8218 	bool decayed = false, done = true;
8219 	struct rq *rq = cpu_rq(cpu);
8220 	struct rq_flags rf;
8221 
8222 	rq_lock_irqsave(rq, &rf);
8223 	update_blocked_load_tick(rq);
8224 	update_rq_clock(rq);
8225 
8226 	decayed |= __update_blocked_others(rq, &done);
8227 	decayed |= __update_blocked_fair(rq, &done);
8228 
8229 	update_blocked_load_status(rq, !done);
8230 	if (decayed)
8231 		cpufreq_update_util(rq, 0);
8232 	rq_unlock_irqrestore(rq, &rf);
8233 }
8234 
8235 /********** Helpers for find_busiest_group ************************/
8236 
8237 /*
8238  * sg_lb_stats - stats of a sched_group required for load_balancing
8239  */
8240 struct sg_lb_stats {
8241 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8242 	unsigned long group_load; /* Total load over the CPUs of the group */
8243 	unsigned long group_capacity;
8244 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8245 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8246 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8247 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8248 	unsigned int idle_cpus;
8249 	unsigned int group_weight;
8250 	enum group_type group_type;
8251 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8252 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8253 #ifdef CONFIG_NUMA_BALANCING
8254 	unsigned int nr_numa_running;
8255 	unsigned int nr_preferred_running;
8256 #endif
8257 };
8258 
8259 /*
8260  * sd_lb_stats - Structure to store the statistics of a sched_domain
8261  *		 during load balancing.
8262  */
8263 struct sd_lb_stats {
8264 	struct sched_group *busiest;	/* Busiest group in this sd */
8265 	struct sched_group *local;	/* Local group in this sd */
8266 	unsigned long total_load;	/* Total load of all groups in sd */
8267 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8268 	unsigned long avg_load;	/* Average load across all groups in sd */
8269 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8270 
8271 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8272 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8273 };
8274 
8275 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8276 {
8277 	/*
8278 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8279 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8280 	 * We must however set busiest_stat::group_type and
8281 	 * busiest_stat::idle_cpus to the worst busiest group because
8282 	 * update_sd_pick_busiest() reads these before assignment.
8283 	 */
8284 	*sds = (struct sd_lb_stats){
8285 		.busiest = NULL,
8286 		.local = NULL,
8287 		.total_load = 0UL,
8288 		.total_capacity = 0UL,
8289 		.busiest_stat = {
8290 			.idle_cpus = UINT_MAX,
8291 			.group_type = group_has_spare,
8292 		},
8293 	};
8294 }
8295 
8296 static unsigned long scale_rt_capacity(int cpu)
8297 {
8298 	struct rq *rq = cpu_rq(cpu);
8299 	unsigned long max = arch_scale_cpu_capacity(cpu);
8300 	unsigned long used, free;
8301 	unsigned long irq;
8302 
8303 	irq = cpu_util_irq(rq);
8304 
8305 	if (unlikely(irq >= max))
8306 		return 1;
8307 
8308 	/*
8309 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8310 	 * (running and not running) with weights 0 and 1024 respectively.
8311 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8312 	 * average uses the actual delta max capacity(load).
8313 	 */
8314 	used = READ_ONCE(rq->avg_rt.util_avg);
8315 	used += READ_ONCE(rq->avg_dl.util_avg);
8316 	used += thermal_load_avg(rq);
8317 
8318 	if (unlikely(used >= max))
8319 		return 1;
8320 
8321 	free = max - used;
8322 
8323 	return scale_irq_capacity(free, irq, max);
8324 }
8325 
8326 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8327 {
8328 	unsigned long capacity = scale_rt_capacity(cpu);
8329 	struct sched_group *sdg = sd->groups;
8330 
8331 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8332 
8333 	if (!capacity)
8334 		capacity = 1;
8335 
8336 	cpu_rq(cpu)->cpu_capacity = capacity;
8337 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8338 
8339 	sdg->sgc->capacity = capacity;
8340 	sdg->sgc->min_capacity = capacity;
8341 	sdg->sgc->max_capacity = capacity;
8342 }
8343 
8344 void update_group_capacity(struct sched_domain *sd, int cpu)
8345 {
8346 	struct sched_domain *child = sd->child;
8347 	struct sched_group *group, *sdg = sd->groups;
8348 	unsigned long capacity, min_capacity, max_capacity;
8349 	unsigned long interval;
8350 
8351 	interval = msecs_to_jiffies(sd->balance_interval);
8352 	interval = clamp(interval, 1UL, max_load_balance_interval);
8353 	sdg->sgc->next_update = jiffies + interval;
8354 
8355 	if (!child) {
8356 		update_cpu_capacity(sd, cpu);
8357 		return;
8358 	}
8359 
8360 	capacity = 0;
8361 	min_capacity = ULONG_MAX;
8362 	max_capacity = 0;
8363 
8364 	if (child->flags & SD_OVERLAP) {
8365 		/*
8366 		 * SD_OVERLAP domains cannot assume that child groups
8367 		 * span the current group.
8368 		 */
8369 
8370 		for_each_cpu(cpu, sched_group_span(sdg)) {
8371 			unsigned long cpu_cap = capacity_of(cpu);
8372 
8373 			capacity += cpu_cap;
8374 			min_capacity = min(cpu_cap, min_capacity);
8375 			max_capacity = max(cpu_cap, max_capacity);
8376 		}
8377 	} else  {
8378 		/*
8379 		 * !SD_OVERLAP domains can assume that child groups
8380 		 * span the current group.
8381 		 */
8382 
8383 		group = child->groups;
8384 		do {
8385 			struct sched_group_capacity *sgc = group->sgc;
8386 
8387 			capacity += sgc->capacity;
8388 			min_capacity = min(sgc->min_capacity, min_capacity);
8389 			max_capacity = max(sgc->max_capacity, max_capacity);
8390 			group = group->next;
8391 		} while (group != child->groups);
8392 	}
8393 
8394 	sdg->sgc->capacity = capacity;
8395 	sdg->sgc->min_capacity = min_capacity;
8396 	sdg->sgc->max_capacity = max_capacity;
8397 }
8398 
8399 /*
8400  * Check whether the capacity of the rq has been noticeably reduced by side
8401  * activity. The imbalance_pct is used for the threshold.
8402  * Return true is the capacity is reduced
8403  */
8404 static inline int
8405 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8406 {
8407 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8408 				(rq->cpu_capacity_orig * 100));
8409 }
8410 
8411 /*
8412  * Check whether a rq has a misfit task and if it looks like we can actually
8413  * help that task: we can migrate the task to a CPU of higher capacity, or
8414  * the task's current CPU is heavily pressured.
8415  */
8416 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8417 {
8418 	return rq->misfit_task_load &&
8419 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8420 		 check_cpu_capacity(rq, sd));
8421 }
8422 
8423 /*
8424  * Group imbalance indicates (and tries to solve) the problem where balancing
8425  * groups is inadequate due to ->cpus_ptr constraints.
8426  *
8427  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8428  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8429  * Something like:
8430  *
8431  *	{ 0 1 2 3 } { 4 5 6 7 }
8432  *	        *     * * *
8433  *
8434  * If we were to balance group-wise we'd place two tasks in the first group and
8435  * two tasks in the second group. Clearly this is undesired as it will overload
8436  * cpu 3 and leave one of the CPUs in the second group unused.
8437  *
8438  * The current solution to this issue is detecting the skew in the first group
8439  * by noticing the lower domain failed to reach balance and had difficulty
8440  * moving tasks due to affinity constraints.
8441  *
8442  * When this is so detected; this group becomes a candidate for busiest; see
8443  * update_sd_pick_busiest(). And calculate_imbalance() and
8444  * find_busiest_group() avoid some of the usual balance conditions to allow it
8445  * to create an effective group imbalance.
8446  *
8447  * This is a somewhat tricky proposition since the next run might not find the
8448  * group imbalance and decide the groups need to be balanced again. A most
8449  * subtle and fragile situation.
8450  */
8451 
8452 static inline int sg_imbalanced(struct sched_group *group)
8453 {
8454 	return group->sgc->imbalance;
8455 }
8456 
8457 /*
8458  * group_has_capacity returns true if the group has spare capacity that could
8459  * be used by some tasks.
8460  * We consider that a group has spare capacity if the  * number of task is
8461  * smaller than the number of CPUs or if the utilization is lower than the
8462  * available capacity for CFS tasks.
8463  * For the latter, we use a threshold to stabilize the state, to take into
8464  * account the variance of the tasks' load and to return true if the available
8465  * capacity in meaningful for the load balancer.
8466  * As an example, an available capacity of 1% can appear but it doesn't make
8467  * any benefit for the load balance.
8468  */
8469 static inline bool
8470 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8471 {
8472 	if (sgs->sum_nr_running < sgs->group_weight)
8473 		return true;
8474 
8475 	if ((sgs->group_capacity * imbalance_pct) <
8476 			(sgs->group_runnable * 100))
8477 		return false;
8478 
8479 	if ((sgs->group_capacity * 100) >
8480 			(sgs->group_util * imbalance_pct))
8481 		return true;
8482 
8483 	return false;
8484 }
8485 
8486 /*
8487  *  group_is_overloaded returns true if the group has more tasks than it can
8488  *  handle.
8489  *  group_is_overloaded is not equals to !group_has_capacity because a group
8490  *  with the exact right number of tasks, has no more spare capacity but is not
8491  *  overloaded so both group_has_capacity and group_is_overloaded return
8492  *  false.
8493  */
8494 static inline bool
8495 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8496 {
8497 	if (sgs->sum_nr_running <= sgs->group_weight)
8498 		return false;
8499 
8500 	if ((sgs->group_capacity * 100) <
8501 			(sgs->group_util * imbalance_pct))
8502 		return true;
8503 
8504 	if ((sgs->group_capacity * imbalance_pct) <
8505 			(sgs->group_runnable * 100))
8506 		return true;
8507 
8508 	return false;
8509 }
8510 
8511 static inline enum
8512 group_type group_classify(unsigned int imbalance_pct,
8513 			  struct sched_group *group,
8514 			  struct sg_lb_stats *sgs)
8515 {
8516 	if (group_is_overloaded(imbalance_pct, sgs))
8517 		return group_overloaded;
8518 
8519 	if (sg_imbalanced(group))
8520 		return group_imbalanced;
8521 
8522 	if (sgs->group_asym_packing)
8523 		return group_asym_packing;
8524 
8525 	if (sgs->group_misfit_task_load)
8526 		return group_misfit_task;
8527 
8528 	if (!group_has_capacity(imbalance_pct, sgs))
8529 		return group_fully_busy;
8530 
8531 	return group_has_spare;
8532 }
8533 
8534 /**
8535  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8536  * @env: The load balancing environment.
8537  * @group: sched_group whose statistics are to be updated.
8538  * @sgs: variable to hold the statistics for this group.
8539  * @sg_status: Holds flag indicating the status of the sched_group
8540  */
8541 static inline void update_sg_lb_stats(struct lb_env *env,
8542 				      struct sched_group *group,
8543 				      struct sg_lb_stats *sgs,
8544 				      int *sg_status)
8545 {
8546 	int i, nr_running, local_group;
8547 
8548 	memset(sgs, 0, sizeof(*sgs));
8549 
8550 	local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8551 
8552 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8553 		struct rq *rq = cpu_rq(i);
8554 
8555 		sgs->group_load += cpu_load(rq);
8556 		sgs->group_util += cpu_util(i);
8557 		sgs->group_runnable += cpu_runnable(rq);
8558 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8559 
8560 		nr_running = rq->nr_running;
8561 		sgs->sum_nr_running += nr_running;
8562 
8563 		if (nr_running > 1)
8564 			*sg_status |= SG_OVERLOAD;
8565 
8566 		if (cpu_overutilized(i))
8567 			*sg_status |= SG_OVERUTILIZED;
8568 
8569 #ifdef CONFIG_NUMA_BALANCING
8570 		sgs->nr_numa_running += rq->nr_numa_running;
8571 		sgs->nr_preferred_running += rq->nr_preferred_running;
8572 #endif
8573 		/*
8574 		 * No need to call idle_cpu() if nr_running is not 0
8575 		 */
8576 		if (!nr_running && idle_cpu(i)) {
8577 			sgs->idle_cpus++;
8578 			/* Idle cpu can't have misfit task */
8579 			continue;
8580 		}
8581 
8582 		if (local_group)
8583 			continue;
8584 
8585 		/* Check for a misfit task on the cpu */
8586 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8587 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8588 			sgs->group_misfit_task_load = rq->misfit_task_load;
8589 			*sg_status |= SG_OVERLOAD;
8590 		}
8591 	}
8592 
8593 	/* Check if dst CPU is idle and preferred to this group */
8594 	if (env->sd->flags & SD_ASYM_PACKING &&
8595 	    env->idle != CPU_NOT_IDLE &&
8596 	    sgs->sum_h_nr_running &&
8597 	    sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8598 		sgs->group_asym_packing = 1;
8599 	}
8600 
8601 	sgs->group_capacity = group->sgc->capacity;
8602 
8603 	sgs->group_weight = group->group_weight;
8604 
8605 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8606 
8607 	/* Computing avg_load makes sense only when group is overloaded */
8608 	if (sgs->group_type == group_overloaded)
8609 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8610 				sgs->group_capacity;
8611 }
8612 
8613 /**
8614  * update_sd_pick_busiest - return 1 on busiest group
8615  * @env: The load balancing environment.
8616  * @sds: sched_domain statistics
8617  * @sg: sched_group candidate to be checked for being the busiest
8618  * @sgs: sched_group statistics
8619  *
8620  * Determine if @sg is a busier group than the previously selected
8621  * busiest group.
8622  *
8623  * Return: %true if @sg is a busier group than the previously selected
8624  * busiest group. %false otherwise.
8625  */
8626 static bool update_sd_pick_busiest(struct lb_env *env,
8627 				   struct sd_lb_stats *sds,
8628 				   struct sched_group *sg,
8629 				   struct sg_lb_stats *sgs)
8630 {
8631 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8632 
8633 	/* Make sure that there is at least one task to pull */
8634 	if (!sgs->sum_h_nr_running)
8635 		return false;
8636 
8637 	/*
8638 	 * Don't try to pull misfit tasks we can't help.
8639 	 * We can use max_capacity here as reduction in capacity on some
8640 	 * CPUs in the group should either be possible to resolve
8641 	 * internally or be covered by avg_load imbalance (eventually).
8642 	 */
8643 	if (sgs->group_type == group_misfit_task &&
8644 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8645 	     sds->local_stat.group_type != group_has_spare))
8646 		return false;
8647 
8648 	if (sgs->group_type > busiest->group_type)
8649 		return true;
8650 
8651 	if (sgs->group_type < busiest->group_type)
8652 		return false;
8653 
8654 	/*
8655 	 * The candidate and the current busiest group are the same type of
8656 	 * group. Let check which one is the busiest according to the type.
8657 	 */
8658 
8659 	switch (sgs->group_type) {
8660 	case group_overloaded:
8661 		/* Select the overloaded group with highest avg_load. */
8662 		if (sgs->avg_load <= busiest->avg_load)
8663 			return false;
8664 		break;
8665 
8666 	case group_imbalanced:
8667 		/*
8668 		 * Select the 1st imbalanced group as we don't have any way to
8669 		 * choose one more than another.
8670 		 */
8671 		return false;
8672 
8673 	case group_asym_packing:
8674 		/* Prefer to move from lowest priority CPU's work */
8675 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8676 			return false;
8677 		break;
8678 
8679 	case group_misfit_task:
8680 		/*
8681 		 * If we have more than one misfit sg go with the biggest
8682 		 * misfit.
8683 		 */
8684 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8685 			return false;
8686 		break;
8687 
8688 	case group_fully_busy:
8689 		/*
8690 		 * Select the fully busy group with highest avg_load. In
8691 		 * theory, there is no need to pull task from such kind of
8692 		 * group because tasks have all compute capacity that they need
8693 		 * but we can still improve the overall throughput by reducing
8694 		 * contention when accessing shared HW resources.
8695 		 *
8696 		 * XXX for now avg_load is not computed and always 0 so we
8697 		 * select the 1st one.
8698 		 */
8699 		if (sgs->avg_load <= busiest->avg_load)
8700 			return false;
8701 		break;
8702 
8703 	case group_has_spare:
8704 		/*
8705 		 * Select not overloaded group with lowest number of idle cpus
8706 		 * and highest number of running tasks. We could also compare
8707 		 * the spare capacity which is more stable but it can end up
8708 		 * that the group has less spare capacity but finally more idle
8709 		 * CPUs which means less opportunity to pull tasks.
8710 		 */
8711 		if (sgs->idle_cpus > busiest->idle_cpus)
8712 			return false;
8713 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8714 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
8715 			return false;
8716 
8717 		break;
8718 	}
8719 
8720 	/*
8721 	 * Candidate sg has no more than one task per CPU and has higher
8722 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8723 	 * throughput. Maximize throughput, power/energy consequences are not
8724 	 * considered.
8725 	 */
8726 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8727 	    (sgs->group_type <= group_fully_busy) &&
8728 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8729 		return false;
8730 
8731 	return true;
8732 }
8733 
8734 #ifdef CONFIG_NUMA_BALANCING
8735 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8736 {
8737 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8738 		return regular;
8739 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8740 		return remote;
8741 	return all;
8742 }
8743 
8744 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8745 {
8746 	if (rq->nr_running > rq->nr_numa_running)
8747 		return regular;
8748 	if (rq->nr_running > rq->nr_preferred_running)
8749 		return remote;
8750 	return all;
8751 }
8752 #else
8753 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8754 {
8755 	return all;
8756 }
8757 
8758 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8759 {
8760 	return regular;
8761 }
8762 #endif /* CONFIG_NUMA_BALANCING */
8763 
8764 
8765 struct sg_lb_stats;
8766 
8767 /*
8768  * task_running_on_cpu - return 1 if @p is running on @cpu.
8769  */
8770 
8771 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8772 {
8773 	/* Task has no contribution or is new */
8774 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8775 		return 0;
8776 
8777 	if (task_on_rq_queued(p))
8778 		return 1;
8779 
8780 	return 0;
8781 }
8782 
8783 /**
8784  * idle_cpu_without - would a given CPU be idle without p ?
8785  * @cpu: the processor on which idleness is tested.
8786  * @p: task which should be ignored.
8787  *
8788  * Return: 1 if the CPU would be idle. 0 otherwise.
8789  */
8790 static int idle_cpu_without(int cpu, struct task_struct *p)
8791 {
8792 	struct rq *rq = cpu_rq(cpu);
8793 
8794 	if (rq->curr != rq->idle && rq->curr != p)
8795 		return 0;
8796 
8797 	/*
8798 	 * rq->nr_running can't be used but an updated version without the
8799 	 * impact of p on cpu must be used instead. The updated nr_running
8800 	 * be computed and tested before calling idle_cpu_without().
8801 	 */
8802 
8803 #ifdef CONFIG_SMP
8804 	if (rq->ttwu_pending)
8805 		return 0;
8806 #endif
8807 
8808 	return 1;
8809 }
8810 
8811 /*
8812  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8813  * @sd: The sched_domain level to look for idlest group.
8814  * @group: sched_group whose statistics are to be updated.
8815  * @sgs: variable to hold the statistics for this group.
8816  * @p: The task for which we look for the idlest group/CPU.
8817  */
8818 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8819 					  struct sched_group *group,
8820 					  struct sg_lb_stats *sgs,
8821 					  struct task_struct *p)
8822 {
8823 	int i, nr_running;
8824 
8825 	memset(sgs, 0, sizeof(*sgs));
8826 
8827 	for_each_cpu(i, sched_group_span(group)) {
8828 		struct rq *rq = cpu_rq(i);
8829 		unsigned int local;
8830 
8831 		sgs->group_load += cpu_load_without(rq, p);
8832 		sgs->group_util += cpu_util_without(i, p);
8833 		sgs->group_runnable += cpu_runnable_without(rq, p);
8834 		local = task_running_on_cpu(i, p);
8835 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8836 
8837 		nr_running = rq->nr_running - local;
8838 		sgs->sum_nr_running += nr_running;
8839 
8840 		/*
8841 		 * No need to call idle_cpu_without() if nr_running is not 0
8842 		 */
8843 		if (!nr_running && idle_cpu_without(i, p))
8844 			sgs->idle_cpus++;
8845 
8846 	}
8847 
8848 	/* Check if task fits in the group */
8849 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
8850 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
8851 		sgs->group_misfit_task_load = 1;
8852 	}
8853 
8854 	sgs->group_capacity = group->sgc->capacity;
8855 
8856 	sgs->group_weight = group->group_weight;
8857 
8858 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8859 
8860 	/*
8861 	 * Computing avg_load makes sense only when group is fully busy or
8862 	 * overloaded
8863 	 */
8864 	if (sgs->group_type == group_fully_busy ||
8865 		sgs->group_type == group_overloaded)
8866 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8867 				sgs->group_capacity;
8868 }
8869 
8870 static bool update_pick_idlest(struct sched_group *idlest,
8871 			       struct sg_lb_stats *idlest_sgs,
8872 			       struct sched_group *group,
8873 			       struct sg_lb_stats *sgs)
8874 {
8875 	if (sgs->group_type < idlest_sgs->group_type)
8876 		return true;
8877 
8878 	if (sgs->group_type > idlest_sgs->group_type)
8879 		return false;
8880 
8881 	/*
8882 	 * The candidate and the current idlest group are the same type of
8883 	 * group. Let check which one is the idlest according to the type.
8884 	 */
8885 
8886 	switch (sgs->group_type) {
8887 	case group_overloaded:
8888 	case group_fully_busy:
8889 		/* Select the group with lowest avg_load. */
8890 		if (idlest_sgs->avg_load <= sgs->avg_load)
8891 			return false;
8892 		break;
8893 
8894 	case group_imbalanced:
8895 	case group_asym_packing:
8896 		/* Those types are not used in the slow wakeup path */
8897 		return false;
8898 
8899 	case group_misfit_task:
8900 		/* Select group with the highest max capacity */
8901 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8902 			return false;
8903 		break;
8904 
8905 	case group_has_spare:
8906 		/* Select group with most idle CPUs */
8907 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8908 			return false;
8909 
8910 		/* Select group with lowest group_util */
8911 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8912 			idlest_sgs->group_util <= sgs->group_util)
8913 			return false;
8914 
8915 		break;
8916 	}
8917 
8918 	return true;
8919 }
8920 
8921 /*
8922  * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8923  * This is an approximation as the number of running tasks may not be
8924  * related to the number of busy CPUs due to sched_setaffinity.
8925  */
8926 static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8927 {
8928 	return (dst_running < (dst_weight >> 2));
8929 }
8930 
8931 /*
8932  * find_idlest_group() finds and returns the least busy CPU group within the
8933  * domain.
8934  *
8935  * Assumes p is allowed on at least one CPU in sd.
8936  */
8937 static struct sched_group *
8938 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8939 {
8940 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8941 	struct sg_lb_stats local_sgs, tmp_sgs;
8942 	struct sg_lb_stats *sgs;
8943 	unsigned long imbalance;
8944 	struct sg_lb_stats idlest_sgs = {
8945 			.avg_load = UINT_MAX,
8946 			.group_type = group_overloaded,
8947 	};
8948 
8949 	do {
8950 		int local_group;
8951 
8952 		/* Skip over this group if it has no CPUs allowed */
8953 		if (!cpumask_intersects(sched_group_span(group),
8954 					p->cpus_ptr))
8955 			continue;
8956 
8957 		/* Skip over this group if no cookie matched */
8958 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
8959 			continue;
8960 
8961 		local_group = cpumask_test_cpu(this_cpu,
8962 					       sched_group_span(group));
8963 
8964 		if (local_group) {
8965 			sgs = &local_sgs;
8966 			local = group;
8967 		} else {
8968 			sgs = &tmp_sgs;
8969 		}
8970 
8971 		update_sg_wakeup_stats(sd, group, sgs, p);
8972 
8973 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8974 			idlest = group;
8975 			idlest_sgs = *sgs;
8976 		}
8977 
8978 	} while (group = group->next, group != sd->groups);
8979 
8980 
8981 	/* There is no idlest group to push tasks to */
8982 	if (!idlest)
8983 		return NULL;
8984 
8985 	/* The local group has been skipped because of CPU affinity */
8986 	if (!local)
8987 		return idlest;
8988 
8989 	/*
8990 	 * If the local group is idler than the selected idlest group
8991 	 * don't try and push the task.
8992 	 */
8993 	if (local_sgs.group_type < idlest_sgs.group_type)
8994 		return NULL;
8995 
8996 	/*
8997 	 * If the local group is busier than the selected idlest group
8998 	 * try and push the task.
8999 	 */
9000 	if (local_sgs.group_type > idlest_sgs.group_type)
9001 		return idlest;
9002 
9003 	switch (local_sgs.group_type) {
9004 	case group_overloaded:
9005 	case group_fully_busy:
9006 
9007 		/* Calculate allowed imbalance based on load */
9008 		imbalance = scale_load_down(NICE_0_LOAD) *
9009 				(sd->imbalance_pct-100) / 100;
9010 
9011 		/*
9012 		 * When comparing groups across NUMA domains, it's possible for
9013 		 * the local domain to be very lightly loaded relative to the
9014 		 * remote domains but "imbalance" skews the comparison making
9015 		 * remote CPUs look much more favourable. When considering
9016 		 * cross-domain, add imbalance to the load on the remote node
9017 		 * and consider staying local.
9018 		 */
9019 
9020 		if ((sd->flags & SD_NUMA) &&
9021 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9022 			return NULL;
9023 
9024 		/*
9025 		 * If the local group is less loaded than the selected
9026 		 * idlest group don't try and push any tasks.
9027 		 */
9028 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9029 			return NULL;
9030 
9031 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9032 			return NULL;
9033 		break;
9034 
9035 	case group_imbalanced:
9036 	case group_asym_packing:
9037 		/* Those type are not used in the slow wakeup path */
9038 		return NULL;
9039 
9040 	case group_misfit_task:
9041 		/* Select group with the highest max capacity */
9042 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9043 			return NULL;
9044 		break;
9045 
9046 	case group_has_spare:
9047 		if (sd->flags & SD_NUMA) {
9048 #ifdef CONFIG_NUMA_BALANCING
9049 			int idlest_cpu;
9050 			/*
9051 			 * If there is spare capacity at NUMA, try to select
9052 			 * the preferred node
9053 			 */
9054 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9055 				return NULL;
9056 
9057 			idlest_cpu = cpumask_first(sched_group_span(idlest));
9058 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9059 				return idlest;
9060 #endif
9061 			/*
9062 			 * Otherwise, keep the task on this node to stay close
9063 			 * its wakeup source and improve locality. If there is
9064 			 * a real need of migration, periodic load balance will
9065 			 * take care of it.
9066 			 */
9067 			if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
9068 				return NULL;
9069 		}
9070 
9071 		/*
9072 		 * Select group with highest number of idle CPUs. We could also
9073 		 * compare the utilization which is more stable but it can end
9074 		 * up that the group has less spare capacity but finally more
9075 		 * idle CPUs which means more opportunity to run task.
9076 		 */
9077 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9078 			return NULL;
9079 		break;
9080 	}
9081 
9082 	return idlest;
9083 }
9084 
9085 /**
9086  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9087  * @env: The load balancing environment.
9088  * @sds: variable to hold the statistics for this sched_domain.
9089  */
9090 
9091 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9092 {
9093 	struct sched_domain *child = env->sd->child;
9094 	struct sched_group *sg = env->sd->groups;
9095 	struct sg_lb_stats *local = &sds->local_stat;
9096 	struct sg_lb_stats tmp_sgs;
9097 	int sg_status = 0;
9098 
9099 	do {
9100 		struct sg_lb_stats *sgs = &tmp_sgs;
9101 		int local_group;
9102 
9103 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9104 		if (local_group) {
9105 			sds->local = sg;
9106 			sgs = local;
9107 
9108 			if (env->idle != CPU_NEWLY_IDLE ||
9109 			    time_after_eq(jiffies, sg->sgc->next_update))
9110 				update_group_capacity(env->sd, env->dst_cpu);
9111 		}
9112 
9113 		update_sg_lb_stats(env, sg, sgs, &sg_status);
9114 
9115 		if (local_group)
9116 			goto next_group;
9117 
9118 
9119 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9120 			sds->busiest = sg;
9121 			sds->busiest_stat = *sgs;
9122 		}
9123 
9124 next_group:
9125 		/* Now, start updating sd_lb_stats */
9126 		sds->total_load += sgs->group_load;
9127 		sds->total_capacity += sgs->group_capacity;
9128 
9129 		sg = sg->next;
9130 	} while (sg != env->sd->groups);
9131 
9132 	/* Tag domain that child domain prefers tasks go to siblings first */
9133 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9134 
9135 
9136 	if (env->sd->flags & SD_NUMA)
9137 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9138 
9139 	if (!env->sd->parent) {
9140 		struct root_domain *rd = env->dst_rq->rd;
9141 
9142 		/* update overload indicator if we are at root domain */
9143 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9144 
9145 		/* Update over-utilization (tipping point, U >= 0) indicator */
9146 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9147 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9148 	} else if (sg_status & SG_OVERUTILIZED) {
9149 		struct root_domain *rd = env->dst_rq->rd;
9150 
9151 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9152 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9153 	}
9154 }
9155 
9156 #define NUMA_IMBALANCE_MIN 2
9157 
9158 static inline long adjust_numa_imbalance(int imbalance,
9159 				int dst_running, int dst_weight)
9160 {
9161 	if (!allow_numa_imbalance(dst_running, dst_weight))
9162 		return imbalance;
9163 
9164 	/*
9165 	 * Allow a small imbalance based on a simple pair of communicating
9166 	 * tasks that remain local when the destination is lightly loaded.
9167 	 */
9168 	if (imbalance <= NUMA_IMBALANCE_MIN)
9169 		return 0;
9170 
9171 	return imbalance;
9172 }
9173 
9174 /**
9175  * calculate_imbalance - Calculate the amount of imbalance present within the
9176  *			 groups of a given sched_domain during load balance.
9177  * @env: load balance environment
9178  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9179  */
9180 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9181 {
9182 	struct sg_lb_stats *local, *busiest;
9183 
9184 	local = &sds->local_stat;
9185 	busiest = &sds->busiest_stat;
9186 
9187 	if (busiest->group_type == group_misfit_task) {
9188 		/* Set imbalance to allow misfit tasks to be balanced. */
9189 		env->migration_type = migrate_misfit;
9190 		env->imbalance = 1;
9191 		return;
9192 	}
9193 
9194 	if (busiest->group_type == group_asym_packing) {
9195 		/*
9196 		 * In case of asym capacity, we will try to migrate all load to
9197 		 * the preferred CPU.
9198 		 */
9199 		env->migration_type = migrate_task;
9200 		env->imbalance = busiest->sum_h_nr_running;
9201 		return;
9202 	}
9203 
9204 	if (busiest->group_type == group_imbalanced) {
9205 		/*
9206 		 * In the group_imb case we cannot rely on group-wide averages
9207 		 * to ensure CPU-load equilibrium, try to move any task to fix
9208 		 * the imbalance. The next load balance will take care of
9209 		 * balancing back the system.
9210 		 */
9211 		env->migration_type = migrate_task;
9212 		env->imbalance = 1;
9213 		return;
9214 	}
9215 
9216 	/*
9217 	 * Try to use spare capacity of local group without overloading it or
9218 	 * emptying busiest.
9219 	 */
9220 	if (local->group_type == group_has_spare) {
9221 		if ((busiest->group_type > group_fully_busy) &&
9222 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9223 			/*
9224 			 * If busiest is overloaded, try to fill spare
9225 			 * capacity. This might end up creating spare capacity
9226 			 * in busiest or busiest still being overloaded but
9227 			 * there is no simple way to directly compute the
9228 			 * amount of load to migrate in order to balance the
9229 			 * system.
9230 			 */
9231 			env->migration_type = migrate_util;
9232 			env->imbalance = max(local->group_capacity, local->group_util) -
9233 					 local->group_util;
9234 
9235 			/*
9236 			 * In some cases, the group's utilization is max or even
9237 			 * higher than capacity because of migrations but the
9238 			 * local CPU is (newly) idle. There is at least one
9239 			 * waiting task in this overloaded busiest group. Let's
9240 			 * try to pull it.
9241 			 */
9242 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9243 				env->migration_type = migrate_task;
9244 				env->imbalance = 1;
9245 			}
9246 
9247 			return;
9248 		}
9249 
9250 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9251 			unsigned int nr_diff = busiest->sum_nr_running;
9252 			/*
9253 			 * When prefer sibling, evenly spread running tasks on
9254 			 * groups.
9255 			 */
9256 			env->migration_type = migrate_task;
9257 			lsub_positive(&nr_diff, local->sum_nr_running);
9258 			env->imbalance = nr_diff >> 1;
9259 		} else {
9260 
9261 			/*
9262 			 * If there is no overload, we just want to even the number of
9263 			 * idle cpus.
9264 			 */
9265 			env->migration_type = migrate_task;
9266 			env->imbalance = max_t(long, 0, (local->idle_cpus -
9267 						 busiest->idle_cpus) >> 1);
9268 		}
9269 
9270 		/* Consider allowing a small imbalance between NUMA groups */
9271 		if (env->sd->flags & SD_NUMA) {
9272 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9273 				busiest->sum_nr_running, busiest->group_weight);
9274 		}
9275 
9276 		return;
9277 	}
9278 
9279 	/*
9280 	 * Local is fully busy but has to take more load to relieve the
9281 	 * busiest group
9282 	 */
9283 	if (local->group_type < group_overloaded) {
9284 		/*
9285 		 * Local will become overloaded so the avg_load metrics are
9286 		 * finally needed.
9287 		 */
9288 
9289 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9290 				  local->group_capacity;
9291 
9292 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9293 				sds->total_capacity;
9294 		/*
9295 		 * If the local group is more loaded than the selected
9296 		 * busiest group don't try to pull any tasks.
9297 		 */
9298 		if (local->avg_load >= busiest->avg_load) {
9299 			env->imbalance = 0;
9300 			return;
9301 		}
9302 	}
9303 
9304 	/*
9305 	 * Both group are or will become overloaded and we're trying to get all
9306 	 * the CPUs to the average_load, so we don't want to push ourselves
9307 	 * above the average load, nor do we wish to reduce the max loaded CPU
9308 	 * below the average load. At the same time, we also don't want to
9309 	 * reduce the group load below the group capacity. Thus we look for
9310 	 * the minimum possible imbalance.
9311 	 */
9312 	env->migration_type = migrate_load;
9313 	env->imbalance = min(
9314 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9315 		(sds->avg_load - local->avg_load) * local->group_capacity
9316 	) / SCHED_CAPACITY_SCALE;
9317 }
9318 
9319 /******* find_busiest_group() helpers end here *********************/
9320 
9321 /*
9322  * Decision matrix according to the local and busiest group type:
9323  *
9324  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9325  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9326  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9327  * misfit_task      force     N/A        N/A    N/A  force      force
9328  * asym_packing     force     force      N/A    N/A  force      force
9329  * imbalanced       force     force      N/A    N/A  force      force
9330  * overloaded       force     force      N/A    N/A  force      avg_load
9331  *
9332  * N/A :      Not Applicable because already filtered while updating
9333  *            statistics.
9334  * balanced : The system is balanced for these 2 groups.
9335  * force :    Calculate the imbalance as load migration is probably needed.
9336  * avg_load : Only if imbalance is significant enough.
9337  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9338  *            different in groups.
9339  */
9340 
9341 /**
9342  * find_busiest_group - Returns the busiest group within the sched_domain
9343  * if there is an imbalance.
9344  *
9345  * Also calculates the amount of runnable load which should be moved
9346  * to restore balance.
9347  *
9348  * @env: The load balancing environment.
9349  *
9350  * Return:	- The busiest group if imbalance exists.
9351  */
9352 static struct sched_group *find_busiest_group(struct lb_env *env)
9353 {
9354 	struct sg_lb_stats *local, *busiest;
9355 	struct sd_lb_stats sds;
9356 
9357 	init_sd_lb_stats(&sds);
9358 
9359 	/*
9360 	 * Compute the various statistics relevant for load balancing at
9361 	 * this level.
9362 	 */
9363 	update_sd_lb_stats(env, &sds);
9364 
9365 	if (sched_energy_enabled()) {
9366 		struct root_domain *rd = env->dst_rq->rd;
9367 
9368 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9369 			goto out_balanced;
9370 	}
9371 
9372 	local = &sds.local_stat;
9373 	busiest = &sds.busiest_stat;
9374 
9375 	/* There is no busy sibling group to pull tasks from */
9376 	if (!sds.busiest)
9377 		goto out_balanced;
9378 
9379 	/* Misfit tasks should be dealt with regardless of the avg load */
9380 	if (busiest->group_type == group_misfit_task)
9381 		goto force_balance;
9382 
9383 	/* ASYM feature bypasses nice load balance check */
9384 	if (busiest->group_type == group_asym_packing)
9385 		goto force_balance;
9386 
9387 	/*
9388 	 * If the busiest group is imbalanced the below checks don't
9389 	 * work because they assume all things are equal, which typically
9390 	 * isn't true due to cpus_ptr constraints and the like.
9391 	 */
9392 	if (busiest->group_type == group_imbalanced)
9393 		goto force_balance;
9394 
9395 	/*
9396 	 * If the local group is busier than the selected busiest group
9397 	 * don't try and pull any tasks.
9398 	 */
9399 	if (local->group_type > busiest->group_type)
9400 		goto out_balanced;
9401 
9402 	/*
9403 	 * When groups are overloaded, use the avg_load to ensure fairness
9404 	 * between tasks.
9405 	 */
9406 	if (local->group_type == group_overloaded) {
9407 		/*
9408 		 * If the local group is more loaded than the selected
9409 		 * busiest group don't try to pull any tasks.
9410 		 */
9411 		if (local->avg_load >= busiest->avg_load)
9412 			goto out_balanced;
9413 
9414 		/* XXX broken for overlapping NUMA groups */
9415 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9416 				sds.total_capacity;
9417 
9418 		/*
9419 		 * Don't pull any tasks if this group is already above the
9420 		 * domain average load.
9421 		 */
9422 		if (local->avg_load >= sds.avg_load)
9423 			goto out_balanced;
9424 
9425 		/*
9426 		 * If the busiest group is more loaded, use imbalance_pct to be
9427 		 * conservative.
9428 		 */
9429 		if (100 * busiest->avg_load <=
9430 				env->sd->imbalance_pct * local->avg_load)
9431 			goto out_balanced;
9432 	}
9433 
9434 	/* Try to move all excess tasks to child's sibling domain */
9435 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9436 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9437 		goto force_balance;
9438 
9439 	if (busiest->group_type != group_overloaded) {
9440 		if (env->idle == CPU_NOT_IDLE)
9441 			/*
9442 			 * If the busiest group is not overloaded (and as a
9443 			 * result the local one too) but this CPU is already
9444 			 * busy, let another idle CPU try to pull task.
9445 			 */
9446 			goto out_balanced;
9447 
9448 		if (busiest->group_weight > 1 &&
9449 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9450 			/*
9451 			 * If the busiest group is not overloaded
9452 			 * and there is no imbalance between this and busiest
9453 			 * group wrt idle CPUs, it is balanced. The imbalance
9454 			 * becomes significant if the diff is greater than 1
9455 			 * otherwise we might end up to just move the imbalance
9456 			 * on another group. Of course this applies only if
9457 			 * there is more than 1 CPU per group.
9458 			 */
9459 			goto out_balanced;
9460 
9461 		if (busiest->sum_h_nr_running == 1)
9462 			/*
9463 			 * busiest doesn't have any tasks waiting to run
9464 			 */
9465 			goto out_balanced;
9466 	}
9467 
9468 force_balance:
9469 	/* Looks like there is an imbalance. Compute it */
9470 	calculate_imbalance(env, &sds);
9471 	return env->imbalance ? sds.busiest : NULL;
9472 
9473 out_balanced:
9474 	env->imbalance = 0;
9475 	return NULL;
9476 }
9477 
9478 /*
9479  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9480  */
9481 static struct rq *find_busiest_queue(struct lb_env *env,
9482 				     struct sched_group *group)
9483 {
9484 	struct rq *busiest = NULL, *rq;
9485 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9486 	unsigned int busiest_nr = 0;
9487 	int i;
9488 
9489 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9490 		unsigned long capacity, load, util;
9491 		unsigned int nr_running;
9492 		enum fbq_type rt;
9493 
9494 		rq = cpu_rq(i);
9495 		rt = fbq_classify_rq(rq);
9496 
9497 		/*
9498 		 * We classify groups/runqueues into three groups:
9499 		 *  - regular: there are !numa tasks
9500 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9501 		 *  - all:     there is no distinction
9502 		 *
9503 		 * In order to avoid migrating ideally placed numa tasks,
9504 		 * ignore those when there's better options.
9505 		 *
9506 		 * If we ignore the actual busiest queue to migrate another
9507 		 * task, the next balance pass can still reduce the busiest
9508 		 * queue by moving tasks around inside the node.
9509 		 *
9510 		 * If we cannot move enough load due to this classification
9511 		 * the next pass will adjust the group classification and
9512 		 * allow migration of more tasks.
9513 		 *
9514 		 * Both cases only affect the total convergence complexity.
9515 		 */
9516 		if (rt > env->fbq_type)
9517 			continue;
9518 
9519 		nr_running = rq->cfs.h_nr_running;
9520 		if (!nr_running)
9521 			continue;
9522 
9523 		capacity = capacity_of(i);
9524 
9525 		/*
9526 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9527 		 * eventually lead to active_balancing high->low capacity.
9528 		 * Higher per-CPU capacity is considered better than balancing
9529 		 * average load.
9530 		 */
9531 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9532 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9533 		    nr_running == 1)
9534 			continue;
9535 
9536 		switch (env->migration_type) {
9537 		case migrate_load:
9538 			/*
9539 			 * When comparing with load imbalance, use cpu_load()
9540 			 * which is not scaled with the CPU capacity.
9541 			 */
9542 			load = cpu_load(rq);
9543 
9544 			if (nr_running == 1 && load > env->imbalance &&
9545 			    !check_cpu_capacity(rq, env->sd))
9546 				break;
9547 
9548 			/*
9549 			 * For the load comparisons with the other CPUs,
9550 			 * consider the cpu_load() scaled with the CPU
9551 			 * capacity, so that the load can be moved away
9552 			 * from the CPU that is potentially running at a
9553 			 * lower capacity.
9554 			 *
9555 			 * Thus we're looking for max(load_i / capacity_i),
9556 			 * crosswise multiplication to rid ourselves of the
9557 			 * division works out to:
9558 			 * load_i * capacity_j > load_j * capacity_i;
9559 			 * where j is our previous maximum.
9560 			 */
9561 			if (load * busiest_capacity > busiest_load * capacity) {
9562 				busiest_load = load;
9563 				busiest_capacity = capacity;
9564 				busiest = rq;
9565 			}
9566 			break;
9567 
9568 		case migrate_util:
9569 			util = cpu_util(cpu_of(rq));
9570 
9571 			/*
9572 			 * Don't try to pull utilization from a CPU with one
9573 			 * running task. Whatever its utilization, we will fail
9574 			 * detach the task.
9575 			 */
9576 			if (nr_running <= 1)
9577 				continue;
9578 
9579 			if (busiest_util < util) {
9580 				busiest_util = util;
9581 				busiest = rq;
9582 			}
9583 			break;
9584 
9585 		case migrate_task:
9586 			if (busiest_nr < nr_running) {
9587 				busiest_nr = nr_running;
9588 				busiest = rq;
9589 			}
9590 			break;
9591 
9592 		case migrate_misfit:
9593 			/*
9594 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9595 			 * simply seek the "biggest" misfit task.
9596 			 */
9597 			if (rq->misfit_task_load > busiest_load) {
9598 				busiest_load = rq->misfit_task_load;
9599 				busiest = rq;
9600 			}
9601 
9602 			break;
9603 
9604 		}
9605 	}
9606 
9607 	return busiest;
9608 }
9609 
9610 /*
9611  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9612  * so long as it is large enough.
9613  */
9614 #define MAX_PINNED_INTERVAL	512
9615 
9616 static inline bool
9617 asym_active_balance(struct lb_env *env)
9618 {
9619 	/*
9620 	 * ASYM_PACKING needs to force migrate tasks from busy but
9621 	 * lower priority CPUs in order to pack all tasks in the
9622 	 * highest priority CPUs.
9623 	 */
9624 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9625 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9626 }
9627 
9628 static inline bool
9629 imbalanced_active_balance(struct lb_env *env)
9630 {
9631 	struct sched_domain *sd = env->sd;
9632 
9633 	/*
9634 	 * The imbalanced case includes the case of pinned tasks preventing a fair
9635 	 * distribution of the load on the system but also the even distribution of the
9636 	 * threads on a system with spare capacity
9637 	 */
9638 	if ((env->migration_type == migrate_task) &&
9639 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
9640 		return 1;
9641 
9642 	return 0;
9643 }
9644 
9645 static int need_active_balance(struct lb_env *env)
9646 {
9647 	struct sched_domain *sd = env->sd;
9648 
9649 	if (asym_active_balance(env))
9650 		return 1;
9651 
9652 	if (imbalanced_active_balance(env))
9653 		return 1;
9654 
9655 	/*
9656 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9657 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9658 	 * because of other sched_class or IRQs if more capacity stays
9659 	 * available on dst_cpu.
9660 	 */
9661 	if ((env->idle != CPU_NOT_IDLE) &&
9662 	    (env->src_rq->cfs.h_nr_running == 1)) {
9663 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9664 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9665 			return 1;
9666 	}
9667 
9668 	if (env->migration_type == migrate_misfit)
9669 		return 1;
9670 
9671 	return 0;
9672 }
9673 
9674 static int active_load_balance_cpu_stop(void *data);
9675 
9676 static int should_we_balance(struct lb_env *env)
9677 {
9678 	struct sched_group *sg = env->sd->groups;
9679 	int cpu;
9680 
9681 	/*
9682 	 * Ensure the balancing environment is consistent; can happen
9683 	 * when the softirq triggers 'during' hotplug.
9684 	 */
9685 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9686 		return 0;
9687 
9688 	/*
9689 	 * In the newly idle case, we will allow all the CPUs
9690 	 * to do the newly idle load balance.
9691 	 */
9692 	if (env->idle == CPU_NEWLY_IDLE)
9693 		return 1;
9694 
9695 	/* Try to find first idle CPU */
9696 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9697 		if (!idle_cpu(cpu))
9698 			continue;
9699 
9700 		/* Are we the first idle CPU? */
9701 		return cpu == env->dst_cpu;
9702 	}
9703 
9704 	/* Are we the first CPU of this group ? */
9705 	return group_balance_cpu(sg) == env->dst_cpu;
9706 }
9707 
9708 /*
9709  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9710  * tasks if there is an imbalance.
9711  */
9712 static int load_balance(int this_cpu, struct rq *this_rq,
9713 			struct sched_domain *sd, enum cpu_idle_type idle,
9714 			int *continue_balancing)
9715 {
9716 	int ld_moved, cur_ld_moved, active_balance = 0;
9717 	struct sched_domain *sd_parent = sd->parent;
9718 	struct sched_group *group;
9719 	struct rq *busiest;
9720 	struct rq_flags rf;
9721 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9722 
9723 	struct lb_env env = {
9724 		.sd		= sd,
9725 		.dst_cpu	= this_cpu,
9726 		.dst_rq		= this_rq,
9727 		.dst_grpmask    = sched_group_span(sd->groups),
9728 		.idle		= idle,
9729 		.loop_break	= sched_nr_migrate_break,
9730 		.cpus		= cpus,
9731 		.fbq_type	= all,
9732 		.tasks		= LIST_HEAD_INIT(env.tasks),
9733 	};
9734 
9735 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9736 
9737 	schedstat_inc(sd->lb_count[idle]);
9738 
9739 redo:
9740 	if (!should_we_balance(&env)) {
9741 		*continue_balancing = 0;
9742 		goto out_balanced;
9743 	}
9744 
9745 	group = find_busiest_group(&env);
9746 	if (!group) {
9747 		schedstat_inc(sd->lb_nobusyg[idle]);
9748 		goto out_balanced;
9749 	}
9750 
9751 	busiest = find_busiest_queue(&env, group);
9752 	if (!busiest) {
9753 		schedstat_inc(sd->lb_nobusyq[idle]);
9754 		goto out_balanced;
9755 	}
9756 
9757 	BUG_ON(busiest == env.dst_rq);
9758 
9759 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9760 
9761 	env.src_cpu = busiest->cpu;
9762 	env.src_rq = busiest;
9763 
9764 	ld_moved = 0;
9765 	/* Clear this flag as soon as we find a pullable task */
9766 	env.flags |= LBF_ALL_PINNED;
9767 	if (busiest->nr_running > 1) {
9768 		/*
9769 		 * Attempt to move tasks. If find_busiest_group has found
9770 		 * an imbalance but busiest->nr_running <= 1, the group is
9771 		 * still unbalanced. ld_moved simply stays zero, so it is
9772 		 * correctly treated as an imbalance.
9773 		 */
9774 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9775 
9776 more_balance:
9777 		rq_lock_irqsave(busiest, &rf);
9778 		update_rq_clock(busiest);
9779 
9780 		/*
9781 		 * cur_ld_moved - load moved in current iteration
9782 		 * ld_moved     - cumulative load moved across iterations
9783 		 */
9784 		cur_ld_moved = detach_tasks(&env);
9785 
9786 		/*
9787 		 * We've detached some tasks from busiest_rq. Every
9788 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9789 		 * unlock busiest->lock, and we are able to be sure
9790 		 * that nobody can manipulate the tasks in parallel.
9791 		 * See task_rq_lock() family for the details.
9792 		 */
9793 
9794 		rq_unlock(busiest, &rf);
9795 
9796 		if (cur_ld_moved) {
9797 			attach_tasks(&env);
9798 			ld_moved += cur_ld_moved;
9799 		}
9800 
9801 		local_irq_restore(rf.flags);
9802 
9803 		if (env.flags & LBF_NEED_BREAK) {
9804 			env.flags &= ~LBF_NEED_BREAK;
9805 			goto more_balance;
9806 		}
9807 
9808 		/*
9809 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9810 		 * us and move them to an alternate dst_cpu in our sched_group
9811 		 * where they can run. The upper limit on how many times we
9812 		 * iterate on same src_cpu is dependent on number of CPUs in our
9813 		 * sched_group.
9814 		 *
9815 		 * This changes load balance semantics a bit on who can move
9816 		 * load to a given_cpu. In addition to the given_cpu itself
9817 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9818 		 * nohz-idle), we now have balance_cpu in a position to move
9819 		 * load to given_cpu. In rare situations, this may cause
9820 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9821 		 * _independently_ and at _same_ time to move some load to
9822 		 * given_cpu) causing excess load to be moved to given_cpu.
9823 		 * This however should not happen so much in practice and
9824 		 * moreover subsequent load balance cycles should correct the
9825 		 * excess load moved.
9826 		 */
9827 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9828 
9829 			/* Prevent to re-select dst_cpu via env's CPUs */
9830 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9831 
9832 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9833 			env.dst_cpu	 = env.new_dst_cpu;
9834 			env.flags	&= ~LBF_DST_PINNED;
9835 			env.loop	 = 0;
9836 			env.loop_break	 = sched_nr_migrate_break;
9837 
9838 			/*
9839 			 * Go back to "more_balance" rather than "redo" since we
9840 			 * need to continue with same src_cpu.
9841 			 */
9842 			goto more_balance;
9843 		}
9844 
9845 		/*
9846 		 * We failed to reach balance because of affinity.
9847 		 */
9848 		if (sd_parent) {
9849 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9850 
9851 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9852 				*group_imbalance = 1;
9853 		}
9854 
9855 		/* All tasks on this runqueue were pinned by CPU affinity */
9856 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9857 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9858 			/*
9859 			 * Attempting to continue load balancing at the current
9860 			 * sched_domain level only makes sense if there are
9861 			 * active CPUs remaining as possible busiest CPUs to
9862 			 * pull load from which are not contained within the
9863 			 * destination group that is receiving any migrated
9864 			 * load.
9865 			 */
9866 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9867 				env.loop = 0;
9868 				env.loop_break = sched_nr_migrate_break;
9869 				goto redo;
9870 			}
9871 			goto out_all_pinned;
9872 		}
9873 	}
9874 
9875 	if (!ld_moved) {
9876 		schedstat_inc(sd->lb_failed[idle]);
9877 		/*
9878 		 * Increment the failure counter only on periodic balance.
9879 		 * We do not want newidle balance, which can be very
9880 		 * frequent, pollute the failure counter causing
9881 		 * excessive cache_hot migrations and active balances.
9882 		 */
9883 		if (idle != CPU_NEWLY_IDLE)
9884 			sd->nr_balance_failed++;
9885 
9886 		if (need_active_balance(&env)) {
9887 			unsigned long flags;
9888 
9889 			raw_spin_rq_lock_irqsave(busiest, flags);
9890 
9891 			/*
9892 			 * Don't kick the active_load_balance_cpu_stop,
9893 			 * if the curr task on busiest CPU can't be
9894 			 * moved to this_cpu:
9895 			 */
9896 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9897 				raw_spin_rq_unlock_irqrestore(busiest, flags);
9898 				goto out_one_pinned;
9899 			}
9900 
9901 			/* Record that we found at least one task that could run on this_cpu */
9902 			env.flags &= ~LBF_ALL_PINNED;
9903 
9904 			/*
9905 			 * ->active_balance synchronizes accesses to
9906 			 * ->active_balance_work.  Once set, it's cleared
9907 			 * only after active load balance is finished.
9908 			 */
9909 			if (!busiest->active_balance) {
9910 				busiest->active_balance = 1;
9911 				busiest->push_cpu = this_cpu;
9912 				active_balance = 1;
9913 			}
9914 			raw_spin_rq_unlock_irqrestore(busiest, flags);
9915 
9916 			if (active_balance) {
9917 				stop_one_cpu_nowait(cpu_of(busiest),
9918 					active_load_balance_cpu_stop, busiest,
9919 					&busiest->active_balance_work);
9920 			}
9921 		}
9922 	} else {
9923 		sd->nr_balance_failed = 0;
9924 	}
9925 
9926 	if (likely(!active_balance) || need_active_balance(&env)) {
9927 		/* We were unbalanced, so reset the balancing interval */
9928 		sd->balance_interval = sd->min_interval;
9929 	}
9930 
9931 	goto out;
9932 
9933 out_balanced:
9934 	/*
9935 	 * We reach balance although we may have faced some affinity
9936 	 * constraints. Clear the imbalance flag only if other tasks got
9937 	 * a chance to move and fix the imbalance.
9938 	 */
9939 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9940 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9941 
9942 		if (*group_imbalance)
9943 			*group_imbalance = 0;
9944 	}
9945 
9946 out_all_pinned:
9947 	/*
9948 	 * We reach balance because all tasks are pinned at this level so
9949 	 * we can't migrate them. Let the imbalance flag set so parent level
9950 	 * can try to migrate them.
9951 	 */
9952 	schedstat_inc(sd->lb_balanced[idle]);
9953 
9954 	sd->nr_balance_failed = 0;
9955 
9956 out_one_pinned:
9957 	ld_moved = 0;
9958 
9959 	/*
9960 	 * newidle_balance() disregards balance intervals, so we could
9961 	 * repeatedly reach this code, which would lead to balance_interval
9962 	 * skyrocketing in a short amount of time. Skip the balance_interval
9963 	 * increase logic to avoid that.
9964 	 */
9965 	if (env.idle == CPU_NEWLY_IDLE)
9966 		goto out;
9967 
9968 	/* tune up the balancing interval */
9969 	if ((env.flags & LBF_ALL_PINNED &&
9970 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9971 	    sd->balance_interval < sd->max_interval)
9972 		sd->balance_interval *= 2;
9973 out:
9974 	return ld_moved;
9975 }
9976 
9977 static inline unsigned long
9978 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9979 {
9980 	unsigned long interval = sd->balance_interval;
9981 
9982 	if (cpu_busy)
9983 		interval *= sd->busy_factor;
9984 
9985 	/* scale ms to jiffies */
9986 	interval = msecs_to_jiffies(interval);
9987 
9988 	/*
9989 	 * Reduce likelihood of busy balancing at higher domains racing with
9990 	 * balancing at lower domains by preventing their balancing periods
9991 	 * from being multiples of each other.
9992 	 */
9993 	if (cpu_busy)
9994 		interval -= 1;
9995 
9996 	interval = clamp(interval, 1UL, max_load_balance_interval);
9997 
9998 	return interval;
9999 }
10000 
10001 static inline void
10002 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10003 {
10004 	unsigned long interval, next;
10005 
10006 	/* used by idle balance, so cpu_busy = 0 */
10007 	interval = get_sd_balance_interval(sd, 0);
10008 	next = sd->last_balance + interval;
10009 
10010 	if (time_after(*next_balance, next))
10011 		*next_balance = next;
10012 }
10013 
10014 /*
10015  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10016  * running tasks off the busiest CPU onto idle CPUs. It requires at
10017  * least 1 task to be running on each physical CPU where possible, and
10018  * avoids physical / logical imbalances.
10019  */
10020 static int active_load_balance_cpu_stop(void *data)
10021 {
10022 	struct rq *busiest_rq = data;
10023 	int busiest_cpu = cpu_of(busiest_rq);
10024 	int target_cpu = busiest_rq->push_cpu;
10025 	struct rq *target_rq = cpu_rq(target_cpu);
10026 	struct sched_domain *sd;
10027 	struct task_struct *p = NULL;
10028 	struct rq_flags rf;
10029 
10030 	rq_lock_irq(busiest_rq, &rf);
10031 	/*
10032 	 * Between queueing the stop-work and running it is a hole in which
10033 	 * CPUs can become inactive. We should not move tasks from or to
10034 	 * inactive CPUs.
10035 	 */
10036 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10037 		goto out_unlock;
10038 
10039 	/* Make sure the requested CPU hasn't gone down in the meantime: */
10040 	if (unlikely(busiest_cpu != smp_processor_id() ||
10041 		     !busiest_rq->active_balance))
10042 		goto out_unlock;
10043 
10044 	/* Is there any task to move? */
10045 	if (busiest_rq->nr_running <= 1)
10046 		goto out_unlock;
10047 
10048 	/*
10049 	 * This condition is "impossible", if it occurs
10050 	 * we need to fix it. Originally reported by
10051 	 * Bjorn Helgaas on a 128-CPU setup.
10052 	 */
10053 	BUG_ON(busiest_rq == target_rq);
10054 
10055 	/* Search for an sd spanning us and the target CPU. */
10056 	rcu_read_lock();
10057 	for_each_domain(target_cpu, sd) {
10058 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10059 			break;
10060 	}
10061 
10062 	if (likely(sd)) {
10063 		struct lb_env env = {
10064 			.sd		= sd,
10065 			.dst_cpu	= target_cpu,
10066 			.dst_rq		= target_rq,
10067 			.src_cpu	= busiest_rq->cpu,
10068 			.src_rq		= busiest_rq,
10069 			.idle		= CPU_IDLE,
10070 			.flags		= LBF_ACTIVE_LB,
10071 		};
10072 
10073 		schedstat_inc(sd->alb_count);
10074 		update_rq_clock(busiest_rq);
10075 
10076 		p = detach_one_task(&env);
10077 		if (p) {
10078 			schedstat_inc(sd->alb_pushed);
10079 			/* Active balancing done, reset the failure counter. */
10080 			sd->nr_balance_failed = 0;
10081 		} else {
10082 			schedstat_inc(sd->alb_failed);
10083 		}
10084 	}
10085 	rcu_read_unlock();
10086 out_unlock:
10087 	busiest_rq->active_balance = 0;
10088 	rq_unlock(busiest_rq, &rf);
10089 
10090 	if (p)
10091 		attach_one_task(target_rq, p);
10092 
10093 	local_irq_enable();
10094 
10095 	return 0;
10096 }
10097 
10098 static DEFINE_SPINLOCK(balancing);
10099 
10100 /*
10101  * Scale the max load_balance interval with the number of CPUs in the system.
10102  * This trades load-balance latency on larger machines for less cross talk.
10103  */
10104 void update_max_interval(void)
10105 {
10106 	max_load_balance_interval = HZ*num_online_cpus()/10;
10107 }
10108 
10109 /*
10110  * It checks each scheduling domain to see if it is due to be balanced,
10111  * and initiates a balancing operation if so.
10112  *
10113  * Balancing parameters are set up in init_sched_domains.
10114  */
10115 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10116 {
10117 	int continue_balancing = 1;
10118 	int cpu = rq->cpu;
10119 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10120 	unsigned long interval;
10121 	struct sched_domain *sd;
10122 	/* Earliest time when we have to do rebalance again */
10123 	unsigned long next_balance = jiffies + 60*HZ;
10124 	int update_next_balance = 0;
10125 	int need_serialize, need_decay = 0;
10126 	u64 max_cost = 0;
10127 
10128 	rcu_read_lock();
10129 	for_each_domain(cpu, sd) {
10130 		/*
10131 		 * Decay the newidle max times here because this is a regular
10132 		 * visit to all the domains. Decay ~1% per second.
10133 		 */
10134 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10135 			sd->max_newidle_lb_cost =
10136 				(sd->max_newidle_lb_cost * 253) / 256;
10137 			sd->next_decay_max_lb_cost = jiffies + HZ;
10138 			need_decay = 1;
10139 		}
10140 		max_cost += sd->max_newidle_lb_cost;
10141 
10142 		/*
10143 		 * Stop the load balance at this level. There is another
10144 		 * CPU in our sched group which is doing load balancing more
10145 		 * actively.
10146 		 */
10147 		if (!continue_balancing) {
10148 			if (need_decay)
10149 				continue;
10150 			break;
10151 		}
10152 
10153 		interval = get_sd_balance_interval(sd, busy);
10154 
10155 		need_serialize = sd->flags & SD_SERIALIZE;
10156 		if (need_serialize) {
10157 			if (!spin_trylock(&balancing))
10158 				goto out;
10159 		}
10160 
10161 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10162 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10163 				/*
10164 				 * The LBF_DST_PINNED logic could have changed
10165 				 * env->dst_cpu, so we can't know our idle
10166 				 * state even if we migrated tasks. Update it.
10167 				 */
10168 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10169 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10170 			}
10171 			sd->last_balance = jiffies;
10172 			interval = get_sd_balance_interval(sd, busy);
10173 		}
10174 		if (need_serialize)
10175 			spin_unlock(&balancing);
10176 out:
10177 		if (time_after(next_balance, sd->last_balance + interval)) {
10178 			next_balance = sd->last_balance + interval;
10179 			update_next_balance = 1;
10180 		}
10181 	}
10182 	if (need_decay) {
10183 		/*
10184 		 * Ensure the rq-wide value also decays but keep it at a
10185 		 * reasonable floor to avoid funnies with rq->avg_idle.
10186 		 */
10187 		rq->max_idle_balance_cost =
10188 			max((u64)sysctl_sched_migration_cost, max_cost);
10189 	}
10190 	rcu_read_unlock();
10191 
10192 	/*
10193 	 * next_balance will be updated only when there is a need.
10194 	 * When the cpu is attached to null domain for ex, it will not be
10195 	 * updated.
10196 	 */
10197 	if (likely(update_next_balance))
10198 		rq->next_balance = next_balance;
10199 
10200 }
10201 
10202 static inline int on_null_domain(struct rq *rq)
10203 {
10204 	return unlikely(!rcu_dereference_sched(rq->sd));
10205 }
10206 
10207 #ifdef CONFIG_NO_HZ_COMMON
10208 /*
10209  * idle load balancing details
10210  * - When one of the busy CPUs notice that there may be an idle rebalancing
10211  *   needed, they will kick the idle load balancer, which then does idle
10212  *   load balancing for all the idle CPUs.
10213  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10214  *   anywhere yet.
10215  */
10216 
10217 static inline int find_new_ilb(void)
10218 {
10219 	int ilb;
10220 
10221 	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10222 			      housekeeping_cpumask(HK_FLAG_MISC)) {
10223 
10224 		if (ilb == smp_processor_id())
10225 			continue;
10226 
10227 		if (idle_cpu(ilb))
10228 			return ilb;
10229 	}
10230 
10231 	return nr_cpu_ids;
10232 }
10233 
10234 /*
10235  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10236  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10237  */
10238 static void kick_ilb(unsigned int flags)
10239 {
10240 	int ilb_cpu;
10241 
10242 	/*
10243 	 * Increase nohz.next_balance only when if full ilb is triggered but
10244 	 * not if we only update stats.
10245 	 */
10246 	if (flags & NOHZ_BALANCE_KICK)
10247 		nohz.next_balance = jiffies+1;
10248 
10249 	ilb_cpu = find_new_ilb();
10250 
10251 	if (ilb_cpu >= nr_cpu_ids)
10252 		return;
10253 
10254 	/*
10255 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10256 	 * the first flag owns it; cleared by nohz_csd_func().
10257 	 */
10258 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10259 	if (flags & NOHZ_KICK_MASK)
10260 		return;
10261 
10262 	/*
10263 	 * This way we generate an IPI on the target CPU which
10264 	 * is idle. And the softirq performing nohz idle load balance
10265 	 * will be run before returning from the IPI.
10266 	 */
10267 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10268 }
10269 
10270 /*
10271  * Current decision point for kicking the idle load balancer in the presence
10272  * of idle CPUs in the system.
10273  */
10274 static void nohz_balancer_kick(struct rq *rq)
10275 {
10276 	unsigned long now = jiffies;
10277 	struct sched_domain_shared *sds;
10278 	struct sched_domain *sd;
10279 	int nr_busy, i, cpu = rq->cpu;
10280 	unsigned int flags = 0;
10281 
10282 	if (unlikely(rq->idle_balance))
10283 		return;
10284 
10285 	/*
10286 	 * We may be recently in ticked or tickless idle mode. At the first
10287 	 * busy tick after returning from idle, we will update the busy stats.
10288 	 */
10289 	nohz_balance_exit_idle(rq);
10290 
10291 	/*
10292 	 * None are in tickless mode and hence no need for NOHZ idle load
10293 	 * balancing.
10294 	 */
10295 	if (likely(!atomic_read(&nohz.nr_cpus)))
10296 		return;
10297 
10298 	if (READ_ONCE(nohz.has_blocked) &&
10299 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10300 		flags = NOHZ_STATS_KICK;
10301 
10302 	if (time_before(now, nohz.next_balance))
10303 		goto out;
10304 
10305 	if (rq->nr_running >= 2) {
10306 		flags = NOHZ_KICK_MASK;
10307 		goto out;
10308 	}
10309 
10310 	rcu_read_lock();
10311 
10312 	sd = rcu_dereference(rq->sd);
10313 	if (sd) {
10314 		/*
10315 		 * If there's a CFS task and the current CPU has reduced
10316 		 * capacity; kick the ILB to see if there's a better CPU to run
10317 		 * on.
10318 		 */
10319 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10320 			flags = NOHZ_KICK_MASK;
10321 			goto unlock;
10322 		}
10323 	}
10324 
10325 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10326 	if (sd) {
10327 		/*
10328 		 * When ASYM_PACKING; see if there's a more preferred CPU
10329 		 * currently idle; in which case, kick the ILB to move tasks
10330 		 * around.
10331 		 */
10332 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10333 			if (sched_asym_prefer(i, cpu)) {
10334 				flags = NOHZ_KICK_MASK;
10335 				goto unlock;
10336 			}
10337 		}
10338 	}
10339 
10340 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10341 	if (sd) {
10342 		/*
10343 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10344 		 * to run the misfit task on.
10345 		 */
10346 		if (check_misfit_status(rq, sd)) {
10347 			flags = NOHZ_KICK_MASK;
10348 			goto unlock;
10349 		}
10350 
10351 		/*
10352 		 * For asymmetric systems, we do not want to nicely balance
10353 		 * cache use, instead we want to embrace asymmetry and only
10354 		 * ensure tasks have enough CPU capacity.
10355 		 *
10356 		 * Skip the LLC logic because it's not relevant in that case.
10357 		 */
10358 		goto unlock;
10359 	}
10360 
10361 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10362 	if (sds) {
10363 		/*
10364 		 * If there is an imbalance between LLC domains (IOW we could
10365 		 * increase the overall cache use), we need some less-loaded LLC
10366 		 * domain to pull some load. Likewise, we may need to spread
10367 		 * load within the current LLC domain (e.g. packed SMT cores but
10368 		 * other CPUs are idle). We can't really know from here how busy
10369 		 * the others are - so just get a nohz balance going if it looks
10370 		 * like this LLC domain has tasks we could move.
10371 		 */
10372 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10373 		if (nr_busy > 1) {
10374 			flags = NOHZ_KICK_MASK;
10375 			goto unlock;
10376 		}
10377 	}
10378 unlock:
10379 	rcu_read_unlock();
10380 out:
10381 	if (flags)
10382 		kick_ilb(flags);
10383 }
10384 
10385 static void set_cpu_sd_state_busy(int cpu)
10386 {
10387 	struct sched_domain *sd;
10388 
10389 	rcu_read_lock();
10390 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10391 
10392 	if (!sd || !sd->nohz_idle)
10393 		goto unlock;
10394 	sd->nohz_idle = 0;
10395 
10396 	atomic_inc(&sd->shared->nr_busy_cpus);
10397 unlock:
10398 	rcu_read_unlock();
10399 }
10400 
10401 void nohz_balance_exit_idle(struct rq *rq)
10402 {
10403 	SCHED_WARN_ON(rq != this_rq());
10404 
10405 	if (likely(!rq->nohz_tick_stopped))
10406 		return;
10407 
10408 	rq->nohz_tick_stopped = 0;
10409 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10410 	atomic_dec(&nohz.nr_cpus);
10411 
10412 	set_cpu_sd_state_busy(rq->cpu);
10413 }
10414 
10415 static void set_cpu_sd_state_idle(int cpu)
10416 {
10417 	struct sched_domain *sd;
10418 
10419 	rcu_read_lock();
10420 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10421 
10422 	if (!sd || sd->nohz_idle)
10423 		goto unlock;
10424 	sd->nohz_idle = 1;
10425 
10426 	atomic_dec(&sd->shared->nr_busy_cpus);
10427 unlock:
10428 	rcu_read_unlock();
10429 }
10430 
10431 /*
10432  * This routine will record that the CPU is going idle with tick stopped.
10433  * This info will be used in performing idle load balancing in the future.
10434  */
10435 void nohz_balance_enter_idle(int cpu)
10436 {
10437 	struct rq *rq = cpu_rq(cpu);
10438 
10439 	SCHED_WARN_ON(cpu != smp_processor_id());
10440 
10441 	/* If this CPU is going down, then nothing needs to be done: */
10442 	if (!cpu_active(cpu))
10443 		return;
10444 
10445 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10446 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10447 		return;
10448 
10449 	/*
10450 	 * Can be set safely without rq->lock held
10451 	 * If a clear happens, it will have evaluated last additions because
10452 	 * rq->lock is held during the check and the clear
10453 	 */
10454 	rq->has_blocked_load = 1;
10455 
10456 	/*
10457 	 * The tick is still stopped but load could have been added in the
10458 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10459 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10460 	 * of nohz.has_blocked can only happen after checking the new load
10461 	 */
10462 	if (rq->nohz_tick_stopped)
10463 		goto out;
10464 
10465 	/* If we're a completely isolated CPU, we don't play: */
10466 	if (on_null_domain(rq))
10467 		return;
10468 
10469 	rq->nohz_tick_stopped = 1;
10470 
10471 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10472 	atomic_inc(&nohz.nr_cpus);
10473 
10474 	/*
10475 	 * Ensures that if nohz_idle_balance() fails to observe our
10476 	 * @idle_cpus_mask store, it must observe the @has_blocked
10477 	 * store.
10478 	 */
10479 	smp_mb__after_atomic();
10480 
10481 	set_cpu_sd_state_idle(cpu);
10482 
10483 out:
10484 	/*
10485 	 * Each time a cpu enter idle, we assume that it has blocked load and
10486 	 * enable the periodic update of the load of idle cpus
10487 	 */
10488 	WRITE_ONCE(nohz.has_blocked, 1);
10489 }
10490 
10491 static bool update_nohz_stats(struct rq *rq)
10492 {
10493 	unsigned int cpu = rq->cpu;
10494 
10495 	if (!rq->has_blocked_load)
10496 		return false;
10497 
10498 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10499 		return false;
10500 
10501 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10502 		return true;
10503 
10504 	update_blocked_averages(cpu);
10505 
10506 	return rq->has_blocked_load;
10507 }
10508 
10509 /*
10510  * Internal function that runs load balance for all idle cpus. The load balance
10511  * can be a simple update of blocked load or a complete load balance with
10512  * tasks movement depending of flags.
10513  */
10514 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10515 			       enum cpu_idle_type idle)
10516 {
10517 	/* Earliest time when we have to do rebalance again */
10518 	unsigned long now = jiffies;
10519 	unsigned long next_balance = now + 60*HZ;
10520 	bool has_blocked_load = false;
10521 	int update_next_balance = 0;
10522 	int this_cpu = this_rq->cpu;
10523 	int balance_cpu;
10524 	struct rq *rq;
10525 
10526 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10527 
10528 	/*
10529 	 * We assume there will be no idle load after this update and clear
10530 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10531 	 * set the has_blocked flag and trig another update of idle load.
10532 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10533 	 * setting the flag, we are sure to not clear the state and not
10534 	 * check the load of an idle cpu.
10535 	 */
10536 	WRITE_ONCE(nohz.has_blocked, 0);
10537 
10538 	/*
10539 	 * Ensures that if we miss the CPU, we must see the has_blocked
10540 	 * store from nohz_balance_enter_idle().
10541 	 */
10542 	smp_mb();
10543 
10544 	/*
10545 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10546 	 * chance for other idle cpu to pull load.
10547 	 */
10548 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
10549 		if (!idle_cpu(balance_cpu))
10550 			continue;
10551 
10552 		/*
10553 		 * If this CPU gets work to do, stop the load balancing
10554 		 * work being done for other CPUs. Next load
10555 		 * balancing owner will pick it up.
10556 		 */
10557 		if (need_resched()) {
10558 			has_blocked_load = true;
10559 			goto abort;
10560 		}
10561 
10562 		rq = cpu_rq(balance_cpu);
10563 
10564 		has_blocked_load |= update_nohz_stats(rq);
10565 
10566 		/*
10567 		 * If time for next balance is due,
10568 		 * do the balance.
10569 		 */
10570 		if (time_after_eq(jiffies, rq->next_balance)) {
10571 			struct rq_flags rf;
10572 
10573 			rq_lock_irqsave(rq, &rf);
10574 			update_rq_clock(rq);
10575 			rq_unlock_irqrestore(rq, &rf);
10576 
10577 			if (flags & NOHZ_BALANCE_KICK)
10578 				rebalance_domains(rq, CPU_IDLE);
10579 		}
10580 
10581 		if (time_after(next_balance, rq->next_balance)) {
10582 			next_balance = rq->next_balance;
10583 			update_next_balance = 1;
10584 		}
10585 	}
10586 
10587 	/*
10588 	 * next_balance will be updated only when there is a need.
10589 	 * When the CPU is attached to null domain for ex, it will not be
10590 	 * updated.
10591 	 */
10592 	if (likely(update_next_balance))
10593 		nohz.next_balance = next_balance;
10594 
10595 	WRITE_ONCE(nohz.next_blocked,
10596 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10597 
10598 abort:
10599 	/* There is still blocked load, enable periodic update */
10600 	if (has_blocked_load)
10601 		WRITE_ONCE(nohz.has_blocked, 1);
10602 }
10603 
10604 /*
10605  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10606  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10607  */
10608 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10609 {
10610 	unsigned int flags = this_rq->nohz_idle_balance;
10611 
10612 	if (!flags)
10613 		return false;
10614 
10615 	this_rq->nohz_idle_balance = 0;
10616 
10617 	if (idle != CPU_IDLE)
10618 		return false;
10619 
10620 	_nohz_idle_balance(this_rq, flags, idle);
10621 
10622 	return true;
10623 }
10624 
10625 /*
10626  * Check if we need to run the ILB for updating blocked load before entering
10627  * idle state.
10628  */
10629 void nohz_run_idle_balance(int cpu)
10630 {
10631 	unsigned int flags;
10632 
10633 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10634 
10635 	/*
10636 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10637 	 * (ie NOHZ_STATS_KICK set) and will do the same.
10638 	 */
10639 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10640 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10641 }
10642 
10643 static void nohz_newidle_balance(struct rq *this_rq)
10644 {
10645 	int this_cpu = this_rq->cpu;
10646 
10647 	/*
10648 	 * This CPU doesn't want to be disturbed by scheduler
10649 	 * housekeeping
10650 	 */
10651 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10652 		return;
10653 
10654 	/* Will wake up very soon. No time for doing anything else*/
10655 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10656 		return;
10657 
10658 	/* Don't need to update blocked load of idle CPUs*/
10659 	if (!READ_ONCE(nohz.has_blocked) ||
10660 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10661 		return;
10662 
10663 	/*
10664 	 * Set the need to trigger ILB in order to update blocked load
10665 	 * before entering idle state.
10666 	 */
10667 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10668 }
10669 
10670 #else /* !CONFIG_NO_HZ_COMMON */
10671 static inline void nohz_balancer_kick(struct rq *rq) { }
10672 
10673 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10674 {
10675 	return false;
10676 }
10677 
10678 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10679 #endif /* CONFIG_NO_HZ_COMMON */
10680 
10681 /*
10682  * newidle_balance is called by schedule() if this_cpu is about to become
10683  * idle. Attempts to pull tasks from other CPUs.
10684  *
10685  * Returns:
10686  *   < 0 - we released the lock and there are !fair tasks present
10687  *     0 - failed, no new tasks
10688  *   > 0 - success, new (fair) tasks present
10689  */
10690 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10691 {
10692 	unsigned long next_balance = jiffies + HZ;
10693 	int this_cpu = this_rq->cpu;
10694 	struct sched_domain *sd;
10695 	int pulled_task = 0;
10696 	u64 curr_cost = 0;
10697 
10698 	update_misfit_status(NULL, this_rq);
10699 
10700 	/*
10701 	 * There is a task waiting to run. No need to search for one.
10702 	 * Return 0; the task will be enqueued when switching to idle.
10703 	 */
10704 	if (this_rq->ttwu_pending)
10705 		return 0;
10706 
10707 	/*
10708 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10709 	 * measure the duration of idle_balance() as idle time.
10710 	 */
10711 	this_rq->idle_stamp = rq_clock(this_rq);
10712 
10713 	/*
10714 	 * Do not pull tasks towards !active CPUs...
10715 	 */
10716 	if (!cpu_active(this_cpu))
10717 		return 0;
10718 
10719 	/*
10720 	 * This is OK, because current is on_cpu, which avoids it being picked
10721 	 * for load-balance and preemption/IRQs are still disabled avoiding
10722 	 * further scheduler activity on it and we're being very careful to
10723 	 * re-start the picking loop.
10724 	 */
10725 	rq_unpin_lock(this_rq, rf);
10726 
10727 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10728 	    !READ_ONCE(this_rq->rd->overload)) {
10729 
10730 		rcu_read_lock();
10731 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
10732 		if (sd)
10733 			update_next_balance(sd, &next_balance);
10734 		rcu_read_unlock();
10735 
10736 		goto out;
10737 	}
10738 
10739 	raw_spin_rq_unlock(this_rq);
10740 
10741 	update_blocked_averages(this_cpu);
10742 	rcu_read_lock();
10743 	for_each_domain(this_cpu, sd) {
10744 		int continue_balancing = 1;
10745 		u64 t0, domain_cost;
10746 
10747 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10748 			update_next_balance(sd, &next_balance);
10749 			break;
10750 		}
10751 
10752 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10753 			t0 = sched_clock_cpu(this_cpu);
10754 
10755 			pulled_task = load_balance(this_cpu, this_rq,
10756 						   sd, CPU_NEWLY_IDLE,
10757 						   &continue_balancing);
10758 
10759 			domain_cost = sched_clock_cpu(this_cpu) - t0;
10760 			if (domain_cost > sd->max_newidle_lb_cost)
10761 				sd->max_newidle_lb_cost = domain_cost;
10762 
10763 			curr_cost += domain_cost;
10764 		}
10765 
10766 		update_next_balance(sd, &next_balance);
10767 
10768 		/*
10769 		 * Stop searching for tasks to pull if there are
10770 		 * now runnable tasks on this rq.
10771 		 */
10772 		if (pulled_task || this_rq->nr_running > 0 ||
10773 		    this_rq->ttwu_pending)
10774 			break;
10775 	}
10776 	rcu_read_unlock();
10777 
10778 	raw_spin_rq_lock(this_rq);
10779 
10780 	if (curr_cost > this_rq->max_idle_balance_cost)
10781 		this_rq->max_idle_balance_cost = curr_cost;
10782 
10783 	/*
10784 	 * While browsing the domains, we released the rq lock, a task could
10785 	 * have been enqueued in the meantime. Since we're not going idle,
10786 	 * pretend we pulled a task.
10787 	 */
10788 	if (this_rq->cfs.h_nr_running && !pulled_task)
10789 		pulled_task = 1;
10790 
10791 	/* Is there a task of a high priority class? */
10792 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10793 		pulled_task = -1;
10794 
10795 out:
10796 	/* Move the next balance forward */
10797 	if (time_after(this_rq->next_balance, next_balance))
10798 		this_rq->next_balance = next_balance;
10799 
10800 	if (pulled_task)
10801 		this_rq->idle_stamp = 0;
10802 	else
10803 		nohz_newidle_balance(this_rq);
10804 
10805 	rq_repin_lock(this_rq, rf);
10806 
10807 	return pulled_task;
10808 }
10809 
10810 /*
10811  * run_rebalance_domains is triggered when needed from the scheduler tick.
10812  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10813  */
10814 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10815 {
10816 	struct rq *this_rq = this_rq();
10817 	enum cpu_idle_type idle = this_rq->idle_balance ?
10818 						CPU_IDLE : CPU_NOT_IDLE;
10819 
10820 	/*
10821 	 * If this CPU has a pending nohz_balance_kick, then do the
10822 	 * balancing on behalf of the other idle CPUs whose ticks are
10823 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10824 	 * give the idle CPUs a chance to load balance. Else we may
10825 	 * load balance only within the local sched_domain hierarchy
10826 	 * and abort nohz_idle_balance altogether if we pull some load.
10827 	 */
10828 	if (nohz_idle_balance(this_rq, idle))
10829 		return;
10830 
10831 	/* normal load balance */
10832 	update_blocked_averages(this_rq->cpu);
10833 	rebalance_domains(this_rq, idle);
10834 }
10835 
10836 /*
10837  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10838  */
10839 void trigger_load_balance(struct rq *rq)
10840 {
10841 	/*
10842 	 * Don't need to rebalance while attached to NULL domain or
10843 	 * runqueue CPU is not active
10844 	 */
10845 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
10846 		return;
10847 
10848 	if (time_after_eq(jiffies, rq->next_balance))
10849 		raise_softirq(SCHED_SOFTIRQ);
10850 
10851 	nohz_balancer_kick(rq);
10852 }
10853 
10854 static void rq_online_fair(struct rq *rq)
10855 {
10856 	update_sysctl();
10857 
10858 	update_runtime_enabled(rq);
10859 }
10860 
10861 static void rq_offline_fair(struct rq *rq)
10862 {
10863 	update_sysctl();
10864 
10865 	/* Ensure any throttled groups are reachable by pick_next_task */
10866 	unthrottle_offline_cfs_rqs(rq);
10867 }
10868 
10869 #endif /* CONFIG_SMP */
10870 
10871 #ifdef CONFIG_SCHED_CORE
10872 static inline bool
10873 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
10874 {
10875 	u64 slice = sched_slice(cfs_rq_of(se), se);
10876 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
10877 
10878 	return (rtime * min_nr_tasks > slice);
10879 }
10880 
10881 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
10882 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
10883 {
10884 	if (!sched_core_enabled(rq))
10885 		return;
10886 
10887 	/*
10888 	 * If runqueue has only one task which used up its slice and
10889 	 * if the sibling is forced idle, then trigger schedule to
10890 	 * give forced idle task a chance.
10891 	 *
10892 	 * sched_slice() considers only this active rq and it gets the
10893 	 * whole slice. But during force idle, we have siblings acting
10894 	 * like a single runqueue and hence we need to consider runnable
10895 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
10896 	 * go through the forced idle rq, but that would be a perf hit.
10897 	 * We can assume that the forced idle CPU has at least
10898 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
10899 	 * if we need to give up the CPU.
10900 	 */
10901 	if (rq->core->core_forceidle && rq->cfs.nr_running == 1 &&
10902 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
10903 		resched_curr(rq);
10904 }
10905 
10906 /*
10907  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
10908  */
10909 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
10910 {
10911 	for_each_sched_entity(se) {
10912 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10913 
10914 		if (forceidle) {
10915 			if (cfs_rq->forceidle_seq == fi_seq)
10916 				break;
10917 			cfs_rq->forceidle_seq = fi_seq;
10918 		}
10919 
10920 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
10921 	}
10922 }
10923 
10924 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
10925 {
10926 	struct sched_entity *se = &p->se;
10927 
10928 	if (p->sched_class != &fair_sched_class)
10929 		return;
10930 
10931 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
10932 }
10933 
10934 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
10935 {
10936 	struct rq *rq = task_rq(a);
10937 	struct sched_entity *sea = &a->se;
10938 	struct sched_entity *seb = &b->se;
10939 	struct cfs_rq *cfs_rqa;
10940 	struct cfs_rq *cfs_rqb;
10941 	s64 delta;
10942 
10943 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
10944 
10945 #ifdef CONFIG_FAIR_GROUP_SCHED
10946 	/*
10947 	 * Find an se in the hierarchy for tasks a and b, such that the se's
10948 	 * are immediate siblings.
10949 	 */
10950 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
10951 		int sea_depth = sea->depth;
10952 		int seb_depth = seb->depth;
10953 
10954 		if (sea_depth >= seb_depth)
10955 			sea = parent_entity(sea);
10956 		if (sea_depth <= seb_depth)
10957 			seb = parent_entity(seb);
10958 	}
10959 
10960 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
10961 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
10962 
10963 	cfs_rqa = sea->cfs_rq;
10964 	cfs_rqb = seb->cfs_rq;
10965 #else
10966 	cfs_rqa = &task_rq(a)->cfs;
10967 	cfs_rqb = &task_rq(b)->cfs;
10968 #endif
10969 
10970 	/*
10971 	 * Find delta after normalizing se's vruntime with its cfs_rq's
10972 	 * min_vruntime_fi, which would have been updated in prior calls
10973 	 * to se_fi_update().
10974 	 */
10975 	delta = (s64)(sea->vruntime - seb->vruntime) +
10976 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
10977 
10978 	return delta > 0;
10979 }
10980 #else
10981 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
10982 #endif
10983 
10984 /*
10985  * scheduler tick hitting a task of our scheduling class.
10986  *
10987  * NOTE: This function can be called remotely by the tick offload that
10988  * goes along full dynticks. Therefore no local assumption can be made
10989  * and everything must be accessed through the @rq and @curr passed in
10990  * parameters.
10991  */
10992 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10993 {
10994 	struct cfs_rq *cfs_rq;
10995 	struct sched_entity *se = &curr->se;
10996 
10997 	for_each_sched_entity(se) {
10998 		cfs_rq = cfs_rq_of(se);
10999 		entity_tick(cfs_rq, se, queued);
11000 	}
11001 
11002 	if (static_branch_unlikely(&sched_numa_balancing))
11003 		task_tick_numa(rq, curr);
11004 
11005 	update_misfit_status(curr, rq);
11006 	update_overutilized_status(task_rq(curr));
11007 
11008 	task_tick_core(rq, curr);
11009 }
11010 
11011 /*
11012  * called on fork with the child task as argument from the parent's context
11013  *  - child not yet on the tasklist
11014  *  - preemption disabled
11015  */
11016 static void task_fork_fair(struct task_struct *p)
11017 {
11018 	struct cfs_rq *cfs_rq;
11019 	struct sched_entity *se = &p->se, *curr;
11020 	struct rq *rq = this_rq();
11021 	struct rq_flags rf;
11022 
11023 	rq_lock(rq, &rf);
11024 	update_rq_clock(rq);
11025 
11026 	cfs_rq = task_cfs_rq(current);
11027 	curr = cfs_rq->curr;
11028 	if (curr) {
11029 		update_curr(cfs_rq);
11030 		se->vruntime = curr->vruntime;
11031 	}
11032 	place_entity(cfs_rq, se, 1);
11033 
11034 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11035 		/*
11036 		 * Upon rescheduling, sched_class::put_prev_task() will place
11037 		 * 'current' within the tree based on its new key value.
11038 		 */
11039 		swap(curr->vruntime, se->vruntime);
11040 		resched_curr(rq);
11041 	}
11042 
11043 	se->vruntime -= cfs_rq->min_vruntime;
11044 	rq_unlock(rq, &rf);
11045 }
11046 
11047 /*
11048  * Priority of the task has changed. Check to see if we preempt
11049  * the current task.
11050  */
11051 static void
11052 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11053 {
11054 	if (!task_on_rq_queued(p))
11055 		return;
11056 
11057 	if (rq->cfs.nr_running == 1)
11058 		return;
11059 
11060 	/*
11061 	 * Reschedule if we are currently running on this runqueue and
11062 	 * our priority decreased, or if we are not currently running on
11063 	 * this runqueue and our priority is higher than the current's
11064 	 */
11065 	if (task_current(rq, p)) {
11066 		if (p->prio > oldprio)
11067 			resched_curr(rq);
11068 	} else
11069 		check_preempt_curr(rq, p, 0);
11070 }
11071 
11072 static inline bool vruntime_normalized(struct task_struct *p)
11073 {
11074 	struct sched_entity *se = &p->se;
11075 
11076 	/*
11077 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11078 	 * the dequeue_entity(.flags=0) will already have normalized the
11079 	 * vruntime.
11080 	 */
11081 	if (p->on_rq)
11082 		return true;
11083 
11084 	/*
11085 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
11086 	 * But there are some cases where it has already been normalized:
11087 	 *
11088 	 * - A forked child which is waiting for being woken up by
11089 	 *   wake_up_new_task().
11090 	 * - A task which has been woken up by try_to_wake_up() and
11091 	 *   waiting for actually being woken up by sched_ttwu_pending().
11092 	 */
11093 	if (!se->sum_exec_runtime ||
11094 	    (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11095 		return true;
11096 
11097 	return false;
11098 }
11099 
11100 #ifdef CONFIG_FAIR_GROUP_SCHED
11101 /*
11102  * Propagate the changes of the sched_entity across the tg tree to make it
11103  * visible to the root
11104  */
11105 static void propagate_entity_cfs_rq(struct sched_entity *se)
11106 {
11107 	struct cfs_rq *cfs_rq;
11108 
11109 	list_add_leaf_cfs_rq(cfs_rq_of(se));
11110 
11111 	/* Start to propagate at parent */
11112 	se = se->parent;
11113 
11114 	for_each_sched_entity(se) {
11115 		cfs_rq = cfs_rq_of(se);
11116 
11117 		if (!cfs_rq_throttled(cfs_rq)){
11118 			update_load_avg(cfs_rq, se, UPDATE_TG);
11119 			list_add_leaf_cfs_rq(cfs_rq);
11120 			continue;
11121 		}
11122 
11123 		if (list_add_leaf_cfs_rq(cfs_rq))
11124 			break;
11125 	}
11126 }
11127 #else
11128 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11129 #endif
11130 
11131 static void detach_entity_cfs_rq(struct sched_entity *se)
11132 {
11133 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11134 
11135 	/* Catch up with the cfs_rq and remove our load when we leave */
11136 	update_load_avg(cfs_rq, se, 0);
11137 	detach_entity_load_avg(cfs_rq, se);
11138 	update_tg_load_avg(cfs_rq);
11139 	propagate_entity_cfs_rq(se);
11140 }
11141 
11142 static void attach_entity_cfs_rq(struct sched_entity *se)
11143 {
11144 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11145 
11146 #ifdef CONFIG_FAIR_GROUP_SCHED
11147 	/*
11148 	 * Since the real-depth could have been changed (only FAIR
11149 	 * class maintain depth value), reset depth properly.
11150 	 */
11151 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11152 #endif
11153 
11154 	/* Synchronize entity with its cfs_rq */
11155 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11156 	attach_entity_load_avg(cfs_rq, se);
11157 	update_tg_load_avg(cfs_rq);
11158 	propagate_entity_cfs_rq(se);
11159 }
11160 
11161 static void detach_task_cfs_rq(struct task_struct *p)
11162 {
11163 	struct sched_entity *se = &p->se;
11164 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11165 
11166 	if (!vruntime_normalized(p)) {
11167 		/*
11168 		 * Fix up our vruntime so that the current sleep doesn't
11169 		 * cause 'unlimited' sleep bonus.
11170 		 */
11171 		place_entity(cfs_rq, se, 0);
11172 		se->vruntime -= cfs_rq->min_vruntime;
11173 	}
11174 
11175 	detach_entity_cfs_rq(se);
11176 }
11177 
11178 static void attach_task_cfs_rq(struct task_struct *p)
11179 {
11180 	struct sched_entity *se = &p->se;
11181 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11182 
11183 	attach_entity_cfs_rq(se);
11184 
11185 	if (!vruntime_normalized(p))
11186 		se->vruntime += cfs_rq->min_vruntime;
11187 }
11188 
11189 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11190 {
11191 	detach_task_cfs_rq(p);
11192 }
11193 
11194 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11195 {
11196 	attach_task_cfs_rq(p);
11197 
11198 	if (task_on_rq_queued(p)) {
11199 		/*
11200 		 * We were most likely switched from sched_rt, so
11201 		 * kick off the schedule if running, otherwise just see
11202 		 * if we can still preempt the current task.
11203 		 */
11204 		if (task_current(rq, p))
11205 			resched_curr(rq);
11206 		else
11207 			check_preempt_curr(rq, p, 0);
11208 	}
11209 }
11210 
11211 /* Account for a task changing its policy or group.
11212  *
11213  * This routine is mostly called to set cfs_rq->curr field when a task
11214  * migrates between groups/classes.
11215  */
11216 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11217 {
11218 	struct sched_entity *se = &p->se;
11219 
11220 #ifdef CONFIG_SMP
11221 	if (task_on_rq_queued(p)) {
11222 		/*
11223 		 * Move the next running task to the front of the list, so our
11224 		 * cfs_tasks list becomes MRU one.
11225 		 */
11226 		list_move(&se->group_node, &rq->cfs_tasks);
11227 	}
11228 #endif
11229 
11230 	for_each_sched_entity(se) {
11231 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11232 
11233 		set_next_entity(cfs_rq, se);
11234 		/* ensure bandwidth has been allocated on our new cfs_rq */
11235 		account_cfs_rq_runtime(cfs_rq, 0);
11236 	}
11237 }
11238 
11239 void init_cfs_rq(struct cfs_rq *cfs_rq)
11240 {
11241 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11242 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11243 #ifndef CONFIG_64BIT
11244 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11245 #endif
11246 #ifdef CONFIG_SMP
11247 	raw_spin_lock_init(&cfs_rq->removed.lock);
11248 #endif
11249 }
11250 
11251 #ifdef CONFIG_FAIR_GROUP_SCHED
11252 static void task_set_group_fair(struct task_struct *p)
11253 {
11254 	struct sched_entity *se = &p->se;
11255 
11256 	set_task_rq(p, task_cpu(p));
11257 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11258 }
11259 
11260 static void task_move_group_fair(struct task_struct *p)
11261 {
11262 	detach_task_cfs_rq(p);
11263 	set_task_rq(p, task_cpu(p));
11264 
11265 #ifdef CONFIG_SMP
11266 	/* Tell se's cfs_rq has been changed -- migrated */
11267 	p->se.avg.last_update_time = 0;
11268 #endif
11269 	attach_task_cfs_rq(p);
11270 }
11271 
11272 static void task_change_group_fair(struct task_struct *p, int type)
11273 {
11274 	switch (type) {
11275 	case TASK_SET_GROUP:
11276 		task_set_group_fair(p);
11277 		break;
11278 
11279 	case TASK_MOVE_GROUP:
11280 		task_move_group_fair(p);
11281 		break;
11282 	}
11283 }
11284 
11285 void free_fair_sched_group(struct task_group *tg)
11286 {
11287 	int i;
11288 
11289 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11290 
11291 	for_each_possible_cpu(i) {
11292 		if (tg->cfs_rq)
11293 			kfree(tg->cfs_rq[i]);
11294 		if (tg->se)
11295 			kfree(tg->se[i]);
11296 	}
11297 
11298 	kfree(tg->cfs_rq);
11299 	kfree(tg->se);
11300 }
11301 
11302 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11303 {
11304 	struct sched_entity *se;
11305 	struct cfs_rq *cfs_rq;
11306 	int i;
11307 
11308 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11309 	if (!tg->cfs_rq)
11310 		goto err;
11311 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11312 	if (!tg->se)
11313 		goto err;
11314 
11315 	tg->shares = NICE_0_LOAD;
11316 
11317 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11318 
11319 	for_each_possible_cpu(i) {
11320 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11321 				      GFP_KERNEL, cpu_to_node(i));
11322 		if (!cfs_rq)
11323 			goto err;
11324 
11325 		se = kzalloc_node(sizeof(struct sched_entity),
11326 				  GFP_KERNEL, cpu_to_node(i));
11327 		if (!se)
11328 			goto err_free_rq;
11329 
11330 		init_cfs_rq(cfs_rq);
11331 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11332 		init_entity_runnable_average(se);
11333 	}
11334 
11335 	return 1;
11336 
11337 err_free_rq:
11338 	kfree(cfs_rq);
11339 err:
11340 	return 0;
11341 }
11342 
11343 void online_fair_sched_group(struct task_group *tg)
11344 {
11345 	struct sched_entity *se;
11346 	struct rq_flags rf;
11347 	struct rq *rq;
11348 	int i;
11349 
11350 	for_each_possible_cpu(i) {
11351 		rq = cpu_rq(i);
11352 		se = tg->se[i];
11353 		rq_lock_irq(rq, &rf);
11354 		update_rq_clock(rq);
11355 		attach_entity_cfs_rq(se);
11356 		sync_throttle(tg, i);
11357 		rq_unlock_irq(rq, &rf);
11358 	}
11359 }
11360 
11361 void unregister_fair_sched_group(struct task_group *tg)
11362 {
11363 	unsigned long flags;
11364 	struct rq *rq;
11365 	int cpu;
11366 
11367 	for_each_possible_cpu(cpu) {
11368 		if (tg->se[cpu])
11369 			remove_entity_load_avg(tg->se[cpu]);
11370 
11371 		/*
11372 		 * Only empty task groups can be destroyed; so we can speculatively
11373 		 * check on_list without danger of it being re-added.
11374 		 */
11375 		if (!tg->cfs_rq[cpu]->on_list)
11376 			continue;
11377 
11378 		rq = cpu_rq(cpu);
11379 
11380 		raw_spin_rq_lock_irqsave(rq, flags);
11381 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11382 		raw_spin_rq_unlock_irqrestore(rq, flags);
11383 	}
11384 }
11385 
11386 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11387 			struct sched_entity *se, int cpu,
11388 			struct sched_entity *parent)
11389 {
11390 	struct rq *rq = cpu_rq(cpu);
11391 
11392 	cfs_rq->tg = tg;
11393 	cfs_rq->rq = rq;
11394 	init_cfs_rq_runtime(cfs_rq);
11395 
11396 	tg->cfs_rq[cpu] = cfs_rq;
11397 	tg->se[cpu] = se;
11398 
11399 	/* se could be NULL for root_task_group */
11400 	if (!se)
11401 		return;
11402 
11403 	if (!parent) {
11404 		se->cfs_rq = &rq->cfs;
11405 		se->depth = 0;
11406 	} else {
11407 		se->cfs_rq = parent->my_q;
11408 		se->depth = parent->depth + 1;
11409 	}
11410 
11411 	se->my_q = cfs_rq;
11412 	/* guarantee group entities always have weight */
11413 	update_load_set(&se->load, NICE_0_LOAD);
11414 	se->parent = parent;
11415 }
11416 
11417 static DEFINE_MUTEX(shares_mutex);
11418 
11419 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11420 {
11421 	int i;
11422 
11423 	/*
11424 	 * We can't change the weight of the root cgroup.
11425 	 */
11426 	if (!tg->se[0])
11427 		return -EINVAL;
11428 
11429 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11430 
11431 	mutex_lock(&shares_mutex);
11432 	if (tg->shares == shares)
11433 		goto done;
11434 
11435 	tg->shares = shares;
11436 	for_each_possible_cpu(i) {
11437 		struct rq *rq = cpu_rq(i);
11438 		struct sched_entity *se = tg->se[i];
11439 		struct rq_flags rf;
11440 
11441 		/* Propagate contribution to hierarchy */
11442 		rq_lock_irqsave(rq, &rf);
11443 		update_rq_clock(rq);
11444 		for_each_sched_entity(se) {
11445 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11446 			update_cfs_group(se);
11447 		}
11448 		rq_unlock_irqrestore(rq, &rf);
11449 	}
11450 
11451 done:
11452 	mutex_unlock(&shares_mutex);
11453 	return 0;
11454 }
11455 #else /* CONFIG_FAIR_GROUP_SCHED */
11456 
11457 void free_fair_sched_group(struct task_group *tg) { }
11458 
11459 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11460 {
11461 	return 1;
11462 }
11463 
11464 void online_fair_sched_group(struct task_group *tg) { }
11465 
11466 void unregister_fair_sched_group(struct task_group *tg) { }
11467 
11468 #endif /* CONFIG_FAIR_GROUP_SCHED */
11469 
11470 
11471 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11472 {
11473 	struct sched_entity *se = &task->se;
11474 	unsigned int rr_interval = 0;
11475 
11476 	/*
11477 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11478 	 * idle runqueue:
11479 	 */
11480 	if (rq->cfs.load.weight)
11481 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11482 
11483 	return rr_interval;
11484 }
11485 
11486 /*
11487  * All the scheduling class methods:
11488  */
11489 DEFINE_SCHED_CLASS(fair) = {
11490 
11491 	.enqueue_task		= enqueue_task_fair,
11492 	.dequeue_task		= dequeue_task_fair,
11493 	.yield_task		= yield_task_fair,
11494 	.yield_to_task		= yield_to_task_fair,
11495 
11496 	.check_preempt_curr	= check_preempt_wakeup,
11497 
11498 	.pick_next_task		= __pick_next_task_fair,
11499 	.put_prev_task		= put_prev_task_fair,
11500 	.set_next_task          = set_next_task_fair,
11501 
11502 #ifdef CONFIG_SMP
11503 	.balance		= balance_fair,
11504 	.pick_task		= pick_task_fair,
11505 	.select_task_rq		= select_task_rq_fair,
11506 	.migrate_task_rq	= migrate_task_rq_fair,
11507 
11508 	.rq_online		= rq_online_fair,
11509 	.rq_offline		= rq_offline_fair,
11510 
11511 	.task_dead		= task_dead_fair,
11512 	.set_cpus_allowed	= set_cpus_allowed_common,
11513 #endif
11514 
11515 	.task_tick		= task_tick_fair,
11516 	.task_fork		= task_fork_fair,
11517 
11518 	.prio_changed		= prio_changed_fair,
11519 	.switched_from		= switched_from_fair,
11520 	.switched_to		= switched_to_fair,
11521 
11522 	.get_rr_interval	= get_rr_interval_fair,
11523 
11524 	.update_curr		= update_curr_fair,
11525 
11526 #ifdef CONFIG_FAIR_GROUP_SCHED
11527 	.task_change_group	= task_change_group_fair,
11528 #endif
11529 
11530 #ifdef CONFIG_UCLAMP_TASK
11531 	.uclamp_enabled		= 1,
11532 #endif
11533 };
11534 
11535 #ifdef CONFIG_SCHED_DEBUG
11536 void print_cfs_stats(struct seq_file *m, int cpu)
11537 {
11538 	struct cfs_rq *cfs_rq, *pos;
11539 
11540 	rcu_read_lock();
11541 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11542 		print_cfs_rq(m, cpu, cfs_rq);
11543 	rcu_read_unlock();
11544 }
11545 
11546 #ifdef CONFIG_NUMA_BALANCING
11547 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11548 {
11549 	int node;
11550 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11551 	struct numa_group *ng;
11552 
11553 	rcu_read_lock();
11554 	ng = rcu_dereference(p->numa_group);
11555 	for_each_online_node(node) {
11556 		if (p->numa_faults) {
11557 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11558 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11559 		}
11560 		if (ng) {
11561 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11562 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11563 		}
11564 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11565 	}
11566 	rcu_read_unlock();
11567 }
11568 #endif /* CONFIG_NUMA_BALANCING */
11569 #endif /* CONFIG_SCHED_DEBUG */
11570 
11571 __init void init_sched_fair_class(void)
11572 {
11573 #ifdef CONFIG_SMP
11574 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11575 
11576 #ifdef CONFIG_NO_HZ_COMMON
11577 	nohz.next_balance = jiffies;
11578 	nohz.next_blocked = jiffies;
11579 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11580 #endif
11581 #endif /* SMP */
11582 
11583 }
11584 
11585 /*
11586  * Helper functions to facilitate extracting info from tracepoints.
11587  */
11588 
11589 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11590 {
11591 #ifdef CONFIG_SMP
11592 	return cfs_rq ? &cfs_rq->avg : NULL;
11593 #else
11594 	return NULL;
11595 #endif
11596 }
11597 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11598 
11599 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11600 {
11601 	if (!cfs_rq) {
11602 		if (str)
11603 			strlcpy(str, "(null)", len);
11604 		else
11605 			return NULL;
11606 	}
11607 
11608 	cfs_rq_tg_path(cfs_rq, str, len);
11609 	return str;
11610 }
11611 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11612 
11613 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11614 {
11615 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11616 }
11617 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11618 
11619 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11620 {
11621 #ifdef CONFIG_SMP
11622 	return rq ? &rq->avg_rt : NULL;
11623 #else
11624 	return NULL;
11625 #endif
11626 }
11627 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11628 
11629 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11630 {
11631 #ifdef CONFIG_SMP
11632 	return rq ? &rq->avg_dl : NULL;
11633 #else
11634 	return NULL;
11635 #endif
11636 }
11637 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11638 
11639 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11640 {
11641 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11642 	return rq ? &rq->avg_irq : NULL;
11643 #else
11644 	return NULL;
11645 #endif
11646 }
11647 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11648 
11649 int sched_trace_rq_cpu(struct rq *rq)
11650 {
11651 	return rq ? cpu_of(rq) : -1;
11652 }
11653 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11654 
11655 int sched_trace_rq_cpu_capacity(struct rq *rq)
11656 {
11657 	return rq ?
11658 #ifdef CONFIG_SMP
11659 		rq->cpu_capacity
11660 #else
11661 		SCHED_CAPACITY_SCALE
11662 #endif
11663 		: -1;
11664 }
11665 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11666 
11667 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11668 {
11669 #ifdef CONFIG_SMP
11670 	return rd ? rd->span : NULL;
11671 #else
11672 	return NULL;
11673 #endif
11674 }
11675 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11676 
11677 int sched_trace_rq_nr_running(struct rq *rq)
11678 {
11679         return rq ? rq->nr_running : -1;
11680 }
11681 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
11682